Synthetic Incompleteness and Undecidability of Second-Order Logic

First Bachelor Seminar Talk

Mark Koch
Advisor: Dominik Kirst
Supervisor: Gert Smolka
May 20, 2021
Saarland University, Programming Systems Lab

Introduction

Many first-order undecidability results formalized in the library of undecidability proofs [Forster et al., 2020]. For example:

- Validity
- Peano arithmetic
- Satisfiability
- Zermelo-Fraenkel set theory

Introduction

Many first-order undecidability results formalized in the library of undecidability proofs [Forster et al., 2020]. For example:

- Validity
- Peano arithmetic
- Satisfiability
- Zermelo-Fraenkel set theory

Goals:

1. Establish similar results for second-order logic

Introduction

Many first-order undecidability results formalized in the library of undecidability proofs [Forster et al., 2020]. For example:

- Validity
- Peano arithmetic
- Satisfiability
- Zermelo-Fraenkel set theory

Goals:

1. Establish similar results for second-order logic
2. Look at areas where FOL and SOL behave differently:

Introduction

Many first-order undecidability results formalized in the library of undecidability proofs [Forster et al., 2020]. For example:

- Validity
- Peano arithmetic
- Satisfiability
- Zermelo-Fraenkel set theory

Goals:

1. Establish similar results for second-order logic
2. Look at areas where FOL and SOL behave differently:

- Deduction incompleteness:

Introduction

Many first-order undecidability results formalized in the library of undecidability proofs [Forster et al., 2020]. For example:

- Validity
- Peano arithmetic
- Satisfiability
- Zermelo-Fraenkel set theory

Goals:

1. Establish similar results for second-order logic
2. Look at areas where FOL and SOL behave differently:

- Deduction incompleteness:
- Related to negation incompleteness of PA_{2}

Introduction

Many first-order undecidability results formalized in the library of undecidability proofs [Forster et al., 2020]. For example:

- Validity
- Peano arithmetic
- Satisfiability
- Zermelo-Fraenkel set theory

Goals:

1. Establish similar results for second-order logic
2. Look at areas where FOL and SOL behave differently:

- Deduction incompleteness:
- Related to negation incompleteness of PA_{2}
- We use a computability argument reusing the undecidability reduction

Introduction

Many first-order undecidability results formalized in the library of undecidability proofs [Forster et al., 2020]. For example:

- Validity
- Peano arithmetic
- Satisfiability
- Zermelo-Fraenkel set theory

Goals:

1. Establish similar results for second-order logic
2. Look at areas where FOL and SOL behave differently:

- Deduction incompleteness:
- Related to negation incompleteness of PA_{2}
- We use a computability argument reusing the undecidability reduction

All results in this talk are formalized in Coq.

We follow the first-order mechanization that is part of the library of undecidability proofs [Forster et al., 2020, Kirst and Hermes, 2021].

Introduction

We follow the first-order mechanization that is part of the library of undecidability proofs [Forster et al., 2020, Kirst and Hermes, 2021].

$$
\begin{aligned}
& \text { Definition (Syntax) } \\
& \begin{aligned}
\varphi, \psi::= & \dot{\perp}|P \boldsymbol{t}| \varphi \dot{\rightarrow} \psi|\varphi \dot{\wedge} \psi| \varphi \dot{\vee} \psi \mid \\
& \dot{\forall} \varphi \mid \dot{\exists} \varphi \\
t::= & \operatorname{var}_{x} \mid f \boldsymbol{t}
\end{aligned} \quad\left(x: \mathbb{V}, f: \Sigma_{P}\right)
\end{aligned}
$$

Introduction

We follow the first-order mechanization that is part of the library of undecidability proofs [Forster et al., 2020, Kirst and Hermes, 2021].

$$
\begin{aligned}
& \text { Definition (Syntax) } \\
& \hline \varphi, \psi::=\dot{\perp}|P \boldsymbol{t}| \varphi \dot{\rightarrow}|\varphi \dot{\wedge} \psi| \varphi \dot{\vee} \psi \mid \\
& \quad \dot{\forall} \varphi|\dot{\exists} \varphi| \dot{\forall}_{f}^{n} \varphi\left|\dot{\exists}_{f}^{n} \varphi\right| \dot{\forall}_{p}^{n} \varphi \mid \dot{\exists}_{p}^{n} \varphi
\end{aligned}
$$

Introduction

We follow the first-order mechanization that is part of the library of undecidability proofs [Forster et al., 2020, Kirst and Hermes, 2021].

$$
\begin{aligned}
& \text { Definition (Syntax) } \\
& \begin{aligned}
\varphi, \psi::= & \dot{\perp}|P \boldsymbol{t}| \operatorname{pvar}_{x} t|\varphi \rightarrow \psi| \varphi \dot{\wedge} \psi|\varphi \dot{\vee} \psi| \\
& \dot{\forall} \varphi|\dot{\exists} \varphi| \dot{\forall}_{f}^{n} \varphi\left|\dot{\exists}_{f}^{n} \varphi\right| \dot{\forall}_{p}^{n} \varphi \mid \dot{\exists}_{p}^{n} \varphi \\
t::= & \operatorname{var}_{x}|f \boldsymbol{t}| \mathrm{fvar}_{x} t
\end{aligned}
\end{aligned}
$$

Peano Arithmetic

Consider axiomatisation of Peano/Heyting arithmetic over signature $(0, S,+, \cdot, \equiv)$:

Zero Addition : $\dot{\forall} x .0+x \equiv x$
Addition Recursion : $\dot{\forall} x y .(S x)+y \equiv S(x+y)$
Disjointness : $\dot{\forall} x .0 \equiv S x \dot{\perp}$
Equlity Reflexive : $\dot{\forall} x \cdot x \equiv x$

Peano Arithmetic

$$
\begin{aligned}
& \text { Consider axiomatisation of Peano/Heyting arithmetic } \\
& \text { over signature }(0, S,+, \cdot, \equiv) \text { : }
\end{aligned}
$$

