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Analysing Completeness Theorems in Constructive Meta-Theory

Does T � ϕ imply T ` ϕ constructively?

Confusing situation in the literature on first-order logic:

Completeness equivalent to Boolean Prime Ideal Theorem (Henkin, 1954)

Completeness requires Markov’s Principle (Kreisel, 1962)

Completeness equivalent to Weak Kőnig’s Lemma (Simpson, 2009)

Completeness equivalent to Weak Fan Theorem (Krivtsov, 2015)

Completeness holds fully constructively (Krivine, 1996)
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Working Towards an Explanation

There are multiple dimensions at play:

Syntax fragment (e.g., propositional, minimal, negative, full)

Complexity of the context (e.g., finite, decidable, enumerable, arbitrary)

Cardinality of the signature (e.g., countable, uncountable)

Representation of the semantics (e.g., Boolean, decidable, propositional)

Ongoing systematic investigation using Coq:

Started by Herbelin and Ilik (2016) and Forster, Kirst, and Wehr (2021)

New observations by Hagemeier and Kirst (2022) and Kirst (2022)

Comprehensive overview of current landscape by Herbelin (2022)

Today: syntactic disjunction, arbitrary contexts, countable signature, prop. semantics
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Classical Outline for Intuitionistic Propositional Logic

Employing prime theories (ϕ ∨ ψ ∈ T → ϕ ∈ T ∨ ϕ ∈ T ):

Lindenbaum Extension: if T 6` ϕ then there is prime T ′ with T ′ 6` ϕ

Universal Model U : consistent prime theories related by inclusion

Truth Lemma for T in U : ϕ ∈ T ⇐⇒ T 
 ϕ

Model Existence: if T 6` ϕ then there is M with M 
 T and M 6
 ϕ

Quasi-Completeness: if T 
 ϕ then ¬¬(T ` ϕ)

Completeness: if T 
 ϕ then T ` ϕ
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Constructive Completeness Proof???

For T quasi-prime (ϕ ∨ ψ ∈ T → ¬¬(ϕ ∈ T ∨ ϕ ∈ T )):

Lindenbaum Extension: if T 6` ϕ then there is quasi-prime T ′ with T ′ 6` ϕ

Universal Model: consistent quasi-prime theories related by inclusion

Truth Lemma: fails immediately

Model Existence: fails

Quasi-Completeness: fails

Completeness: needs MP/LEM depending on theory complexity and syntax fragment
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Constructive Completeness Proof?

For T quasi-prime (ϕ ∨ ψ ∈ T → ¬¬(ϕ ∈ T ∨ ϕ ∈ T )) and stable (¬¬(ϕ ∈ T ) → ϕ ∈ T ):

Lindenbaum Extension: if T 6` ϕ then there is stable quasi-prime T ′ with T ′ 6` ϕ

Universal Model: consistent stable quasi-prime theories related by inclusion

Truth Lemma: fails for disjunction

Model Existence: fails

Quasi-Completeness: fails

Completeness: needs MP/LEM depending on theory complexity and syntax fragment
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The Issue with Disjunction

Truth Lemma case for disjunctions ϕ ∨ ψ:

ϕ ∨ ψ ∈ T ?⇐⇒ T 
 ϕ ∨ ψ
def⇐⇒ T 
 ϕ ∨ T 
 ψ

IH⇐⇒ ϕ ∈ T ∨ ψ ∈ T

So we really need prime theories to interpret disjunctions

Primeness from Lindenbaum Extension is constructive no-go
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Quasi-Completeness via WLEM

Weak law of excluded middle WLEM := ∀P : P.¬P ∨ ¬¬P

Lemma

Assuming WLEM, every stable quasi-prime theory is prime.

Proof.

