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What is Mathematics?

https://msutexas.edu/academics/scienceandmath/mathematics/_assets/images/mathematics_image.jpg

Example: “There are infinitely many prime numbers”
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What is Metamathematics?

https://1000logos.net/wp-content/uploads/2021/10/logo-Meta.png

“The proposition ’there are infinitely many prime numbers’ is provable in number theory”
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What is First-Order Logic?

https://upload.wikimedia.org/wikipedia/commons/thumb/4/4a/Emblem_of_the_First_Order.svg/888px-Emblem_of_the_First_Order.svg.png

Universal language consisting of a formal syntax, semantics, and deduction system
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What is Set Theory?

https://upload.wikimedia.org/wikipedia/commons/thumb/6/6d/Venn_A_intersect_B.svg/1200px-Venn_A_intersect_B.svg.png

Foundational first-order axiom system that can express all of mathematics
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What is Type Theory?

https://http2.mlstatic.com/D_NQ_NP_2X_731038-MLM47969124431_102021-F.jpg

An alternative foundation emphasising structure and interrelations of objects
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What is Constructive Logic?

https://img.redbull.com/images/c_limit,w_1500,h_1000,f_auto,q_auto/redbullcom/2020/4/28/bjoyslzjb3uxqyg82uz2/minecraft

An alternative logic emphasising construction and computation
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What is Computer Mechanisation?

https://ilyasergey.net/pnp/coq-logo.png

Usage of interactive computer systems to formulate, verify, and automate mathematical proofs
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So what is the thesis about?

Thesis Colloquium Talk Mechanised Metamathematics January 27th, 2023 10



The Canon of First-Order Logic
Completeness, Undecidability, Incompleteness
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The Calculus of Inductive Constructions (CIC)
Main features of CIC (Coquand and Huet, 1988; Paulin-Mohring, 1993):

Typing judgement x : X prescribes type X to term x , e.g. 5 : N or (λn. n + 1) : N→ N

Simple and dependent type formers: X → Y , X × Y , X + Y , ∀x .F x , Σx .F x

Inductive types: B, N, lists L(X ), options O(X ), vectors X n, ...

Propositional universe P with logical connectives: →, ∧, ∨, ∀, ∃

P is impredicative and (almost) disconnected from computational types

The internal logic of P is intuitionistic, e.g. the following classical principles are unprovable:

Law of excluded middle (LEM): ∀P : P.P ∨ ¬P

Markov’s principle (MP): ∀f : N→ B.¬¬(∃n. f n = tt)→ ∃n. f n = tt

There are non-computable functions

Thesis Colloquium Talk Mechanised Metamathematics January 27th, 2023 12



Representing First-Order Logic in Constructive Type Theory

Terms and formulas are represented as inductive types T and F over a signature Σ = (FΣ,PΣ):

t : T ::= x | f ~t (x : N, f : FΣ, ~t : T|f |)

ϕ,ψ : F ::= ⊥ | P ~t | ϕ→ ψ | ϕ ∧ ψ | ϕ ∨ ψ | ∀x . ϕ | ∃x . ϕ (P : PΣ, ~t : T|P|)

Natural deduction (Γ ` ϕ) captured by inductive rules of intuitionistic or classical flavour

Tarski semanticts (Γ � ϕ) defined recursively over models providing enough structure

Axioms systems like PA and ZF induce relativised theories, e.g. PA ` ϕ and PA � ϕ
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Constructive Completeness1

In which situations does Γ � ϕ imply Γ ` ϕ?

Gödel: completeness holds (Gödel, 1930)

Also Gödel: completeness does not hold constructively (Kreisel, 1962)

Constructive completeness desirable: executable reification of meta-level proof terms

Rich (and confusing) literature on constructive reverse mathematics of completeness

We were mostly inspired by Herbelin and Ilik (2016) and Herbelin and Lee (2009)

1Forster, Kirst, and Wehr (2021)
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Model-Theoretic Semantics

Theorem (Quasi-Completeness)

In the negative (→, ∀,⊥)-fragment, assuming Γ � ϕ implies that Γ ` ϕ does not not hold.

