
Synthetic Incompleteness and Undecidability
of Second-Order Logic

First Bachelor Seminar Talk

Mark Koch
Advisor: Dominik Kirst
Supervisor: Gert Smolka

May 20, 2021

Saarland University, Programming Systems Lab

1

Introduction

Many first-order undecidability results formalized in the library of undecidability
proofs [Forster et al., 2020]. For example:

Validity

Peano arithmetic

Satisfiability

Zermelo–Fraenkel set theory

Goals:

1. Establish similar results for second-order logic
2. Look at areas where FOL and SOL behave differently:

I Deduction incompleteness:
Related to negation incompleteness of PA2

We use a computability argument reusing the undecidability reduction

All results in this talk are formalized in Coq.

2

Introduction

Many first-order undecidability results formalized in the library of undecidability
proofs [Forster et al., 2020]. For example:

Validity

Peano arithmetic

Satisfiability

Zermelo–Fraenkel set theory

Goals:

1. Establish similar results for second-order logic

2. Look at areas where FOL and SOL behave differently:

I Deduction incompleteness:
Related to negation incompleteness of PA2

We use a computability argument reusing the undecidability reduction

All results in this talk are formalized in Coq.

2

Introduction

Many first-order undecidability results formalized in the library of undecidability
proofs [Forster et al., 2020]. For example:

Validity

Peano arithmetic

Satisfiability

Zermelo–Fraenkel set theory

Goals:

1. Establish similar results for second-order logic
2. Look at areas where FOL and SOL behave differently:

I Deduction incompleteness:
Related to negation incompleteness of PA2

We use a computability argument reusing the undecidability reduction

All results in this talk are formalized in Coq.

2

Introduction

Many first-order undecidability results formalized in the library of undecidability
proofs [Forster et al., 2020]. For example:

Validity

Peano arithmetic

Satisfiability

Zermelo–Fraenkel set theory

Goals:

1. Establish similar results for second-order logic
2. Look at areas where FOL and SOL behave differently:

I Deduction incompleteness:

Related to negation incompleteness of PA2

We use a computability argument reusing the undecidability reduction

All results in this talk are formalized in Coq.

2

Introduction

Many first-order undecidability results formalized in the library of undecidability
proofs [Forster et al., 2020]. For example:

Validity

Peano arithmetic

Satisfiability

Zermelo–Fraenkel set theory

Goals:

1. Establish similar results for second-order logic
2. Look at areas where FOL and SOL behave differently:

I Deduction incompleteness:
Related to negation incompleteness of PA2

We use a computability argument reusing the undecidability reduction

All results in this talk are formalized in Coq.

2

Introduction

Many first-order undecidability results formalized in the library of undecidability
proofs [Forster et al., 2020]. For example:

Validity

Peano arithmetic

Satisfiability

Zermelo–Fraenkel set theory

Goals:

1. Establish similar results for second-order logic
2. Look at areas where FOL and SOL behave differently:

I Deduction incompleteness:
Related to negation incompleteness of PA2

We use a computability argument reusing the undecidability reduction

All results in this talk are formalized in Coq.

2

Introduction

Many first-order undecidability results formalized in the library of undecidability
proofs [Forster et al., 2020]. For example:

Validity

Peano arithmetic

Satisfiability

Zermelo–Fraenkel set theory

Goals:

1. Establish similar results for second-order logic
2. Look at areas where FOL and SOL behave differently:

I Deduction incompleteness:
Related to negation incompleteness of PA2

We use a computability argument reusing the undecidability reduction

All results in this talk are formalized in Coq.
2

Introduction

We follow the first-order mechanization that is part of the library of
undecidability proofs [Forster et al., 2020, Kirst and Hermes, 2021].

Definition (Syntax)

ϕ,ψ ::= ⊥̇ | P t | ϕ →̇ ψ | ϕ ∧̇ ψ | ϕ ∨̇ ψ | (P : ΣP)

∀̇ ϕ | ∃̇ ϕ

| ∀̇nf ϕ | ∃̇nf ϕ | ∀̇np ϕ | ∃̇np ϕ (n : N)

t ::= varx | f t

| fvarx t

(x : V, f : Σf)

3

Introduction

We follow the first-order mechanization that is part of the library of
undecidability proofs [Forster et al., 2020, Kirst and Hermes, 2021].

Definition (Syntax)

ϕ,ψ ::= ⊥̇ | P t | ϕ →̇ ψ | ϕ ∧̇ ψ | ϕ ∨̇ ψ | (P : ΣP)

∀̇ ϕ | ∃̇ ϕ

| ∀̇nf ϕ | ∃̇nf ϕ | ∀̇np ϕ | ∃̇np ϕ (n : N)

t ::= varx | f t

| fvarx t

(x : V, f : Σf)

3

Introduction

We follow the first-order mechanization that is part of the library of
undecidability proofs [Forster et al., 2020, Kirst and Hermes, 2021].

Definition (Syntax)

ϕ,ψ ::= ⊥̇ | P t | ϕ →̇ ψ | ϕ ∧̇ ψ | ϕ ∨̇ ψ | (P : ΣP)

∀̇ ϕ | ∃̇ ϕ | ∀̇nf ϕ | ∃̇nf ϕ | ∀̇np ϕ | ∃̇np ϕ (n : N)

t ::= varx | f t

| fvarx t

(x : V, f : Σf)

3

Introduction

We follow the first-order mechanization that is part of the library of
undecidability proofs [Forster et al., 2020, Kirst and Hermes, 2021].

