Synthetic Incompleteness and Undecidability of Second-Order Logic

First Bachelor Seminar Talk

Mark Koch Advisor: Dominik Kirst Supervisor: Gert Smolka

May 20, 2021

Saarland University, Programming Systems Lab

Many first-order undecidability results formalized in the library of undecidability proofs [Forster et al., 2020]. For example:

Validity

Satisfiability

• Peano arithmetic

• Zermelo-Fraenkel set theory

Many first-order undecidability results formalized in the library of undecidability proofs [Forster et al., 2020]. For example:

Validity

Satisfiability

• Peano arithmetic

• Zermelo–Fraenkel set theory

Goals:

1. Establish similar results for second-order logic

Many first-order undecidability results formalized in the library of undecidability proofs [Forster et al., 2020]. For example:

Validity

Satisfiability

• Peano arithmetic

• Zermelo-Fraenkel set theory

- 1. Establish similar results for second-order logic
- 2. Look at areas where FOL and SOL behave differently:

Many first-order undecidability results formalized in the library of undecidability proofs [Forster et al., 2020]. For example:

Validity

Satisfiability

• Peano arithmetic

• Zermelo-Fraenkel set theory

- 1. Establish similar results for second-order logic
- 2. Look at areas where FOL and SOL behave differently:
 - ► Deduction incompleteness:

Many first-order undecidability results formalized in the library of undecidability proofs [Forster et al., 2020]. For example:

Validity

Satisfiability

• Peano arithmetic

• Zermelo-Fraenkel set theory

- 1. Establish similar results for second-order logic
- 2. Look at areas where FOL and SOL behave differently:
 - Deduction incompleteness:
 - Related to negation incompleteness of PA₂

Many first-order undecidability results formalized in the library of undecidability proofs [Forster et al., 2020]. For example:

Validity

Satisfiability

Peano arithmetic

• Zermelo–Fraenkel set theory

- 1. Establish similar results for second-order logic
- 2. Look at areas where FOL and SOL behave differently:
 - Deduction incompleteness:
 - Related to negation incompleteness of PA₂
 - We use a computability argument reusing the undecidability reduction

Many first-order undecidability results formalized in the library of undecidability proofs [Forster et al., 2020]. For example:

Validity

Satisfiability

Peano arithmetic

Zermelo–Fraenkel set theory

Goals:

- 1. Establish similar results for second-order logic
- 2. Look at areas where FOL and SOL behave differently:
 - Deduction incompleteness:
 - Related to negation incompleteness of PA₂
 - We use a computability argument reusing the undecidability reduction

All results in this talk are formalized in Coq.

We follow the first-order mechanization that is part of the library of undecidability proofs [Forster et al., 2020, Kirst and Hermes, 2021].

We follow the first-order mechanization that is part of the library of undecidability proofs [Forster et al., 2020, Kirst and Hermes, 2021].

We follow the first-order mechanization that is part of the library of undecidability proofs [Forster et al., 2020, Kirst and Hermes, 2021].

We follow the first-order mechanization that is part of the library of undecidability proofs [Forster et al., 2020, Kirst and Hermes, 2021].

 $\begin{array}{l} \hline \textbf{Definition (Syntax)} \\ \varphi, \psi ::= \dot{\bot} \mid P \ t \mid pvar_{x} \ t \mid \varphi \rightarrow \psi \mid \varphi \wedge \psi \mid \varphi \vee \psi \mid (P : \Sigma_{P}) \\ & \forall \varphi \mid \dot{\exists} \varphi \mid \forall_{f}^{n} \varphi \mid \dot{\exists}_{f}^{n} \varphi \mid \dot{\forall}_{p}^{n} \varphi \mid \dot{\exists}_{p}^{n} \varphi \quad (n : \mathbb{N}) \\ & t ::= var_{x} \mid f \ t \mid fvar_{x} \ t \quad (x : \mathbb{V}, f : \Sigma_{f}) \end{array}$

Consider axiomatisation of Peano/Heyting arithmetic over signature $(0, S, +, \cdot, \equiv)$:

Zero Addition : $\forall x. 0 + x \equiv x$ Addition Recursion : $\forall xy. (Sx) + y \equiv S(x + y)$ Disjointness : $\forall x. 0 \equiv Sx \rightarrow \bot$ Equilty Reflexive : $\forall x. x \equiv x$ Zero Multiplication : $\dot{\forall}x. 0 \cdot x \equiv 0$ Multiplication Recursion : $\dot{\forall}xy. (Sx) \cdot y \equiv y + x \cdot y$ Successor Injective : $\dot{\forall}xy. Sx \equiv Sy \rightarrow x \equiv y$ Equility Symmetric : $\dot{\forall}xy. x \equiv y \rightarrow y \equiv x$ Consider axiomatisation of Peano/Heyting arithmetic over signature $(0, S, +, \cdot, \equiv)$:

Zero Addition : $\forall x. 0 + x \equiv x$ Addition Recursion : $\forall xy. (Sx) + y \equiv S(x + y)$ Disjointness : $\forall x. 0 \equiv Sx \rightarrow \bot$ Equility Reflexive : $\forall x. x \equiv x$ Zero Multiplication : $\forall x. 0 \cdot x \equiv 0$ Multiplication Recursion : $\forall xy. (Sx) \cdot y \equiv y + x \cdot y$ Successor Injective : $\forall xy. Sx \equiv Sy \rightarrow x \equiv y$ Equility Symmetric : $\forall xy. x \equiv y \rightarrow y \equiv x$

PA₂-Induction : $\forall_p^1 P. P 0 \rightarrow (\forall x. P x \rightarrow P(Sx)) \rightarrow \forall x. P x$

Consider axiomatisation of Peano/Heyting arithmetic over signature $(0, S, +, \cdot, \equiv)$:

Zero Addition : $\forall x. 0 + x \equiv x$ Addition Recursion : $\forall xy. (Sx) + y \equiv S(x + y)$ Disjointness : $\forall x. 0 \equiv Sx \rightarrow \bot$ Equility Reflexive : $\forall x. x \equiv x$ Zero Multiplication : $\forall x. 0 \cdot x \equiv 0$ Multiplication Recursion : $\forall xy. (Sx) \cdot y \equiv y + x \cdot y$ Successor Injective : $\forall xy. Sx \equiv Sy \rightarrow x \equiv y$ Equility Symmetric : $\forall xy. x \equiv y \rightarrow y \equiv x$

 $\begin{aligned} \mathsf{PA_2-Induction} : & \dot{\forall}_p^1 P. \ P \ 0 \rightarrow (\dot{\forall} x. \ P \ x \rightarrow P \ (Sx)) \rightarrow \dot{\forall} x. \ P \ x \\ & \mathsf{vs.} \end{aligned} \\ \\ \mathsf{PA_1-Induction \ scheme} : & \varphi[0] \rightarrow (\dot{\forall} x. \ \varphi[x] \rightarrow \varphi[Sx]) \rightarrow \dot{\forall} x. \ \varphi[x] \quad (\text{for all } \varphi) \end{aligned}$

Definition (Model)

A model \mathcal{M} consists of a domain D and interpretation \mathcal{I} for function and relation symbols: $f^{\mathcal{I}}: D^{|f|} \to D$, $P^{\mathcal{I}}: D^{|P|} \to \mathbb{P}$.

Definition (Model)

A model \mathcal{M} consists of a domain D and interpretation \mathcal{I} for function and relation symbols: $f^{\mathcal{I}}: D^{|f|} \to D, P^{\mathcal{I}}: D^{|P|} \to \mathbb{P}.$

Definition (Evaluation)

$$[\![\mathsf{ivar}_x]\!]^{\mathcal{M}}_\rho :=$$

Definition (Model)

A model \mathcal{M} consists of a domain D and interpretation \mathcal{I} for function and relation symbols: $f^{\mathcal{I}}: D^{|f|} \to D, P^{\mathcal{I}}: D^{|P|} \to \mathbb{P}.$

Definition (Evaluation)

$$\llbracket ivar_x \rrbracket^{\mathcal{M}}_{\rho} :=$$

With $\rho = \langle \rho_i, \rho_f, \rho_p \rangle$

Definition (Model)

A model \mathcal{M} consists of a domain D and interpretation \mathcal{I} for function and relation symbols: $f^{\mathcal{I}}: D^{|f|} \to D, P^{\mathcal{I}}: D^{|P|} \to \mathbb{P}.$

Definition (Evaluation)

$$\llbracket \mathsf{ivar}_{\mathsf{X}} \rrbracket^{\mathcal{M}}_{\rho} := \rho_{\mathsf{i}} \mathsf{X}$$

With $\rho = \langle \rho_i, \rho_f, \rho_p \rangle$, $\rho_i : \mathbb{V} \to D$

Definition (Model)

A model \mathcal{M} consists of a domain D and interpretation \mathcal{I} for function and relation symbols: $f^{\mathcal{I}}: D^{|f|} \to D, P^{\mathcal{I}}: D^{|P|} \to \mathbb{P}.$

Definition (Evaluation)

$$\llbracket \text{ivar}_{\mathsf{X}} \rrbracket_{\rho}^{\mathcal{M}} := \rho_i \mathsf{X} \qquad \llbracket \text{fvar}_{\mathsf{X}} \mathsf{t} \rrbracket_{\rho}^{\mathcal{M}} :=$$

With $\rho = \langle \rho_i, \rho_f, \rho_p \rangle, \quad \rho_i : \mathbb{V} \to D$

Definition (Model)