Theorem
In the minimal (→, ∀)-fragment, Γ � ϕ implies Γ ` ϕ. However, including ⊥ one observes:

1 Completeness for enumerable contexts Γ is equivalent to MP,
2 Completeness for arbitrary contexts Γ is equivalent to LEM.

Constructive for relaxed interpretation of ⊥ (Veldman, 1976)

Similar results relating Kripke semantics Γ 
 ϕ with intuitionistic deduction Γ `i ϕ

Fully constructive completeness for algebraic semantics (Scott, 2008)
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The Case of Disjunctions (and Existentials)
Constructivising the metatheory of intuituitionistic epistemic logic (Hagemeier and Kirst, 2022),
a propositional modal logic including ∨, we observed the following connections:

Fact (Intuitionistic Epistemic Logic)

1 Model Existence is equivalent to WLEM: ∀P : P.¬P ∨ ¬¬P
2 Quasi-Completeness is derivable from DNS: ∀X .∀p : X → P. (∀x .¬¬p x)→ ¬¬(∀x . p x)

3 Quasi-Completeness implies a principle we call WDNS: ∀p : N→ P.¬¬(∀n.¬p n∨¬¬p n)

4 Not included in the thesis: Quasi-Completeness is derivable from WDNS

We expect the new observations to apply to first-order logic including existentials, therefore:

Conjecture (First-Order Logic)

Quasi-Completeness for the full syntax is equivalent to WDNS.
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Synthetic Undecidability2

Which decision problems of first-order logic are undecidable?

Church/Turing: validity and provability are undecidable (Church, 1936; Turing, 1937)

Proofs by computable reduction, referring to an explicit model of computation

Synthetic computability avoids explicit models (Richman, 1983; Bauer, 2006)

Synthetic undecidability proofs feasible to mechanise (Forster, 2021; Forster et al., 2020)

Outline: define and verify reduction functions in constructive logic

2Forster, Kirst, and Smolka (2019)
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The Entscheidungsproblem
Use the Post correspondence problem (PCP) as seed, with instances S : L(B∗ × B∗):

(s, t) ∈ S

S . (s, t)

S . (u, v) (s, t) ∈ S

S . (su, tv)

S . (s, s)

PCP S

Encode instances S of PCP as formulas ϕS over signature (e, ftt_, fff_;Q,P__):

ε := e bs := fb(s)

ϕ1 := [P s t | (s, t) ∈ S ] ϕ2 := [∀xy .P x y → P (sx) (ty) | (s, t) ∈ S ]

ϕ3 := ∀x .P x x → Q ϕS := ϕ1 → ϕ2 → ϕ3→Q

Verify that this translation describes a reduction function:

Theorem
PCPS iff ϕS is valid, thus PCP reduces to validity.
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Variants of the Entscheidungsproblem

Using the same synthetic method, we obtain undecidability of:

Satisfiability in Tarski semantics

Provability in intuitionistic and classical natural deduction

Validity and satisfiability in Kripke semantics

Trakhtenbrot’s theorem: finite Tarski satisfiability (Kirst and Larchey-Wendling, 2022)

All the above restricted to binary signature (Hostert, Dudenhefner, and Kirst, 2022)

Several fragments of Robinson’s Q, PA, and ZF (Kirst and Hermes, 2021)

Based on mechanised undecidability proofs of:

Post correspondence problem (Forster et al., 2018)

Solvability of Diophantine equations (Larchey-Wendling and Forster, 2019)
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Synthetic Incompleteness3

Which axiom systems A satisfy A ` ϕ or A ` ¬ϕ for all ϕ?

Gödel: all sound, sufficiently expressive ones (Gödel, 1931)

Rosser: all consistent, sufficiently expressive ones (Rosser, 1936)

Post/Church/Turing: Gödel’s incompleteness is a consequence of undecidability

Kleene: Rosser’s incompleteness is a consequence of recursive inseparability

We give synthetic computational proofs complementing mechanisations à la Gödel/Rosser:
Shankar (1986); O’Connor (2005); Paulson (2015); Popescu and Traytel (2021)

3Kirst and Peters (2023)
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Synthetic Church-Turing
Fact
If Robinson’s Q (or any sound extension) is complete, then the halting problem is decidable.