Definition (Syntax)

ϕ,ψ ::= ⊥̇ | P t | pvarx t | ϕ →̇ ψ | ϕ ∧̇ ψ | ϕ ∨̇ ψ | (P : ΣP)

∀̇ ϕ | ∃̇ ϕ | ∀̇nf ϕ | ∃̇nf ϕ | ∀̇np ϕ | ∃̇np ϕ (n : N)

t ::= varx | f t | fvarx t (x : V, f : Σf)

3

Peano Arithmetic

Consider axiomatisation of Peano/Heyting arithmetic
over signature (0, S , + , · , ≡):

Zero Addition : ∀̇x . 0 + x ≡ x

Addition Recursion : ∀̇xy . (Sx) + y ≡ S(x + y)

Disjointness : ∀̇x . 0 ≡ Sx →̇ ⊥̇

Equlity Reflexive : ∀̇x . x ≡ x

Zero Multiplication : ∀̇x . 0 · x ≡ 0

Multiplication Recursion : ∀̇xy . (Sx) · y ≡ y + x · y

Successor Injective : ∀̇xy . Sx ≡ Sy →̇ x ≡ y

Equlity Symmetric : ∀̇xy . x ≡ y →̇ y ≡ x

PA2-Induction : ∀̇1pP.P 0 →̇ (∀̇x .P x →̇ P (Sx)) →̇ ∀̇x .P x

vs.

PA1-Induction scheme : ϕ[0] →̇ (∀̇x . ϕ[x] →̇ϕ[Sx]) →̇ ∀̇x . ϕ[x] (for all ϕ)

4

Peano Arithmetic

Consider axiomatisation of Peano/Heyting arithmetic
over signature (0, S , + , · , ≡):

Zero Addition : ∀̇x . 0 + x ≡ x

Addition Recursion : ∀̇xy . (Sx) + y ≡ S(x + y)

Disjointness : ∀̇x . 0 ≡ Sx →̇ ⊥̇

Equlity Reflexive : ∀̇x . x ≡ x

Zero Multiplication : ∀̇x . 0 · x ≡ 0

Multiplication Recursion : ∀̇xy . (Sx) · y ≡ y + x · y

Successor Injective : ∀̇xy . Sx ≡ Sy →̇ x ≡ y

Equlity Symmetric : ∀̇xy . x ≡ y →̇ y ≡ x

PA2-Induction : ∀̇1pP.P 0 →̇ (∀̇x .P x →̇ P (Sx)) →̇ ∀̇x .P x

vs.

PA1-Induction scheme : ϕ[0] →̇ (∀̇x . ϕ[x] →̇ϕ[Sx]) →̇ ∀̇x . ϕ[x] (for all ϕ)

4

Peano Arithmetic

Consider axiomatisation of Peano/Heyting arithmetic
over signature (0, S , + , · , ≡):

Zero Addition : ∀̇x . 0 + x ≡ x

Addition Recursion : ∀̇xy . (Sx) + y ≡ S(x + y)

Disjointness : ∀̇x . 0 ≡ Sx →̇ ⊥̇

Equlity Reflexive : ∀̇x . x ≡ x

Zero Multiplication : ∀̇x . 0 · x ≡ 0

Multiplication Recursion : ∀̇xy . (Sx) · y ≡ y + x · y

Successor Injective : ∀̇xy . Sx ≡ Sy →̇ x ≡ y

Equlity Symmetric : ∀̇xy . x ≡ y →̇ y ≡ x

PA2-Induction : ∀̇1pP.P 0 →̇ (∀̇x .P x →̇ P (Sx)) →̇ ∀̇x .P x

vs.

PA1-Induction scheme : ϕ[0] →̇ (∀̇x . ϕ[x] →̇ϕ[Sx]) →̇ ∀̇x . ϕ[x] (for all ϕ)

4

Semantics

Definition (Model)

A model M consists of a domain D and interpretation I for function and
relation symbols: f I : D |f | → D, PI : D |P| → P.

Definition (Evaluation)

[[ivarx]]Mρ :=

ρi x

M �ρ pvarx t := ρf x |t| [[t]]Mρ

[[fvarx t]]Mρ := ρf x |t| [[t]]Mρ

M �ρ ϕ ∧̇ ψ := M �ρ ϕ ∧M �ρ ψ

M �ρ ∃̇nf ϕ := ∃f Dn→D .M �f ·ρ ϕ

...

With ρ = 〈ρi , ρf , ρp〉, ρi : V→ D, ρf : V→ ∀n.Dn → D, ρp : V→ ∀n.Dn → P

5

Semantics

Definition (Model)

A model M consists of a domain D and interpretation I for function and
relation symbols: f I : D |f | → D, PI : D |P| → P.

Definition (Evaluation)

[[ivarx]]Mρ :=

ρi x

M �ρ pvarx t := ρf x |t| [[t]]Mρ

[[fvarx t]]Mρ := ρf x |t| [[t]]Mρ

M �ρ ϕ ∧̇ ψ := M �ρ ϕ ∧M �ρ ψ

M �ρ ∃̇nf ϕ := ∃f Dn→D .M �f ·ρ ϕ

...

With ρ = 〈ρi , ρf , ρp〉, ρi : V→ D, ρf : V→ ∀n.Dn → D, ρp : V→ ∀n.Dn → P

5

Semantics

Definition (Model)

A model M consists of a domain D and interpretation I for function and
relation symbols: f I : D |f | → D, PI : D |P| → P.

Definition (Evaluation)

[[ivarx]]Mρ :=

ρi x

M �ρ pvarx t := ρf x |t| [[t]]Mρ

[[fvarx t]]Mρ := ρf x |t| [[t]]Mρ

M �ρ ϕ ∧̇ ψ := M �ρ ϕ ∧M �ρ ψ

M �ρ ∃̇nf ϕ := ∃f Dn→D .M �f ·ρ ϕ

...

With ρ = 〈ρi , ρf , ρp〉

, ρi : V→ D, ρf : V→ ∀n.Dn → D, ρp : V→ ∀n.Dn → P

5

Semantics

Definition (Model)

A model M consists of a domain D and interpretation I for function and
relation symbols: f I : D |f | → D, PI : D |P| → P.

