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We give a proof of the incompleteness of second-order logic under Markov’s

principle as well as proofs for the undecidability of validity, satisfiability and

second-order Peano arithmetic. We first show the categoricity of PA2 and

conclude undecidability and incompleteness using a reduction from the solv-

ability of Diophantine equations (Hilbert’s 10th problem). All results are

formalized with the Coq proof assistant.

1 Syntax and Semantics of Second-Order Logic

For the syntax and semantics we largely follow the existing formalization of first-

order logic developed in [1] and [2]. We represent the terms and formulas of second-

order logic as inductive types, using function symbols f : ΣF and predicate symbols

P : ΣP with arities |f| and |P| from a fixed signature Σ = (ΣF ,ΣP ). We use a de

Bruijn encoding, where a bound variable is represented by the number of quantifiers

shadowing its binder.

Definition 1 (Syntax) We define functions f : Fn and predicates P : Pn with

arity n : N, as well as terms t : T and formulas ϕ : F by

f ::= fvarx | f, P ::= pvarx | P, t ::= ivarx | f ~t,

ϕ, ψ ::= ⊥̇ | P ~t | ϕ →̇ ψ | ϕ ∧̇ ψ | ϕ ∨̇ ψ | ∀̇ ϕ | ∃̇i ϕ | ∀̇nf ϕ | ∃̇nf ϕ | ∀̇np ϕ | ∃̇np ϕ

where f and P have the expected arity, ~t is a vector of the expected arity and x : N.

We call a formula first-order, if it neither contains function or predicate quantifiers,

nor function or predicate variables. A formula is closed, if it does not contain any

free variables. Finally, we write ¬̇ϕ for ϕ →̇ ⊥̇.
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Note that instead of defining quantifiers and variables for individuals, we could

also represent them as nullary functions. The benefit of having an explicit represen-

tation of individuals is that we can easier define the fragment of first-order formulas

this way. As we will make heavy use of this later, we chose this approach.

We also want to point out, that we annotate function and predicate quantifiers

with the arity of the object they quantify over. Alternatively, quantifiers could

quantify over over functions and predicates of all arities and the right one is picked

based each usage. This however would allow unintuitive formulas like ∀P. P (x) →
P (a, b), where P is unary and binary at the same time. In our approach, the

quantifier would instead specify the arity of P . For example, if P is unary, the

binary occurrence should no longer be bound to the quantifier, but be free instead.

This of course will make the semantics slightly more complicated, as the scoping of

variables now depends on the arity.

Definition 2 (Tarski semantics) A model M over some signature Σ consists of

a domain D as well as interpretation functions for function and predicate symbols:

if : ∀f : Σf . D
|f| → D ip : ∀P : Σp. D

|P| → P

Environments ρ = 〈ρi, ρf , ρp〉 consist of assignments

ρi : N→ D ρf : N→ ∀n.Dn → D ρp : N→ ∀n.Dn → P

for individual, function and predicate variables. Those are extended to term evalu-

ations [[·]]ρ : T→ D and formula satisfiability ρ � ϕ with

[[ivarx]]ρ := ρi x [[f ~t ]]ρ := if f [[~t ]]ρ [[(fvarx : Fn)~t ]]ρ := ρf xn [[~t ]]ρ

ρ � P~t := ip P [[~t ]]ρ ρ � ∀̇ϕ := ∀d : D. 〈d ::ρi, ρf , ρp〉 � ϕ
ρ � (fvarx : Pp)~t := ρp xn [[~t ]]ρ ρ � ∀̇nfϕ := ∀f : Dn → D. 〈ρi, f ::ρf , ρp〉 � ϕ

ρ � ϕ →̇ ψ := ρ � ϕ→ ρ � ψ ρ � ∀̇npϕ := ∀P : Dn → P. 〈ρi, ρf , P ::ρp〉 � ϕ.

The remaining cases map to their meta-level counterpart in a similar way. The

modified environment d :: ρi in the individual quantifier maps 0 to d and Sx to

ρi x. The function and predicate quantifiers only replace the function with the

corresponding arity, i.e.

(f ::ρf ) 0n :=

{
f if f has arity n

ρf 0n otherwise
.

We write M � ϕ if ρ � ϕ for all ρ, and for a theory T : F→ P, we write M � T
if T ψ implies M � ψ for all ψ. Finally, we write T � ϕ if M � ϕ for every model

M with M � T .
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In the definition above, functions are simply interpreted as type theoretic func-

tions. Alternatively, we could also use total, functional relations instead. As a

shorthand, we will write X ↪→ Y for the type describing a total functional relation

from X to Y :

X ↪→ Y := ΣF : X → Y → P. functionalF ∧ totalF

We also use function application notation to represent applications of the first pro-

jection of this dependent pair.