Improvement assuming a form of Church’s thesis (Richman, 1983; Forster, 2022):

Axiom (EPF)

There is a universal function Θ : N→ (N⇀ N) enumerating all partial functions:

∀f : N⇀ N.∃c : N. ∀xy .Θc x ↓ y ↔ f x ↓ y

Theorem
Every axiom system A representing K x := Θx x ↓, i.e. providing ϕK with

K x ↔ A ` ϕK(x)

neither proves nor refutes ϕK(c) for c being the code of a diagonalisation against K.
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Gödel, Rosser, Kleene
Following an idea of Kleene (1951), we derive a stronger version:

Theorem
Every axiom system A separating K1 x := Θx x ↓ 1 and K0 x := Θx x ↓ 0, i.e. providing ϕK with

K1 x → A ` ϕK(x) and K0 x → A ` ¬ϕK(x)

neither proves nor refutes ϕK(c) for c being the code of a diagonalisation against K1 and K0.

To instantiate these abstract proofs to Q, we need a stronger assumption than EPF:

Axiom (CTQ, cf. Hermes and Kirst (2022))

For every f : N⇀ N there exists ϕ(x , y) with: ∀xy . f x ↓ y ↔ Q ` ∀y ′. ϕ(x , y ′) ↔ y ′ = y

Theorem
CTQ implies EPF and that Q separates the respective problems K1 and K0.
Thus every consistent extension of Q admits an independent sentence.
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A Coq Library for Mechanised First-Order Logic4

https://github.com/uds-psl/coq-library-fol

Merge of all developments into continuously developed core library

Meant to serve as general framework for future projects, also by external users

Only well-formed terms and formulas using vectors to implement symbol arities

Modularity by (type class) parameters for signatures, connectives, and deduction rules

Mechanised de Bruijn encoding inspired by Autosubst 2 (Stark et al., 2019; Stark, 2019)

Tool support for syntax, deduction, and semantics (Hostert, Koch, and Kirst, 2021)

4Kirst et al. (2022)
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Three Levels of Set Theory
First-Order, Second-Order, Synthetic
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Three Levels of Set Theory in CIC5

First-Order Second-Order Synthetic

Power sets P(A) X → P

Numbers ω - N

Relations P(A× B) both coincide X → Y → P

Functions {f ⊆ A× B | . . . } - X → Y

Cardinality ∃f ⊆ A× B . . . ∃f : X → Y . . .

Orderings ∃R ⊆ A× A . . . ∃R : X → X → P . . .

5Kirst and Hermes (2021); Kirst and Smolka (2019); Kirst and Rech (2021)
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Case Study: Sierpiński’s Theorem

The Generalised Continuum Hypothesis implies the Axiom of Choice (Sierpiński, 1947)

GCH := ∀AB. |N| ≤ |A| ≤ |B| ≤ |P(A)| → |B| ≤ |A| ∨ |P(A)| ≤ |B|

AC := ∀AB. ∀R ⊆ A× B. (∀x . ∃y .R x y)→ ∃f : A→ B.∀x .R x (f x)

Given A, construct a well-ordered set ℵ(A) with |ℵ(A)| 6≤ |A| but |ℵ(A)| ≤ |P6(A)|
Iterate GCH to obtain |A| ≤ |ℵ(A)|, thus A can be well-ordered and satisfies AC
May use LEM since already weak forms of GCH imply LEM

FOL: hard work done by Carneiro (2015)
SOL: simpler mechanisation, delegating cardinal arithmetic to type level
CIC: construction of ℵ(A) circumventing ordinal theory
HoTT: natural combination of set-theoretic techniques with type-theoretic primitives
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Conclusion
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Contributions

Formalisation: uniform development of metamathematics in constructive type theory

Mechanisation: reusable Coq libraries advancing original goals of metamathematics

Constructivisation: fully constructive where possible, sharply analysed otherwise

Simplification: synthetic method streamlines undecidability and incompleteness proofs

Orientation: accessible and modern overview of the standard canon of metamathematics
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Perspectives

There’s a lot of things I plan to continue working on:

What is the constructive status of completeness theorems, really?