Definition (Evaluation)

[[ivarx]]Mρ := ρi x

M �ρ pvarx t := ρf x |t| [[t]]Mρ

[[fvarx t]]Mρ := ρf x |t| [[t]]Mρ

M �ρ ϕ ∧̇ ψ := M �ρ ϕ ∧M �ρ ψ

M �ρ ∃̇nf ϕ := ∃f Dn→D .M �f ·ρ ϕ

...

With ρ = 〈ρi , ρf , ρp〉, ρi : V→ D

, ρf : V→ ∀n.Dn → D, ρp : V→ ∀n.Dn → P

5

Semantics

Definition (Model)

A model M consists of a domain D and interpretation I for function and
relation symbols: f I : D |f | → D, PI : D |P| → P.

Definition (Evaluation)

[[ivarx]]Mρ := ρi x

M �ρ pvarx t := ρf x |t| [[t]]Mρ

[[fvarx t]]Mρ :=

ρf x |t| [[t]]Mρ

M �ρ ϕ ∧̇ ψ := M �ρ ϕ ∧M �ρ ψ

M �ρ ∃̇nf ϕ := ∃f Dn→D .M �f ·ρ ϕ

...

With ρ = 〈ρi , ρf , ρp〉, ρi : V→ D

, ρf : V→ ∀n.Dn → D, ρp : V→ ∀n.Dn → P

5

Semantics

Definition (Model)

A model M consists of a domain D and interpretation I for function and
relation symbols: f I : D |f | → D, PI : D |P| → P.

Definition (Evaluation)

[[ivarx]]Mρ := ρi x

M �ρ pvarx t := ρf x |t| [[t]]Mρ

[[fvarx t]]Mρ :=

ρf x |t| [[t]]Mρ

M �ρ ϕ ∧̇ ψ := M �ρ ϕ ∧M �ρ ψ

M �ρ ∃̇nf ϕ := ∃f Dn→D .M �f ·ρ ϕ

...

With ρ = 〈ρi , ρf , ρp〉, ρi : V→ D, ρf : V→ ∀n.Dn → D

, ρp : V→ ∀n.Dn → P

5

Semantics

Definition (Model)

A model M consists of a domain D and interpretation I for function and
relation symbols: f I : D |f | → D, PI : D |P| → P.

Definition (Evaluation)

[[ivarx]]Mρ := ρi x

M �ρ pvarx t := ρf x |t| [[t]]Mρ

[[fvarx t]]Mρ := ρf x |t| [[t]]Mρ

M �ρ ϕ ∧̇ ψ := M �ρ ϕ ∧M �ρ ψ

M �ρ ∃̇nf ϕ := ∃f Dn→D .M �f ·ρ ϕ

...

With ρ = 〈ρi , ρf , ρp〉, ρi : V→ D, ρf : V→ ∀n.Dn → D

, ρp : V→ ∀n.Dn → P

5

Semantics

Definition (Model)

A model M consists of a domain D and interpretation I for function and
relation symbols: f I : D |f | → D, PI : D |P| → P.

Definition (Evaluation)

[[ivarx]]Mρ := ρi x

M �ρ pvarx t := ρf x |t| [[t]]Mρ

[[fvarx t]]Mρ := ρf x |t| [[t]]Mρ

M �ρ ϕ ∧̇ ψ := M �ρ ϕ ∧M �ρ ψ

M �ρ ∃̇nf ϕ := ∃f Dn→D .M �f ·ρ ϕ

...

With ρ = 〈ρi , ρf , ρp〉, ρi : V→ D, ρf : V→ ∀n.Dn → D, ρp : V→ ∀n.Dn → P

5

Semantics

Definition (Model)

A model M consists of a domain D and interpretation I for function and
relation symbols: f I : D |f | → D, PI : D |P| → P.

Definition (Evaluation)

[[ivarx]]Mρ := ρi x

M �ρ pvarx t := ρf x |t| [[t]]Mρ

[[fvarx t]]Mρ := ρf x |t| [[t]]Mρ

M �ρ ϕ ∧̇ ψ := M �ρ ϕ ∧M �ρ ψ

M �ρ ∃̇nf ϕ := ∃f Dn→D .M �f ·ρ ϕ

...

With ρ = 〈ρi , ρf , ρp〉, ρi : V→ D, ρf : V→ ∀n.Dn → D, ρp : V→ ∀n.Dn → P

5

Semantics

Definition (Model)

A model M consists of a domain D and interpretation I for function and
relation symbols: f I : D |f | → D, PI : D |P| → P.

Definition (Evaluation)

[[ivarx]]Mρ := ρi x

M �ρ pvarx t := ρf x |t| [[t]]Mρ

[[fvarx t]]Mρ := ρf x |t| [[t]]Mρ

M �ρ ϕ ∧̇ ψ := M �ρ ϕ ∧M �ρ ψ

M �ρ ∃̇nf ϕ :=

∃f Dn→D .M �f ·ρ ϕ

...

With ρ = 〈ρi , ρf , ρp〉, ρi : V→ D, ρf : V→ ∀n.Dn → D, ρp : V→ ∀n.Dn → P

5

Semantics

Definition (Model)

A model M consists of a domain D and interpretation I for function and
relation symbols: f I : D |f | → D, PI : D |P| → P.

Definition (Evaluation)

[[ivarx]]Mρ := ρi x

M �ρ pvarx t := ρf x |t| [[t]]Mρ

[[fvarx t]]Mρ := ρf x |t| [[t]]Mρ

M �ρ ϕ ∧̇ ψ := M �ρ ϕ ∧M �ρ ψ

M �ρ ∃̇nf ϕ := ∃f Dn→D .

M �f ·ρ ϕ

...