Zero Multiplication : $\dot{\forall} \times .0 \cdot x \equiv 0$
Multiplication Recursion : $\dot{\forall} x y \cdot(S x) \cdot y \equiv y+x \cdot y$
Successor Injective : $\dot{\forall} x y . S x \equiv S y \rightarrow x \equiv y$
Equlity Symmetric : $\dot{\forall} x y, x \equiv y \dot{\rightarrow} y \equiv x$
PA_{2}-Induction: $\dot{\forall}_{P}^{1} P . P 0 \rightarrow(\dot{\forall} x . P x \dot{\rightarrow} P(S x)) \dot{\rightarrow} \dot{\forall} x . P x$

Peano Arithmetic

$$
\begin{aligned}
& \text { Consider axiomatisation of Peano/Heyting arithmetic } \\
& \text { over signature }(0, S,+, \cdot, \equiv) \text { : }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Zero Addition : } \dot{\forall} x \cdot 0+x \equiv x \\
& \text { Addition Recursion : } \dot{\forall} x y \cdot(S x)+y \equiv S(x+y) \\
& \text { Disjointness: } \dot{\forall} x \cdot 0 \equiv S x \rightarrow \dot{\perp} \\
& \text { Equlity Reflexive : } \dot{\forall} x \cdot x \equiv x
\end{aligned}
$$

PA_{2}-Induction: $\dot{\forall}_{p}^{1} P . P 0 \rightarrow(\dot{\forall} x . P x \dot{\rightarrow} P(S x)) \dot{\rightarrow} \dot{\forall} x . P x$ vs.
PA_{1}-Induction scheme : $\varphi[0] \dot{\rightarrow}(\dot{\forall} x . \varphi[x] \dot{\rightarrow} \varphi[S x]) \dot{\rightarrow} \dot{\forall} x . \varphi[x] \quad($ for all $\varphi)$

Semantics

Definition (Model)

A model \mathcal{M} consists of a domain D and interpretation \mathcal{I} for function and relation symbols: $f^{\mathcal{I}}: D^{|f|} \rightarrow D, P^{\mathcal{I}}: D^{|P|} \rightarrow \mathbb{P}$.

Semantics

Definition (Model)

A model \mathcal{M} consists of a domain D and interpretation \mathcal{I} for function and relation symbols: $f^{\mathcal{I}}: D^{|f|} \rightarrow D, P^{\mathcal{I}}: D^{|P|} \rightarrow \mathbb{P}$.

Definition (Evaluation)

$$
\llbracket \operatorname{ivar}_{x} \rrbracket_{\rho}^{\mathcal{M}}:=
$$

Semantics

Definition (Model)

A model \mathcal{M} consists of a domain D and interpretation \mathcal{I} for function and relation symbols: $f^{\mathcal{I}}: D^{|f|} \rightarrow D, P^{\mathcal{I}}: D^{|P|} \rightarrow \mathbb{P}$.

Definition (Evaluation)

$$
\llbracket \mathrm{ivar}_{x} \rrbracket_{\rho}^{\mathcal{M}}:=
$$

With $\rho=\left\langle\rho_{i}, \rho_{f}, \rho_{p}\right\rangle$

Semantics

Definition (Model)

A model \mathcal{M} consists of a domain D and interpretation \mathcal{I} for function and relation symbols: $f^{\mathcal{I}}: D^{|f|} \rightarrow D, P^{\mathcal{I}}: D^{|P|} \rightarrow \mathbb{P}$.

Definition (Evaluation)

$$
\llbracket \operatorname{ivar}_{x} \rrbracket_{\rho}^{\mathcal{M}}:=\rho_{i} x
$$

With $\rho=\left\langle\rho_{i}, \rho_{f}, \rho_{p}\right\rangle, \quad \rho_{i}: \mathbb{V} \rightarrow D$

Semantics

Definition (Model)

A model \mathcal{M} consists of a domain D and interpretation \mathcal{I} for function and relation symbols: $f^{\mathcal{I}}: D^{|f|} \rightarrow D, P^{\mathcal{I}}: D^{|P|} \rightarrow \mathbb{P}$.

Definition (Evaluation)

$$
\llbracket i v a r_{x} \rrbracket_{\rho}^{\mathcal{M}}:=\rho_{i} x \quad \llbracket \mathrm{fvar}_{x} \boldsymbol{t} \rrbracket_{\rho}^{\mathcal{M}}:=
$$

With $\rho=\left\langle\rho_{i}, \rho_{f}, \rho_{p}\right\rangle, \quad \rho_{i}: \mathbb{V} \rightarrow D$

Semantics

Definition (Model)

A model \mathcal{M} consists of a domain D and interpretation \mathcal{I} for function and relation symbols: $f^{\mathcal{I}}: D^{|f|} \rightarrow D, P^{\mathcal{I}}: D^{|P|} \rightarrow \mathbb{P}$.

Definition (Evaluation)

$$
\llbracket i v a r_{x} \rrbracket_{\rho}^{\mathcal{M}}:=\rho_{i} x \quad \llbracket \mathrm{fvar}_{x} \boldsymbol{t} \rrbracket_{\rho}^{\mathcal{M}}:=
$$

With $\rho=\left\langle\rho_{i}, \rho_{f}, \rho_{p}\right\rangle, \quad \rho_{i}: \mathbb{V} \rightarrow D, \quad \rho_{f}: \mathbb{V} \rightarrow \forall n . D^{n} \rightarrow D$

Semantics

Definition (Model)

A model \mathcal{M} consists of a domain D and interpretation \mathcal{I} for function and relation symbols: $f^{\mathcal{I}}: D^{|f|} \rightarrow D, P^{\mathcal{I}}: D^{|P|} \rightarrow \mathbb{P}$.