Does the synthetic method help with Gödel’s second incompleteness theorem?

Is there a natural description of the constructible hierarchy in constructive type theory?

. . .

Thank you all, for everything!
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Synthetic Decidability and Enumerability

A problem interpreted as a predicate p : X → P on a type X is

decidable if there is a function f : X → B with

∀x . p x ↔ f x = tt,

enumerable if there is a function f : N→ O(X ) with

∀x . p x ↔ ∃n. f n = pxq.

Fact
Let p : X → P be a predicate, then p is

decidable iff ∀x . p x + ¬(p x) is inhabited and
enumerable iff there is L : N→ L(X ) s.t. ∀x . p x ↔ ∃n. x ∈ L n.
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Synthetic Many-One Reductions

Given predicates p : X → P and q : Y → P we call a function f : X → Y a (many-one)
reduction from p to q if

∀x . p x ↔ q (f x).

We write p 4 q if a reduction from p to q exists.

Theorem (Reduction)

Let p and q be predicates on data types with p 4 q.
If q is decidable/enumerable/co-enumerable, then so is p.
If p is not co-enumerable, then q is not co-enumerable.

Proof.
If f witnesses p 4 q and g decides q, then g ◦ f decides p.
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Framework: Comparison

Development Signature Binding (AI)-Rule Weakening

O’Connor arbitrary named side-condition n.a.

Ilik monadic locally-nameless co-finite easy

Herbelin et al. dyadic locally-named side-condition needs renaming

Han and van Doorn arbitrary de Bruijn shifting easy

Laurent full anti-loc.-namel. shifting easy

Our framework arbitrary de Bruijn shifting easy
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Framework: Tool Support

Tools developed by Hostert, Koch, and Kirst (2021):

HOAS-input language
I Concrete formulas can be written with Coq binders instead of de Bruijn indices
I Eases interaction with the syntax

Proof mode (inspired by Iris proof mode)
I Tactic and notation layer hiding the proof rules
I Eases interaction with the deduction systems

Reification tactic (employing MetaCoq)
I Extracts first-order formulas from Coq predicates
I Eases interaction with the semantics
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Framework: Usability (Proof Mode)

https://github.com/dominik-kirst/coq-library-undecidability/blob/fol-library/theories/FOL/Proofmode/DemoPA.v
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Framework: Usability (Reification Tactic)

https://github.com/dominik-kirst/coq-library-undecidability/blob/fol-library/theories/FOL/Reification/DemoPA.v
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Framework: Deduction Systems

Proof rules are represented as inductive predicates relating a context Γ to a formula ϕ:

. . .

Γ[↑] ` ϕ
Γ ` ∀ϕ

Γ ` ∀ϕ
Γ ` ϕ[t]

Γ ` ϕ[t]

Γ ` ∃ϕ
Γ ` ∃ϕ Γ[↑], ϕ ` ψ[↑]

Γ ` ψ

. . .

Quantifier rules use shifted contexts Γ[↑] so that x0 acts as canonical free variable

Trivialises structural properties like substitutivity and weakening

Availability of classical rules regulated via type class flag

Similar representation of sequent calculi and other systems
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Framework: Semantics

Tarski modelsM are represented as a domain type D and symbol interpretations:

fM : D |f | → D PM : D |P| → P

Interpretation of terms and formulas based on assignments ρ : N→ D

Term evaluation ρ̂ t defined recursively, main rule ρ̂ (f ~t ) := fM (ρ̂ ~t )

Formula satisfaction ρ � ϕ defined recursively, main rule ρ � P ~t := PM (ρ̂ ~t )

Induces the logical entailment relation Γ � ϕ
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Framework: Axiom Systems

Concrete axiom systems A are modelled as predicates of formulas over a specific signature.