With ρ = 〈ρi , ρf , ρp〉, ρi : V→ D, ρf : V→ ∀n.Dn → D, ρp : V→ ∀n.Dn → P

5

Semantics

Definition (Model)

A model M consists of a domain D and interpretation I for function and
relation symbols: f I : D |f | → D, PI : D |P| → P.

Definition (Evaluation)

[[ivarx]]Mρ := ρi x

M �ρ pvarx t := ρf x |t| [[t]]Mρ

[[fvarx t]]Mρ := ρf x |t| [[t]]Mρ

M �ρ ϕ ∧̇ ψ := M �ρ ϕ ∧M �ρ ψ

M �ρ ∃̇nf ϕ := ∃f Dn→D .M �f ·ρ ϕ

...

With ρ = 〈ρi , ρf , ρp〉, ρi : V→ D, ρf : V→ ∀n.Dn → D, ρp : V→ ∀n.Dn → P

5

Semantics

Definition (Model)

A model M consists of a domain D and interpretation I for function and
relation symbols: f I : D |f | → D, PI : D |P| → P.

Definition (Evaluation)

[[ivarx]]Mρ := ρi x

M �ρ pvarx t := ρf x |t| [[t]]Mρ

[[fvarx t]]Mρ := ρf x |t| [[t]]Mρ

M �ρ ϕ ∧̇ ψ := M �ρ ϕ ∧M �ρ ψ

M �ρ ∃̇nf ϕ := ∃f Dn→D .M �f ·ρ ϕ ...

With ρ = 〈ρi , ρf , ρp〉, ρi : V→ D, ρf : V→ ∀n.Dn → D, ρp : V→ ∀n.Dn → P

5

Models of PA

Standard model of PA is N
PA1 has models that are different from N (non-standard models)
N is the only model of PA2

Theorem (Categoricity)

PA2 is categorical, meaning all PA2 models are isomorphic.

Proof.

SupposeM1 � PA2 andM2 � PA2. Inductively define ∼= : D1 → D2 → P

0I1 ∼= 0I2 SI1 x ∼= SI2 y , if x ∼= y

Using the induction axiom, we can easily show that ∼= is bijective and a
homomorphism. ThusM1 andM2 are isomorphic.

6

Models of PA

Standard model of PA is N

PA1 has models that are different from N (non-standard models)
N is the only model of PA2

Theorem (Categoricity)

PA2 is categorical, meaning all PA2 models are isomorphic.

Proof.

SupposeM1 � PA2 andM2 � PA2. Inductively define ∼= : D1 → D2 → P

0I1 ∼= 0I2 SI1 x ∼= SI2 y , if x ∼= y

Using the induction axiom, we can easily show that ∼= is bijective and a
homomorphism. ThusM1 andM2 are isomorphic.

6

Models of PA

Standard model of PA is N
PA1 has models that are different from N (non-standard models)

N is the only model of PA2

Theorem (Categoricity)

PA2 is categorical, meaning all PA2 models are isomorphic.

Proof.

SupposeM1 � PA2 andM2 � PA2. Inductively define ∼= : D1 → D2 → P

0I1 ∼= 0I2 SI1 x ∼= SI2 y , if x ∼= y

Using the induction axiom, we can easily show that ∼= is bijective and a
homomorphism. ThusM1 andM2 are isomorphic.

6

Models of PA

Standard model of PA is N
PA1 has models that are different from N (non-standard models)
N is the only model of PA2

Theorem (Categoricity)

PA2 is categorical, meaning all PA2 models are isomorphic.

Proof.

SupposeM1 � PA2 andM2 � PA2. Inductively define ∼= : D1 → D2 → P

0I1 ∼= 0I2 SI1 x ∼= SI2 y , if x ∼= y

Using the induction axiom, we can easily show that ∼= is bijective and a
homomorphism. ThusM1 andM2 are isomorphic.

6

Models of PA

Standard model of PA is N
PA1 has models that are different from N (non-standard models)
N is the only model of PA2

Theorem (Categoricity)

PA2 is categorical, meaning all PA2 models are isomorphic.

Proof.

SupposeM1 � PA2 andM2 � PA2. Inductively define ∼= : D1 → D2 → P

0I1 ∼= 0I2 SI1 x ∼= SI2 y , if x ∼= y

Using the induction axiom, we can easily show that ∼= is bijective and a
homomorphism. ThusM1 andM2 are isomorphic.

6

Models of PA

Standard model of PA is N
PA1 has models that are different from N (non-standard models)
N is the only model of PA2

Theorem (Categoricity)

PA2 is categorical, meaning all PA2 models are isomorphic.

Proof.

SupposeM1 � PA2 andM2 � PA2.

Inductively define ∼= : D1 → D2 → P

0I1 ∼= 0I2 SI1 x ∼= SI2 y , if x ∼= y

Using the induction axiom, we can easily show that ∼= is bijective and a
homomorphism. ThusM1 andM2 are isomorphic.

6

Models of PA

Standard model of PA is N
PA1 has models that are different from N (non-standard models)
N is the only model of PA2

Theorem (Categoricity)

PA2 is categorical, meaning all PA2 models are isomorphic.

Proof.

SupposeM1 � PA2 andM2 � PA2. Inductively define ∼= : D1 → D2 → P

0I1 ∼= 0I2

SI1 x ∼= SI2 y , if x ∼= y

Using the induction axiom, we can easily show that ∼= is bijective and a
homomorphism. ThusM1 andM2 are isomorphic.

6

Models of PA

Standard model of PA is N
PA1 has models that are different from N (non-standard models)
N is the only model of PA2

Theorem (Categoricity)

PA2 is categorical, meaning all PA2 models are isomorphic.

Proof.

SupposeM1 � PA2 andM2 � PA2. Inductively define ∼= : D1 → D2 → P

0I1 ∼= 0I2 SI1 x ∼= SI2 y , if x ∼= y

Using the induction axiom, we can easily show that ∼= is bijective and a
homomorphism. ThusM1 andM2 are isomorphic.