Definition (Evaluation)

$$
\llbracket i \mathrm{irar}_{x} \rrbracket_{\rho}^{\mathcal{M}}:=\rho_{i} x \quad \llbracket \mathrm{fvar}_{x} \boldsymbol{t} \rrbracket_{\rho}^{\mathcal{M}}:=\rho_{f} x|\boldsymbol{t}| \llbracket t \rrbracket_{\rho}^{\mathcal{M}}
$$

With $\rho=\left\langle\rho_{i}, \rho_{f}, \rho_{\rho}\right\rangle, \quad \rho_{i}: \mathbb{V} \rightarrow D, \quad \rho_{f}: \mathbb{V} \rightarrow \forall n . D^{n} \rightarrow D$

Semantics

Definition (Model)

A model \mathcal{M} consists of a domain D and interpretation \mathcal{I} for function and relation symbols: $f^{\mathcal{I}}: D^{|f|} \rightarrow D, P^{\mathcal{I}}: D^{|P|} \rightarrow \mathbb{P}$.

Definition (Evaluation)

$$
\begin{aligned}
\llbracket \operatorname{ivar}_{x} \rrbracket_{\rho}^{\mathcal{M}} & :=\rho_{i} x & \llbracket \operatorname{fvar}_{x} \boldsymbol{t} \rrbracket_{\rho}^{\mathcal{M}}:=\rho_{f} x|\boldsymbol{t}| \llbracket \boldsymbol{t} \rrbracket_{\rho}^{\mathcal{M}} \\
\mathcal{M} \vDash_{\rho} \operatorname{pvar}_{x} \boldsymbol{t} & :=\rho_{f} x|\boldsymbol{t}| \llbracket \boldsymbol{t} \rrbracket_{\rho}^{\mathcal{M}} &
\end{aligned}
$$

With $\rho=\left\langle\rho_{i}, \rho_{f}, \rho_{p}\right\rangle, \quad \rho_{i}: \mathbb{V} \rightarrow D, \quad \rho_{f}: \mathbb{V} \rightarrow \forall n . D^{n} \rightarrow D, \quad \rho_{p}: \mathbb{V} \rightarrow \forall n . D^{n} \rightarrow \mathbb{P}$

Semantics

Definition (Model)

A model \mathcal{M} consists of a domain D and interpretation \mathcal{I} for function and relation symbols: $f^{\mathcal{I}}: D^{|f|} \rightarrow D, P^{\mathcal{I}}: D^{|P|} \rightarrow \mathbb{P}$.

Definition (Evaluation)

$$
\begin{array}{rlrl}
\llbracket \mathrm{ivar}_{x} \rrbracket_{\rho}^{\mathcal{M}} & :=\rho_{i} x & \llbracket \mathrm{fvar}_{x} \boldsymbol{t} \rrbracket_{\rho}^{\mathcal{M}} & :=\rho_{f} x|\boldsymbol{t}| \llbracket \boldsymbol{t} \rrbracket_{\rho}^{\mathcal{M}} \\
\mathcal{M} \vDash_{\rho} \operatorname{pvar}_{x} \boldsymbol{t} & :=\rho_{f} x|\boldsymbol{t}| \llbracket \boldsymbol{t} \rrbracket_{\rho}^{\mathcal{M}} & \mathcal{M} \vDash_{\rho} \varphi \dot{\wedge} \psi & :=\mathcal{M} \vDash_{\rho} \varphi \wedge \mathcal{M} \vDash_{\rho} \psi
\end{array}
$$

With $\rho=\left\langle\rho_{i}, \rho_{f}, \rho_{p}\right\rangle, \quad \rho_{i}: \mathbb{V} \rightarrow D, \quad \rho_{f}: \mathbb{V} \rightarrow \forall n . D^{n} \rightarrow D, \quad \rho_{p}: \mathbb{V} \rightarrow \forall n . D^{n} \rightarrow \mathbb{P}$

Semantics

Definition (Model)

A model \mathcal{M} consists of a domain D and interpretation \mathcal{I} for function and relation symbols: $f^{\mathcal{I}}: D^{|f|} \rightarrow D, P^{\mathcal{I}}: D^{|P|} \rightarrow \mathbb{P}$.

Definition (Evaluation)

$$
\begin{array}{rlrl}
\llbracket \mathrm{ivar}_{x} \rrbracket_{\rho}^{\mathcal{M}} & :=\rho_{i} x & \llbracket \mathrm{fvar}_{x} \boldsymbol{t} \rrbracket_{\rho}^{\mathcal{M}} & :=\rho_{f} x|\boldsymbol{t}| \llbracket \boldsymbol{t} \rrbracket_{\rho}^{\mathcal{M}} \\
\mathcal{M} \vDash_{\rho} \mathrm{pvar}_{x} \boldsymbol{t} & :=\rho_{f} \times|\boldsymbol{t}| \llbracket \boldsymbol{t} \rrbracket_{\rho}^{\mathcal{M}} & \mathcal{M} \vDash_{\rho} \varphi \dot{\wedge} \psi & :=\mathcal{M} \vDash_{\rho} \varphi \wedge \mathcal{M} \vDash_{\rho} \psi \\
\mathcal{M} \vDash_{\rho} \dot{\exists}_{f}^{n} \varphi & := & &
\end{array}
$$

With $\rho=\left\langle\rho_{i}, \rho_{f}, \rho_{p}\right\rangle, \quad \rho_{i}: \mathbb{V} \rightarrow D, \quad \rho_{f}: \mathbb{V} \rightarrow \forall n . D^{n} \rightarrow D, \quad \rho_{p}: \mathbb{V} \rightarrow \forall n . D^{n} \rightarrow \mathbb{P}$

Semantics

Definition (Model)

A model \mathcal{M} consists of a domain D and interpretation \mathcal{I} for function and relation symbols: $f^{\mathcal{I}}: D^{|f|} \rightarrow D, P^{\mathcal{I}}: D^{|P|} \rightarrow \mathbb{P}$.

