Completeness of Second-Order Logic

for Henkin Semantics

Second Bachelor Seminar Talk

Mark Koch
Advisor: Dominik Kirst

Supervisor: Gert Smolka

July 5, 2021

Saarland University, Programming Systems Lab

Second-order logic is incomplete
i.e. there is no deduction system that is complete, sound and enumerable

Second-order logic is incomplete
i.e. there is no deduction system that is complete, sound and enumerable

Altpl F2 ¢ A At Vg
AbaVig —° Abso[P] TP
At ¢[P] Ei AFs §Z<P Altpl, e 2 9[15] o
p

I Al ¢

Second-order logic is incomplete
i.e. there is no deduction system that is complete, sound and enumerable

Altpl F2 ¢ A At Vg

AbaVig —° Abso[P] TP
Al s_D[P] Ei AFs §Z<P Altpl, e 2 9[15] o
Ay dng " Abz i

i i - Compr),
Al 30 P.Yxy..xp. P(x1, ..., x2) € @[17]

Second-order logic is incomplete
i.e. there is no deduction system that is complete, sound and enumerable

Altpl F2 ¢ A At Vg

AbaVig —° Abso[P] TP
Al s_D[P] Ei AFs §Z<P Altpl, e 2 9[15] o
Ay dng " Abz i

i i - Compr),
Al 30 P.Yxy..xp. P(x1, ..., x2) € @[17]

o is incomplete, i.e. “VAp. AF p — Ab> .

Second-order logic is incomplete

i.e. there is no deduction system that is complete, sound and enumerable
(for standard semantics)

Altpl 2 ¢ A At Vg

AbaVig —° Aty o[P] 7P
Al s_D[P] Ei Aks §Z<P Altol, e 2 9[15] o
Ay dng " Al 9 "

i i - Compr),
Al 30 P.Yxy..xp. P(x1, ..., x2) € [17]

ko is incomplete (for standard semantics), i.e. "VAp. AFy o — A2 .

Henkin Semantics

However, i, is complete if one switches to Henkin semantics!

Henkin Semantics

However, i, is complete if one switches to Henkin semantics!

Before: EIZ P.p ~ There exists a predicate P such that ¢ holds.

Henkin Semantics

However, i, is complete if one switches to Henkin semantics!

Before: EIZ P.p ~ There exists a predicate P such that ¢ holds.
Now: élg P.p ~ There exists a predicate P in [P, such that ¢ holds.

Henkin Semantics

However, i, is complete if one switches to Henkin semantics!

Before: EIZ P.p ~ There exists a predicate P such that ¢ holds.
Now: élg P.p ~ There exists a predicate P in [P, such that ¢ holds.

Definition (Henkin Semantics)

A Henkin model # specifies a set of relations P, : (D" — Prop) — Prop

Henkin Semantics

However, i, is complete if one switches to Henkin semantics!

Before: EIZ P.p ~ There exists a predicate P such that ¢ holds.
Now: élg P.p ~ There exists a predicate P in [P, such that ¢ holds.

Definition (Henkin Semantics)

A Henkin model H specifies a set of relations P, : (D" — Prop) — Prop
that constrain the predicates that are quantified over, i.e

HE, W = IPP"7PP P P AH Ep, .

Henkin Semantics

However, i, is complete if one switches to Henkin semantics!

Before: EIZ P.p ~ There exists a predicate P such that ¢ holds.
Now: élg P.p ~ There exists a predicate P in [P, such that ¢ holds.

Definition (Henkin Semantics)

A Henkin model H specifies a set of relations P, : (D" — Prop) — Prop
that constrain the predicates that are quantified over, i.e

HE, W = IPP"7PP P P AH Ep, .

P, should satisfy comprehension, i.e. it must at least contain all second-

order definable properties.

Henkin Semantics

However, i, is complete if one switches to Henkin semantics!

Before: EIZ P.p ~ There exists a predicate P such that ¢ holds.
Now: élg P.p ~ There exists a predicate P in [P, such that ¢ holds.