A model \mathcal{M} consists of a domain D and interpretation \mathcal{I} for function and relation symbols: $f^{\mathcal{I}}: D^{|f|} \to D, P^{\mathcal{I}}: D^{|P|} \to \mathbb{P}.$

Definition (Evaluation)

$$\llbracket \text{ivar}_{\mathsf{X}} \rrbracket_{\rho}^{\mathcal{M}} := \rho_i \mathsf{X} \qquad \llbracket \text{fvar}_{\mathsf{X}} \mathsf{t} \rrbracket_{\rho}^{\mathcal{M}} :=$$

With $\rho = \langle \rho_i, \rho_f, \rho_p \rangle$, $\rho_i : \mathbb{V} \to D$, $\rho_f : \mathbb{V} \to \forall n. D^n \to D$

Definition (Model)

A model \mathcal{M} consists of a domain D and interpretation \mathcal{I} for function and relation symbols: $f^{\mathcal{I}}: D^{|f|} \to D, P^{\mathcal{I}}: D^{|P|} \to \mathbb{P}.$

Definition (Evaluation)

$$\llbracket \operatorname{ivar}_{x} \rrbracket_{\rho}^{\mathcal{M}} := \rho_{i} x \qquad \llbracket \operatorname{fvar}_{x} t \rrbracket_{\rho}^{\mathcal{M}} := \rho_{f} \times |t| \llbracket t \rrbracket_{\rho}^{\mathcal{M}}$$

With $\rho = \langle \rho_i, \rho_f, \rho_p \rangle$, $\rho_i : \mathbb{V} \to D$, $\rho_f : \mathbb{V} \to \forall n. D^n \to D$

Definition (Model)

A model \mathcal{M} consists of a domain D and interpretation \mathcal{I} for function and relation symbols: $f^{\mathcal{I}}: D^{|f|} \to D, P^{\mathcal{I}}: D^{|P|} \to \mathbb{P}.$

Definition (Evaluation)

$$\llbracket \mathsf{ivar}_{\mathsf{X}} \rrbracket_{\rho}^{\mathcal{M}} := \rho_{i} \mathsf{X} \qquad \llbracket \mathsf{fvar}_{\mathsf{X}} \mathsf{t} \rrbracket_{\rho}^{\mathcal{M}} := \rho_{f} \mathsf{X} |\mathsf{t}| \llbracket \mathsf{t} \rrbracket_{\rho}^{\mathcal{M}}$$
$$\mathcal{M} \vDash_{\rho} \mathsf{pvar}_{\mathsf{X}} \mathsf{t} := \rho_{f} \mathsf{X} |\mathsf{t}| \llbracket \mathsf{t} \rrbracket_{\rho}^{\mathcal{M}}$$

Definition (Model)

A model \mathcal{M} consists of a domain D and interpretation \mathcal{I} for function and relation symbols: $f^{\mathcal{I}}: D^{|f|} \to D, P^{\mathcal{I}}: D^{|P|} \to \mathbb{P}.$

Definition (Evaluation)

$$\begin{split} \llbracket \mathsf{ivar}_{\mathsf{x}} \rrbracket_{\rho}^{\mathcal{M}} &:= \rho_{i} \, \mathsf{x} & \qquad \llbracket \mathsf{fvar}_{\mathsf{x}} \, \boldsymbol{t} \rrbracket_{\rho}^{\mathcal{M}} &:= \rho_{f} \, \mathsf{x} \, |\boldsymbol{t}| \, \llbracket \boldsymbol{t} \rrbracket_{\rho}^{\mathcal{M}} \\ \mathcal{M} \vDash_{\rho} \, \mathsf{pvar}_{\mathsf{x}} \, \boldsymbol{t} &:= \rho_{f} \, \mathsf{x} \, |\boldsymbol{t}| \, \llbracket \boldsymbol{t} \rrbracket_{\rho}^{\mathcal{M}} & \qquad \mathcal{M} \vDash_{\rho} \, \varphi \, \dot{\wedge} \, \psi \, := \, \mathcal{M} \vDash_{\rho} \, \varphi \wedge \mathcal{M} \vDash_{\rho} \, \psi \end{split}$$

Definition (Model)

A model \mathcal{M} consists of a domain D and interpretation \mathcal{I} for function and relation symbols: $f^{\mathcal{I}}: D^{|f|} \to D, P^{\mathcal{I}}: D^{|P|} \to \mathbb{P}.$

Definition (Evaluation)

$$\begin{split} \llbracket \text{ivar}_{x} \rrbracket_{\rho}^{\mathcal{M}} &:= \rho_{i} x & \llbracket \text{fvar}_{x} t \rrbracket_{\rho}^{\mathcal{M}} &:= \rho_{f} x |t| \llbracket t \rrbracket_{\rho}^{\mathcal{M}} \\ \mathcal{M} \vDash_{\rho} \text{pvar}_{x} t &:= \rho_{f} x |t| \llbracket t \rrbracket_{\rho}^{\mathcal{M}} & \mathcal{M} \vDash_{\rho} \varphi \land \psi &:= \mathcal{M} \vDash_{\rho} \varphi \land \mathcal{M} \vDash_{\rho} \psi \\ \mathcal{M} \vDash_{\rho} \dot{\exists}_{f}^{n} \varphi &:= \end{split}$$