For the example of Peano arithmetic (PA), we instantiate to the arithmetical signature

(O, S_ , _ + _ , _×_ ; _ ≡ _)

and collect the usual axioms, with the induction scheme represented as all instances of

ϕ[O]→ (∀x . ϕ[x ]→ ϕ[S x ])→ ∀x . ϕ[x ].

Include fragments of PA like Robinson’s Q, also several variants of ZF set theory

Equality ≡ seen as axiomatised symbol of the signature rather than a logical primitive

Axiom systems A induce relatives deductive and semantic theories A ` ϕ and A � ϕ
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Framework: Syntax (Coq)
Context {sig_funcs : funcs_signature}.

Inductive term : Type :=
| var : nat -> term
| func : forall (f : syms), vec term (ar_syms f) -> term.

Context {sig_preds : preds_signature}.

Inductive falsity_flag := falsity_off | falsity_on.
Existing Class falsity_flag.

Class operators := {binop : Type ; quantop : Type}.
Context {ops : operators}.

Inductive form : falsity_flag -> Type :=
| falsity : form falsity_on
| atom {b} : forall (P : preds), vec term (ar_preds P) -> form b
| bin {b} : binop -> form b -> form b -> form b
| quant {b} : quantop -> form b -> form b.
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Framework: Deduction Systems (Coq)
Context {sig_funcs : funcs_signature}.
Context {sig_preds : preds_signature}.

Reserved Notation 'A ` phi' (at level 61).

Inductive peirce := class | intu.
Existing Class peirce.

Inductive prv : forall (ff : falsity_flag) (p : peirce), list form -> form -> Prop :=
| II {ff} {p} A phi psi : phi::A ` psi -> A ` phi --> psi
| IE {ff} {p} A phi psi : A ` phi --> psi -> A ` phi -> A ` psi
| AllI {ff} {p} A phi : map (subst_form ↑) A ` phi -> A ` ∀ phi
| AllE {ff} {p} A t phi : A ` ∀ phi -> A ` phi[t..]
| Exp {p} A phi : prv p A falsity -> prv p A phi
| Ctx {ff} {p} A phi : phi el A -> A ` phi
| Pc {ff} A phi psi : prv class A (((phi --> psi) --> phi) --> phi)
where 'A ` phi' := (prv _ A phi).
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Framework: Semantics (Coq)
Context {domain : Type}.

Class interp := B_I
{ i_func : forall f : syms, vec domain (ar_syms f) -> domain ;

i_atom : forall P : preds, vec domain (ar_preds P) -> Prop ; }.

Definition env := nat -> domain.

Context {I : interp}.

Fixpoint eval (rho : env) (t : term) : domain := match t with
| var s => rho s
| func f v => i_func (Vector.map (eval rho) v) end.

Fixpoint sat {ff : falsity_flag} (rho : env) (phi : form) : Prop := match phi with
| atom P v => i_atom (Vector.map (eval rho) v)
| falsity => False
| bin Impl phi psi => sat rho phi -> sat rho psi
| quant All phi => forall d : domain, sat (d .: rho) phi end.
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Analysing Completeness Theorems in Constructive Meta-Theory

Confusing situation in the literature on first-order logic:

Completeness equivalent to Boolean Prime Ideal Theorem (Henkin, 1954)

Completeness requires Markov’s Principle (Kreisel, 1962)

Completeness equivalent to Weak König’s Lemma (Simpson, 2009)

Completeness holds fully constructively (Krivine, 1996)

Systematic investigation missing:

Started consolidation by Herbelin and Ilik (2016) and Forster et al. (2021)

Comprehensive overview of current landscape by Herbelin (2022)
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The Issue with Disjunction

Truth Lemma case for disjunctions ϕ ∨ ψ:

ϕ ∨ ψ ∈ T ?⇐⇒ T 
 ϕ ∨ ψ
def⇐⇒ T 
 ϕ ∨ T 
 ψ
IH⇐⇒ ϕ ∈ T ∨ ψ ∈ T

So we really need prime theories for disjunctions

Primeness from Lindenbaum Extension is constructive no-go
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Backwards Analysis
Two proofs of Quasi-Completeness from incomparable principles...

