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Introduction

Many first-order undecidability results formalized in the library of undecidability
proofs [Forster et al., 2020]. For example:

Validity

Peano arithmetic

Satisfiability

Zermelo–Fraenkel set theory

Goals:

1. Establish similar results for second-order logic
2. Look at areas where FOL and SOL behave differently:

I Deduction incompleteness:
Related to negation incompleteness of PA2

We use a computability argument reusing the undecidability reduction

All results in this talk are formalized in Coq.
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Introduction

We follow the first-order mechanization that is part of the library of
undecidability proofs [Forster et al., 2020, Kirst and Hermes, 2021].

Definition (Syntax)

ϕ,ψ ::= ⊥̇ | P t | ϕ →̇ ψ | ϕ ∧̇ ψ | ϕ ∨̇ ψ | (P : ΣP)

∀̇ ϕ | ∃̇ ϕ

| ∀̇nf ϕ | ∃̇nf ϕ | ∀̇np ϕ | ∃̇np ϕ (n : N)

t ::= varx | f t

| fvarx t

(x : V, f : Σf )
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Peano Arithmetic

Consider axiomatisation of Peano/Heyting arithmetic
over signature (0, S , + , · , ≡):

Zero Addition : ∀̇x . 0 + x ≡ x

Addition Recursion : ∀̇xy . (Sx) + y ≡ S(x + y)

Disjointness : ∀̇x . 0 ≡ Sx →̇ ⊥̇

Equlity Reflexive : ∀̇x . x ≡ x

Zero Multiplication : ∀̇x . 0 · x ≡ 0

Multiplication Recursion : ∀̇xy . (Sx) · y ≡ y + x · y

Successor Injective : ∀̇xy . Sx ≡ Sy →̇ x ≡ y

Equlity Symmetric : ∀̇xy . x ≡ y →̇ y ≡ x

PA2-Induction : ∀̇1pP.P 0 →̇ (∀̇x .P x →̇ P (Sx)) →̇ ∀̇x .P x

vs.

PA1-Induction scheme : ϕ[0] →̇ (∀̇x . ϕ[x ] →̇ϕ[Sx ]) →̇ ∀̇x . ϕ[x ] (for all ϕ)
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Semantics

Definition (Model)

A model M consists of a domain D and interpretation I for function and
relation symbols: f I : D |f | → D, PI : D |P| → P.

Definition (Evaluation)

[[ivarx ]]Mρ :=

ρi x

M �ρ pvarx t := ρf x |t| [[t]]Mρ

[[fvarx t]]Mρ := ρf x |t| [[t]]Mρ

M �ρ ϕ ∧̇ ψ := M �ρ ϕ ∧M �ρ ψ

M �ρ ∃̇nf ϕ := ∃f Dn→D .M �f ·ρ ϕ

...

With ρ = 〈ρi , ρf , ρp〉, ρi : V→ D, ρf : V→ ∀n.Dn → D, ρp : V→ ∀n.Dn → P
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Models of PA

Standard model of PA is N
PA1 has models that are different from N (non-standard models)
N is the only model of PA2

Theorem (Categoricity)

PA2 is categorical, meaning all PA2 models are isomorphic.

Proof.

SupposeM1 � PA2 andM2 � PA2. Inductively define ∼= : D1 → D2 → P

0I1 ∼= 0I2 SI1 x ∼= SI2 y , if x ∼= y

Using the induction axiom, we can easily show that ∼= is bijective and a
homomorphism. ThusM1 andM2 are isomorphic.
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Compuational Semantics

M1 � ϕ ↔ M2 � ϕ ?

No, because

M1 � ∃̇nf ϕ M2 � ∃̇nf ϕ

f1 ∼= f2

Cannot translate f1 to f2 because ∼= is not necessarily computable

Possible solution: M �ρ ∃̇nf ϕ := ∃f .M �f ·ρ ϕ

Under Unique Choice both semantics are equivalent.

Luckily, our forthcoming reduction does not use function quantifiers, so it
does not matter.
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Reduction

Definition

H10 := “Does the Diophantine equation p = q have a solution in N?”

This problem is undecidable [Davis et al., 1961, Matijasevic, 1970].
Proof has already been mechanized [Larchey-Wendling and Forster, 2019].
We follow the reduction in [Kirst and Hermes, 2021]:

p︷ ︸︸ ︷
x + 2 =

q︷ ︸︸ ︷
y2 + z

ϕp,q := ∃̇x y z . x + S(S 0) ≡ y · y + z

p = q has a solution iff N � ϕp,q.
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Undecidability

Lemma

p = q has a solution iff PA2 � ϕp,q.

p = q has a solution iff ∀M.M � PA2 →̇ ϕp,q.

p = q has a solution iff ∃Mρ.M �ρ ∃̇ f0 fS f+ f× P≡.PA′2 ∧̇ ϕ′p,q.

Theorem (Undecidability)

PA2 is undecidable.

Validity in SOL is already undecidable in the empty signature.

Satisfiablilty in SOL is already undecidable in the empty signature.

9



Undecidability

Lemma

p = q has a solution iff PA2 � ϕp,q.

p = q has a solution iff ∀M.M � PA2 →̇ ϕp,q.

p = q has a solution iff ∃Mρ.M �ρ ∃̇ f0 fS f+ f× P≡.PA′2 ∧̇ ϕ′p,q.