Definition (Henkin Semantics)

A Henkin model H specifies a set of relations P, : (D" — Prop) — Prop
that constrain the predicates that are quantified over, i.e

HE, W = IPP"7PP P P AH Ep, .

P, should satisfy comprehension, i.e. it must at least contain all second-

order definable properties.

Functions are constrained in the same way via a relation F,.

Henkin Semantics

® A Henkin model is equivalent to a standard model if F and P contain
everything.

Henkin Semantics

® A Henkin model is equivalent to a standard model if F and P contain
everything.

® Henkin semantics allow to recover much of the first-order model theory.

We are most interested in completeness.

Henkin Semantics

® A Henkin model is equivalent to a standard model if F and P contain
everything.

® Henkin semantics allow to recover much of the first-order model theory.
We are most interested in completeness.

® The usual Henkin style completeness proof would work [Shapiro, 1991],
but we want to use a different approach:

Henkin Semantics

® A Henkin model is equivalent to a standard model if F and P contain
everything.

® Henkin semantics allow to recover much of the first-order model theory.
We are most interested in completeness.

® The usual Henkin style completeness proof would work [Shapiro, 1991],
but we want to use a different approach:

SOL with Henkin semantics reduces to (mono-sorted) FOL.

Translation

Vx. 32 P. P(x,x)

Translation

Vx. 32 P. P(x,x)
Many-sorted (easy):
vxZ. 3pF2. predApp,(p, x, x)

Translation

Vx. 32 P. P(x,x)
Many-sorted (easy): Mono-sorted:

vxZ. 3pF2. predApp,(p, x, x) Vx.isIndi(x) — 3p.isPreda(p) A predApp,(p, x, x)

Translation

Vx. 32 P. P(x,x)
Many-sorted (easy): Mono-sorted:

VxT. 3pP2. predApps(p, X, x Vx.isIndi(x) — 3p.isPreda(p) A predApps(p, x, x
2

@ “Tedious but routine job"” to verify mono-sorted reduction for deduction system
according to textbook [Van Dalen, 1994].

Translation

Vx. 32 P. P(x,x)
Many-sorted (easy): Mono-sorted:

VxT. 3pP2. predApps(p, X, x Vx.isIndi(x) — 3p.isPreda(p) A predApps(p, x, x
2

@ “Tedious but routine job"” to verify mono-sorted reduction for deduction system
according to textbook [Van Dalen, 1994].

@ More difficult than it seems. Nour and Raffalli “do not know how to end his
proof” [Nour and Raffalli, 2003].

Translation

Vx. 32 P. P(x,x)

Many-sorted (easy): Mono-sorted:

vx.3p"2. predApp,(p, X, x) Wx-istadi{x) —TIp-isPreda{p)-A-predAppa{prxx)

@ “Tedious but routine job"” to verify mono-sorted reduction for deduction system
according to textbook [Van Dalen, 1994].

@ More difficult than it seems. Nour and Raffalli “do not know how to end his

proof” [Nour and Raffalli, 2003]. They propose a simpler reduction:

Vx. 3p. predApp,(p, x, x)

Translation

Vx. 32 P. P(x,x)

Many-sorted (easy): Mono-sorted:

vx.3p"2. predApp,(p, X, x) Wx-istadi{x) —TIp-isPreda{p)-A-predAppa{prxx)

@ “Tedious but routine job"” to verify mono-sorted reduction for deduction system
according to textbook [Van Dalen, 1994].

@ More difficult than it seems. Nour and Raffalli “do not know how to end his

proof” [Nour and Raffalli, 2003]. They propose a simpler reduction:

Vx. 3p. predApp,(p, x, x)

= x and p represent individual, function, and predicate at the same time!

Translation

Vx. 32 P. P(x,x)

Many-sorted (easy): Mono-sorted:

vx.3p"2. predApp,(p, X, x) Wx-istadi{x) —TIp-isPreda{p)-A-predAppa{prxx)

@ “Tedious but routine job"” to verify mono-sorted reduction for deduction system
according to textbook [Van Dalen, 1994].