Fact
Model Existence implies WLEM.

Proof.
Given P , use model existence on T := {x0 ∨¬x0} ∪ {x0 | P} ∪ {¬x0 | ¬P}. We have T 6` ⊥ so
ifM 
 T , then eitherM 
 x0 orM 
 ¬x0, so either ¬¬P or ¬P , respectively.

Fact
Quasi-Completeness implies the following principle: ∀p : N→ P.¬¬(∀n.¬p n ∨ ¬¬p n)

Proof.
Using similar tricks for T := {xn ∨ ¬xn} ∪ {xn | p n} ∪ {¬xn | ¬p n}, see backup slide.

Obvious consequence both from WLEM and DNS, maybe enough for Quasi-Completeness?
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Weak Double-Negation Shift (Preliminary Name)

WDNS := ∀p : N→ P.¬¬(∀n.¬p n ∨ ¬¬p n)

Lemma
Assuming WDNS, every stable quasi-prime theory is not not prime.

Proof.
Assume T not prime and derive a contradiction. Given the negative goal, from WDNS we
obtain ∀ϕ.¬(ϕ ∈ T ) ∨ ¬¬(ϕ ∈ T ). This yields exactly the instances of WLEM needed to
derive that T is prime, contradiction.

WDNS turns stable predicates p : N→ P not not decidable, contributes to Fan Theorem

Already the Lemma turns out to be enough for Quasi-Completeness!
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Quasi-Completeness via WDNS

Refined proof outline using WDNS:

Lindenbaum Extension: if T 6` ϕ then there is stable not not prime T ′ with T ′ 6` ϕ

Universal Model: consistent stable prime theories related by inclusion

Truth Lemma: ϕ ∈ T ⇐⇒ T 
 ϕ

Pseudo Model Existence: if T 6` ϕ then there not not isM withM 
 T andM 6
 ϕ

Quasi-Completeness: if T 
 ϕ then ¬¬(T ` ϕ)

Completeness: anyway no constructive consequence of Quasi-Completeness
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Encoding the Post Correspondence Problem

We use the signature ΣPCP := ({?0, e0, f 1tt , f 1ff }; {P2,≺2,≡2}):

Chains like fff(ftt(e)) represent strings while ? signals overflow

P concerns only defined values and ≺ is a strict ordering:

ϕP := ∀̇xy .P x y →̇ x 6≡ ? ∧̇ y 6≡ ?
ϕ≺ := (∀̇x . x 6≺ x) ∧̇ (∀̇xyz . x ≺ y →̇ y ≺ z →̇ x ≺ z)

Sanity checks on f regarding overflow, disjointness, and injectivity:

ϕf :=

 ftt ? ≡ ? ∧̇ fff ? ≡ ?

∀̇x . ftt x 6≡ e

∀̇x . fff x 6≡ e

 ∧̇
 ∀̇xy . ftt x 6≡ ? →̇ ftt x ≡ ftt y →̇ x ≡ y

∀̇xy . fff x 6≡ ? →̇ fff x ≡ fff y →̇ x ≡ y

∀̇xy . ftt x ≡ fff y →̇ ftt x ≡ ? ∧̇ fff y ≡ ?


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Trakhtenbrot’s Theorem
Given an instance R of PCP, we construct a formula ϕR by:

ϕR := ϕP ∧̇ ϕ≺ ∧̇ ϕf ∧̇ ϕ. ∧̇ ∃̇x .P x x

Crucially, we enforce that P satisfies the inversion principle of R . (s, t):

ϕ. := ∀̇xy .P x y →̇
.∨

(s,t)∈R

∨̇
{
x ≡ s ∧̇ y ≡ t

∃̇uv .P u v ∧̇ x ≡ su ∧̇ y ≡ tv ∧̇ (u, v) ≺ (x , y)

Theorem
PCPR iff FSATEQ(ΣPCP;≡)ϕR , hence PCP 4 FSATEQ(ΣPCP;≡).