Definition (Model)

A model \mathcal{M} consists of a domain D and interpretation \mathcal{I} for function and relation symbols: $f^{\mathcal{I}}: D^{|f|} \to D, P^{\mathcal{I}}: D^{|P|} \to \mathbb{P}.$

Definition (Evaluation)

$$\begin{split} \llbracket \text{ivar}_{x} \rrbracket_{\rho}^{\mathcal{M}} &:= \rho_{i} x & \llbracket \text{fvar}_{x} t \rrbracket_{\rho}^{\mathcal{M}} &:= \rho_{f} x |t| \llbracket t \rrbracket_{\rho}^{\mathcal{M}} \\ \mathcal{M} \vDash_{\rho} \text{pvar}_{x} t &:= \rho_{f} x |t| \llbracket t \rrbracket_{\rho}^{\mathcal{M}} & \mathcal{M} \vDash_{\rho} \varphi \land \psi &:= \mathcal{M} \vDash_{\rho} \varphi \land \mathcal{M} \vDash_{\rho} \psi \\ \mathcal{M} \vDash_{\rho} \dot{\exists}_{f}^{n} \varphi &:= \exists f^{D^{n} \to D}. \end{split}$$

Definition (Model)

A model \mathcal{M} consists of a domain D and interpretation \mathcal{I} for function and relation symbols: $f^{\mathcal{I}}: D^{|f|} \to D, P^{\mathcal{I}}: D^{|P|} \to \mathbb{P}.$

Definition (Evaluation)

$$\begin{split} \llbracket \text{ivar}_{x} \rrbracket_{\rho}^{\mathcal{M}} &:= \rho_{i} x & \llbracket \text{fvar}_{x} t \rrbracket_{\rho}^{\mathcal{M}} &:= \rho_{f} x |t| \llbracket t \rrbracket_{\rho}^{\mathcal{M}} \\ \mathcal{M} \vDash_{\rho} \text{pvar}_{x} t &:= \rho_{f} x |t| \llbracket t \rrbracket_{\rho}^{\mathcal{M}} & \mathcal{M} \vDash_{\rho} \varphi \land \psi &:= \mathcal{M} \vDash_{\rho} \varphi \land \mathcal{M} \vDash_{\rho} \psi \\ \mathcal{M} \vDash_{\rho} \dot{\exists}_{f}^{n} \varphi &:= \exists f^{D^{n} \to D} . \ \mathcal{M} \vDash_{f \cdot \rho} \varphi \end{aligned}$$

Definition (Model)

A model \mathcal{M} consists of a domain D and interpretation \mathcal{I} for function and relation symbols: $f^{\mathcal{I}}: D^{|f|} \to D, P^{\mathcal{I}}: D^{|P|} \to \mathbb{P}.$

Definition (Evaluation)

 $\bullet~$ Standard model of PA is $\mathbb N$

- $\bullet~$ Standard model of PA is $\mathbb N$
- PA_1 has models that are different from \mathbb{N} (non-standard models)

- $\bullet~$ Standard model of PA is $\mathbb N$
- PA_1 has models that are different from \mathbb{N} (non-standard models)
- ${\ensuremath{\, \circ }}\ {\ensuremath{\, \mathbb N}}$ is the only model of ${\ensuremath{\mathsf{PA}}}_2$

- $\bullet~$ Standard model of PA is $\mathbb N$
- PA_1 has models that are different from \mathbb{N} (non-standard models)
- ${\ensuremath{\, \circ }}\ {\ensuremath{\mathbb N}}$ is the only model of ${\ensuremath{\mathsf{PA}}}_2$

Theorem (Categoricity)

 PA_2 is categorical, meaning all PA_2 models are isomorphic.

- $\ensuremath{\bullet}$ Standard model of PA is $\ensuremath{\mathbb{N}}$
- PA_1 has models that are different from \mathbb{N} (non-standard models)
- ${\ensuremath{\, \circ }}\ {\ensuremath{\mathbb N}}$ is the only model of ${\ensuremath{\mathsf{PA}}}_2$

Theorem (Categoricity)

 PA_2 is categorical, meaning all PA_2 models are isomorphic.

Proof.

Suppose $\mathcal{M}_1 \vDash \mathsf{PA}_2$ and $\mathcal{M}_2 \vDash \mathsf{PA}_2$.

- $\ensuremath{\bullet}$ Standard model of PA is $\ensuremath{\mathbb{N}}$
- PA_1 has models that are different from \mathbb{N} (non-standard models)
- $\odot~\mathbb{N}$ is the only model of PA_2

Theorem (Categoricity)

PA₂ is categorical, meaning all PA₂ models are isomorphic.

