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Abstract—In the setting of constructive reverse mathematics,1

we analyse the downward Löwenheim-Skolem (DLS) theorem of2

first-order logic, stating that every infinite model has a countable3

elementary submodel. Refining the well-known equivalence of the4

DLS theorem to the axiom of dependent choice (DC) over classical5

base theories, our constructive approach allows for several finer6

logical decompositions: Just assuming countable choice (CC),7

the DLS theorem is equivalent to the conjunction of DC with8

a newly identified fragment of the excluded middle (LEM) that9

we call the blurred drinker paradox (BDP). Further without CC,10

the DLS theorem is equivalent to the conjunction of BDP with11

similarly blurred weakenings of DC and CC. Independently of12

their connection with the DLS theorem, we also study BDP and13

the blurred choice axioms on their own, for instance by showing14

that BDP is LEM without a contribution of Markov’s principle15

and that blurred DC is DC without a contribution of CC. The16

paper is hyperlinked with an accompanying Coq development.17

Index Terms—Constructive reverse mathematics, Drinker18

paradox, Dependent choice, Löwenheim-Skolem theorem, Coq19

20

I. INTRODUCTION21

The Löwenheim-Skolem theorem1 is a central result about22

first-order logic, entailing that the formalism is incapable of23

distinguishing different infinite cardinalities. In particular the24

theorem’s so-called downward part, stating that every infinite25

model (over a countable signature) can be turned into a count-26

ably infinite model with otherwise the exact same behaviour,27

can be considered surprising or even paradoxical:2 even axiom28

systems like ZF set theory, concerned with uncountably large29

sets like the reals or their iterated power sets, admit countable30

interpretations. This seeming contradiction in particular and its31

metamathematical relevance in general led to an investigation32

of the exact logical assumptions under which the downward33

Löwenheim-Skolem (DLS) theorem applies.34

From the perspective of (classical) reverse mathematics [6],
[7], there is a definite answer: the DLS theorem is equivalent
to the dependent choice axiom (DC), a weak form of the
axiom of choice, stating that there is a path through every
total relation [8], [9], [10]. To argue the first direction, one
can organise the usually iterative construction of the countable
submodel such that a single application of DC yields the
desired result. For the converse direction, one uses the DLS
theorem to turn a given total relation R into a countable sub-
relation R′, applies the classically provable axiom of countable
choice (CC) to obtain a path f ′ through R′, which is then
reflected back as a path f through R. In total, that is:

DLS ↔ DC

1Usually attributed to Löwenheim [1] and Skolem [2] by name, but credit
is also due to Maltsev [3] who in turn credits Tarski.

2Discovered and discussed by Skolem [4]. See also the discussion by
McCarty and Tennant [5] for a constructivist perspective.

However, the classical answer is insufficient if one investi- 35

gates the computational content of the DLS theorem, i.e. the 36

question how effective the transformation of a model into a 37

countable submodel really is. A more adequate answer can 38

be obtained by switching to the perspective of constructive 39

reverse mathematics [11], [12], which is concerned with the 40

analysis of logical strength over a constructive meta-theory, 41

i.e. in particular without the law of excluded middle (LEM), 42

stating that p ∨ ¬p for all propositions p, and ideally also 43

without CC [13]. In that setting, finer logical distinctions 44

become visible and one can analyse the computational content 45

of the DLS theorem by investigating two questions: 46

1) Does the DLS theorem still follow from DC alone, 47

without any contribution of LEM? 48

2) Does the DLS theorem still imply the full strength of 49

DC, without any contribution of CC? 50

DLS (+CC)
?↔ DC (+ LEM)

In this paper, after giving a fully constructive proof of 51

a weak form of the DLS theorem sharing the same com- 52

putational content as constructivised model existence theo- 53

rems [14], [15], we observe that neither 1) nor 2) is the case. 54

Instead, we clarify which exact fragment of LEM is needed on 55

top of DC to prove the DLS theorem and, conversely, which 56

exact fragment of DC it implies. 57

Regarding 1), note that the DLS theorem requires LEM in 58

the form of the drinker paradox:3 in every (non-empty) bar 59

there is a particular person, such that if this person drinks, 60

then everybody in the bar drinks. The classical explanation for 61

that phenomenon is simple, either everyone drinks anyway, 62

in which case we can choose just an arbitrary person, or 63

there is someone not drinking, in which case we choose that 64

person and obtain a contradiction to the assumption they would 65

drink. The role of the drinker paradox in the proof of the 66

DLS theorem now is to ensure that the constructed model 67

correctly interprets universal quantification:4 given a formula 68

∀x. φ(x) one can find a special domain element a such that 69

φ(a) implies ∀x. φ(x), thereby reducing a test over the whole 70

domain to a test of a single point and easing the correctness 71

proof. However, we observe that one actually does not need to 72

know a concretely but only that it is contained somewhere in 73

the countable model we construct, more formally, that there is 74

a countable subset A such that ∀a ∈ A.φ(a) implies ∀x. φ(x). 75

Seen computationally, this means that we reduce testing over 76

the whole domain to testing only a countable part of it. 77

3Polularised as a logic puzzle by Smullyan [16] and studied in relation to
other principles of constructive mathematics by Escardó and Oliva [17].

4Incidentally, a similar requirement is needed in Henkin-style completeness
proofs [18], connecting to our favoured strategy to establish the DLS theorem.