Definition (Evaluation)

$$
\begin{array}{rlrl}
\llbracket i v a r_{x} \rrbracket_{\rho}^{\mathcal{M}} & :=\rho_{i} x & \llbracket \mathrm{fvar}_{x} \boldsymbol{t} \rrbracket_{\rho}^{\mathcal{M}} & :=\rho_{f} x|\boldsymbol{t}| \llbracket \boldsymbol{t} \rrbracket_{\rho}^{\mathcal{M}} \\
\mathcal{M} \vDash_{\rho} \text { pvar }_{x} \boldsymbol{t} & :=\rho_{f} x|\boldsymbol{t}| \llbracket \boldsymbol{t} \rrbracket_{\rho}^{\mathcal{M}} & \mathcal{M} \vDash_{\rho} \varphi \dot{\wedge} \psi:=\mathcal{M} \vDash_{\rho} \varphi \wedge \mathcal{M} \vDash_{\rho} \psi \\
\mathcal{M} \vDash_{\rho} \dot{\exists}_{f}^{n} \varphi & :=\exists f^{D^{n} \rightarrow D} . & &
\end{array}
$$

With $\rho=\left\langle\rho_{i}, \rho_{f}, \rho_{p}\right\rangle, \quad \rho_{i}: \mathbb{V} \rightarrow D, \quad \rho_{f}: \mathbb{V} \rightarrow \forall n . D^{n} \rightarrow D, \quad \rho_{p}: \mathbb{V} \rightarrow \forall n . D^{n} \rightarrow \mathbb{P}$

Semantics

Definition (Model)

A model \mathcal{M} consists of a domain D and interpretation \mathcal{I} for function and relation symbols: $f^{\mathcal{I}}: D^{|f|} \rightarrow D, P^{\mathcal{I}}: D^{|P|} \rightarrow \mathbb{P}$.

Definition (Evaluation)

$$
\begin{aligned}
& \llbracket \mathrm{ivar}_{x} \rrbracket_{\rho}^{\mathcal{M}}:=\rho_{i} x \quad \llbracket \mathrm{fvar}_{x} \boldsymbol{t} \rrbracket_{\rho}^{\mathcal{M}}:=\rho_{f} x|\boldsymbol{t}| \llbracket \boldsymbol{t} \rrbracket_{\rho}^{\mathcal{M}} \\
& \mathcal{M} \vDash_{\rho} \operatorname{pvar}_{x} \boldsymbol{t}:=\rho_{f} x|\boldsymbol{t}| \llbracket \boldsymbol{t} \rrbracket_{\rho}^{\mathcal{M}} \quad \mathcal{M} \vDash_{\rho} \varphi \dot{\wedge} \psi:=\mathcal{M} \vDash_{\rho} \varphi \wedge \mathcal{M} \vDash_{\rho} \psi \\
& \mathcal{M} \vDash_{\rho} \dot{\exists}_{f}^{n} \varphi:=\exists f^{D^{n} \rightarrow D} \cdot \mathcal{M} \vDash_{f \cdot \rho} \varphi
\end{aligned}
$$

With $\rho=\left\langle\rho_{i}, \rho_{f}, \rho_{p}\right\rangle, \quad \rho_{i}: \mathbb{V} \rightarrow D, \quad \rho_{f}: \mathbb{V} \rightarrow \forall n . D^{n} \rightarrow D, \quad \rho_{p}: \mathbb{V} \rightarrow \forall n . D^{n} \rightarrow \mathbb{P}$

Semantics

Definition (Model)

A model \mathcal{M} consists of a domain D and interpretation \mathcal{I} for function and relation symbols: $f^{\mathcal{I}}: D^{|f|} \rightarrow D, P^{\mathcal{I}}: D^{|P|} \rightarrow \mathbb{P}$.

Definition (Evaluation)

$$
\begin{array}{rlrl}
\llbracket i v a r_{x} \rrbracket_{\rho}^{\mathcal{M}} & :=\rho_{i} x & \llbracket \mathrm{fvar}_{x} \boldsymbol{t} \rrbracket_{\rho}^{\mathcal{M}} & :=\rho_{f} x|\boldsymbol{t}| \llbracket \boldsymbol{t} \rrbracket_{\rho}^{\mathcal{M}} \\
\mathcal{M} \vDash_{\rho} \mathrm{pvar}_{x} \boldsymbol{t} & :=\rho_{f} x|\boldsymbol{t}| \llbracket \boldsymbol{t} \rrbracket_{\rho}^{\mathcal{M}} & \mathcal{M} \vDash_{\rho} \varphi \dot{\wedge} \psi & :=\mathcal{M} \vDash_{\rho} \varphi \wedge \mathcal{M} \vDash_{\rho} \psi \\
\mathcal{M} \vDash_{\rho} \dot{\exists}_{f}^{n} \varphi & :=\exists f^{D^{n} \rightarrow D} . \mathcal{M} \vDash_{f . \rho} \varphi & & \ldots
\end{array}
$$

With $\rho=\left\langle\rho_{i}, \rho_{f}, \rho_{p}\right\rangle, \quad \rho_{i}: \mathbb{V} \rightarrow D, \quad \rho_{f}: \mathbb{V} \rightarrow \forall n . D^{n} \rightarrow D, \quad \rho_{p}: \mathbb{V} \rightarrow \forall n . D^{n} \rightarrow \mathbb{P}$

Models of PA

Models of PA

- Standard model of PA is \mathbb{N}

Models of PA

- Standard model of PA is \mathbb{N}
- PA_{1} has models that are different from \mathbb{N} (non-standard models)

Models of PA

- Standard model of PA is \mathbb{N}
- PA_{1} has models that are different from \mathbb{N} (non-standard models)
- \mathbb{N} is the only model of PA_{2}

Models of PA

- Standard model of PA is \mathbb{N}
- PA_{1} has models that are different from \mathbb{N} (non-standard models)
- \mathbb{N} is the only model of PA_{2}

Theorem (Categoricity)

$P A_{2}$ is categorical, meaning all $P A_{2}$ models are isomorphic.