Proof.

Suppose $\mathcal{M}_1 \vDash \mathsf{PA}_2$ and $\mathcal{M}_2 \vDash \mathsf{PA}_2$. Inductively define $\cong : D_1 \to D_2 \to \mathbb{P}$ $0^{\mathcal{I}_1} \cong 0^{\mathcal{I}_2}$

- $\ensuremath{\bullet}$ Standard model of PA is $\ensuremath{\mathbb{N}}$
- PA_1 has models that are different from \mathbb{N} (non-standard models)
- ${\ensuremath{\, \circ }}\ {\ensuremath{\, \mathbb N}}$ is the only model of ${\ensuremath{\mathsf{PA}}}_2$

Theorem (Categoricity)

 PA_2 is categorical, meaning all PA_2 models are isomorphic.

Proof.

Suppose $\mathcal{M}_1 \vDash \mathsf{PA}_2$ and $\mathcal{M}_2 \vDash \mathsf{PA}_2$. Inductively define $\cong : D_1 \to D_2 \to \mathbb{P}$

$$0^{\mathcal{I}_1} \cong 0^{\mathcal{I}_2} \qquad \qquad S^{\mathcal{I}_1} x \cong S^{\mathcal{I}_2} y, \ \text{ if } x \cong y$$

Models of PA

- $\bullet~$ Standard model of PA is $\mathbb N$
- PA_1 has models that are different from \mathbb{N} (non-standard models)
- $\odot~\mathbb{N}$ is the only model of PA_2

Theorem (Categoricity)

PA₂ is categorical, meaning all PA₂ models are isomorphic.

Proof.

Suppose $\mathcal{M}_1 \vDash \mathsf{PA}_2$ and $\mathcal{M}_2 \vDash \mathsf{PA}_2$. Inductively define $\cong : D_1 \to D_2 \to \mathbb{P}$

$$0^{\mathcal{I}_1} \cong 0^{\mathcal{I}_2} \qquad \qquad S^{\mathcal{I}_1} x \cong S^{\mathcal{I}_2} y, \text{ if } x \cong y$$

Using the induction axiom, we can easily show that \cong is bijective and a homomorphism. Thus \mathcal{M}_1 and \mathcal{M}_2 are isomorphic.

$$\mathcal{M}_1 \vDash \varphi \quad \leftrightarrow \quad \mathcal{M}_2 \vDash \varphi \quad ?$$

$$\mathcal{M}_1 \vDash \varphi \quad \leftrightarrow \quad \mathcal{M}_2 \vDash \varphi \quad ?$$

No, because $\mathcal{M}_1 \vDash \dot{\exists}_f^n \, \varphi$

$$\mathcal{M}_1 \vDash \varphi \quad \leftrightarrow \quad \mathcal{M}_2 \vDash \varphi \quad ?$$

$$\mathcal{M}_1 \vDash \varphi \quad \leftrightarrow \quad \mathcal{M}_2 \vDash \varphi \quad ?$$

$$\mathcal{M}_1 \vDash \varphi \quad \leftrightarrow \quad \mathcal{M}_2 \vDash \varphi \quad ?$$

Possible solution: $\mathcal{M} \vDash_{\rho} \dot{\exists}_{f}^{n} \varphi := \exists f^{D^{n} \rightarrow D} . \mathcal{M} \vDash_{f \cdot \rho} \varphi$

$$\mathcal{M}_1 \vDash \varphi \quad \leftrightarrow \quad \mathcal{M}_2 \vDash \varphi \quad ?$$

Possible solution: $\mathcal{M} \vDash_{\rho} \dot{\exists}_{f}^{n} \varphi := \exists f^{D^{n+1} \to \mathbb{P}}$. total $f \land$ functional $f \land \mathcal{M} \vDash_{f \cdot \rho} \varphi$

$$\mathcal{M}_1 \vDash \varphi \quad \leftrightarrow \quad \mathcal{M}_2 \vDash \varphi \quad ?$$

Possible solution: $\mathcal{M} \vDash_{\rho} \dot{\exists}_{f}^{n} \varphi := \exists f^{D^{n+1} \to \mathbb{P}}$. total $f \land$ functional $f \land \mathcal{M} \vDash_{f \cdot \rho} \varphi$

• Under Unique Choice both semantics are equivalent.

$$\mathcal{M}_1 \vDash \varphi \quad \leftrightarrow \quad \mathcal{M}_2 \vDash \varphi \quad ?$$

Possible solution: $\mathcal{M} \vDash_{\rho} \dot{\exists}_{f}^{n} \varphi := \exists f^{D^{n+1} \to \mathbb{P}}$. total $f \land$ functional $f \land \mathcal{M} \vDash_{f \cdot \rho} \varphi$

- Under Unique Choice both semantics are equivalent.
- Luckily, our forthcoming reduction does not use function quantifiers, so it does not matter.