On a more abstract level, this observation corresponds to a78

constructively weaker form of the drinker paradox: in every79

bar, there is a countable group, such that if everyone in80

this group drinks, then everybody in the bar drinks. We call81

this principle the blurred drinker paradox as it continues82

the bar situation at a later point when everyone’s vision got83

blurred and clear identifications of persons become impossible.84

That it corresponds to the DLS theorem is suggestive since85

both statements in a sense collapse arbitrary to countable86

cardinality and indeed we can show that, with CC still assumed87

in the background, the DLS theorem is equivalent to the88

conjunction of DC with the blurred drinker paradox. On top of89

this equivalence, we study the principle (and its dual needed90

for existential quantification) in a more general setting with91

arbitrary blurring cardinalities and in relation to other non-92

constructive principles, unveiling a hierarchy of classically93

invisible logical structure.94

Turning to question 2), we observe that DC becomes95

underivable from the DLS theorem if we further give up on96

CC in the background. This suggests that the actual fragment97

of DC at play is a weakening without the contribution of CC,98

i.e. a principle that follows from DC but does not imply CC.99

By a deeper analysis of the proof of the DLS theorem, we100

actually identify several weakenings of DC that happen to101

include similar blurring techniques as in the case of the blurred102

drinker paradox, again connected to the indistinguishability103

of countable and uncountable cardinalities. In particular, we104

show that the DLS theorem is equivalent to the conjunction of105

a strong blurred form of DC and the blurred drinker paradox,106

with the former further decomposing into a weaker blurred107

form of DC conjoined with a blurred form of CC.108

Orthogonal to its use for the constructive reverse analysis109

of the DLS theorem, our discussion of blurred choice axioms110

contributes to the constructive understanding of the logical111

structure of choice principles in general, thereby complement-112

ing related work by Brede and Herbelin [19]. For instance,113

we show that in the absence of CC, the core of DC actually114

states that every total relation has a total countable sub-relation115

or, alternatively, that every directed relation has a directed116

countable sub-relation. These and similar classically equivalent117

but constructively weaker reformulations of DC are in visible118

connection to the DLS theorem.119

Our resulting decomposition may then be depicted as120

+DLS ↔
BCC DDC

CCN

BDP BEP

MP

DC LEM

which states that DLS is equivalent to two independent121

components of DC (abbreviated BCC and DCC) orthogonal122

to CC on N, in addition to two independent components of123

LEM (abbreviated BDP and BEP), orthogonal to Markov’s124

principle (MP). Note that the colour-coded abbreviations of125

all logical principles here and in the remainder of the text are126

hyperlinked with their definitions in the appendix, where also127

a more complete diagram of logical connections is given.128

While the present paper is written in a deliberately in- 129

formal way to comply with many systems of (higher-order) 130

constructive mathematics and to address a broad audience, we 131

complement it with a fully mechanised development using the 132

Coq proof assistant [20]. That is, all definitions and theorems 133

have been formalised in the concrete logical foundation un- 134

derlying Coq such that the correctness of all proofs can be 135

machine-checked. The reasons we do this and actually find it 136

worthwhile are threefold: First, the mechanisation guarantees 137

that all constructions and arguments are correct, which is espe- 138

cially helpful for intricate syntactical arguments needed in the 139

proof of the DLS theorem. Secondly, using a proof assistant 140

actually helped us identify the new non-constructive principles 141

at play by pointing to the constructions and proofs that needed 142

modification. Thirdly, as proving in Coq is programming, the 143

computational content of constructive proofs is made explicit: 144

for instance, the fully constructive proof of the weak DLS 145

theorem, in principle, computes the countable submodel. 146

Contributions: The contributions of this paper are: 147

• We introduce the blurred drinker paradox and blurred 148

choice axioms as natural families of logical principles 149

in the context of constructive reverse mathematics. To 150

classify their strength, among others we show that the 151

blurred drinker paradox is LEM without a contribution of 152

Markov’s principle (Fact 14) and that the blurred forms 153

of DC are DC without a contribution of CC (Corollary 3). 154

• Using these logical principles, we give precise construc- 155

tive decompositions of the DLS theorem: assuming CC, 156

it is equivalent to DC and the blurred drinker paradox 157

(Corollary 2), and without CC, the same equivalence 158

holds for various blurrings of DC and CC (Theorem 5). 159

Moreover, we observe that a weak form of the DLS 160

theorem is fully constructive (Fact 7). 161

• Our underlying proof strategy for the DLS theorem 162

(Theorem 1) is a streamlining of usual textbook proofs: 163

we construct a syntactic model and collect all structural 164

information in variable environments. Thereby the proof 165

relies neither on signature nor domain extensions and is 166

particularly suitable for computer mechanisation. 167

• Our paper is accompanied by a Coq development,5 en- 168

suring the correctness of all proofs and providing full 169

formal detail, such that the text may remain on a more 170

accessible level. For seamless integration, all definitions 171

and theorems in the PDF version of this paper are 172

hyperlinked with HTML documentation of the code. 173

• We correct an apparent oversight in the investigation 174

of sub-classical logical principles:6 in a higher-order 175

logic, the universal closures of the drinker paradox, the 176

existence principle, and the independence of (general) 177

premise are all equivalent to LEM (Fact 2). 178

5Submitted as additional ZIP folder, please follow the installation instruc-
tions. To ensure anonymity, the hyperlinks in this paper pointing to the
development only work offline for the PDF contained in the ZIP folder.

6For instance, a relevant file in the Coq standard library (https://coq.inria.
fr/doc/v8.9/stdlib/Coq.Logic.ClassicalFacts.html) refers to both the drinker
paradoxes and the independence of premise as principles strictly weaker than
LEM, which is actually only the case if one fixes a domain in advance.

website/toc.html
https://coq.inria.fr/doc/v8.9/stdlib/Coq.Logic.ClassicalFacts.html
https://coq.inria.fr/doc/v8.9/stdlib/Coq.Logic.ClassicalFacts.html


Outline: Section II provides an overview of some stan-179

dard non-constructive axioms and basic concepts of first-order180

logic. In Section III, we present three constructive versions of181

the DLS theorem of increasing strength and, in Section IV,182

we reconstruct the classical equivalence of the DLS theorem183

to DC. This equivalence is then refined by introducing the184

blurred drinker paradox in Section V, used in Section VI to185

replace the use of LEM, and by introducing blurred choice186

axioms in Section VII, used in Section VIII to replace the187

use of DC. We close with a discussion concerning the main188

results, the Coq mechanisation, and future work in Section IX.189

Note that Sections V and VII are written to be accessible for190

readers only interested in the new logical principles and their191

decompositions, independent of their use for the DLS theorem192

in the other sections.193

II. PRELIMINARIES194

We work in a constructive meta-theory that we leave under-195

specified to generalise over concrete standard systems such as196

intuitionistic higher-order arithmetics like HAω , intuitionistic197

or constructive set theories like IZF and CZF, and constructive198

type theories like MLTT, HoTT, and CIC. Of course, the199

latter referring to the Calculus of inductive Constructions [21],200

[22] implemented in the Coq proof assistant [20] is the201

concretisation we have in mind, so we also lean towards some202

type-theoretic notation and jargon.203

On the logical level, we stipulate an impredicative collection204

P of propositions with standard notation (⊥,⊤,¬,∧,∨,∀,∃)205

to express composite formulas and a means to include in-206

ductively defined predicates. On the computational level, we207

assume collections like N of natural numbers and B of208

Booleans, function spaces like N→B, and a means to include209

inductively defined collections.210

We frequently use a Cantor pairing function encoding pairs211

(n,m) : N2 as numbers ⟨n,m⟩ : N. We write f ⟨n,m⟩ := . . .212

for function definitions treating an input as an encoded pair.213

Given A, if there are functions i : A→N and j : N→A214

with j (i x) for all x : X , then we say that A is countable,215

where we in particular include finite A to avoid speaking216

of at most countable models in the formulations of the DLS217

theorem. Note that there are many non-equivalent definitions218

of countability in constructive logic but for our purposes any219

of them would do. Similarly, we represent countable subsets220

as functions f, g : N→A, and write f ⊆ g if for every n there221

is m with f n = gm and f ∪ g : N→A for the subset222

(f ∪ g) (2n) := fn

(f ∪ g) (2n+ 1) := gn

satisfying expectable properties like f ⊆ f∪g and g ⊆ f∪g.223

Lastly, we call a predicate P : A→P decidable if it224

coincides with a Boolean function f : A→B, i.e. if ∀x :225

A.P x ↔ f x = true. This definition naturally generalises226

to relations R : A→B→P.227

A. Constructive Reverse Mathematics228

The idea of constructive reverse mathematics is to iden-229

tify non-constructive logical principles and their equivalences230

to well-known theorems, thereby classifying logical strength 231

and computational content [11], [12], [23]. In preparation 232

of upcoming similar results, we reproduce some well-known 233

connections of logical principles like 234

LEM := ∀p : P. p ∨ ¬p
LPO := ∀f : N→B. (∃n. f n = true) ∨ (∀x. f n = false)

DPA := ∀P : A→P.∃x. P x→ ∀y. P y
EPA := ∀P : A→P.∃x. (∃y. P y) → P x

IPA := ∀P : A→P.∀p : P. (p→ ∃x. P x) → ∃x. p→ P x

namely the law of excluded middle, the limited principle 235

of omniscience, the drinker paradox, the existence principle, 236

and the independence of (general) premise principle. In the 237

situation of DPA for P , we call the given x the Henkin 238

witness for P , same for EPA which is a dual variant of the 239

drinker paradox. We write DP to denote DPA for all inhabited 240

A, analogously for EP and IP, but state results in the more 241

localised form where possible. 242

Fact 1. The following statements hold: 243

1. Both DPN and EPN imply LPO. 244

2. EPA is equivalent to IPA. 245

Proof. For (1), assuming DPN and a function f : N→B yields 246

some n such that f n = false implies f n′ = false for all n′. 247

Then the claim follows by case analysis of f n. The claim for 248

EPN follows analogously and (2) is straightforward, with the 249

choice p := ∃y. P y for the backwards direction. 250

In contrast to the situation in first-order logic [24], the 251

universal closures of these principles in a higher-order meta- 252

theory with comprehension have the full strength of LEM: 253

Fact 2. LEM, DP, EP, and IP are equivalent. 254

Proof. That LEM implies the other principles is well-known.
As an example for the converse, assume DP and some p : P.
Using DP for A := {b : B | b = false ∨ (p ∨ ¬p)} and

P b :=

{
¬p if b = true

⊤ otherwise

yields a Henkin witness b : A for P . If b = true, we directly 255

obtain p ∨ ¬p and if b = false, then we derive ¬p as follows: 256

On assumption of p we know that true is a member of A 257

and since P b = ⊤, by the Henkin property we obtain P b′ 258

for all b′ : A. So for b′ := true in A we then obtain ¬p, in 259

contradiction to the of assumption p. 260

While the previous principles concern structure below LEM, 261

we now consider structure below the axiom of choice [25]: 262

ACA,B := ∀R : A→B→P. tot(R) → ∃f : A→B.∀x.R x (f x)

DCA := ∀R : A→A→P. tot(R) → ∃f : N→A.∀n.R (f n) (f (n+ 1))

CCA := ∀R : N→A→P. tot(R) → ∃f : N→A.∀n.Rn (f n)

OACA,B := ∀R : A→B→P.∃f : A→B. tot(R) → ∀x.R x (f x)

These are the axiom of choice, dependent choice, countable 263

choice, and omniscient choice. Note that the latter is a com- 264

bination of AC and IP, similar combinations work for other 265

choice axioms: 266

website/Undecidability.FOL.ModelTheory.LogicalPrinciples.html#scheme_facts_2
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Fact 3. For inhabited A and B, OACA,B is equivalent to the267

conjunction of ACA,B and IPB .268

Proof. That OACA,B implies ACA,B is obvious and to derive
IPB for P : B→P one instantiates OACA,B to Rxy := P y.
Conversely deriving OACA,B for R : A→B→P, note that just
using ACA,B on R would require IPA→B to allow postponing
the totality proof. Instead, using

R′ x y := (∃y′. R x y′) → Rxy

we just need IPB to show R′ total to obtain a choice function269

f : A→B from ACA,B then also witnessing OACA,B .270

As for the previous principles, we write AC to denote ACA,B271

for all A,B and analogously for the other choice principles.272

Fact 4. AC implies DC and DC implies CC.273

Proof. These follow by well-known arguments, see [25] for
instance. We sketch the implication from DC to CC to prepare
a more general version presented in Fact 17. First note that
DCA can be equivalently stated for arbitrary x0 : A as

∀R : A→A→P. tot(R) → ∃f. f 0 = x0∧∀n.R (f n) (f (n+1))

by restricting R to the sub-relation R′ reachable from x0.274

Now to show CC, assume a total relation N→A→P on A
with some element a0 and consider A′ := N×A and