6

Models of PA

Standard model of PA is N
PA1 has models that are different from N (non-standard models)
N is the only model of PA2

Theorem (Categoricity)

PA2 is categorical, meaning all PA2 models are isomorphic.

Proof.

SupposeM1 � PA2 andM2 � PA2. Inductively define ∼= : D1 → D2 → P

0I1 ∼= 0I2 SI1 x ∼= SI2 y , if x ∼= y

Using the induction axiom, we can easily show that ∼= is bijective and a
homomorphism. ThusM1 andM2 are isomorphic.

6

Compuational Semantics

M1 � ϕ ↔ M2 � ϕ ?

No, because

M1 � ∃̇nf ϕ M2 � ∃̇nf ϕ

f1 ∼= f2

Cannot translate f1 to f2 because ∼= is not necessarily computable

Possible solution: M �ρ ∃̇nf ϕ := ∃f .M �f ·ρ ϕ

Under Unique Choice both semantics are equivalent.

Luckily, our forthcoming reduction does not use function quantifiers, so it
does not matter.

7

Compuational Semantics

M1 � ϕ ↔ M2 � ϕ ?

No, because

M1 � ∃̇nf ϕ

M2 � ∃̇nf ϕ

f1 ∼= f2

Cannot translate f1 to f2 because ∼= is not necessarily computable

Possible solution: M �ρ ∃̇nf ϕ := ∃f .M �f ·ρ ϕ

Under Unique Choice both semantics are equivalent.

Luckily, our forthcoming reduction does not use function quantifiers, so it
does not matter.

7

Compuational Semantics

M1 � ϕ ↔ M2 � ϕ ?

No, because

M1 � ∃̇nf ϕ M2 � ∃̇nf ϕ

f1 ∼= f2

Cannot translate f1 to f2 because ∼= is not necessarily computable

Possible solution: M �ρ ∃̇nf ϕ := ∃f .M �f ·ρ ϕ

Under Unique Choice both semantics are equivalent.

Luckily, our forthcoming reduction does not use function quantifiers, so it
does not matter.

7

Compuational Semantics

M1 � ϕ ↔ M2 � ϕ ?

No, because

M1 � ∃̇nf ϕ M2 � ∃̇nf ϕ

f1 ∼= f2

Cannot translate f1 to f2 because ∼= is not necessarily computable

Possible solution: M �ρ ∃̇nf ϕ := ∃f .M �f ·ρ ϕ

Under Unique Choice both semantics are equivalent.

Luckily, our forthcoming reduction does not use function quantifiers, so it
does not matter.

7

Compuational Semantics

M1 � ϕ ↔ M2 � ϕ ?

No, because

M1 � ∃̇nf ϕ M2 � ∃̇nf ϕ

f1 ∼= f2

Cannot translate f1 to f2 because ∼= is not necessarily computable

Possible solution: M �ρ ∃̇nf ϕ := ∃f Dn→D .M �f ·ρ ϕ

Under Unique Choice both semantics are equivalent.

Luckily, our forthcoming reduction does not use function quantifiers, so it
does not matter.

7

Compuational Semantics

M1 � ϕ ↔ M2 � ϕ ?

No, because

M1 � ∃̇nf ϕ M2 � ∃̇nf ϕ

f1 ∼= f2

Cannot translate f1 to f2 because ∼= is not necessarily computable

Possible solution: M �ρ ∃̇nf ϕ := ∃f Dn+1→P. total f ∧ functional f ∧M �f ·ρ ϕ

Under Unique Choice both semantics are equivalent.

Luckily, our forthcoming reduction does not use function quantifiers, so it
does not matter.

7

Compuational Semantics

M1 � ϕ ↔ M2 � ϕ ?

No, because

M1 � ∃̇nf ϕ M2 � ∃̇nf ϕ

f1 ∼= f2

Cannot translate f1 to f2 because ∼= is not necessarily computable

Possible solution: M �ρ ∃̇nf ϕ := ∃f Dn+1→P. total f ∧ functional f ∧M �f ·ρ ϕ

Under Unique Choice both semantics are equivalent.

Luckily, our forthcoming reduction does not use function quantifiers, so it
does not matter.

7

Compuational Semantics

M1 � ϕ ↔ M2 � ϕ ?

No, because

M1 � ∃̇nf ϕ M2 � ∃̇nf ϕ

f1 ∼= f2

Cannot translate f1 to f2 because ∼= is not necessarily computable

Possible solution: M �ρ ∃̇nf ϕ := ∃f Dn+1→P. total f ∧ functional f ∧M �f ·ρ ϕ

Under Unique Choice both semantics are equivalent.

Luckily, our forthcoming reduction does not use function quantifiers, so it
does not matter.

7

Reduction

Definition

H10 := “Does the Diophantine equation p = q have a solution in N?”

This problem is undecidable [Davis et al., 1961, Matijasevic, 1970].
Proof has already been mechanized [Larchey-Wendling and Forster, 2019].
We follow the reduction in [Kirst and Hermes, 2021]:

p︷ ︸︸ ︷
x + 2 =

q︷ ︸︸ ︷
y2 + z

ϕp,q := ∃̇x y z . x + S(S 0) ≡ y · y + z

p = q has a solution iff N � ϕp,q.

8

Reduction

Definition

H10 := “Does the Diophantine equation p = q have a solution in N?”

This problem is undecidable [Davis et al., 1961, Matijasevic, 1970].

Proof has already been mechanized [Larchey-Wendling and Forster, 2019].
We follow the reduction in [Kirst and Hermes, 2021]:

p︷ ︸︸ ︷
x + 2 =

q︷ ︸︸ ︷
y2 + z

ϕp,q := ∃̇x y z . x + S(S 0) ≡ y · y + z

p = q has a solution iff N � ϕp,q.