Models of PA

- Standard model of PA is \mathbb{N}
- PA_{1} has models that are different from \mathbb{N} (non-standard models)
- \mathbb{N} is the only model of PA_{2}

Theorem (Categoricity)

$P A_{2}$ is categorical, meaning all $P A_{2}$ models are isomorphic.

Proof.
Suppose $\mathcal{M}_{1} \vDash \mathrm{PA}_{2}$ and $\mathcal{M}_{2} \vDash \mathrm{PA}_{2}$.

Models of PA

- Standard model of PA is \mathbb{N}
- PA_{1} has models that are different from \mathbb{N} (non-standard models)
- \mathbb{N} is the only model of PA_{2}

Theorem (Categoricity)

$P A_{2}$ is categorical, meaning all $P A_{2}$ models are isomorphic.

Proof.

Suppose $\mathcal{M}_{1} \vDash \mathrm{PA}_{2}$ and $\mathcal{M}_{2} \vDash \mathrm{PA}_{2}$. Inductively define $\cong: D_{1} \rightarrow D_{2} \rightarrow \mathbb{P}$

$$
0^{\mathcal{I}_{1}} \cong 0^{\mathcal{I}_{2}}
$$

Models of PA

- Standard model of PA is \mathbb{N}
- PA_{1} has models that are different from \mathbb{N} (non-standard models)
- \mathbb{N} is the only model of PA_{2}

Theorem (Categoricity)

$P A_{2}$ is categorical, meaning all $P A_{2}$ models are isomorphic.

Proof.

Suppose $\mathcal{M}_{1} \vDash \mathrm{PA}_{2}$ and $\mathcal{M}_{2} \vDash \mathrm{PA}_{2}$. Inductively define $\cong: D_{1} \rightarrow D_{2} \rightarrow \mathbb{P}$

$$
0^{\mathcal{I}_{1}} \cong 0^{\mathcal{I}_{2}} \quad S^{\mathcal{I}_{1}} x \cong S^{\mathcal{I}_{2}} y, \quad \text { if } x \cong y
$$

Models of PA

- Standard model of PA is \mathbb{N}
- PA_{1} has models that are different from \mathbb{N} (non-standard models)
- \mathbb{N} is the only model of PA_{2}

Theorem (Categoricity)

$P A_{2}$ is categorical, meaning all $P A_{2}$ models are isomorphic.

Proof.

Suppose $\mathcal{M}_{1} \vDash \mathrm{PA}_{2}$ and $\mathcal{M}_{2} \vDash \mathrm{PA}_{2}$. Inductively define $\cong: D_{1} \rightarrow D_{2} \rightarrow \mathbb{P}$

$$
0^{\mathcal{I}_{1}} \cong 0^{\mathcal{I}_{2}} \quad S^{\mathcal{I}_{1}} x \cong S^{\mathcal{I}_{2}} y, \quad \text { if } x \cong y
$$

Using the induction axiom, we can easily show that \cong is bijective and a homomorphism. Thus \mathcal{M}_{1} and \mathcal{M}_{2} are isomorphic.

Compuational Semantics

$$
\mathcal{M}_{1} \vDash \varphi \quad \leftrightarrow \quad \mathcal{M}_{2} \vDash \varphi \quad ?
$$

Compuational Semantics

$$
\mathcal{M}_{1} \vDash \varphi \quad \leftrightarrow \quad \mathcal{M}_{2} \vDash \varphi \quad ?
$$

No, because

$$
\mathcal{M}_{1} \vDash \dot{\exists}_{f}^{n} \varphi
$$

Compuational Semantics

$$
\mathcal{M}_{1} \vDash \varphi \quad \leftrightarrow \quad \mathcal{M}_{2} \vDash \varphi \quad ?
$$

No, because

Compuational Semantics

$$
\mathcal{M}_{1} \vDash \varphi \quad \leftrightarrow \quad \mathcal{M}_{2} \vDash \varphi \quad ?
$$

No, because

Cannot translate f_{1} to f_{2} because \cong is not necessarily computable

Compuational Semantics

$$
\mathcal{M}_{1} \vDash \varphi \quad \leftrightarrow \quad \mathcal{M}_{2} \vDash \varphi \quad ?
$$

No, because

Cannot translate f_{1} to f_{2} because \cong is not necessarily computable
Possible solution: $\mathcal{M} \vDash_{\rho} \dot{\exists}_{f}^{n} \varphi:=\exists f^{D^{n} \rightarrow D} . \mathcal{M} \vDash_{f \cdot \rho} \varphi$

Compuational Semantics

$$
\mathcal{M}_{1} \vDash \varphi \quad \leftrightarrow \quad \mathcal{M}_{2} \vDash \varphi \quad ?
$$

No, because

Cannot translate f_{1} to f_{2} because \cong is not necessarily computable
Possible solution: $\mathcal{M} \vDash_{\rho} \dot{\exists}_{f}^{n} \varphi:=\exists f^{D^{n+1} \rightarrow \mathbb{P}}$. total $f \wedge$ functional $f \wedge \mathcal{M} \vDash_{f . \rho} \varphi$

Compuational Semantics

$$
\mathcal{M}_{1} \vDash \varphi \quad \leftrightarrow \quad \mathcal{M}_{2} \vDash \varphi \quad ?
$$

No, because

Cannot translate f_{1} to f_{2} because \cong is not necessarily computable
Possible solution: $\mathcal{M} \vDash_{\rho} \dot{\exists}_{f}^{n} \varphi:=\exists f^{D^{n+1} \rightarrow \mathbb{P}}$. total $f \wedge$ functional $f \wedge \mathcal{M} \vDash_{f . \rho} \varphi$

- Under Unique Choice both semantics are equivalent.

Compuational Semantics

$$
\mathcal{M}_{1} \vDash \varphi \quad \leftrightarrow \quad \mathcal{M}_{2} \vDash \varphi \quad ?
$$

No, because

Cannot translate f_{1} to f_{2} because \cong is not necessarily computable
Possible solution: $\mathcal{M} \vDash_{\rho} \dot{\exists}_{f}^{n} \varphi:=\exists f^{D^{n+1} \rightarrow \mathbb{P}}$. total $f \wedge$ functional $f \wedge \mathcal{M} \vDash_{f . \rho} \varphi$

- Under Unique Choice both semantics are equivalent.
- Luckily, our forthcoming reduction does not use function quantifiers, so it does not matter.