@ More difficult than it seems. Nour and Raffalli “do not know how to end his

proof” [Nour and Raffalli, 2003]. They propose a simpler reduction:
Vx. 3p. predApp,(p, x, x)
= x and p represent individual, function, and predicate at the same time!

Define translation function * : formy(X) — form; (X4).

Henkin to First-Order Model

Convert Henkin model H to first-order model M:

Henkin to First-Order Model

Convert Henkin model H to first-order model M:

D

~
£

Henkin to First-Order Model

Convert Henkin model H to first-order model M:

D

~
£

predApps” (p, x, x) =

Henkin to First-Order Model

Convert Henkin model H to first-order model M:

D

~
£

predApp3”! (p, x, x) =

Henkin to First-Order Model

Convert Henkin model H to first-order model M:

D

~
£

predApps” (p, x,x) = p(x,x)

Henkin to First-Order Model

Convert Henkin model H to first-order model M:

D

~
£

predApps” (p, x, %) =

Henkin to First-Order Model

Convert Henkin model H to first-order model M:

2

D./\/l ® Po

Py

predApps” (p, x, %) =

Henkin to First-Order Model

Convert Henkin model H to first-order model M:

D./\/l ® Po

Py

predApp3! (b, x, %) = p3 (x,x)

Henkin to First-Order Model

Convert Henkin model H to first-order model M:

2

D./\/l ® Po

Py

predApp3 (0, x,x) = p3 (x0,%0)

Henkin to First-Order Model

Convert Henkin model H to first-order model M:

2

D./\/l ® Po

Py

HE@p < ME* forall closed ¢

First-Order to Henkin Model

Convert first-order model M to Henkin model H:

First-Order to Henkin Model

Convert first-order model M to Henkin model H:

® Dy = D

First-Order to Henkin Model

Convert first-order model M to Henkin model H:

® Dy = D

® P, P := 3p.Vx1..%0. P(x1,..., %) < predAppf,Vl (py X1, -0y X2)

First-Order to Henkin Model

Convert first-order model M to Henkin model H:

® Dy = D

® P, P := 3p.Vx1..%0. P(x1,..., %) < predAppf,Vl (py X1, -0y X2)

For standard semantics, every predicate would need to be included. But
we have no guarantee that M contains all predicates.

First-Order to Henkin Model

Convert first-order model M to Henkin model H:

® Dy = D

® P, P := 3p.Vx1..%0. P(x1,..., %) < predAppf,Vl (py X1, -0y X2)

For standard semantics, every predicate would need to be included. But
we have no guarantee that M contains all predicates.

® PP, must have comprehension.

First-Order to Henkin Model

Convert first-order model M to Henkin model H:

® Dy = D

® P, P := 3p.Vx1..%0. P(x1,..., %) < predAppf,Vl (py X1, -0y X2)

For standard semantics, every predicate would need to be included. But
we have no guarantee that M contains all predicates.

® P, must have comprehension. This holds if M has comprehension.

First-Order to Henkin Model

Convert first-order model M to Henkin model H:

® Dy = D

® P, P := 3p.Vx1..%0. P(x1,..., %) < predAppf,Vl (py X1, -0y X2)
For standard semantics, every predicate would need to be included. But

we have no guarantee that M contains all predicates.

® P, must have comprehension. This holds if M has comprehension.

= Encode this requirement in a theory C.

First-Order to Henkin Model

Convert first-order model M to Henkin model H:

® Dy = D

® P, P := 3p.Vx1..%0. P(x1,..., %) < predAppf,Vl (py X1, -0y X2)

For standard semantics, every predicate would need to be included. But
we have no guarantee that M contains all predicates.

® P, must have comprehension. This holds if M has comprehension.

= Encode this requirement in a theory C.