Assume ϕ ∨ ψ ∈ T . Using WLEM, decide whether ¬(ϕ ∈ T ) or ¬¬(ϕ ∈ T ). In the latter
case, conclude ϕ ∈ T directly by stability. In the former case, derive ψ ∈ T using stability,
since assuming ¬(ψ ∈ T ) on top of ¬(ϕ ∈ T ) contradicts quasi-primeness for ϕ ∨ ψ ∈ T .

Classical proof outline works again up to quasi-completeness!

What happens if we instead weaken the Truth Lemma?
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Quasi-Completeness via DNS

Assuming double-negation shift DNS := ∀X .∀p : X → P. (∀x .¬¬p x) → ¬¬(∀x . p x):

Lindenbaum Extension: if T 6` ϕ then there is stable quasi-prime T ′ with T ′ 6` ϕ

Universal Model U : consistent stable quasi-prime theories related by inclusion

Pseudo Truth Lemma for T in U : ϕ ∈ T ⇐⇒ ¬¬(T 
 ϕ)

Pseudo Model Existence: if T 6` ϕ then there is M with ¬¬(M 
 T ) and M 6
 ϕ

Quasi-Completeness: if T 
 ϕ then ¬¬(T ` ϕ) (also since DNS ⇐⇒ ¬¬LEM)

Completeness: needs MP/LEM depending on theory complexity and syntax fragment
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Backwards Analysis

Two proofs of Quasi-Completeness from incomparable principles...

Fact

Model Existence implies WLEM.

Proof.

Given P, use model existence on T := {x0 ∨ ¬x0} ∪ {x0 | P} ∪ {¬x0 | ¬P}. We have T 6` ⊥
so if M 
 T , then either M 
 x0 or M 
 ¬x0, so either ¬¬P or ¬P, respectively.

Fact

Quasi-Completeness implies the following principle: ∀p : N → P.¬¬(∀n.¬p n ∨ ¬¬p n)

Proof.

Using similar tricks for T := {xn ∨ ¬xn} ∪ {xn | p n} ∪ {¬xn | ¬p n}.

Obvious consequence both from WLEM and DNS, maybe enough for Quasi-Completeness?
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Countable Weak Excluded-Middle Shift1

WLEMSN := ∀p : N → P. (∀n.¬¬(¬p n ∨ ¬¬p n)) →¬¬(∀n.¬p n ∨ ¬¬p n)

⇔ ∀pq : N → P. (∀n.¬¬(¬p n ∨ ¬q n)) → ¬¬(∀n.¬p n ∨ ¬q n)

Lemma

Assuming WLEMSN, every stable quasi-prime theory is not not prime.

Proof.

Assume T not prime and derive a contradiction. Given the negative goal, from WLEMSN we
obtain ∀ϕ.¬(ϕ ∈ T ) ∨ ¬¬(ϕ ∈ T ). This yields exactly the instances of WLEM needed to
derive that T is prime, contradiction.

Already this lemma turns out to be enough for Quasi-Completeness!

1Mentioned in systematic study by Umezawa (1959) but absent from the literature otherwise
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Quasi-Completeness via WLEMSN

Refined proof outline using WLEMSN:

Lindenbaum Extension: if T 6` ϕ then there is stable not not prime T ′ with T ′ 6` ϕ

Universal Model U : consistent stable prime theories related by inclusion

Truth Lemma for T in U : ϕ ∈ T ⇐⇒ T 
 ϕ

Quasi Model Existence: if T 6` ϕ then there not not is M with M 
 T and M 6
 ϕ

Quasi-Completeness: if T 
 ϕ then ¬¬(T ` ϕ)

Completeness: needs MP/LEM depending on theory complexity and syntax fragment
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Consequences and Generalisation

Consequences:

WLEM and Model Existence are equivalent

WLEMSN, Quasi Model Existence, and Quasi-Completeness are equivalent

Completeness regarding enumerable T is equivalent to WLEMS + MP

Generalisation:

Classical propositional logic

Classical first-order logic, maybe intuitionistic first-order logic

Classical and intuitionistic modal logics

Bi-intuitionistic logic (depending on exclusion semantics)
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