Proof.
If R has a solution of length n, then ϕR is satisfied by the model of strings of length bounded by n.
Conversely, ifM �ρ ϕR we can extract a solution of R from ϕ. by well-founded induction on ≺M

(which is applicable sinceM is finite).
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Sketch for Peano Arithmetic

Use axiomatisation PA over standard signature (0, S,+, · ;≡).

Diophantine constraints (cf. Larchey-Wendling and Forster (2019)):
Instances are lists L of constraints xi = 1 | xi + xj = xk | xi · xj = xk

L is solvable if there is an evaluation η : N→ N solving all constraints

Theorem
L = [c1, . . . , ck ] with maximal index xn is solvable iff PA � ∃nc1 ∧ · · · ∧ ck .

Proof.
If L has solution η instantiate the existential quantifiers with numerals η1, . . . , ηn. Then the
axioms of PA entail the constraints.
If PA � ∃nc1 ∧ · · · ∧ ck use the standard model N to extract solution η.
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Sketch for ZF Set Theory
Use axiomatisation ZF over explicit signature (∅, {_,_},

⋃
,P, ω ;≡,∈).

Reduction from PCP:
Boolean encoding: tt = {∅, ∅} and tt = ∅
String encoding: tt ff ff tt = (tt, (ff, (tt, (ff, ∅))))
Stack encoding: S = {(s1, t1), . . . , (sk , tk)}
Combination encoding: S ++B :=

⋃
s/t∈S{(sx , ty) | (x , y) ∈ B}

f . n := (∅, S) ∈ f ∧ ∀(k,B) ∈ f . k ∈ n→ (k + 1,S ++B) ∈ f

ϕS := ∃f , n,B, x . n ∈ ω ∧ f . n ∧ (n,B) ∈ f ∧ (x , x) ∈ B

Theorem
PCPS iff ZF � ϕS and PCP S iff ZF ` ϕS .

Proof.
Direction → by internal proofs and ← relies on standard model S.
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Incompleteness: Halting Problem

Fact
KΘ is undecidable, in fact for every candidate decider d : N⇀ B with

∀x .KΘ x ↔ d x ↓ tt

one can construct a concrete value x with ¬KΘ x such that d x ↑.

Proof.
We first define the partial function f : N⇀ B such that f x ↓ tt whenever d x ↓ ff and f x ↑
otherwise. Now using EPF we obtain a code c for f and deduce for x := c that

d x ↓ tt ⇔ KΘ x ⇔ Θx x ↓ ⇔ f x ↓ ⇔ f x ↓ tt ⇔ d c ↓ ff

from which we conclude d x ↑. That KΘ is not decidable follows since every decider N→ B
would induce a total candidate decider N⇀ B.
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Incompleteness: Recursive Inseparability
Fact
K1

Θ and K0
Θ are recursively inseparable, in fact for every candidate separator s : N⇀ B with

∀x . (K1
Θ x → s x ↓ tt) ∧ (K0

Θ x → s x ↓ ff)

one can construct a concrete value x with ¬K1
Θ x and ¬K0

Θ x such that s x ↑.

Proof.
We define the partial function f : N⇀ B such that f x ↓ ff if s x ↓ tt, f x ↓ tt if s x ↓ ff, and
f x ↑ otherwise. Using EPF we obtain a code c for f and deduce for x := c that

s x ↓ tt ⇔ f x ↓ ff ⇔ Θx x ↓ 0 ⇔ K0
Θ x ⇒ s x ↓ ff

s x ↓ ff ⇔ f x ↓ tt ⇔ Θx x ↓ 1 ⇔ K1
Θ x ⇒ s x ↓ tt

from which we conclude s x ↑.
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Incompleteness: Partial Decider

Lemma (Partial Decider)

One can construct a partial function dS : S⇀ B with:

∀ϕ. (` ϕ↔ dS ϕ ↓ tt) ∧ (` ¬̇ϕ↔ dS ϕ ↓ ff)

Note that by this specification dS exactly diverges on the independent sentences of S.

Lemma
Let dS be the partial decider to S.

1 If S represents KΘ, then dS is a candidate decider for KΘ.
2 If S separates K1

Θ and K0
Θ, then dS is a candidate separator for K1

Θ and K0
Θ.