Theorem (Undecidability)

PA2 is undecidable.

Validity in SOL is already undecidable in the empty signature.

Satisfiablilty in SOL is already undecidable in the empty signature.

9



Undecidability

Lemma

p = q has a solution iff PA2 � ϕp,q.

p = q has a solution iff ∀M.M � PA2 →̇ ϕp,q.

p = q has a solution iff ∃Mρ.M �ρ ∃̇ f0 fS f+ f× P≡.PA′2 ∧̇ ϕ′p,q.

Theorem (Undecidability)

PA2 is undecidable.

Validity in SOL is already undecidable in the empty signature.

Satisfiablilty in SOL is already undecidable in the empty signature.

9



Undecidability

Lemma

p = q has a solution iff PA2 � ϕp,q.

p = q has a solution iff ∀M.M � ∀̇ f0 fS f+ f× P≡.PA′2 →̇ ϕ′p,q.

p = q has a solution iff ∃Mρ.M �ρ ∃̇ f0 fS f+ f× P≡.PA′2 ∧̇ ϕ′p,q.

Theorem (Undecidability)

PA2 is undecidable.

Validity in SOL is already undecidable in the empty signature.

Satisfiablilty in SOL is already undecidable in the empty signature.

9



Undecidability

Lemma

p = q has a solution iff PA2 � ϕp,q.

p = q has a solution iff ∀M.M � ∀̇ f0 fS f+ f× P≡.PA′2 →̇ ϕ′p,q.

p = q has a solution iff ∃Mρ.M �ρ ∃̇ f0 fS f+ f× P≡.PA′2 ∧̇ ϕ′p,q.

Theorem (Undecidability)

PA2 is undecidable.

Validity in SOL is already undecidable in the empty signature.

Satisfiablilty in SOL is already undecidable in the empty signature.

9



Undecidability

Lemma

p = q has a solution iff PA2 � ϕp,q.

p = q has a solution iff ∀M.M � ∀̇ f0 fS f+ f× P≡.PA′2 →̇ ϕ′p,q.

p = q has a solution iff ∃Mρ.M �ρ ∃̇ f0 fS f+ f× P≡.PA′2 ∧̇ ϕ′p,q.

Theorem (Undecidability)

PA2 is undecidable.

Validity in SOL is already undecidable in the empty signature.

Satisfiablilty in SOL is already undecidable in the empty signature.

9



Deductive Incompleteness

Suppose ` is a sound, complete and enumerable deduction system for SOL.

decidable H10

decidable (λpq.PA2 � ϕp,q)

By Post’s theorem [Bauer, 2006, Forster et al., 2019] it suffices

1. enumerable (λpq.PA2 � ϕp,q) 2. enumerable (λpq.¬PA2 � ϕp,q)

enumerable (λpq.PA2 � ¬̇ϕp,q)

0This requires Markov’s principle: MP := ∀f : N→ B.¬¬(∃n. f n = true)→ ∃n. f n = true
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Deduction Incompleteness

Theorem (Incompleteness)

Under MP, the existence of a sound, complete and enumerable deduction
system for second-order logic implies the decidability of H10.

We used this result to conclude incompleteness of a concrete deduction system
with full comprehension.

Possible next directions:

This deduction system would be complete for Henkin semantics.

Further work on PA2 or ZF2 (incompleteness, conservativity, etc.)

Connection between SOL and meta logic (e.g. inheritance of AC)
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Environments

ρf : N→ ∀n.Dn → D

(f · ρf ) 0 n :=

{
f if f has arity n

ρf 0 n otherwise

(f · ρf ) (Sx) n :=

{
ρf x n if f has arity n

ρf (Sx) n otherwise



Undecidability of Validity

∀M.M � ∀̇ f0 fS f+ f× P≡.PA′2 →̇ ϕ′p,q

l
∀M.M � PA2 →M � ϕp,q

Lemma

p = q has a solution iffM � ϕp,q for all models withM � PA2.

Proof.

→: Two possible proofs:
If p = q has a solution, then N � ϕp,q. By categoricity it holds for all
models of PA2.
Translate p = q solution toM using a homomorphism µ : N→M.

←: InstantiateM with standard model N to obtain N � ϕp,q.



Undecidability of Satisfiability

∃Mρ.M �ρ ∃̇ f0 fS f+ f× P≡.PA′2 ∧̇ ϕ′p,q
l

∃Mρ.M � PA2 ∧M �ρ ϕp,q

Lemma

p = q has a solution iff there is a model M � PA2 and ρ such that
M �ρ ϕp,q.

Proof.

→: If p = q has a solution, then the standard model N fulfils N � ϕp,q.

←: IfM �ρ ϕp,q then also N � ϕp,q by categoricity.

Note that categoricity was required here, whereas it is optional for validity.



Natural Deduction

A[ ↑nf ] ` ϕ
A ` ∀̇nf ϕ

AIf
A ` ∀̇nf ϕ
A ` ϕ[f ]

AEf

A ` ϕ[f ]

A ` ∃̇nf ϕ
EIf

A ` ∃̇nf ϕ A[ ↑nf ], ϕ ` ψ[ ↑n ]f
A ` ψ

EEf

∃̇np P. ∀̇x1...xn.P(x1, ..., x2) ↔̇ ϕ[ ↑np ]
Compr
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