Definition

Definition

 $H_{10} :=$ "Does the Diophantine equation p = q have a solution in \mathbb{N} ?"

• This problem is undecidable [Davis et al., 1961, Matijasevic, 1970].

Definition

- This problem is undecidable [Davis et al., 1961, Matijasevic, 1970].
- Proof has already been mechanized [Larchey-Wendling and Forster, 2019].

Definition

- This problem is undecidable [Davis et al., 1961, Matijasevic, 1970].
- Proof has already been mechanized [Larchey-Wendling and Forster, 2019].
- We follow the reduction in [Kirst and Hermes, 2021]:

Definition

- This problem is undecidable [Davis et al., 1961, Matijasevic, 1970].
- Proof has already been mechanized [Larchey-Wendling and Forster, 2019].
- We follow the reduction in [Kirst and Hermes, 2021]:

$$\overbrace{x+2}^{p} = \overbrace{y^2+z}^{q}$$

Definition

- This problem is undecidable [Davis et al., 1961, Matijasevic, 1970].
- Proof has already been mechanized [Larchey-Wendling and Forster, 2019].
- We follow the reduction in [Kirst and Hermes, 2021]:

Definition

 $H_{10} :=$ "Does the Diophantine equation p = q have a solution in \mathbb{N} ?"

- This problem is undecidable [Davis et al., 1961, Matijasevic, 1970].
- Proof has already been mechanized [Larchey-Wendling and Forster, 2019].
- We follow the reduction in [Kirst and Hermes, 2021]:

$$\varphi_{p,q} := \dot{\exists} x \, y \, z \, x + S(S \, 0) \equiv y \cdot y + z$$

p = q has a solution iff $\mathbb{N} \vDash \varphi_{p,q}$.

Lemma

• p = q has a solution iff $PA_2 \vDash \varphi_{p,q}$.

Lemma

• p = q has a solution iff $PA_2 \models \varphi_{p,q}$.

Theorem (Undecidability)

 \bullet PA₂ is undecidable.

Lemma

- p = q has a solution iff $PA_2 \models \varphi_{p,q}$.
- p = q has a solution iff $\forall \mathcal{M}. \mathcal{M} \vDash \mathsf{PA}_2 \xrightarrow{\cdot} \varphi_{p,q}$.

Theorem (Undecidability)

 \bullet PA₂ is undecidable.

Lemma

- p = q has a solution iff $PA_2 \models \varphi_{p,q}$.
- p = q has a solution iff $\forall \mathcal{M}. \ \mathcal{M} \vDash \dot{\forall} f_0 f_S f_+ f_{\times} P_{\equiv}. \mathsf{PA}'_2 \rightarrow \varphi'_{p,q}.$

Theorem (Undecidability)

• PA₂ is undecidable.

Lemma

- p = q has a solution iff $PA_2 \models \varphi_{p,q}$.
- p = q has a solution iff $\forall \mathcal{M}. \ \mathcal{M} \vDash \dot{\forall} f_0 f_S f_+ f_{\times} P_{\equiv}. \ \mathsf{PA}'_2 \rightarrow \varphi'_{p,q}.$

Theorem (Undecidability)

- PA₂ is undecidable.
- Validity in SOL is already undecidable in the empty signature.

Lemma

- p = q has a solution iff $PA_2 \vDash \varphi_{p,q}$.
- p = q has a solution iff $\forall \mathcal{M}. \mathcal{M} \vDash \dot{\forall} f_0 f_S f_+ f_{\times} P_{\equiv}. \mathsf{PA}'_2 \rightarrow \varphi'_{p,q}.$
- p = q has a solution iff $\exists \mathcal{M}\rho. \mathcal{M} \vDash_{\rho} \dot{\exists} f_0 f_S f_+ f_{\times} P_{\equiv}. \mathsf{PA}'_2 \dot{\land} \varphi'_{p,q}.$

Theorem (Undecidability)

- PA₂ is undecidable.
- Validity in SOL is already undecidable in the empty signature.
- Satisfiablilty in SOL is already undecidable in the empty signature.

Suppose \vdash is a sound, complete and enumerable deduction system for SOL.