Definition

$\mathrm{H}_{10}:=$ "Does the Diophantine equation $p=q$ have a solution in $\mathbb{N} ?$ "

Reduction

Definition

$\mathrm{H}_{10}:=$ "Does the Diophantine equation $p=q$ have a solution in $\mathbb{N} ?$ "

- This problem is undecidable [Davis et al., 1961, Matijasevic, 1970].

Reduction

Definition

$\mathrm{H}_{10}:=$ "Does the Diophantine equation $p=q$ have a solution in $\mathbb{N} ?$ "

- This problem is undecidable [Davis et al., 1961, Matijasevic, 1970].
- Proof has already been mechanized [Larchey-Wendling and Forster, 2019].

Reduction

Definition

$\mathrm{H}_{10}:=$ "Does the Diophantine equation $p=q$ have a solution in \mathbb{N} ?"

- This problem is undecidable [Davis et al., 1961, Matijasevic, 1970].
- Proof has already been mechanized [Larchey-Wendling and Forster, 2019].
- We follow the reduction in [Kirst and Hermes, 2021]:

Reduction

Definition

$\mathrm{H}_{10}:=$ "Does the Diophantine equation $p=q$ have a solution in \mathbb{N} ?"

- This problem is undecidable [Davis et al., 1961, Matijasevic, 1970].
- Proof has already been mechanized [Larchey-Wendling and Forster, 2019].
- We follow the reduction in [Kirst and Hermes, 2021]:

$$
\overbrace{x+2}^{p}=\overbrace{y^{2}+z}^{q}
$$

Reduction

Definition

$$
\mathrm{H}_{10}:=\text { "Does the Diophantine equation } p=q \text { have a solution in } \mathbb{N} \text { ?" }
$$

- This problem is undecidable [Davis et al., 1961, Matijasevic, 1970].
- Proof has already been mechanized [Larchey-Wendling and Forster, 2019].
- We follow the reduction in [Kirst and Hermes, 2021]:

$$
\begin{gathered}
\overbrace{x+2}^{p}=\overbrace{y^{2}+z}^{q} \\
\downarrow \\
\varphi_{p, q}:=\dot{\exists} x y z \cdot x+S(S 0) \equiv y \cdot y+z
\end{gathered}
$$

Reduction

Definition

$$
\mathrm{H}_{10}:=\text { "Does the Diophantine equation } p=q \text { have a solution in } \mathbb{N} \text { ?" }
$$

- This problem is undecidable [Davis et al., 1961, Matijasevic, 1970].
- Proof has already been mechanized [Larchey-Wendling and Forster, 2019].
- We follow the reduction in [Kirst and Hermes, 2021]:

$$
\begin{gathered}
\overbrace{x+2}^{p}=\overbrace{y^{2}+z}^{q} \\
\downarrow \\
\varphi_{p, q}:=\dot{\exists} x y z \cdot x+S(S 0) \equiv y \cdot y+z
\end{gathered}
$$

$$
p=q \text { has a solution iff } \mathbb{N} \vDash \varphi_{p, q} .
$$

Undecidability

Lemma

- $p=q$ has a solution iff $\mathrm{PA}_{2} \vDash \varphi_{p, q}$.

Lemma

- $p=q$ has a solution iff $\mathrm{PA}_{2} \vDash \varphi_{p, q}$.

Theorem (Undecidability)

- PA_{2} is undecidable.

Lemma

- $p=q$ has a solution iff $\mathrm{PA}_{2} \vDash \varphi_{p, q}$.
- $p=q$ has a solution iff $\forall \mathcal{M} . \mathcal{M} \vDash \mathrm{PA}_{2} \rightarrow \varphi_{p, q}$.

Theorem (Undecidability)

- PA_{2} is undecidable.

Lemma

- $p=q$ has a solution iff $\mathrm{PA}_{2} \vDash \varphi_{p, q}$.
- $p=q$ has a solution iff $\forall \mathcal{M} . \mathcal{M} \vDash \dot{\forall} f_{0} f_{S} f_{+} f_{\times} P_{\equiv} \cdot \mathrm{PA}_{2}^{\prime} \rightarrow \varphi_{p, q}^{\prime}$.

Theorem (Undecidability)

- PA_{2} is undecidable.

Lemma

- $p=q$ has a solution iff $\mathrm{PA}_{2} \vDash \varphi_{p, q}$.
- $p=q$ has a solution iff $\forall \mathcal{M} . \mathcal{M} \vDash \dot{\forall} f_{0} f_{S} f_{+} f_{\times} P_{\equiv} . \mathrm{PA}_{2}^{\prime} \rightarrow \varphi_{p, q}^{\prime}$.

Theorem (Undecidability)

- PA_{2} is undecidable.
- Validity in SOL is already undecidable in the empty signature.

Undecidability

Lemma

- $p=q$ has a solution iff $\mathrm{PA}_{2} \vDash \varphi_{p, q}$.
- $p=q$ has a solution iff $\forall \mathcal{M} . \mathcal{M} \vDash \dot{\forall} f_{0} f_{S} f_{+} f_{\times} P_{\equiv} \cdot \mathrm{PA}_{2}^{\prime} \rightarrow \varphi_{p, q}^{\prime}$.
- $p=q$ has a solution iff $\exists \mathcal{M} \rho . \mathcal{M} \vDash_{\rho} \dot{\exists} f_{0} f_{S} f_{+} f_{\times} P_{\equiv} \cdot \mathrm{PA}_{2}^{\prime} \dot{\wedge} \varphi_{p, q}^{\prime}$.

Theorem (Undecidability)

- PA_{2} is undecidable.
- Validity in SOL is already undecidable in the empty signature.
- Satisfiablilty in SOL is already undecidable in the empty signature.