In our setting those two representations of functions would be indeed different, as

functions in our type theory are always computable (in the absence of axioms), which

is not the case for relations. We will see later, that this also makes a difference when

looking at the categoricity of PA2. Therefore, we now also define this alternative

Tarski semantics.

Definition 3 (Relational Tarski semantics) The function interpretation and

variable assignment in a relational Model M̂ have types if : ∀f. D|f| ↪→ D and

ρf : N→ ∀n.Dn ↪→ D. Term evaluation turns into a relation [[·]]′ρ : T→ D → P and

we get formula satisfiability ρ �′ ϕ with

[[ivarx]]′ρ d := ρi x = d [[(fvarx : Fn)~t ]]′ρ d := ∀~v. [[~t ]]′ρ ~v → ρf xn d

[[f ~t ]]′ρ d := ∀~v. [[~t ]]′ρ ~v → if f v d ρ �′ P~t := ∀~v. [[~t ]]′ρ ~v → ip P v

ρ �′ ∀̇nfϕ := ∀F : Dn ↪→ D. 〈ρi, F ::ρf , ρp〉 � ϕ

Fact 4 Under unique choice, we can translate between the two representations of

environments and both semantics agree, i.e.

UC→ (ρ � ϕ ↔ toRelEnv ρ �′ ϕ), UC→ (toFunEnv ρ � ϕ ↔ ρ �′ ϕ)

where UC := ∀R : X → Y → P.functional R→ total R→ ∀x.Σy.R x y.

Fact 5 Both semantics agree for first-order formulas.

Fact 6 If ϕ is closed, then ρ � ϕ↔ σ � ϕ for all environments ρ, σ.

2 Categoricity of Peano Arithmetic

An important area where second-order logic differs from its first-order counterpart

is the notion of so-called categoricity. A theory T is called categorical, if all models

that satisfy T are equal up to isomorphism. Thus, T uniquely determines its domain

and the interpretation of its function and predicate symbols. In other words T is

strong enough to uniquely characterize its own intended structure.
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One such theory we will now look at is the theory PA2 of second-order Peano

arithmetic. This will highlight an important difference to first-order logic, where

Peano arithmetic is not categorical. In fact, because of the Löwenheim-Skolem

theorems, first-order logic allows non-standard models of any theory with an infinite

model. Therefore it also has models of arithmetic, that are different from the natural

numbers N. We will see, that this is not the case for second-order logic and we will

later use this fact to conclude undecidability and incompleteness.

The signature we will now work in contains symbols for the constant zero, the

sucessor, addition and multiplication functions, as well as an equality predicate:

(O,S , ⊕ , ⊗ ; ≡ )

Next, we give the axioms that make up the theory PA2. Note, that for better legi-

bility we write formulas with named binders instead of the de Bruijn representation.

⊕-zero : ∀̇x.O ⊕ x ≡ x ⊕-rec : ∀̇xy. (Sx)⊕ y ≡ S(x⊕ y)

⊗-zero : ∀̇x.O ⊗ x ≡ O ⊗-rec : ∀̇xy. (Sx)⊗ y ≡ y ⊕ x⊗ y
zero-succ : ∀̇x.O ≡ Sx →̇ ⊥̇ succ-inj : ∀̇xy. Sx ≡ Sy →̇ x ≡ y
≡-refl : ∀̇x. x ≡ x ≡-symm : ∀̇xy. x ≡ y →̇ y ≡ x

induction : ∀̇1pP. P O →̇ (∀̇x. P x →̇ P (Sx)) →̇ ∀̇x. P x

The most notable axiom is the induction axiom, as it is the only one that fully

exploits the power of second-order logic and cannot be expressed in first-order logic.

There, one cannot quantify over predicates and must instead work with an axiom

scheme over formulas with a free variable. This is of course much weaker and is also

the reason why the categoricity proof will not work for first-order PA.

Also note that equality is actually definable in second order logic by encoding

the Leibniz characterization, but we chose to add an equality symbol with axioms

instead. Otherwise, formulas using equality could no longer be first-order, which

would break our reduction later on. Nonetheless we can show, that the predicate

coincides with equality:

Fact 7 Let ≡i be the interpretation of the ≡-symbol in some model M with M �
PA2. Then x ≡i y ↔ x = y.