8

Reduction

Definition

H10 := “Does the Diophantine equation p = q have a solution in N?”

This problem is undecidable [Davis et al., 1961, Matijasevic, 1970].
Proof has already been mechanized [Larchey-Wendling and Forster, 2019].

We follow the reduction in [Kirst and Hermes, 2021]:

p︷ ︸︸ ︷
x + 2 =

q︷ ︸︸ ︷
y2 + z

ϕp,q := ∃̇x y z . x + S(S 0) ≡ y · y + z

p = q has a solution iff N � ϕp,q.

8

Reduction

Definition

H10 := “Does the Diophantine equation p = q have a solution in N?”

This problem is undecidable [Davis et al., 1961, Matijasevic, 1970].
Proof has already been mechanized [Larchey-Wendling and Forster, 2019].
We follow the reduction in [Kirst and Hermes, 2021]:

p︷ ︸︸ ︷
x + 2 =

q︷ ︸︸ ︷
y2 + z

ϕp,q := ∃̇x y z . x + S(S 0) ≡ y · y + z

p = q has a solution iff N � ϕp,q.

8

Reduction

Definition

H10 := “Does the Diophantine equation p = q have a solution in N?”

This problem is undecidable [Davis et al., 1961, Matijasevic, 1970].
Proof has already been mechanized [Larchey-Wendling and Forster, 2019].
We follow the reduction in [Kirst and Hermes, 2021]:

p︷ ︸︸ ︷
x + 2 =

q︷ ︸︸ ︷
y2 + z

ϕp,q := ∃̇x y z . x + S(S 0) ≡ y · y + z

p = q has a solution iff N � ϕp,q.

8

Reduction

Definition

H10 := “Does the Diophantine equation p = q have a solution in N?”

This problem is undecidable [Davis et al., 1961, Matijasevic, 1970].
Proof has already been mechanized [Larchey-Wendling and Forster, 2019].
We follow the reduction in [Kirst and Hermes, 2021]:

p︷ ︸︸ ︷
x + 2 =

q︷ ︸︸ ︷
y2 + z

ϕp,q := ∃̇x y z . x + S(S 0) ≡ y · y + z

p = q has a solution iff N � ϕp,q.

8

Reduction

Definition

H10 := “Does the Diophantine equation p = q have a solution in N?”

This problem is undecidable [Davis et al., 1961, Matijasevic, 1970].
Proof has already been mechanized [Larchey-Wendling and Forster, 2019].
We follow the reduction in [Kirst and Hermes, 2021]:

p︷ ︸︸ ︷
x + 2 =

q︷ ︸︸ ︷
y2 + z

ϕp,q := ∃̇x y z . x + S(S 0) ≡ y · y + z

p = q has a solution iff N � ϕp,q.
8

Undecidability

Lemma

p = q has a solution iff PA2 � ϕp,q.

p = q has a solution iff ∀M.M � PA2 →̇ ϕp,q.

p = q has a solution iff ∃Mρ.M �ρ ∃̇ f0 fS f+ f× P≡.PA′2 ∧̇ ϕ′p,q.

Theorem (Undecidability)

PA2 is undecidable.

Validity in SOL is already undecidable in the empty signature.

Satisfiablilty in SOL is already undecidable in the empty signature.

9

Undecidability

Lemma

p = q has a solution iff PA2 � ϕp,q.

p = q has a solution iff ∀M.M � PA2 →̇ ϕp,q.

p = q has a solution iff ∃Mρ.M �ρ ∃̇ f0 fS f+ f× P≡.PA′2 ∧̇ ϕ′p,q.

Theorem (Undecidability)

PA2 is undecidable.

Validity in SOL is already undecidable in the empty signature.

Satisfiablilty in SOL is already undecidable in the empty signature.

9

Undecidability

Lemma

p = q has a solution iff PA2 � ϕp,q.

p = q has a solution iff ∀M.M � PA2 →̇ ϕp,q.

p = q has a solution iff ∃Mρ.M �ρ ∃̇ f0 fS f+ f× P≡.PA′2 ∧̇ ϕ′p,q.

Theorem (Undecidability)

PA2 is undecidable.

Validity in SOL is already undecidable in the empty signature.

Satisfiablilty in SOL is already undecidable in the empty signature.

9

Undecidability

Lemma

p = q has a solution iff PA2 � ϕp,q.

p = q has a solution iff ∀M.M � ∀̇ f0 fS f+ f× P≡.PA′2 →̇ ϕ′p,q.

p = q has a solution iff ∃Mρ.M �ρ ∃̇ f0 fS f+ f× P≡.PA′2 ∧̇ ϕ′p,q.

Theorem (Undecidability)

PA2 is undecidable.

Validity in SOL is already undecidable in the empty signature.

Satisfiablilty in SOL is already undecidable in the empty signature.

9

Undecidability

Lemma

p = q has a solution iff PA2 � ϕp,q.

p = q has a solution iff ∀M.M � ∀̇ f0 fS f+ f× P≡.PA′2 →̇ ϕ′p,q.

p = q has a solution iff ∃Mρ.M �ρ ∃̇ f0 fS f+ f× P≡.PA′2 ∧̇ ϕ′p,q.

Theorem (Undecidability)

PA2 is undecidable.

Validity in SOL is already undecidable in the empty signature.

Satisfiablilty in SOL is already undecidable in the empty signature.

9

Undecidability

Lemma

p = q has a solution iff PA2 � ϕp,q.

p = q has a solution iff ∀M.M � ∀̇ f0 fS f+ f× P≡.PA′2 →̇ ϕ′p,q.

p = q has a solution iff ∃Mρ.M �ρ ∃̇ f0 fS f+ f× P≡.PA′2 ∧̇ ϕ′p,q.