Thesis Colloquium Talk Mechanised Metamathematics January 27th, 2023 59



First-Order Set Theory6

Axiomatise ZF set theory over a suitable signature using first-order formulas:

∀xy . x ⊆ y → y ⊆ x → x = y ∀x . x 6∈ ∅ ∀xy . y ∈ P(x)↔ y ⊆ x

Separation and replacement represented as axiom schemes in ϕ(x) and functional ψ(x , y):

∀x .∃y . ∀z . z ∈ y ↔ z ∈ x ∧ ϕ(z) ∀x .∃y .∀z . z ∈ y ↔ ∃u ∈ x . ψ(u, z)

Verifying a set-theoretic result means to derive ZF ` ϕ or ZF � ϕ

Limited to first-order encodings of functions, ordinals, cumulative hierarchy, etc.

Undecidability obtained with usual method, provided a model exists (cf. Werner (1997))

Incompleteness applies both to deduction and semantics

6Kirst and Hermes (2021)
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Second-Order Set Theory7

Axiomatise a typeM with relation ∈ :M→M→ P and set-theoretic operations:

∀xy :M. x ⊆ y → y ⊆ x → x = y ∀x :M. x 6∈ ∅ ∀xy :M. y ∈ P(x)↔ y ⊆ x

Separation and replacement quantify over all predicates, as intended by Zermelo (1930):

∀p :M→ P. ∀xy . y ∈ p∩x ↔ y ∈ x ∧p x ∀F :M→M. ∀xy . y ∈ F@x ↔ ∃z ∈ x . y = F z

Verifying a set-theoretic result means to show it forM (possibly assuming UC, FE, PE)

Function spaces coincide, ordinals and cumulative hierarchy can be described inductively

Undecidability could be shown if given in second-order syntax (e.g. Koch and Kirst, 2022)

Incompleteness applies only to deduction, semantics is nearly determined

7Kirst (2018)
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Synthetic Set Theory8

Use type-theoretic structure to represent set-theoretic operations:

0,B,N,X × Y ,X + Y ,X → Y ,X → P, . . .

Separation is a sigma type over a predicate, replacement a sigma type over a function range:

λX . λp : X → P.Σx : X . p x λXY . λF : X → Y .Σy : Y .∃x : X . y = F x

Verifying a set-theoretic result means to show a type-theoretic result (assuming UC, FE, PE)

No intermediate axiomatisation at all, simply work with type-theoretic primitives

No external results like undecidability or incompleteness can be shown

Internal results may may rely on alternative constructions

8Kirst and Rech (2021)
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Constructing Large Ordinals: |ℵ(A)| 6≤ |A|

Definition
The Hartogs number of a set A is the class ℵ(A) := λα ∈ O. |α| ≤ |A|.

Theorem
The Hartogs number ℵ(A) of A satisfies the following properties:

1 |ℵ(A)| ≤ |P6(A)| 2 ℵ(A) ∈ O 3 |ℵ(A)| 6≤ |A|

Proof.

1 By representing ordinals |α| ≤ |A| as well-ordered subsets of A.
2 Straightforward by definition of ordinals.
3 Straightforward by definition of ℵ(A).
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Sierpiński’s Theorem: Proof

Proof.
Assume GCH, to show AC it suffices to show that every infinite type is well-orderable.
So for some infinite X , apply GCH to the situation obtained by Lemma 1:

|P2(X )| ≤ |P2(X ) + ℵ(X )| ≤ |P3(X )|

|P2(X ) + ℵ(X )| ≤ |P2(X )| yields |ℵ(X )| ≤ |P2(X )|, start again
|P3(X )| ≤ |P2(X ) + ℵ(X )| yields |P3(X )| ≤ |ℵ(X )| by Lemma 2

Lemma 1.
If X is infinite, then |X | = |1 + X | and |P(X )| = |P(X ) + P(X )|.

Lemma 2.
If |P(X )| ≤ |X + Y | and |X + X | ≤ |X |, then already |P(X )| ≤ |Y |.
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