Proof. By induction on x and case analysis on y using the induction axiom. The

different cases follow with zero-succ, succ-inj, ≡-refl and ≡-symm.1 �

1Notice that we do not require an axiom for transitivity. It turns out that those four axioms

together with induction are already strong enough to imply transitivity.
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Finally, we want to prove that PA2 is categorical: Suppose we have two models

M1, M2 with corresponding domains D1, D2 that satisfy PA2 (i.e. M1 � PA2 and

M2 � PA2). We will write Si1, S
i
2, ⊕i1, ⊕i2 etc. for the interpretation of function

and predicate symbols in the two models. Our goal now is to give an isomorphism

between M1 and M2.

Definition 8 We define the relation ≈ : D1 → D2 → P inductively by Oi1 ≈ Oi2
and Si1x ≈ Si2y if x ≈ y.

Fact 9 The relation ≈ is total, functional, surjective and injective. It also respects

the structure of the models:

1. Oi1 ≈ Oi2
2. x ≈ y → Si1x ≈ Si2y
3. x ≈ y → x′ ≈ y′ → x⊕i1 x′ ≈ y ⊕i2 y′

4. x ≈ y → x′ ≈ y′ → x⊗i1 x′ ≈ y ⊗i2 y′

5. x ≈ y → x′ ≈ y′ → (x ≡i1 x′ ↔ y ≡i2 y′)

Proof. Totality etc. follow by induction using the induction axiom. 1 and 2 hold

by definition. 3 and 4 follow by induction on x using the axioms for ⊕ and ⊗. 5

follows by induction on x using Fact 7. �

We can conclude that ≈ is the isomorphism we were looking for and that PA2

is indeed categorical. However, we need to point out that the isomorphism is in

fact not computational. For example, although knowing that it is total, given an

x : D1, we actually cannot compute a y with x ≈ y. The reason is that our only

means of finding out the structure of x is by using the induction axiom. But as

this axiom is completely restricted to propositions, we will not be able to extract

computational information from it. This has some important consequences: For

example, one interesting property that we would expect to hold, is that satisfiability

of formulas agrees in all models of PA2:

ρ ≈ σ → (M1, ρ � ϕ↔M2, σ � ϕ)

where ρ ≈ σ extends the isomorphism to environments in the obvious way. But

unfortunately we cannot prove this using the semantics from Definition 2. Imagine

there exists some function f1 in M1 that has some property. We would need to

translate this function to M2 in order to show that the property also holds there,

but this translation would require a computational isomorphism, so the statement

above cannot be proven.

That is the reason, why having a relational semantics as introduced in Defi-

nition 3 is useful. There, functions are propositional and thus no computational

isomorphism is required in order to translate from one domain to the other.
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Lemma 10 For all relational Models M̂1, M̂2 and environments ρ, σ with ρ ≈ σ

it holds that M̂1, ρ �′ ϕ↔ M̂2, σ �′ ϕ for all formulas ϕ.

Of course, if the formula does not contain any function quantifiers that would

need to be translated, we can also get the result for the original function semantics.

Lemma 11 For all Models M1, M2 and environments ρ, σ with ρ ≈ σ it holds

that M1, ρ � ϕ↔M2, σ � ϕ for all formulas ϕ without function quantifiers.

Lemma 12 If ρ � ϕ for a closed first-order formula ϕ in some model M of PA2,

then ϕ is true in any model of PA2, i.e. PA2 � ϕ.

Lemma 12 is the main property that will later allow us to conclude the incom-

pleteness of second-order logic. Since the reduction we will use is entirely based on

first-order formulas, the argument would work in both semantics (see Fact 5). But

since the function semantics is easier to work with, we will continue with it.

3 Undecidability and Incompleteness of Second-Order Logic

We now want to prove that no sound, complete and enumerable deduction system for

second-order logic can exist. Our approach will be to show that the existence of such

a deduction system would imply the decidability of the solvability of Diophantine

equations (Hilbert’s 10th problem H10), which is known to be undecidable [3]. This

has already been verified up to the halting problem for Turing machines as part of the

library of undecidability proofs [4]. We rely on a synthetic approach of undecidability

[5], based on the computability of all functions in Coq’s type theory, following the

reduction in [6].