Suppose \vdash is a sound, complete and enumerable deduction system for SOL.

decidable H_{10}

Suppose \vdash is a sound, complete and enumerable deduction system for SOL.

decidable H_{10} \uparrow decidable (λpq . $PA_2 \vDash \varphi_{p,q}$)

decidable H₁₀

$$\uparrow$$
decidable (λpq . PA₂ $\vDash \varphi_{p,q}$)

$$\uparrow$$
By Post's theorem [Bauer, 2006, Forster et al., 2019] it suffices
1. enumerable (λpq . PA₂ $\vDash \varphi_{p,q}$)
2. enumerable (λpq . \neg PA₂ $\vDash \varphi_{p,q}$)

decidable
$$H_{10}$$

$$\uparrow$$
decidable $(\lambda pq. PA_2 \vDash \varphi_{p,q})$

$$\uparrow$$
By Post's theorem [Bauer, 2006, Forster et al., 2019]¹ it suffices
1. enumerable $(\lambda pq. PA_2 \vDash \varphi_{p,q})$
2. enumerable $(\lambda pq. \neg PA_2 \vDash \varphi_{p,q})$

¹This requires Markov's principle: MP := $\forall f : \mathbb{N} \to \mathbb{B}$. $\neg \neg (\exists n. f \ n = true) \to \exists n. f \ n = true$

decidable
$$H_{10}$$

 \uparrow
decidable $(\lambda pq. PA_2 \vDash \varphi_{p,q})$
 \uparrow
By Post's theorem [Bauer, 2006, Forster et al., 2019]¹ it suffices
1. enumerable $(\lambda pq. PA_2 \vDash \varphi_{p,q})$
 \rightarrow follows from enumerability of \vdash

¹This requires Markov's principle: MP := $\forall f : \mathbb{N} \to \mathbb{B}$. $\neg \neg (\exists n. f n = true) \to \exists n. f n = true$

decidable H_{10} decidable (λpq . PA₂ $\models \varphi_{p,q}$) By Post's theorem [Bauer, 2006, Forster et al., 2019]¹ it suffices 1. enumerable (λpq . PA₂ $\models \varphi_{p,q}$) 2. enumerable $(\lambda pq. \neg \mathsf{PA}_2 \vDash \varphi_{p,q})$ \rightarrow follows from enumerability of \vdash enumerable (λpq . PA₂ $\models \neg \varphi_{p,q}$)

¹This requires Markov's principle: MP := $\forall f : \mathbb{N} \to \mathbb{B}$. $\neg \neg (\exists n. f n = true) \to \exists n. f n = true$

$$\begin{array}{c} \text{decidable } \mathsf{H}_{10} \\ & \uparrow \\ \text{decidable } (\lambda pq. \mathsf{PA}_2 \vDash \varphi_{p,q}) \\ & \uparrow \\ \text{By Post's theorem [Bauer, 2006, Forster et al., 2019]^1 it suffices} \\ 1. \text{ enumerable } (\lambda pq. \mathsf{PA}_2 \vDash \varphi_{p,q}) \\ & \rightarrow \text{ follows from enumerability of } \vdash \\ & \uparrow \\ \text{by Categoricity} \\ & \text{enumerable } (\lambda pq. \mathsf{PA}_2 \vDash \dot{\neg} \varphi_{p,q}) \end{array}$$

¹This requires Markov's principle: MP := $\forall f : \mathbb{N} \to \mathbb{B}$. $\neg \neg (\exists n. f \ n = \mathsf{true}) \to \exists n. f \ n = \mathsf{true}$

decidable H_{10} decidable (λpq . PA₂ $\models \varphi_{p,q}$) By Post's theorem [Bauer, 2006, Forster et al., 2019]¹ it suffices 2. enumerable $(\lambda pq. \neg \mathsf{PA}_2 \vDash \varphi_{p,q})$ 1. enumerable (λpq . PA₂ $\models \varphi_{p,q}$) by Categoricity \rightarrow follows from enumerability of \vdash enumerable (λpq . PA₂ $\models \neg \varphi_{p,q}$) \rightarrow follows from enumerability of \vdash

¹This requires Markov's principle: MP := $\forall f : \mathbb{N} \to \mathbb{B}$. $\neg \neg (\exists n. f n = true) \to \exists n. f n = true$

Theorem (Incompleteness)

Under MP, the existence of a sound, complete and enumerable deduction system for second-order logic implies the decidability of H_{10} .

Theorem (Incompleteness)

Under MP, the existence of a sound, complete and enumerable deduction system for second-order logic implies the decidability of H_{10} .

We used this result to conclude incompleteness of a concrete deduction system with full comprehension.

Theorem (Incompleteness)

Under MP, the existence of a sound, complete and enumerable deduction system for second-order logic implies the decidability of H_{10} .

We used this result to conclude incompleteness of a concrete deduction system with full comprehension.

Possible next directions:

Theorem (Incompleteness)

Under MP, the existence of a sound, complete and enumerable deduction system for second-order logic implies the decidability of H_{10} .

We used this result to conclude incompleteness of a concrete deduction system with full comprehension.

Possible next directions:

• This deduction system would be complete for Henkin semantics.

Theorem (Incompleteness)

Under MP, the existence of a sound, complete and enumerable deduction system for second-order logic implies the decidability of H_{10} .

We used this result to conclude incompleteness of a concrete deduction system with full comprehension.

Possible next directions:

- This deduction system would be complete for Henkin semantics.
- Further work on PA₂ or ZF₂ (incompleteness, conservativity, etc.)