MEC — (HE¢ < ME¢*) forall closed ¢

Theorem

We can reduce Henkin validity to first-order validity. For closed second-order
formulas ¢ and theories T it holds that

T'ZQ © T*,C ':1 QD*.

Theorem

We can reduce Henkin validity to first-order validity. For closed second-order
formulas ¢ and theories T it holds that

T'ZQ © T*,C ':1 QD*.

This suffices to show that there exists a sound, complete and enumerable
deduction system for SOL. Simply define

Thyp = T Ch1¢*

Theorem

We can reduce Henkin validity to first-order validity. For closed second-order
formulas ¢ and theories T it holds that

T'ZQ © T*,C ':1 QD*.

This suffices to show that there exists a sound, complete and enumerable
deduction system for SOL. Simply define

Thyp = T Ch1¢*
But we want to show our ND system 5 complete. This is the hard part:

T*7C |—1 (p* — Tl—z ©

Theorem

We can reduce Henkin validity to first-order validity. For closed second-order
formulas ¢ and theories T it holds that

T'ZQ © T*,C ':1 QD*.

This suffices to show that there exists a sound, complete and enumerable
deduction system for SOL. Simply define

TrHye = THCh1 ¢*
But we want to show our ND system 5 complete. This is the hard part:
T*7C =t] (p* = Tk ©

From this point on, we only work in the SOL fragment without
function quantifiers and variables!

Backwards Translation

Define a backwards translation ¢ : form;(X;) — formy(X) .

Backwards Translation

Define a backwards translation ©: formi(X) — forma(X) . For example

Vx. predAppy(x) A predApp, (x, x)

Backwards Translation

Define a backwards translation ©: formi(X) — forma(X) . For example

(Vx. predAppg(x) A predApp;(x, x))°

XS /'\x;()

Backwards Translation

Define a backwards translation ©: formi(X) — forma(X) . For example

(Vx. predAppg(x) A predApp;(x, x))°

0 (0 gl 1 0 A Iy
V. Vo X0 Y5 x5 X A x5 (i)

Backwards Translation

Define a backwards translation ©: formi(X) — forma(X) . For example

(Vx. predAppg(x) A predApp;(x, x))°

0 (0 gl 1 0 A Iy
V. Vo X0 Y5 x5 X A x5 (i)

(predApp:1(f(x),y))°* =

Backwards Translation

Define a backwards translation _©: formi(X) — forma(Zer) . For example

(Vx. predAppg(x) A predApp;(x, x))°

0 (0 gl 1 0 A Iy
V. Vo X0 Y5 x5 X A X (i)

(predApp1(f(x),y))® = Erri(y:)

Special error symbol if first argument is not a variable

Completeness

Lemma

1. AF1o = Ay ¢°

Completeness

Lemma

1. AF1o = Ay ¢° 2. Fo " &

10

Completeness

Lemma

1. AF1o = Ay ¢° 2. Fo " &

TExp

10

Completeness

Lemma

1. AF1o = Ay ¢° 2. Fo " &

TExp «—— T*,CF1 "

10

Completeness

Lemma

1. AF1o = Ay ¢° 2. Fo " &

TExp «—— T*,CF1 "

FOL Completeness

[Forster et al., 2021] 7=

T*,ClF1o*

10

Completeness

Lemma

1. AF1o = Ay ¢° 2. Fo " &

TExp «—— T*,CF1 "

FOL Completeness

[Forster et al., 2021] 7=

1
T*,C 1 o* (1) THo @0 |_2 (,0*0

10

Completeness

Lemma

1. AF1 o — AT ¢° 2. Fo &

TEyp «—— T*CF1o*

FOL Completeness Error symbol can occur in this derivation!

[Forster et al., 2021] MP/LEM -7

7'*7 C '71 SD* (1) ’7'*0760 |_Srr/(p*<>

-

-~

10

Completeness

Lemma

1. AF1 o — A°HST ¢° 2. Fo &

TEyp «—— T*CF1o*

FOL Completeness Error symbol can occur in this derivation!