R′ (n, x) (m, y) := m = n+ 1 ∧Rny

which is total since R is total. The modified version of DC275

for R′ and the choice x0 := (0, a0) then yields a path f ′ :276

N → N×A through R′ and it is straightforward to verify that277

f n := π2 (f
′ (n+ 1)) is a choice function for R.278

We write DC∆ and CC∆ for DC and CC restricted to279

decidable relations, respectively. We assume that CC∆ holds280

in our meta-theory, as is the case in most formulations of281

constructive mathematics, while DC∆ is usually unprovable.282

Also, while in set-theoretic systems AC implies LEM, this283

is not the case in most type-theoretic systems, and in neither284

of those does DC imply LEM.285

B. First-Order Logic286

We summarise the concepts for first-order logic (FOL)287

needed to state the downward Löwenheim-Skolem (DLS)288

theorem. The syntax of FOL is represented inductively by289

terms t : T and formulas φ : F depending on signatures of290

function and relation symbols f and P :291

t : T ::= xn | f t⃗ (n : N)
φ,ψ : F ::= ⊥̇ | P t⃗ | φ→̇ψ | φ∧̇ψ | φ∨̇ψ | ∀̇φ | ∃̇φ

The term vectors t⃗ are required to have length matching the292

specified arities |f | and |P | of f and P . The negative fragment293

of FOL referred to in Facts 6 and 7 comprises formulas only294

constructed with ⊥̇, →̇, and ∀̇. For the purpose of this paper,295

we assume that the signatures of function and relation symbols296

are countable, which induces that so are T and F.297

Variable binding is expressed using de Bruijn indices [26],298

where a bound variable is encoded as the number of quantifiers299

shadowing its relevant binder. Capture-avoiding instantiation 300

with parallel substitutions σ : N→T is defined both for terms 301

as t[σ] and formulas as φ[σ]. Notably, (∀̇φ)[σ] is defined 302

by ∀̇[↑ σ] where ↑ σ is a suitable shifting substitution. We 303

denote by t : Tc and φ : Fc the closed terms and formulas, 304

respectively, i.e. those that do not contain free variables. The 305

latter are also called sentences. 306

The standard notion of Tarski semantics is obtained by
interpreting formulas in models M identified with their under-
lying domain, providing interpretation functions M|f | → M
for each f and relations M|P | → P for each P . Given an
environment ρ : N → M, we define term evaluation ρ̂ t and
formula satisfaction M ⊨ρ φ recursively. For instance, the
denotation of universal quantifiers is

M ⊨ρ ∀̇φ := ∀x : M.M ⊨ρ φ[x]

with φ[x] being a notational shorthand expressing that we 307

consider φ in the updated environment mapping the first 308

variable to the domain element x. 309

While we will mostly be concerned with semantic con- 310

siderations, to illustrate the connection of the downward 311

Löwenheim-Skolem theorem to completeness, we also briefly 312

use deduction systems. Deduction systems are represented by 313

inductive predicates Γ ⊢ φ relating contexts Γ : F→P with 314

derivable formulas φ, for instance by rules in the style of 315

natural deduction. A classical system is obtained by incor- 316

porating a rule like double negation elimination, which in a 317

constructive meta-theory is only sound for classical models, 318

i.e. models satisfying M ⊨ρ φ or M ⊨ρ ¬̇φ for all φ. 319

Fact 5 (Soundness). If Γ ⊢ φ, then M ⊨ φ for every classical 320

model M with M ⊨ Γ. 321

Proof. By induction on the derivation of Γ ⊢ φ, most cases are 322

straightforward. To show the classical derivation rule sound, 323

the classicality of the model is required. 324

The converse property of soundness is completeness, stating 325

that semantic validity implies syntactic provability. In full 326

generality, completeness cannot be proven constructively [27], 327

[28], [29], [30], [7], but the intermediate model existence 328

theorem is constructive for the negative fragment [14], [15]. 329

Fact 6 (Model Existence). In the negative fragment of FOL, 330

for every consistent context Γ of sentences one can construct 331

a syntactic model M over the domain T such that M ⊨ Γ. 332

Proof. We outline the main construction as it will be relevant
for similar syntactic models used in Fact 8 and Theorem 1. In
a first step, a constructive version of the Lindenbaum Lemma
is used to extend Γ into a consistent context ∆ ⊇ Γ with
suitable closure properties. Next, a model over domain T with

fM t⃗ := f t⃗ and PM t⃗ := P t⃗ ∈ ∆

is constructed, for which the so-called Truth Lemma

M ⊨σ φ ↔ φ[σ] ∈ ∆

is verified by induction on φ for all σ : N→T, acting both 333

as substitution and environment in M. Then since Γ ⊆ ∆, in 334

particular M ⊨ Γ follows. 335

website/Undecidability.FOL.ModelTheory.LogicalPrinciples.html#OAC_impl_AC_IP
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We will see in Fact 7 that the model existence theorem336

yields a weak but fully constructive formulation of the DLS337

theorem. This formulation will be based on the notion of338

elementary equivalence.339

Definition 1 (Elementary Equivalence). Two models M and340

N are elementarily equivalent if they satisfy the same sen-341

tences, i.e. if for every φ : Fc we have M ⊨ φ iff N ⊨ φ.342

Note that elementarily equivalent models only satisfy the343

same closed formulas but otherwise may behave extremely344

differently. A much stronger requirement is that of elementary345

embeddings, taking all formulas into account and therefore346

completely aligning the behaviour of the models.347

Definition 2 (Elementary Submodel). Given models M and
N , we call h : M→N an elementary embedding if

∀ρφ.M ⊨ρ φ↔ N ⊨h◦ρ φ.

If such an h exists, we call M an elementary submodel of N .348

The DLS theorem in full strength then states that every349

model has a countable elementary submodel.350

III. CONSTRUCTIVE LÖWENHEIM-SKOLEM351

We begin with a comparison of different constructive proof352

strategies for the DLS theorem at various strengths, mostly to353

identify the underlying concepts in preparation of upcoming354

results. First, a weak formulation only yielding an elementarily355

equivalent model but not necessarily an elementary submodel356

is obtained as a by-product of a Henkin-style completeness357

proof via model existence [18]. Since the Henkin construction358

is fully constructive in the negative fragment [14], [15], so is359

the derived DLS theorem.360

Fact 7 (DLS via Model Existence). In the negative fragment361

of FOL, for every classical model one can construct an362

elementarily equivalent syntactic model.363

Proof. Given that M is classical, we can use soundness to364

show that the set Th(M) := {φ : Fc | M ⊨ φ} of365

closed formulas satisfied by M is consistent. Then by model366

existence (Fact 6), there is a model N with (countable)367

domain T and N ⊨ Th(M). This already establishes the first368

implication showing M elementarily equivalent to N . For the369

converse, assuming a closed formula φ with N ⊨ φ, we obtain370

M ⊨ φ by using the classicality of M and the observation371

that, if it were M ⊨ ¬̇φ instead, also N ⊨ ¬̇φ would follow,372

contradiction.373

The model existence proof can be extended to the full374

syntax using LEM alone [15], so the derived version of the375

DLS theorem notably does not rely on any form of choice376

axioms. In fact, already the weak law of excluded middle377

(∀p.¬p ∨ ¬¬p) is sufficient [31] but we are not aware of a378

proof showing it necessary for this form of the DLS theorem.379

Also note that the Lindenbaum extension used in the proof380

of Fact 6 ensures that quantified formulas have associated381

Henkin witnesses in form of unused variables. In the second382

variant, this intermediate step is not necessary, since we restrict383

to models that address all Henkin witnesses by closed terms.384

Definition 3 (Witness Property). Given a model M with
environment ρ, we call w : M a Henkin witness for ∀̇φ if

M ⊨ρ φ[w] → M ⊨ρ ∀̇φ

and, symmetrically, a Henkin witness for ∃̇φ if

M ⊨ρ ∃̇φ → M ⊨ρ φ[w].

We say that M has the witness property if Henkin witnesses 385

for all formulas can be expressed by closed terms t : Tc. 386

For models with the witness property, we can then derive the 387

stronger conclusion yielding a countable elementary submodel 388

by means of a simplified syntactic model construction. 389

Fact 8 (DLS via Witnesses). For every model with the witness 390

property one can construct a syntactic elementary submodel. 391

Proof. Given M with the witness property and an arbitrary
environment ρ, we consider the syntactic model N constructed
over the (countable) domain T by setting

fN t⃗ := f t⃗ and PN t⃗ := PM (ρ̂ t⃗).