H10 is about deciding whether a Diophantine equation p = q has a solution in

the natural numbers, where p and q are polynomials given by

p, q ::= num n | var x | add p q | mul p q (n, x : N)

The evaluation 〈〈·〉〉α of polynomials under a variable assignment α : N→ N is given

by

〈〈num n〉〉α := n 〈〈add p q〉〉α := 〈〈p〉〉α + 〈〈q〉〉α
〈〈var x〉〉α := α x 〈〈mul p q〉〉α := 〈〈p〉〉α · 〈〈q〉〉α

and a Diophantine equation p = q has a solution, if there is a variable assignment

α with 〈〈p〉〉α = 〈〈q〉〉α. We now want to encode such an equation in PA2. Because

of Lemma 12, the choice of which PA2 model to work in does not matter. To make

our lives easier, we will work with the standard model N, as this coincides with
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the domain of H10. We start with encoding polynomials as terms by defining a

translation function η:

η (num n) := ν(n) η (add p q) := η p+ η q

η (var x) := ivarx η (mul p q) := η p · η q

where ν is recursively defined by ν(0) = O and ν(n+ 1) = S(ν(n)).

Lemma 13 The evaluation of the encoded term in the standard model is equal to

the evaluation of the polynomial: [[η p]]N〈α,ρf ,ρp〉 = 〈〈p〉〉α

Now we can encode a Diophantine equation p = q as a formula ϕp,q by binding

all variables with existential quantifiers. Let n be the largest variable occurring in

p or q, then set

ϕp,q := ∃̇ix1...xn. η p ≡ η q

Lemma 14 p = q has a solution iff N � ϕp,q.

Corollary 15 p = q has a solution iff PA2 � ϕp,q.

Proof. Follows with Lemma 14 and Lemma 12 since ϕp,q is closed and first-order.�

Since the theory PA2 is finite, we can encode it as a conjunction in a formula

ϕPA2 . This way we can reduce to arbitrary models, which will give us some other

interesting undecidability results unrelated to incompleteness:

Corollary 16

1. p = q has a solution iff ∀M.M � ϕPA2 →̇ ϕp,q.

2. p = q has a solution iff ∃M.M � ϕPA2 ∧̇ ϕp,q.

Theorem 17 (Undecidability) The decidability of the following problems over

the PA2 signature implies the decidability of H10:

1. Validity in second-order logic: λϕ. ∀M.M � ϕ

2. Satisfiability in second-order logic: λϕ.∃M.M � ϕ

3. Validity in second-order PA2: λϕ.PA2 � ϕ

Now, we can finally use this reduction to conclude incompleteness. Suppose we

had a deduction system ` : listF→ F→ P which is

1. Sound: L ` ϕ→ (λψ. ψ ∈ L) � ϕ

2. Complete: (λψ. ψ ∈ L) � ϕ→ L ` ϕ
3. Enumerable: enumerable (λϕ.L ` ϕ).
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Note that the deduction system works with finite theories represented as lists. As

PA2 is finite, we will now also write PA2 for the list representation of the theory.

Corollary 18 p = q has a solution iff PA2 ` ϕp,q.

Therefore, to show that H10 is decidable, it suffices to show that λ(p, q).PA2 `
ϕp,q is decidable. We achieve this by using Post’s theorem [5, 7], which states that

under Markov’s principle2 enumerability and co-enumerability of a problem on a

discrete type implies decidability. As polynomials are discrete and enumerability

follows from the enumerability of our deduction system, the only remaining obliga-

tion is to show co-enumerability, which will follow from this lemma:

Lemma 19 For all closed, first-order formulas ϕ it holds that T ` ¬̇ϕ↔ ¬T ` ϕ.

Proof. → follows by soundness. ← follows by completeness and Lemma 12. �

Note that this is the key point in the incompleteness proof where categoricity is

required. The previous use in Corollary 15 is merely for convenience to allow us to

work in the standard model. With some more effort one can get Corollary 18 without

using categoricity [6]. Lemma 19 however only works because of categoricity and

does not hold in first-order logic. There, we cannot conclude that all PA2 models

satisfy ¬̇ϕ just from knowing that not all PA2 models satisfy ϕ. This requires

categoricity.

Using Lemma 19, we get co-enumerability and thus incompleteness.

Lemma 20 enumerable (λ(p, q).¬PA2 ` ϕp,q)

Proof. By Lemma 19, it suffices to show enumerable (λ(p, q).PA2 ` ¬̇ϕ). This

follows from the enumerability of the deduction system. �

Lemma 21 MP→ decidable (λ(p, q).PA2 ` ϕp,q)

Proof. By Post’s theorem [5, 7]. �

Theorem 22 (Incompleteness) The existence of a sound, complete and enumer-

able deduction system for second-order logic implies the decidability of H10 under

MP.

2Markov’s principle is a weak and constructively widely accepted consequence of excluded middle.

It is defined as MP := ∀f : N → B.¬¬(∃n.fn = true) → ∃n.fn = true. MP is consistent with

Church’s thesis [8]. Therefore we can still work with the assumption that all functions in Coq

are computable and our reduction stays computable.
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