Deductive Incompleteness

Suppose \vdash is a sound, complete and enumerable deduction system for SOL.

Deductive Incompleteness

Suppose \vdash is a sound, complete and enumerable deduction system for SOL. decidable H_{10}

Deductive Incompleteness

Suppose \vdash is a sound, complete and enumerable deduction system for SOL.

```
    decidable H}\mp@subsup{\textrm{H}}{10}{
        \imath
decidable ( }\lambdapq.\mp@subsup{\textrm{PA}}{2}{}\vDash\mp@subsup{\varphi}{p,q}{}
```


Deductive Incompleteness

Suppose \vdash is a sound, complete and enumerable deduction system for SOL.

1. enumerable $\left(\lambda p q . \mathrm{PA}_{2} \vDash \varphi_{p, q}\right) \quad$ 2. enumerable $\left(\lambda p q . \neg \mathrm{PA}_{2} \vDash \varphi_{p, q}\right)$

Deductive Incompleteness

Suppose \vdash is a sound, complete and enumerable deduction system for SOL.

[^0]
Deductive Incompleteness

Suppose \vdash is a sound, complete and enumerable deduction system for SOL.

1. enumerable $\left(\lambda p q . \mathrm{PA}_{2} \vDash \varphi_{p, q}\right) \quad$ 2. enumerable $\left(\lambda p q . \neg \mathrm{PA}_{2} \vDash \varphi_{p, q}\right)$
\rightarrow follows from enumerability of \vdash
[^1]
Deductive Incompleteness

Suppose \vdash is a sound, complete and enumerable deduction system for SOL.

1. enumerable $\left(\lambda p q . \mathrm{PA}_{2} \vDash \varphi_{p, q}\right)$
\rightarrow follows from enumerability of \vdash
2. enumerable $\left(\lambda p q . \neg \mathrm{PA}_{2} \vDash \varphi_{p, q}\right)$

enumerable $\left(\lambda p q . \mathrm{PA}_{2} \vDash \dot{\neg} \varphi_{p, q}\right)$
[^2]
Deductive Incompleteness

Suppose \vdash is a sound, complete and enumerable deduction system for SOL.

1. enumerable $\left(\lambda p q . \mathrm{PA}_{2} \vDash \varphi_{p, q}\right)$
\rightarrow follows from enumerability of \vdash
2. enumerable $\left(\lambda p q . \neg \mathrm{PA}_{2} \vDash \varphi_{p, q}\right)$ by Categoricity enumerable $\left(\lambda p q . \mathrm{PA}_{2} \vDash \dot{\neg} \varphi_{p, q}\right)$
[^3]
Deductive Incompleteness

Suppose \vdash is a sound, complete and enumerable deduction system for SOL.

1. enumerable $\left(\lambda p q . \mathrm{PA}_{2} \vDash \varphi_{p, q}\right)$
\rightarrow follows from enumerability of \vdash
2. enumerable ($\lambda p q$. $\neg \mathrm{PA}_{2} \vDash \varphi_{p, q}$) by Categoricity enumerable ($\lambda p q . \mathrm{PA}_{2} \vDash \dot{\neg} \varphi_{p, q}$)
\rightarrow follows from enumerability of \vdash
[^4]
Deduction Incompleteness

Theorem (Incompleteness)

Under MP, the existence of a sound, complete and enumerable deduction system for second-order logic implies the decidability of H_{10}.

Deduction Incompleteness

Theorem (Incompleteness)

Under MP, the existence of a sound, complete and enumerable deduction system for second-order logic implies the decidability of H_{10}.

We used this result to conclude incompleteness of a concrete deduction system with full comprehension.

Deduction Incompleteness

Theorem (Incompleteness)

Under MP, the existence of a sound, complete and enumerable deduction system for second-order logic implies the decidability of H_{10}.

We used this result to conclude incompleteness of a concrete deduction system with full comprehension.

Possible next directions:

Deduction Incompleteness

Theorem (Incompleteness)

Under MP, the existence of a sound, complete and enumerable deduction system for second-order logic implies the decidability of H_{10}.

We used this result to conclude incompleteness of a concrete deduction system with full comprehension.

Possible next directions:

- This deduction system would be complete for Henkin semantics.

Deduction Incompleteness

Theorem (Incompleteness)

Under MP, the existence of a sound, complete and enumerable deduction system for second-order logic implies the decidability of H_{10}.

We used this result to conclude incompleteness of a concrete deduction system with full comprehension.

Possible next directions:

- This deduction system would be complete for Henkin semantics.
- Further work on PA_{2} or ZF_{2} (incompleteness, conservativity, etc.)

Deduction Incompleteness

Theorem (Incompleteness)

Under MP, the existence of a sound, complete and enumerable deduction system for second-order logic implies the decidability of H_{10}.

We used this result to conclude incompleteness of a concrete deduction system with full comprehension.

Possible next directions:

- This deduction system would be complete for Henkin semantics.
- Further work on PA_{2} or ZF_{2} (incompleteness, conservativity, etc.)
- Connection between SOL and meta logic (e.g. inheritance of AC)

Bauer, A. (2006).
First steps in synthetic computability theory.
Electronic Notes in Theoretical Computer Science, 155:5-31.
Proceedings of the 21st Annual Conference on Mathematical Foundations of Programming
Semantics (MFPS XXI).
Davis, M., Putnam, H., and Robinson, J. (1961).
The decision problem for exponential diophantine equations.
Annals of Mathematics, pages 425-436.
Forster, Y., Kirst, D., and Smolka, G. (2019).
On synthetic undecidability in coq, with an application to the entscheidungsproblem.
In Proceedings of the 8th ACM SIGPLAN International Conference on Certified Programs and Proofs, CPP 2019, page 38-51, New York, NY, USA. Association for Computing Machinery.
屋 Forster, Y., Kirst, D., and Wehr, D. (2020).
Completeness theorems for first-order logic analysed in constructive type theory.
In International Symposium on Logical Foundations of Computer Science, pages 47-74. Springer.