We prove that ρ̂ is an elementary embedding of N into M, 392

i.e. that N ⊨σ φ if and only if M ⊨ρ̂◦σ φ for all σ : T→N 393

and φ by induction on φ. The only cases of interest are the 394

quantifiers, we explain universal quantification as example. 395

Let t : Tc denote the Henkin witness for ∀̇φ and assume 396

N ⊨σ ∀̇φ. Then in particular N ⊨σ φ[t] and by inductive 397

hypothesis M ⊨ρ̂◦σ φ[t], which implies M ⊨ρ̂◦σ ∀̇φ by the 398

Henkin property of t. That conversely M ⊨ρ̂◦σ ∀̇φ implies 399

N ⊨σ ∀̇φ is straightforward. 400

Many proofs of the DLS theorem proceed by extending 401

the signature with enough fresh constants such that a model 402

satisfying the witness property can be constructed [32]. Al- 403

ternatively, as a the third variant, we replace the condition 404

to represent Henkin witnesses syntactically with environments 405

collecting them semantically. 406

Definition 4 (Henkin Environment). Given a model M, we 407

call ρ : N→M a Henkin environment if it collects Henkin 408

witnesses for every formula φ as follows: 409

∃n.M ⊨ρ φ[ρn] → M ⊨ρ ∀̇φ
∃n.M ⊨ρ ∃̇φ → M ⊨ρ φ[ρn]

Note that if M has the witness property, then M admits a 410

Henkin environment by enumerating the evaluations of closed 411

terms, but not vice versa. 412

The use of Henkin environments then allows to conclude 413

the DLS theorem without extending the signature or domain, 414

which is a particularly suitable strategy for mechanisation. 415

Theorem 1 (DLS via Environments). For every model ad- 416

mitting a Henkin environment one can construct a syntactic 417

elementary submodel. 418

Proof. Given a model M with Henkin environment ρ, we 419

proceed as in the previous proof, i.e. we consider the syntactic 420

model N induced by ρ. Again, inductively verifying that ρ̂ is 421
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an elementary embedding of N into M is only non-trivial422

for quantifiers, for illustration assume N ⊨σ ∀̇φ for some423

environment σ : T→N and formula φ. We aim to show424

M ⊨ρ̂◦σ ∀̇φ which is equivalent to M ⊨ρ ∀̇φ[↑ σ] and thus425

reduces to M ⊨ρ φ[↑ σ][ρn] using a witness ρn guaranteed426

by the Henkin property of ρ. The latter then follows from427

N ⊨σ ∀̇φ instantiated to ρn and the inductive hypothesis.428

All upcoming proofs of the DLS theorem will factor through429

Theorem 1 or a strengthening thereof (Theorem 3).430

IV. LÖWENHEIM-SKOLEM USING DC AND LEM431

In this section, we use the proof strategy induced by432

Theorem 1 to reconstruct the well-known connection of the433

DLS theorem to DC over a classical meta-theory [9], [10],434

[8], providing both CC and LEM. First, we show that in this435

context, DC can be used to construct a Henkin environment436

and therefore to conclude the DLS theorem. As the later,437

constructively refined, proofs will follow the same pattern, we438

give the construction here in full detail.439

Theorem 2. Assuming DC+ LEM, the DLS theorem holds.440

Proof. By Theorem 1, it is enough to show that under the441

given assumptions every model admits a Henkin environment.442

Given a model M, the construction of Henkin environment443

is done in three steps, each making use of a different logical444

assumption, thereby explaining the respective non-constructive445

contributions. The high-level idea is to describe an extension446

method how Henkin witnesses are accumulated stage by stage,447

where LEM is needed to guarantee the existence of Henkin448

witnesses, CC (as a consequence of DC) is needed to pick such449

witnesses simultaneously for every formula in every stage, and450

finally DC is needed to obtain a path through all stages such451

that its union constitutes a Henkin environment.452

Formally, we express the extension of environments by a
step relation S : (N→M)→(N→M)→P such that S ρ ρ′

captures that ρ′ contains all witnesses with respect to ρ:

S ρ ρ′ := ρ ⊆ ρ′∧∀φ.
∧ ∃n.M ⊨ρ φ[ρ

′ n] → M ⊨ρ ∀̇φ
∃n.M ⊨ρ ∃̇φ → M ⊨ρ φ[ρ

′ n]

Clearly every fixed point of S, i.e. ρ with S ρ ρ, is a Henkin453

environment so we now explain how such a fixed point is454

obtained by the aforementioned three steps.455

1) Given any environment ρ, the assumption of LEM guar-456

antees Henkin witnesses to exist for all formulas by457

its connection to the drinker paradoxes: For ∀̇φ, the458

existence of a Henkin witness is exactly the instance459

DPM for the predicate M ⊨ρ φ[ ] and for ∃̇φ exactly460

the corresponding instance EPM.461

2) We now use CCM to show that S is total, i.e. given462

some ρ we construct ρ′ with S ρ ρ′. By the previous463

step, we know that every formula ∀̇φ has a Henkin464

witness with respect to ρ. So by fixing some enumeration465

φn of formulas, we know that for every n the formula466

∀̇φn has a Henkin witness and thus CCM yields a467

function ρ∀ such that ρ∀ n is the Henkin witness to468

∀̇φn. Analogously, another application of CCM yields469

a function ρ∃ such that ρ∃ n is the Henkin witness to 470

∃̇φn. We then set ρ′ := ρ ∪ (ρ∀ ∪ ρ∃) and obtain S ρ ρ′ 471

by simple calculation. 472

3) We apply DCN→M to get a path F : N→(N→M)
through S, yielding a cumulative sequence of environ-
ments F0 ⊆ F1 ⊆ F2 ⊆ . . . of Henkin witnesses. To
collect the sequence into a single environment, we define

ρ ⟨n1, n2⟩ := Fn1 n2

and verify that S ρ ρ, i.e. that ρ is Henkin. This is 473

obtained by composition of several properties of ρ: 474

• Fk ⊆ ρ for every k: Given n we need to find n′ 475

with Fk n = ρn′, which holds for n′ := ⟨k, n⟩. 476

• S Fk ρ for every k: By the previous fact, we know 477

Fk ⊆ ρ, so we just need to show that ρ contains all 478

Henkin witnesses relative to Fk. Since F is a path 479

through S, we know S Fk Fk+1, so Fk+1 contains 480

these witnesses, but then so does ρ given Fk+1 ⊆ ρ. 481

• S ρ ρ: Since ρ ⊆ ρ, we just need to show that for 482

given φ both Henkin witnesses relative to ρ are 483

contained in ρ. Since φ contains only finitely many 484

variables and therefore, since ρ is constructed in 485

cumulative stages, we can find k with ρ ⊆φ Fk, 486

meaning ρ is included in Fk on all free variables of 487

φ. Then in particular there is a permutation substitu- 488

tion σ such that evaluation of φ in ρ coincides with 489

evaluation of φ[σ] in Fk. But then, since S Fk ρ by 490

the previous fact, ρ contains the witnesses for φ[σ] 491

relative to Fk and thus for φ relative to ρ itself. 492

We remark that the forthcoming constructive refinements 493

will weaken the respective logical assumptions in each of the 494

three steps above, making precise which independent sources 495

of non-constructivity are at play. 496

For the converse direction, the necessity for dependent 497

choice relies on the presence of countable choice. 498

Fact 9. Assuming CCN, the DLS theorem implies DC. 499

Proof. The high-level idea is that the DLS theorem reduces 500

DCA to CCN by transforming A into a countable domain. 501

Formally, assuming a total relation R : A→A→P, we 502

consider the model M with domain A and interpretation 503

PM
R x y := Rxy for some binary relation symbol PR. The 504

DLS theorem then yields an elementary submodel N over a 505

countable domain, say N itself for simplicity, witnessed by 506

an elementary homomorphism h : N→M. Since totality is 507

a first-order property with M ⊨ tot(R) by assumption, in 508

particular N ⊨ tot(R), so the interpretation PN
R : N→N→P 509

must be total, too. 510

But then CCN yields a choice function f : N→N for PN
R 511

and we can verify that g : N→A defined by g n := h (fn 0) 512

is a path through R: to justify R (g n) (g (n + 1)) for any 513

n, consider an environment ρ : N→N with ρ 0 := fn 0 and 514

ρ 1 := fn+1 0, so R (g n) (g (n+1)) can be equivalently stated 515

as M ⊨h◦ρ PR(x0, x1). By elementarity of h this reduces to 516

N ⊨ρ PR(x0, x1), which translates to PN
R (fn 0) (f (fn 0)) 517

and holds since f is a choice function for PN
R . 518
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Corollary 1 (Classical Decomposition). Over CCN + LEM in519

the background, the DLS theorem is equivalent to DC.520

All upcoming derivations of logical principles from the521

DLS theorem will follow the same pattern of turning a given522

structure into a countable substructure, deriving a certain523

property in the simpler countable case, and reflecting it back524

to the original case. While it seems impossible to derive the525

full strength of DC from the DLS theorem, as the latter only526

reduces DC to the constructively still unprovable CC, we527

observe that the restriction of DC to decidable relations can528

be derived, as it then reduces to the provable principle CC∆.529

Fact 10. The DLS theorem implies DC∆.530

Proof. As in the proof of Fact 9 we obtain a total relation531

PN
R : N→N→P induced by the DLS theorem for a model532

encoding a total relation R : A→A→P. Now since we assume533

that R is decidable, so is PN
R by elementarity and then CC∆

N534

yields a choice function f : N→N for PN
R . From there we535

proceed as before.536

Regarding the contribution of LEM in the form of the537

drinker paradoxes needed for the Henkin witnesses in each538

extension step, there is no chance to fully reverse the result:539

For instance to derive DPA, we could start from a predicate540

P : A→P but even when using the DLS theorem to reduce541

P to a countable sub-predicate P ′ : N→P, we have no means542

to find a particular n such that P ′ n would imply ∀n. P ′ n543

and therefore ∀x. P x. In other words, while the DLS theorem544

reduces DPA to DPN, by Fact 1 we would still need at least545

LPO to proceed deriving DPN. Instead, in the next section we546

introduce weakenings of the drinker paradoxes that do become547

provable in the countable case while still being strong enough548

to derive the DLS theorem.549

V. THE BLURRED DRINKER PARADOX550

In this section, we introduce the concept of blurring,551

by which we refer to replacing existential quantifiers by552

quantification over subsets. By this transformation, logical553

principles can be obtained with constructively slightly reduced554

information content, as concrete witnesses are hidden in a555

blur of computationally indistinguishable elements. Here, we556

study that concept at the example of the drinker paradoxes, in557

Section VII we will extend it to choice principles. A summary558

diagram will be given at the end of this section.559

We introduce the following blurred forms of DP and EP:560

BDPB
A := ∀P : A→P.∃f : B→A. (∀y. P (f y)) → ∀x. P x

BEPB
A := ∀P : A→P.∃f : B→A. (∃x. P x) → ∃y. P (f y)