Theorem (Incompleteness)

Under MP, the existence of a sound, complete and enumerable deduction system for second-order logic implies the decidability of H_{10} .

We used this result to conclude incompleteness of a concrete deduction system with full comprehension.

Possible next directions:

- This deduction system would be complete for Henkin semantics.
- Further work on PA₂ or ZF₂ (incompleteness, conservativity, etc.)
- Connection between SOL and meta logic (e.g. inheritance of AC)

References i

Bauer, A. (2006).

First steps in synthetic computability theory.

Electronic Notes in Theoretical Computer Science, 155:5–31. Proceedings of the 21st Annual Conference on Mathematical Foundations of Programming Semantics (MFPS XXI).

- Davis, M., Putnam, H., and Robinson, J. (1961).
 The decision problem for exponential diophantine equations. Annals of Mathematics, pages 425–436.
 - Forster, Y., Kirst, D., and Smolka, G. (2019).

On synthetic undecidability in coq, with an application to the entscheidungsproblem. In *Proceedings of the 8th ACM SIGPLAN International Conference on Certified Programs and Proofs*, CPP 2019, page 38–51, New York, NY, USA. Association for Computing Machinery.

Forster, Y., Kirst, D., and Wehr, D. (2020).

Completeness theorems for first-order logic analysed in constructive type theory. In *International Symposium on Logical Foundations of Computer Science*, pages 47–74. Springer.

Kirst, D. and Hermes, M. (2021).

Synthetic undecidability and incompleteness of first-order axiom systems in coq.

Larchey-Wendling, D. and Forster, Y. (2019).

Hilbert's tenth problem in coq.

In 4th International Conference on Formal Structures for Computation and Deduction, FSCD 2019, volume 131, pages 27–1. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

Matijasevic, J. V. (1970).

Enumerable sets are diophantine.

In Soviet Math. Dokl., volume 11, pages 354-358.

$$\rho_{f} : \mathbb{N} \to \forall n. D^{n} \to D$$

$$(f \cdot \rho_{f}) \mid 0 \mid n := \begin{cases} f & \text{if } f \text{ has arity } n \\ \rho_{f} \mid 0 \mid n & \text{otherwise} \end{cases}$$

$$f \cdot \rho_{f} \mid (Sx) \mid n := \begin{cases} \rho_{f} \times n & \text{if } f \text{ has arity } n \\ \rho_{f} \mid (Sx) \mid n & \text{otherwise} \end{cases}$$

Undecidability of Validity

Lemma

p = q has a solution iff $\mathcal{M} \vDash \varphi_{p,q}$ for all models with $\mathcal{M} \vDash \mathsf{PA}_2$.

Proof.

- \rightarrow : Two possible proofs:
 - If p = q has a solution, then N ⊨ φ_{p,q}. By categoricity it holds for all models of PA₂.

• Translate p = q solution to \mathcal{M} using a homomorphism $\mu : \mathbb{N} \to \mathcal{M}$.

 $\leftarrow: \text{ Instantiate } \mathcal{M} \text{ with standard model } \mathbb{N} \text{ to obtain } \mathbb{N} \vDash \varphi_{p,q}.$

Undecidability of Satisfiability

Lemma

p = q has a solution iff there is a model $\mathcal{M} \models \mathsf{PA}_2$ and ρ such that $\mathcal{M} \models_{\rho} \varphi_{p,q}$.

Proof.

 \rightarrow : If p = q has a solution, then the standard model \mathbb{N} fulfils $\mathbb{N} \vDash \varphi_{p,q}$.

 $\leftarrow: \text{ If } \mathcal{M} \vDash_{\rho} \varphi_{p,q} \text{ then also } \mathbb{N} \vDash \varphi_{p,q} \text{ by categoricity.}$

Note that categoricity was required here, whereas it is optional for validity.

$$\frac{A[\uparrow_{f}^{n}]\vdash\varphi}{A\vdash\dot{\forall}_{f}^{n}\varphi}\operatorname{Al}_{f} \qquad \frac{A\vdash\dot{\forall}_{f}^{n}\varphi}{A\vdash\varphi[f]}\operatorname{AE}_{f}$$

$$\frac{A\vdash\varphi[f]}{A\vdash\dot{\exists}_{f}^{n}\varphi}\operatorname{El}_{f} \qquad \frac{A\vdash\dot{\exists}_{f}^{n}\varphi}{A\vdash\psi} \qquad A[\uparrow_{f}^{n}],\varphi\vdash\psi[\uparrow_{n}]_{f}}{A\vdash\psi}\operatorname{EE}_{f}$$

$$\frac{\dot{\exists}_{n}^{n}P.\dot{\forall}x_{1}...x_{n}.P(x_{1},...,x_{2})\leftrightarrow\varphi[\uparrow_{n}^{n}]}{\Box\varphi}\operatorname{Compr}$$