Theorem (Undecidability)

PA2 is undecidable.

Validity in SOL is already undecidable in the empty signature.

Satisfiablilty in SOL is already undecidable in the empty signature.

9

Deductive Incompleteness

Suppose ` is a sound, complete and enumerable deduction system for SOL.

decidable H10

decidable (λpq.PA2 � ϕp,q)

By Post’s theorem [Bauer, 2006, Forster et al., 2019] it suffices

1. enumerable (λpq.PA2 � ϕp,q) 2. enumerable (λpq.¬PA2 � ϕp,q)

enumerable (λpq.PA2 � ¬̇ϕp,q)

0This requires Markov’s principle: MP := ∀f : N→ B.¬¬(∃n. f n = true)→ ∃n. f n = true

10

Deductive Incompleteness

Suppose ` is a sound, complete and enumerable deduction system for SOL.

decidable H10

decidable (λpq.PA2 � ϕp,q)

By Post’s theorem [Bauer, 2006, Forster et al., 2019] it suffices

1. enumerable (λpq.PA2 � ϕp,q) 2. enumerable (λpq.¬PA2 � ϕp,q)

enumerable (λpq.PA2 � ¬̇ϕp,q)

0This requires Markov’s principle: MP := ∀f : N→ B.¬¬(∃n. f n = true)→ ∃n. f n = true

10

Deductive Incompleteness

Suppose ` is a sound, complete and enumerable deduction system for SOL.

decidable H10

decidable (λpq.PA2 � ϕp,q)

By Post’s theorem [Bauer, 2006, Forster et al., 2019] it suffices

1. enumerable (λpq.PA2 � ϕp,q) 2. enumerable (λpq.¬PA2 � ϕp,q)

enumerable (λpq.PA2 � ¬̇ϕp,q)

0This requires Markov’s principle: MP := ∀f : N→ B.¬¬(∃n. f n = true)→ ∃n. f n = true

10

Deductive Incompleteness

Suppose ` is a sound, complete and enumerable deduction system for SOL.

decidable H10

decidable (λpq.PA2 � ϕp,q)

By Post’s theorem [Bauer, 2006, Forster et al., 2019] it suffices

1. enumerable (λpq.PA2 � ϕp,q) 2. enumerable (λpq.¬PA2 � ϕp,q)

enumerable (λpq.PA2 � ¬̇ϕp,q)

0This requires Markov’s principle: MP := ∀f : N→ B.¬¬(∃n. f n = true)→ ∃n. f n = true

10

Deductive Incompleteness

Suppose ` is a sound, complete and enumerable deduction system for SOL.

decidable H10

decidable (λpq.PA2 � ϕp,q)

By Post’s theorem [Bauer, 2006, Forster et al., 2019]1 it suffices

1. enumerable (λpq.PA2 � ϕp,q) 2. enumerable (λpq.¬PA2 � ϕp,q)

enumerable (λpq.PA2 � ¬̇ϕp,q)

1This requires Markov’s principle: MP := ∀f : N→ B.¬¬(∃n. f n = true)→ ∃n. f n = true

10

Deductive Incompleteness

Suppose ` is a sound, complete and enumerable deduction system for SOL.

decidable H10

decidable (λpq.PA2 � ϕp,q)

By Post’s theorem [Bauer, 2006, Forster et al., 2019]1 it suffices

1. enumerable (λpq.PA2 � ϕp,q)

→ follows from enumerability of `
2. enumerable (λpq.¬PA2 � ϕp,q)

enumerable (λpq.PA2 � ¬̇ϕp,q)

1This requires Markov’s principle: MP := ∀f : N→ B.¬¬(∃n. f n = true)→ ∃n. f n = true

10

Deductive Incompleteness

Suppose ` is a sound, complete and enumerable deduction system for SOL.

decidable H10

decidable (λpq.PA2 � ϕp,q)

By Post’s theorem [Bauer, 2006, Forster et al., 2019]1 it suffices

1. enumerable (λpq.PA2 � ϕp,q)

→ follows from enumerability of `
2. enumerable (λpq.¬PA2 � ϕp,q)

enumerable (λpq.PA2 � ¬̇ϕp,q)

1This requires Markov’s principle: MP := ∀f : N→ B.¬¬(∃n. f n = true)→ ∃n. f n = true

10

Deductive Incompleteness

Suppose ` is a sound, complete and enumerable deduction system for SOL.

decidable H10

decidable (λpq.PA2 � ϕp,q)

By Post’s theorem [Bauer, 2006, Forster et al., 2019]1 it suffices

1. enumerable (λpq.PA2 � ϕp,q)

→ follows from enumerability of `
2. enumerable (λpq.¬PA2 � ϕp,q)

enumerable (λpq.PA2 � ¬̇ϕp,q)

by Categoricity

1This requires Markov’s principle: MP := ∀f : N→ B.¬¬(∃n. f n = true)→ ∃n. f n = true

10

Deductive Incompleteness

Suppose ` is a sound, complete and enumerable deduction system for SOL.

decidable H10

decidable (λpq.PA2 � ϕp,q)

By Post’s theorem [Bauer, 2006, Forster et al., 2019]1 it suffices

1. enumerable (λpq.PA2 � ϕp,q)

→ follows from enumerability of `
2. enumerable (λpq.¬PA2 � ϕp,q)

enumerable (λpq.PA2 � ¬̇ϕp,q)

→ follows from enumerability of `

by Categoricity

1This requires Markov’s principle: MP := ∀f : N→ B.¬¬(∃n. f n = true)→ ∃n. f n = true

10

Deduction Incompleteness

Theorem (Incompleteness)

Under MP, the existence of a sound, complete and enumerable deduction
system for second-order logic implies the decidability of H10.

We used this result to conclude incompleteness of a concrete deduction system
with full comprehension.