Building on the intuition from before, for instance the561

principle BDPB
A states that a Henkin witness for P : A→P562

in the sense of DPA is contained in a blur of size at most563

B, represented by a function f : B→A. In that situation, we564

call f a blurred Henkin witness or simply a Henkin blur and565

require that B is inhabited.566

Note that, while DPA and EPA are duals in the sense that567

DPA also yields EPA for negative predicates {x : A | ¬p x}568

and vice versa, even in that sense BEPB
A is still slightly569

weaker than BDPB
A as it concludes with a constructively strong 570

existential quantifier. This will play a role in the slightly 571

different connection to Kripke’s schema subject to Fact 13. 572

We first collect some properties of the introduced principles: 573

Fact 11. The following statements hold: 574

1. Both BDPA
A and BEPA

A. 575

2. If BDPB
A and BDPC

B , then BDPC
A. 576

3. If BEPB
A and BEPC

B , then BEPC
A. 577

4. DPA implies BDPB
A and is equivalent to BDP1A. 578

5. EPA implies BEPB
A and is equivalent to BEP1A. 579

Proof. We prove each claim independently. 580

1) By choosing f to be the identity function. 581

2) Assuming P : A→P, given f1 : B→A from BDPB
A 582

for P and f2 : C→B from BDPC
B for P ◦ f1, the 583

composition f1 ◦ f2 witnesses BDPC
A for P . 584

3) Analogous to (2). 585

4) Assuming P : A→P, DPA for P yields a Henkin 586

witness x for P and the constant function f y := x then 587

witnesses BDPB
A . Next, if f : 1→A witnesses BDP1A 588

for P , then f ⋆ witnesses DPA for P . 589

5) Analogous to (4). 590

Note that by (1) in particular BDPN
N and BEPN

N hold, 591

meaning that in light of the concluding remark in Section IV 592

we indeed face weakenings of the drinker paradoxes, provable 593

in the countable case. For simplicity, from now on we write 594

BDP to denote BDPN
A for all inhabited A, as the case of 595

countable blurring is the most relevant one, same for BEP. 596

To illustrate the generality of the blurring concept, we 597

compare the blurred drinker paradox to a blurred form of IP: 598

BIPB
A := ∀P : A→P.∀p : P. (p→ ∃x. P x)

→ ∃f : B→A. p→ ∃y. P (f y)

For BIP we could show similar properties as in Fact 11, 599

stating that it is a generalisation of IP into a hierarchy of 600

principles. Instead, we generalise the equivalence of EP and 601

IP recorded in Fact 1. 602

Fact 12. BEPB
A is equivalent to BIPB

A . 603

Proof. Analogous to the proof of Fact 1, for the backwards 604

direction choose p := ∃x. P x as before. 605

Intuitively, the blurred drinker paradoxes allow to test 606

quantified properties on a large domain by considering restric- 607

tions to smaller domains, especially countable ones. In this 608

perspective, they resemble Kripke’s schema [33], stating that 609

every proposition can be tested by considering the solvability 610

of Boolean functions over countable domain: 611

KS := ∀p : P.∃f : N→B. p ↔ ∃n. f n = true

KS′ := ∀p : P.∃f. (p → ¬(∀n. f n = false)) ∧ ((∃n. f n = true) → p)

Note that KS expresses that every proposition is Σ1, where 612

the logical complexity class Σ1 refers to the syntactic form 613

of a single existential quantifier over a decidable predicate. In 614

comparison, the slightly weaker KS′ replaces the existential 615

quantifier in one direction by a negated universal quantifier. 616
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Fact 13. BDP implies KS′ and BEP implies KS.617

Proof. We show that BEP implies KS, the other claim is
similar. So for p : P, consider A := {b : B | b = false∨p} and

P b :=

{
p if b = true

⊥ otherwise

for which BEPN
A yields a Henkin blur f : N→A. The induced618

underlying function g : N→B then witnesses KS for p: First619

assuming p, we can show ∃b. P b by using b = true. Then620

by the Henkin property of f we obtain ∃n. P (f n) and thus621

∃n. g n = true. Conversely, if g n = true for some n, then by622

construction p can be derived.623

Note that Kripke’s schema can also be formulated for arbi-624

trary B in the role of N, then admitting the same connections625

for drinker paradoxes blurred by B. In that sense, the latter626

can be seen as a generalisation of Kripke’s schema.627

To further characterise the strength of the blurred drinker
paradoxes, note that the difference between KS and KS′

disappears in the presence of Markov’s principle [34], stating
that Σ1 propositions satisfy double negation elimination:

MP := ∀f : N→B.¬¬(∃n. f n = true) → ∃n. f n = true

It is straightforward to see that MP follows from LPO and628

thus from DPN by Fact 1. Since it is also well-known that629

MP together with KS and thus already with KS′ implies LEM,630

we obtain the following decompositions of LEM into blurred631

drinker paradoxes and side conditions.632

Fact 14. The following are equivalent to LEM:633

1. BDP+ DPN634

2. BDP+MP635

3. BEP+ EPN636

4. BEP+MP637

Proof. That LEM implies (1)-(4) follows from previous obser-638

vations. We show that (1) and (4) both imply LEM, analogous639

arguments work for (2) and (3):640

• By Fact 2 it is enough to show DP, i.e. DPA for every641

inhabited A. By (1) of Fact 11, this amounts to showing642

BDP1A, which decomposes into BDPN
A and BDP1N by (2)643

of Fact 11. The former is an instance of BDP and the644

equivalent to DPN by again using (1) of Fact 11.645

• By Fact 13, BEP implies KS and the latter together646

with MP implies LEM by a standard argument: Given647

a proposition p, using KS for the claim p ∨ ¬p yields648

f : N→P such that p∨¬p is equivalent to ∃n. f n = true.649

By MP, it is enough to show ¬¬(∃n. f n = true) and650

hence ¬¬(p ∨ ¬p), the latter being a tautology.651

We summarise the connections of the blurred drinker para-652

doxes with related principles in the following diagram:653

LEM/DP/EP/IP

BDP LPO BEP

KS′ MP KS

In this diagram, the solid arrows depict (strict) implications 654

while the dashed arrows depict combined equivalences. 655

VI. LÖWENHEIM-SKOLEM USING DC AND BDP 656

We now come back to the DLS theorem and explain how the 657

blurred drinker paradoxes from the previous section capture 658

the contribution of classical logic below LEM, postponing 659

the orthogonal analysis of choice principles below DC. To 660

this end, we first develop a strengthening of Theorem 1 by 661

observing that a weaker form of Henkin environments suffices 662

to construct elementary submodels. 663

Definition 5 (Blurred Henkin Environment). Given a model 664

M, we call ρ : N→M a blurred Henkin environment if it 665

collects Henkin witnesses for every formula φ as follows: 666

(∀n.M ⊨ρ φ[ρn]) → M ⊨ρ ∀̇φ
M ⊨ρ ∃̇φ → (∃n.M ⊨ρ φ[ρn])

Note that every Henkin environment is a blurred Henkin 667

environment, but not vice versa. Still, the latter are enough to 668

derive the DLS theorem, as in the construction of the syntactic 669

model actually no concrete witnesses are needed but just a 670

guarantee that they are among the elements selected by the 671

environment. 672

Theorem 3 (DLS via Blurring). For every model admitting 673

a blurred Henkin environment one can construct a syntactic 674

elementary submodel. 675

Proof. This is basically the same as Theorem 1 where, for 676

instance, in the critical direction of universal quantification 677

we assume that the syntactic model N induced by ρ satisfies 678

N ⊨σ ∀̇φ for some environment σ : T→N and formula φ 679

and need to show M ⊨ρ̂◦σ ∀̇φ. The latter is equivalent to 680

M ⊨ρ ∀̇φ[↑ σ] and thus reduces to ∀n.M ⊨ρ φ[↑ σ][ρn] 681

using the Henkin property of ρ. For some given n, the claim 682

follows from N ⊨σ ∀̇φ instantiated to ρn and the inductive 683

hypothesis. 684

Following the structure of Theorem 2, we now derive the 685

DLS theorem from Theorem 3 by iteratively constructing 686

blurred Henkin environments. The previous use of LEM is now 687

replaced by BDP to accommodate universal quantification, and 688

by BEP to accommodate existential quantification. 689

Theorem 4. Over DC+ BDP+ BEP in the background, the 690

DLS theorem holds. 691

Proof. We employ Theorem 3, leaving us with the construc-
tion of a blurred Henkin environment for an arbitrary model
M. This construction follows the same outline as in the proof
of Theorem 2, i.e. we devise a step relation S accumulating
Henkin witnesses and obtain a blurred Henkin environment as
a fixed point of S in three steps. As step relation S ρ ρ′, we
this time only require that ρ′ is a Henkin blur for all formulas
φ relative to ρ, instead of the stronger requirement to provide
concrete witnesses:

S ρ ρ′ := ρ ⊆ ρ′∧∀φ.
∧ (∀n.M ⊨ρ φ[ρ

′ n]) → M ⊨ρ ∀̇φ
M ⊨ρ ∃̇φ → (∃n.M ⊨ρ φ[ρ

′ n])
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1) Given ρ and φ there is a guarantee to proceed, as the692

instance BDPM for the predicate M ⊨ρ φ[ ] yields a693

Henkin blur for ∀̇φ and the same instance of BEPM a694

Henkin blur for ∃̇φ.695

2) We derive totality of S at ρ using CCN→M (following696

from DC) on the previous fact, thus yielding choice697

functions f∀, f∃ : N→(N→M) such that f∀ n is a698

Henkin blur for ∀̇φn and f∃ n is a Henkin blur for ∃̇φn.699

By using Cantor pairing again, they induce environments700

ρ∀ ⟨n1, n2⟩ := f∀ n1 n2 and ρ∃ ⟨n1, n2⟩ := f∃ n1 n2701

and for the choice ρ′ := ρ∪(ρ∀∪ρ∃) it is straightforward702

to verify S ρ ρ′ as desired.703

3) Finally, we can use DCN→M to obtain a path F :704

N→(N→M) through S and verify that ρ ⟨n1, n2⟩ :=705

Fn1 n2 is a fixed point of S and thus a blurred Henkin706

environment similarly as before.707

Note that restricting to the negative fragment of FOL, only708

BDP would be needed, meaning the non-constructive contri-709

butions of both sorts of quantification in the DLS theorem710

are independent. Conversely, from the DLS theorem over the711

negative fragment we can derive BDP, and with existential712

quantification present, also BEP becomes derivable.713

Fact 15. The DLS theorem implies BDP+ BEP.714

Proof. We show how to derive BDP from the DLS theorem,715

the case of BEP is dual. Similar to the reverse proofs given716

in Section IV, the high-level idea is that the DLS theorem717

reduces BDPN
A to the provable BDPN

N.718

Formally, assume a predicate P : A→P for some inhabited719

A, which we encode as a model M over A by PM x := P x.720

Then there must be an elementary embedding h : N→M721

from some countable model N , conceived over the domain N722

for simplicity.723

Since in N we do have a function f : N→N such that724

∀n. PN (f n) implies ∀n. PN n, for instance by taking f to725

be the identity, we obtain that h ◦ f is a Henkin blur for P as726

follows: Assuming ∀n. P (h (f n)) we show ∀n. PN (f n) by727

fixing n and formulating PN (f n) as N ⊨ρ P (x0) for ρ 0 :=728

f n, which by elementarity follows from M ⊨h◦ρ P (x0), that729

is the assumption P (h (f n)). But then ∀x. PN x, which again730

reflects up into M using h and thus yields ∀x. P x.731

Corollary 2 (Blurred Decomposition). Over CC assumed732

in the background, the DLS theorem is equivalent to733

DC+ BDP+ BEP.734

That means, disregarding the orthogonal contribution of735

choice principles, the logical strength of the DLS theorem736

corresponds exactly to the blurred drinker paradoxes.737

VII. BLURRED CHOICE AXIOMS738

In order to complete the analysis, in this section we discuss739

similarly blurred forms of choice principles that allow a740

precise decomposition of the DLS theorem. For simplicity, we741

will consider the concrete case of countable blurring, i.e. using742

functions f : N→A but sketch more general formulations at743

a later point (Section IX-B). Again, a summary diagram will 744

be given at the end of this section. 745

We begin with a blurring of countable choice that weakens
the information provided by a choice function for a total
relation by hiding the choices within a countable subset:

BCCA := ∀R : N→A→P. tot(R) → ∃f : N→A.∀n.∃m.Rn (f m)

As usual, we write BCC to denote BCCA for all A, similarly 746

for all upcoming choice principles. In the situation of BCCA 747

we call f : N→A a blurred choice function. Note that in 748

the case of A := N the identity on N is a blurred choice 749

function, so as in the case of the blurred drinker paradoxes 750

we have the desired property that BCC and all upcoming 751

blurred choice principles hold in the countable case, suggesting 752

their connection to the DLS theorem. Moreover, blurred choice 753

principles follow from their regular counterparts, allowing the 754

following decomposition countable choice: 755

Fact 16. CC is equivalent to BCC+ CCN. 756

Proof. To show that CCA implies BCCA, for a total relation 757

R : N→A→P we obtain a choice function f : N→A which 758

in particular can be considered a blurred choice function. 759

Starting from BCCA, an application of CCN is enough to 760

turn a blurred choice function into a choice function. 761

We will see in Section VIII that BCC is enough to handle
step (2) of the construction in Theorem 4, i.e. to derive totality
of the step relation S. Regarding step (3), i.e. the derivation
of a fixed point for S, we need to find a weakening of DC
without the contribution of CC, so that it becomes provable
in the countable case. A first attempt is as follows, where we
simply replace the path through a total relation R guaranteed
by DC by a countable and total sub-relation:

BDCA := ∀R : A→A→P. tot(R) → ∃f : N→A. tot(R ◦ f)

Note that by R ◦ f we refer to the pointwise composition 762

of R and f , i.e. to the relation R′ nm := R (f n) (f m). The 763

obtained function f is called a blurred path as it still represents 764

a sequence through R but hides the respective continuations. 765

We then show that, while implying BCC, the obtained BDC 766

needs some contribution of CC to get back the strength of DC. 767

Fact 17. The following statements hold: 768

1. DCA implies BDCA. 769

2. BDC implies BCC. 770

3. DC is equivalent to BDC+ CCN. 771

Proof. We prove all claims independently: 772

1) Again as in Fact 16, the blurred conclusion of BDCA is 773

visibly a weakening of the conclusion of DCA. 774

2) First as in Fact 4, note that BDCA can be equivalently
stated for arbitrary x0 : A as

∀R : A→A→P. tot(R) → ∃f. f 0 = x0 ∧ tot(R ◦ f)

by restricting R to the sub-relation R′ reachable from 775

x0. Then a blurred path f through R induces a blurred 776

path f ′ through R′ by first taking the path from x0 to 777

f 0 and by then continuing with f . 778
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Now to show BCC, assume a total relation R : N→A→P
on A with some a0 and consider A′ := N×A and

R′ (n, x) (m, y) := m = n+ 1 ∧Rny

which is total since R is total. The modified version of779

BDC for R′ and the choice x0 := (0, a0) then yields780

a blurred path f ′ : N → N × A through R′ and it781

remains to verify that f n := π2 (f
′ n) is a blurred782

choice function for R.783

First, using the properties of f ′ we derive

∀n. ∃m.π1(f ′m) = n

by induction on n, choosing 0 in the base case and,784

in the inductive step where we have some m with785

π1(f
′m) = n, by choosing m′ with R′ (f ′m) (f ′m′)786

which we obtain by totality of R′ ◦ f ′.787

Now, given some n, we find m with Rn (f m) by788

first finding m1 with π1(f
′m1) = n as above and789

subsequently by finding m2 with R′ (f ′m1) (f
′m2) via790

totality of R′ ◦f ′. Then Rn (f m2) as this is equivalent791

to R (π1 (f
′m1)) (π2 (f

′m2)) which in turn follows792

from R′ (f ′m1) (f
′m2).793

3) Given (1) and Fact 4 it only remains to show that BDC794

and CCN together imply BDC. So assume some total795

R : A→A→P, then BDC yields f : N→A such that796

R◦f is total. The latter is a relation N→N→P to which797

CCN yields a choice function g : N → N. A path h :798

N → A through R is then obtained by the function799

hn := f(gn 0).800

Although BDC therefore yields the desired decomposition
of DC, it does not seem strong enough for the purpose
regarding the DLS theorem. Intuitively, the problem is that
BDC does not have access to the history of previous choices
that is needed to merge the environments in proof step (3)
of Theorem 4. This problem can be fixed by strengthening to
relations on finite sequences A∗ or, sufficiently, over pairs A2:

BDC2
A := ∀R : A2→A→P. tot(R) → ∃f : N→A. tot(R◦f)

As for BDC, by R◦f we refer to pointwise composition of801

R and f , this time with component wise composition in pairs.802

First note that BDC2 is indeed a strengthening of BDC:803

Fact 18. BDC2
A implies BDCA.804

Proof. Straightforward by turning R : A→A→P to show805

BDCA into R′ (x, y) z := Rxz and then applying BDC2
A.806

We leave the fact that BDC2 also corresponds to a version807

of DC without the contribution of CC to a later point, as808

this proof will be indirect requiring intermediate structure, see809

Corollary 3.810

As we will see in Section VIII, the principle BDC2 is
already strong enough for the desired purpose regarding
replacing DC in the proof of Theorem 4. Moreover, it is
possible to again weaken BDC2 to not even derive BDC,
thus completely orthogonalising the different ingredients for
the DLS theorem:

DDCA := ∀R : A→A→P. dir(R) → ∃f : N→A. dir(R ◦ f)

Here, by dir(R) we refer to R being directed, i.e. satisfying 811

for every x, y : A that there is z : A with Rxz and Ry z. 812

So informally, DDC states that every directed relation as 813

a countable directed sub-relation, which captures the same 814

idea leading to BDC2 that the information of two previous 815

environments should be combinable. 816

Indeed, BDC2 can be decomposed independently into DDC 817

and BCC, with one direction akin to the iterative construction 818

underlying Theorem 4 and the forthcoming Theorem 5. 819

Fact 19. The following statements hold: 820

1. BDC2
A implies DDCA. 821

2. BDC2 is equivalent to DDC+ BCC. 822

Proof. We prove both claims independently: 823

1) Directedness of R : A→A→P induces totality of

R′ (x, y) y := Rxz ∧Ry z

and, conversely, totality of a countable sub-relation R′◦f 824

induces directedness of R ◦ f . The claim follows. 825

2) The first direction follows from (1) and Facts 17 and 18.
For the converse, assume a total relation R : A2→A→P.
Consider S : (N→A)→(N→A)→P defined by

S ρ ρ′ := ρ ⊆ ρ′ ∧ ∀nm.∃k.R (ρm, ρ n) (ρ′ k)

which can be shown total using BCC as follows: Given
some ρ, consider the relation R′ : N→A defined by

R′ ⟨n1, n2⟩x := R (ρn1, ρ n2)x

which is total since R is total. Then BCCA yields a 826

blurred choice function ρ′ : N→A for R′ and it is easy 827

to verify that S ρ (ρ∪ρ′) holds, thus establishing totality 828

of S as desired. 829

Employing totality, we obtain that S is directed: Given 830

ρ1 and ρ2 totality yields ρ′1 and ρ′2 with both S ρ1 ρ′1 as 831

well as S ρ2 ρ′2. It then follows that both S ρ1 (ρ′1 ∪ ρ′2) 832

and S ρ2 (ρ′1 ∪ ρ′2) by simple calculation. 833

We now apply DDCN→X to S and obtain F :
N→(N→X) such that S ◦F is directed. Then ρ : N→X
defined by

ρ ⟨n1, n2⟩ := Fn1
n2

can be shown to witness BDC2 for R as desired: Indeed, 834

to verify that R ◦ ρ is total (in fact stating that ρ is a 835

fixed point of S), we assume n = ⟨n1, n2⟩ and m = 836

⟨m1,m2⟩ and need to find k with R (ρn) (ρm) (ρ k). 837

Using the directedness of S ◦ F for n1 and m1, we 838

obtain w with Fn1
⊆ w and Fm1

⊆ w, so there 839

are n3 and m3 with Fn1
n2 = Fw n3 and Fm1

m2 = 840

Fwm3. Moreover, by totality of S ◦ F for m we 841

obtain k1, k2 with R (Fw n3) (Fwm3) (Fk1
k2) and thus 842

R (ρn) (ρm) (ρ k) for the choice k := ⟨k1, k2⟩. 843

This decomposition of BDC2 into DDC and BDC then in 844

particular entails the decomposition of DC into BDC2 and CC. 845

Fact 20. DC implies BDC2. 846
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Proof. We first show that DCA implies a weaker version847

of DDCA where the directed relation R : A→A→P is848

additionally required to be transitive. In that case and since849

directed relations are total, DCA yields a path f : N → A850

through R. It then remains to show that R ◦ f is directed,851

which follows since given w.l.o.g. n < m we have both852

R (f n) (f(m + 1)) using transitivity of R along the path f853

connecting n and m, as well as R (f m) (f(m+1)) by a single854

step along f .855

Now since the relation F defined in the proof part (2) of856

Fact 19 is transitive by construction, this modified version857

of DDC together with BCC, following from DC by Facts 16858

and 17, is enough to derive BDC2 as before.859

Corollary 3. The following statements hold:860

1. DC is equivalent to BDC2 + CCN.861

2. DC is equivalent to DDC+ CC.862

Finally we show that, similar to Fact 3, BDC2 also has an
omniscient version that exactly adds BDP and BEP:

OBDC2
A := ∀R : A2→A→P.∃f : N→A. tot(R) ↔ tot(R◦f)

We here state only one direction of the decomposition for863

OBDC2 as the other direction follows more directly as a by-864

product of the full analysis of the DLS theorem in Section VIII.865

Fact 21. OBDC2
A implies BDC2

A + BDPA + BEPA.866

Proof. We establish each claim separately:867

• That OBDC2
A implies BDC2

A is as in Fact 3.868

• To derive BDPA, assume P : A→P and set

R (x, y) z := P x

for which OBDC2
A yields f : N→A such that R is total869

if and only if R ◦ f is total, reducing to P x for all x if870

and only if P (f n) for all n. So f also witnesses BDP2
A.871

• To similarly derive BEPA, assume P : A→P and set

R (x, y) z := P z

because then any f such that R is total iff R ◦ f is total872

actually yields P x for some x iff P (f n) for some n.873

We summarise the connections of the blurred choice axioms874

with related principles in the following diagram:875

DC CC

BDC2 BDC BCC

DDC

As with the diagram at the end of Section V, the solid876

arrows depict (strict) implications while the dashed arrows877

depict combined equivalences.878

VIII. FULL ANALYSIS OF LÖWENHEIM-SKOLEM 879

We conclude the technical part of this paper with the 880

final decomposition of the DLS theorem into the independent 881

logical principles at play and combinations thereof. 882

Theorem 5 (Decomposition). The following are equivalent: 883

1. The DLS theorem 884

2. The conjunction of DDC, BCC, BDP, and BEP 885

3. The conjunction of BDC2, BDP, and BEP 886

4. The principle OBDC2
887

Proof. We establish a circle of implications: 888

• That (4) implies (3) is by Fact 21. 889

• That (3) implies (2) is by (2) of Fact 19. 890

• That (2) implies (1) is a further refinement of Theorem 4. 891

Again using Theorem 3, we demonstrate how a blurred 892

Henkin environment for any model M can be obtained 893

as a fixed point of the step function S from before: 894

S ρ ρ′ := ρ ⊆ ρ′∧∀φ.
∧ (∀n.M ⊨ρ φ[ρ′ n]) → M ⊨ρ ∀̇φ

M ⊨ρ ∃̇φ → (∃n.M ⊨ρ φ[ρ′ n])

1) As before, BDPM and BEPM yield Henkin blurs 895

ρ′ for every formula φ and environment ρ. 896

2) For totality of S, this time using BCCN→M instead 897

of CCN→M yields blurred choice functions f∀, f∃ : 898

N→(N→M), i.e. we do not have that f∀ n is a 899

Henkin blur for ∀̇φn but only know that we can 900

obtain such a Henkin blur by f∀m for some m. 901

Yet we can still easily verify that for ρ∀ and ρ∃ 902

defined by pairing as before and the choice ρ′ := 903

ρ ∪ (ρ∀ ∪ ρ∃) we have that S ρ ρ′. 904

3) To obtain a fixed point of S using DDCN→M 905

instead of DCN→M, we first need to argue that S 906

is directed, which given ρ1 and ρ2 is easily done 907

by using totality on ρ1 ∪ ρ2. Then from DDCN→M 908

we obtain F : N→(N→M) such that S ◦ F is 909

directed and verify that the now familiar choice 910

ρ ⟨n1, n2⟩ := Fn1 n2 is a fixed point of S and 911

thus a blurred Henkin environment: The proofs that 912

Fk ⊆ ρ and S Fk ρ are as before and to conclude 913

S ρ ρ, we now use the directedness of S ◦F to show 914

that for every formula φ there is k large enough such 915

that Fk already is a Henkin blur for ρ. For the latter, 916

it is again enough to find k with ρ ⊆φ Fk, which 917

is obtained by directedness for the finitely many Fi 918

contributing to the behaviour of ρ on φ. 919

• That (1) implies (4) follows the same pattern as all re- 920

verse proofs from before, using that OBDC2
N is provable. 921

Assuming R : A2→A→P on inhabited A taken as model 922

M, from the DLS theorem we obtain an elementary 923

embedding h : N→M for a model N over domain 924

N. For the interpretation RN , e.g. the identity function 925

f : N→N satisfies tot(RN ) iff tot(RN ◦ f). But then by 926

elementarity also h ◦ f has that property, i.e. tot(R) iff 927

tot(RN ◦ (h ◦ f)) can be derived as desired. 928
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Note that all of BDC2, DDC, and BCC are implied by the929

DLS theorem, all following the same pattern as the derivation930

of BDP and BEP already presented in Fact 15.931

IX. DISCUSSION932

In this paper, we have studied several logical decomposi-
tions of the DLS theorem over classical and constructive meta-
theories. We briefly summarise the main results as a base for
comparison. First, over a fully classical meta-theory, we have:

CCN + LEM ⊢ DLS ↔ DC ↔ BDC

This is the previously known equivalence to DC (Corol-933

lary 1), additionally refined by only using BDC as a blurred934

weakening of DC that is equivalent over CCN (Fact 17).935

Secondly, assuming just CCN in the meta-theory, we obtain:

CCN ⊢ DLS ↔ DC+ BDP+ BEP

This explains which fragment of LEM is needed (Corol-936

lary 1), where BDP and BEP independently cover the con-937

tribution of syntactic universal and existential quantification.938

Again, given CCN in the background, DC could be replaced939

by any of its blurrings.940

Lastly, in a fully constructive meta-theory, we observe:

⊢ DLS ↔ DDC+BCC+BDP+BEP ↔ BDC2+BDP+BEP

This unveils the individual fragments of DC and CC needed,
namely DDC and BCC, which together form BDC2 (The-
orem 5). Using OBDC2 that integrates BDP and BEP, we
finally have:

⊢ DLS ↔ OBDC2

These decompositions provide a clear logical characterisa-941

tion of the DLS theorem and the observed principles appear942

naturally: same as the DLS theorem, they all in one way or943

another collapse arbitrary to countable cardinality.944

A. Coq Mechanisation945

The Coq development accompanying this paper is based on946

and planned to be contributed to the Coq library of first-order947

logic [35]. This library provides the core definitions of syntax,948

deduction systems, and semantics, as well as a constructive949

completeness proof we build on for our first approximation of950

the DLS theorem (Fact 7). The handling of variables is done in951

the style of the Autosubst 2 framework [36], employing paral-952

lel substitutions for de Bruijn indexed syntax and providing a953

normalisation tactic for substitutive expressions. On top of that954

library, our development spans roughly 3,500 lines of code,955

with only around 300 needed for a self-contained proof of956

the DLS theorem. The latter illustrates that our proof strategy957

based on variable environments instead of signature or model958

extension is indeed well-suited for computer mechanisation.959

We are aware of a few other mechanisations of the DLS960

theorem. In Isabelle/HOL, Blanchette and Popescu [37] give961

a classical and mostly automated proof of the limited strength962

of our Fact 7, as by-product of a Henkin-style completeness963

proof. Using Mizar, Caminati [38] also proves the weak form964

of the DLS theorem corresponding to our Fact 7, again fol- 965

lowing the strategy factoring through a classical completeness 966

proof. Contained in the Lean mathematical library [39] and 967

contributed by Anderson is a classical proof of the DLS the- 968

orem in strong form, i.e. providing an elementary submodel. 969

His proof strategy relies on the full axiom of choice to obtain 970

Skolem functions for arbitrary formulas. 971

B. Future Work 972

For the purpose of this paper, we have focused on the case of 973

countable signatures only. As discussed by Espı́ndola [9] and 974

Karagila [10], the classical equivalence of the DLS theorem 975

to DC generalises to signatures of higher cardinality: for 976

signatures of size A, one needs ACA on top of DC, which was 977

not visible in the case A := N since ACN, that is CC, happens 978

to follow from DC. We conjecture that, in our constructive 979

setting, something similar can be observed, namely that we 980

need the following assumptions: DDC as before, BDPA and 981

BEPA now blurred with respect to A, and, in replacement of 982

BCC, a blurred form of the general axiom of choice: 983

BACA,B := ∀R : A→B→P. tot(R) → ∃f : A→B.∀x.∃y.R x (f y)

We have already verified that the DLS theorem at signature 984

size A implies BDPA, BEPA, and BACA,B for all B if one 985

strengthens the notion of elementary embedding to provide 986

an inverse, but whether they together in turn imply DLS is 987

left for future work. Especially, this proof would require a 988

more conventional proof strategy since our trick to use variable 989

environments, with N as domain, to represent submodels, now 990

with A as domain, is certainly not applicable. 991

Another interesting direction is to consider the upwards case 992

of the Löwenheim-Skolem theorem, stating that every infinite 993

model has an elementary extension at arbitrarily larger cardi- 994

nality. The proof usually employs the compactness theorem to 995

ensure the distinctness of newly added elements to increase 996

the cardinality. The compactness theorem, however, is known 997

to not be constructive, leaving the constructive status of the 998

the upwards Löwenheim-Skolem theorem to be investigated. 999

Finally, our working hypothesis regarding the status of the 1000

blurred logical principles is that neither of them collapses, 1001

i.e. that BDP + BEP does not imply LEM, that BCC does 1002

not imply CC, that DDC does not imply BCC, and that 1003

BDC does not imply BDC2. Recall that most implications 1004

do not hold locally, i.e. it is not the case that for instance 1005

BCCA always implies CCA, as BCCN is provable while CCN 1006

is not. Therefore, only the question of global implications 1007

remains of interest and to obtain full certainty, one has to 1008

construct separating models. A promising approach is the 1009

use of realisability models, where the logical components 1010

are interpreted by computational means. For instance, non- 1011

deterministic realisability allows to invalidate CC (and thus 1012

also DC) [40] and there is hope that in this setting still BCC 1013

(and maybe even BDC) are validated. Moreover, based on 1014

classical realisability, Castro [41] independently identifies and 1015

separates an instance of BDC he calls collection. Finally, 1016

realisability models incorporating quotation operations [42] 1017

might be useful to separate BDP+ BEP from LEM. 1018
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[1] L. Löwenheim, “Über möglichkeiten im relativkalkül,” Mathematische1020

Annalen, vol. 76, no. 4, pp. 447–470, 1915.1021

[2] T. Skolem, “Logisch-kombinatorische untersuchungen Über die1022
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APPENDIX 1130

a) Overview of Logical Principles: Standard principles 1131

below the excluded middle: 1132

LEM := ∀p : P. p ∨ ¬p
LPO := ∀f : N→B. (∃n. f n = true) ∨ (∀x. f n = false)

DPA := ∀P : A→P.∃x. P x→ ∀y. P y
EPA := ∀P : A→P.∃x. (∃y. P y) → P x

IPA := ∀P : A→P.∀p : P. (p→ ∃x. P x) → ∃x. p→ P x

KS := ∀p : P.∃f : N→B. p↔ ∃n. f n = true

MP := ∀f : N→B.¬¬(∃n. f n = true) → ∃n. f n = true

Standard principles below the axiom of choice: 1133

ACA,B := ∀R : A→B→P. tot(R) → ∃f : A→B.∀x.Rx (f x)
DCA := ∀R : A→A→P. tot(R) → ∃f : N→A.∀n.R (f n) (f (n+ 1))

CCA := ∀R : N→A→P. tot(R) → ∃f : N→A.∀n.Rn (f n)
OACA,B := ∀R : A→B→P.∃f : A→B. tot(R) → ∀x.Rx (f x)

Blurred principles below the excluded middle: 1134

BDPB
A := ∀P : A→P.∃f : B→A. (∀y. P (f y)) → ∀x. P x

BEPB
A := ∀P : A→P.∃f : B→A. (∃x. P x) → ∃y. P (f y)

BIPB
A := ∀P : A→P.∀p : P. (p→ ∃x. P x)

→ ∃f : B→A. p→ ∃y. P (f y)

https://www.su.se/polopoly_fs/1.229309.1426783774!/menu/standard/file/ls.pdf
https://www.su.se/polopoly_fs/1.229309.1426783774!/menu/standard/file/ls.pdf
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https://karagila.org/wp-content/uploads/2012/10/Lowenheim-Skolem-and-Choice.pdf
https://karagila.org/wp-content/uploads/2012/10/Lowenheim-Skolem-and-Choice.pdf
https://karagila.org/wp-content/uploads/2012/10/Lowenheim-Skolem-and-Choice.pdf
https://www.jstor.org/stable/2267044
https://doi.org/10.5281/zenodo.8161141
https://people.math.osu.edu/conant.38/teaching/cambridge/M20/witness-property.pdf
https://people.math.osu.edu/conant.38/teaching/cambridge/M20/witness-property.pdf
https://people.math.osu.edu/conant.38/teaching/cambridge/M20/witness-property.pdf
http://dx.doi.org/10.1145/3372885.3373824
http://dx.doi.org/10.1145/3372885.3373824
http://dx.doi.org/10.1145/3372885.3373824


Blurred principles below the axiom of choice:1135

BCCA := ∀R : N→A→P. tot(R) → ∃f : N→A.∀n.∃m.Rn (f m)

BDCA := ∀R : A→A→P. tot(R) → ∃f : N→A. tot(R ◦ f)
BDC2

A := ∀R : A2→A→P. tot(R) → ∃f : N→A. tot(R ◦ f)
DDCA := ∀R : A→A→P. dir(R) → ∃f : N→A. dir(R ◦ f)

OBDC2
A := ∀R : A2→A→P.∃f : N→A. tot(R) ↔ tot(R ◦ f)

b) Connections of Logical Principles: See below for an1136

overview of our main results regarding DLS. As before, solid1137

arrows depict (strict) implications while the dashed arrows1138

depict combined equivalences. Moreover, double arrows depict1139

direct equivalences with potential side conditions placed next1140

to the arrows.1141

DC

BDP

OBDC2 BDC2 DDC+ BCC DLS

BEP

CCN+LEMCCN

1142
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