Kirst, D. and Hermes, M. (2021).
Synthetic undecidability and incompleteness of first-order axiom systems in coq.
Larchey-Wendling, D. and Forster, Y. (2019).
Hilbert's tenth problem in coq.
In 4th International Conference on Formal Structures for Computation and Deduction, FSCD 2019, volume 131, pages 27-1. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik.
Matijasevic, J. V. (1970).
Enumerable sets are diophantine.
In Soviet Math. Dokl., volume 11, pages 354-358.

Environments

$$
\begin{gathered}
\rho_{f}: \mathbb{N} \rightarrow \forall n \cdot D^{n} \rightarrow D \\
\left(f \cdot \rho_{f}\right) 0 n:= \begin{cases}f & \text { if } f \text { has arity } n \\
\rho_{f} 0 n & \text { otherwise }\end{cases} \\
\left(f \cdot \rho_{f}\right)\left(S_{x}\right) n:= \begin{cases}\rho_{f} \times n & \text { if } f \text { has arity } n \\
\rho_{f}(S x) n & \text { otherwise }\end{cases}
\end{gathered}
$$

Undecidability of Validity

$$
\begin{gathered}
\forall \mathcal{M} \cdot \mathcal{M} \vDash \dot{\forall} f_{0} f_{S} f_{+} f_{\times} P_{\equiv} \cdot \mathrm{PA}_{2}^{\prime} \rightarrow \varphi_{p, q}^{\prime} \\
\downarrow \\
\forall \mathcal{M} \cdot \mathcal{M} \vDash \mathrm{PA}_{2} \rightarrow \mathcal{M} \vDash \varphi_{p, q}
\end{gathered}
$$

Lemma

$p=q$ has a solution iff $\mathcal{M} \vDash \varphi_{p, q}$ for all models with $\mathcal{M} \vDash \mathrm{PA}_{2}$.

Proof.

\rightarrow : Two possible proofs:

- If $p=q$ has a solution, then $\mathbb{N} \vDash \varphi_{p, q}$. By categoricity it holds for all models of PA_{2}.
- Translate $p=q$ solution to \mathcal{M} using a homomorphism $\mu: \mathbb{N} \rightarrow \mathcal{M}$.
\leftarrow : Instantiate \mathcal{M} with standard model \mathbb{N} to obtain $\mathbb{N} \vDash \varphi_{p, q}$.

Undecidability of Satisfiability

$$
\begin{gathered}
\exists \mathcal{M} \rho . \mathcal{M} \vDash_{\rho} \dot{\exists} f_{0} f_{S} f_{+} f_{\times} P_{\equiv} \cdot \mathrm{PA}_{2}^{\prime} \dot{\wedge} \varphi_{p, q}^{\prime} \\
\downarrow \\
\exists \mathcal{M} \rho . \mathcal{M} \vDash \mathrm{PA}_{2} \wedge \mathcal{M} \vDash_{\rho} \varphi_{p, q}
\end{gathered}
$$

Lemma

$p=q$ has a solution iff there is a model $\mathcal{M} \vDash \mathrm{PA}_{2}$ and ρ such that $\mathcal{M} \vDash_{\rho} \varphi_{p, q}$.

Proof.

\rightarrow : If $p=q$ has a solution, then the standard model \mathbb{N} fulfils $\mathbb{N} \vDash \varphi_{p, q}$.
$\leftarrow:$ If $\mathcal{M} \vDash_{\rho} \varphi_{p, q}$ then also $\mathbb{N} \vDash \varphi_{p, q}$ by categoricity.
Note that categoricity was required here, whereas it is optional for validity.

Natural Deduction

$$
\frac{A\left[\uparrow_{f}^{n}\right] \vdash \varphi}{A \vdash \dot{\forall}_{f}^{n} \varphi} \mathrm{Al}_{f} \quad \frac{A \vdash \dot{\forall}_{f}^{n} \varphi}{A \vdash \varphi[f]} \mathrm{AE}_{f}
$$

$$
\frac{A \vdash \varphi[f]}{A \vdash \dot{\exists}_{f}^{n} \varphi} \mathrm{El}_{\mathrm{f}} \quad \frac{A \vdash \dot{\exists}_{f}^{n} \varphi}{A\left[\uparrow_{f}^{n}\right], \varphi \vdash \psi\left[\uparrow_{n}\right]_{f}} \underset{A \vdash \psi}{ } \mathrm{EE}_{f}
$$

$$
\overline{\dot{\exists}_{p}^{n} P \cdot \dot{\forall} x_{1} \ldots x_{n} . P\left(x_{1}, \ldots, x_{2}\right) \dot{\leftrightarrow} \varphi\left[\uparrow_{p}^{n}\right]} \text { Compr }
$$

[^0]: ${ }^{1}$ This requires Markov's principle: MP $:=\forall f: \mathbb{N} \rightarrow \mathbb{B} . \neg \neg(\exists n . f n=$ true $) \rightarrow \exists n . f n=$ true

[^1]: ${ }^{1}$ This requires Markov's principle: MP $:=\forall f: \mathbb{N} \rightarrow \mathbb{B} . \neg \neg(\exists n . f n=$ true $) \rightarrow \exists n . f n=$ true

[^2]: ${ }^{1}$ This requires Markov's principle: MP $:=\forall f: \mathbb{N} \rightarrow \mathbb{B} . \neg \neg(\exists n . f n=$ true $) \rightarrow \exists n . f n=$ true

[^3]: ${ }^{1}$ This requires Markov's principle: MP $:=\forall f: \mathbb{N} \rightarrow \mathbb{B} . \neg \neg(\exists n . f n=$ true $) \rightarrow \exists n . f n=$ true

[^4]: ${ }^{1}$ This requires Markov's principle: MP $:=\forall f: \mathbb{N} \rightarrow \mathbb{B} . \neg \neg(\exists n . f n=$ true $) \rightarrow \exists n . f n=$ true