Possible next directions:

This deduction system would be complete for Henkin semantics.

Further work on PA2 or ZF2 (incompleteness, conservativity, etc.)

Connection between SOL and meta logic (e.g. inheritance of AC)

11

Deduction Incompleteness

Theorem (Incompleteness)

Under MP, the existence of a sound, complete and enumerable deduction
system for second-order logic implies the decidability of H10.

We used this result to conclude incompleteness of a concrete deduction system
with full comprehension.

Possible next directions:

This deduction system would be complete for Henkin semantics.

Further work on PA2 or ZF2 (incompleteness, conservativity, etc.)

Connection between SOL and meta logic (e.g. inheritance of AC)

11

Deduction Incompleteness

Theorem (Incompleteness)

Under MP, the existence of a sound, complete and enumerable deduction
system for second-order logic implies the decidability of H10.

We used this result to conclude incompleteness of a concrete deduction system
with full comprehension.

Possible next directions:

This deduction system would be complete for Henkin semantics.

Further work on PA2 or ZF2 (incompleteness, conservativity, etc.)

Connection between SOL and meta logic (e.g. inheritance of AC)

11

Deduction Incompleteness

Theorem (Incompleteness)

Under MP, the existence of a sound, complete and enumerable deduction
system for second-order logic implies the decidability of H10.

We used this result to conclude incompleteness of a concrete deduction system
with full comprehension.

Possible next directions:

This deduction system would be complete for Henkin semantics.

Further work on PA2 or ZF2 (incompleteness, conservativity, etc.)

Connection between SOL and meta logic (e.g. inheritance of AC)

11

Deduction Incompleteness

Theorem (Incompleteness)

Under MP, the existence of a sound, complete and enumerable deduction
system for second-order logic implies the decidability of H10.

We used this result to conclude incompleteness of a concrete deduction system
with full comprehension.

Possible next directions:

This deduction system would be complete for Henkin semantics.

Further work on PA2 or ZF2 (incompleteness, conservativity, etc.)

Connection between SOL and meta logic (e.g. inheritance of AC)

11

Deduction Incompleteness

Theorem (Incompleteness)

Under MP, the existence of a sound, complete and enumerable deduction
system for second-order logic implies the decidability of H10.

We used this result to conclude incompleteness of a concrete deduction system
with full comprehension.

Possible next directions:

This deduction system would be complete for Henkin semantics.

Further work on PA2 or ZF2 (incompleteness, conservativity, etc.)

Connection between SOL and meta logic (e.g. inheritance of AC)

11

References i

Bauer, A. (2006).
First steps in synthetic computability theory.
Electronic Notes in Theoretical Computer Science, 155:5–31.
Proceedings of the 21st Annual Conference on Mathematical Foundations of Programming
Semantics (MFPS XXI).

Davis, M., Putnam, H., and Robinson, J. (1961).
The decision problem for exponential diophantine equations.
Annals of Mathematics, pages 425–436.

Forster, Y., Kirst, D., and Smolka, G. (2019).
On synthetic undecidability in coq, with an application to the entscheidungsproblem.
In Proceedings of the 8th ACM SIGPLAN International Conference on Certified Programs and
Proofs, CPP 2019, page 38–51, New York, NY, USA. Association for Computing Machinery.

Forster, Y., Kirst, D., and Wehr, D. (2020).
Completeness theorems for first-order logic analysed in constructive type theory.
In International Symposium on Logical Foundations of Computer Science, pages 47–74.
Springer.

12

References ii

Kirst, D. and Hermes, M. (2021).
Synthetic undecidability and incompleteness of first-order axiom systems in coq.

Larchey-Wendling, D. and Forster, Y. (2019).
Hilbert’s tenth problem in coq.
In 4th International Conference on Formal Structures for Computation and Deduction, FSCD
2019, volume 131, pages 27–1. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

Matijasevic, J. V. (1970).
Enumerable sets are diophantine.
In Soviet Math. Dokl., volume 11, pages 354–358.

13

Environments

ρf : N→ ∀n.Dn → D

(f · ρf) 0 n :=

{
f if f has arity n

ρf 0 n otherwise

(f · ρf) (Sx) n :=

{
ρf x n if f has arity n

ρf (Sx) n otherwise

Undecidability of Validity

∀M.M � ∀̇ f0 fS f+ f× P≡.PA′2 →̇ ϕ′p,q

l
∀M.M � PA2 →M � ϕp,q

Lemma

p = q has a solution iffM � ϕp,q for all models withM � PA2.

Proof.

→: Two possible proofs:
If p = q has a solution, then N � ϕp,q. By categoricity it holds for all
models of PA2.
Translate p = q solution toM using a homomorphism µ : N→M.

←: InstantiateM with standard model N to obtain N � ϕp,q.

Undecidability of Satisfiability

∃Mρ.M �ρ ∃̇ f0 fS f+ f× P≡.PA′2 ∧̇ ϕ′p,q
l

∃Mρ.M � PA2 ∧M �ρ ϕp,q

Lemma

p = q has a solution iff there is a model M � PA2 and ρ such that
M �ρ ϕp,q.

Proof.

→: If p = q has a solution, then the standard model N fulfils N � ϕp,q.

←: IfM �ρ ϕp,q then also N � ϕp,q by categoricity.

Note that categoricity was required here, whereas it is optional for validity.

Natural Deduction

A[↑nf] ` ϕ
A ` ∀̇nf ϕ

AIf
A ` ∀̇nf ϕ
A ` ϕ[f]

AEf

A ` ϕ[f]

A ` ∃̇nf ϕ
EIf

A ` ∃̇nf ϕ A[↑nf], ϕ ` ψ[↑n]f
A ` ψ

EEf

∃̇np P. ∀̇x1...xn.P(x1, ..., x2) ↔̇ ϕ[↑np]
Compr

	Appendix