[Forster et al., 2021] MP/LEM -7

7'*7 C '71 SD* (1) ’7'*0760 |_<2err/(p*<>

-~

Remove error symbol
using comprehension

'7'>('<>7 CO '_2 S0‘)(()

10

Completeness

Lemma

1. AF1 o — A°HST ¢° 2. Fo &

TEyp «—— T*CF1o*

FOL Completeness Error symbol can occur in this derivation!

[Forster et al., 2021] MP/LEM -7

7'*7 C '71 SD* (1) ’7'*0760 |_<2err/(p*<>

-

-~

Remove error symbol
using comprehension

2
T®,0° by g™ s T,Coh

10

Completeness

Lemma

1. AF1 o — A°HST ¢° 2. Fo &

TEyp «—— T*CF1o*

FOL Completeness Error symbol can occur in this derivation!

[Forster et al., 2021] MP/LEM -7

7'*7 C '71 SD* (1) ’7'*0760 |_<2err/(p*<>

-~

Remove error symbol
using comprehension

2
T+ C2 by *° @) T,CoF2 0
2 proves

comprehension

T"z(p

10

Conclusion

Theorem (Completeness)

For closed ¢ and 7 without function quantifiers and variables it holds that

T':2g0—>T|—2g0.

11

Conclusion

Theorem (Completeness)

For closed ¢ and 7 without function quantifiers and variables it holds that

T':2g0—>T|—2g0.

® Semantic reduction straightforward. Also allows to obtain Compactness,
Lowenheim-Skolem, etc. from FOL.

11

Conclusion

Theorem (Completeness)

For closed ¢ and 7 without function quantifiers and variables it holds that
T ':2 © — T |—2 ©.
® Semantic reduction straightforward. Also allows to obtain Compactness,

Lowenheim-Skolem, etc. from FOL.
® Deductive part fairly tedious to mechanize (not finished yet)

11

Conclusion

Theorem (Completeness)

For closed ¢ and 7 without function quantifiers and variables it holds that

T':2g0—>T|—2g0.

® Semantic reduction straightforward. Also allows to obtain Compactness,
Lowenheim-Skolem, etc. from FOL.
® Deductive part fairly tedious to mechanize (not finished yet)

Overall, the Bachelor's project contributes the first mechanization of SOL,
including:

11

Conclusion

Theorem (Completeness)

For closed ¢ and 7 without function quantifiers and variables it holds that

T':2g0—>T|—2g0.

® Semantic reduction straightforward. Also allows to obtain Compactness,
Lowenheim-Skolem, etc. from FOL.
® Deductive part fairly tedious to mechanize (not finished yet)

Overall, the Bachelor's project contributes the first mechanization of SOL,
including:

® Categoricity of PA,

11

Conclusion

Theorem (Completeness)

For closed ¢ and 7 without function quantifiers and variables it holds that

T':2g0—>T|—2g0.

® Semantic reduction straightforward. Also allows to obtain Compactness,
Lowenheim-Skolem, etc. from FOL.
® Deductive part fairly tedious to mechanize (not finished yet)

Overall, the Bachelor's project contributes the first mechanization of SOL,
including:

® Categoricity of PA,
® Undecidability and incompleteness for standard semantics

11

Conclusion

Theorem (Completeness)

For closed ¢ and 7 without function quantifiers and variables it holds that

T':2g0—>T|—2g0.

® Semantic reduction straightforward. Also allows to obtain Compactness,
Lowenheim-Skolem, etc. from FOL.
® Deductive part fairly tedious to mechanize (not finished yet)

Overall, the Bachelor's project contributes the first mechanization of SOL,
including:

® Categoricity of PA,
® Undecidability and incompleteness for standard semantics

@® Reduction to mono-sorted FOL and completeness for Henkin semantics
11

References

Forster, Y., Kirst, D., and Wehr, D. (2021).

Completeness theorems for first-order logic analysed in constructive type theory:
Extended version.

Journal of Logic and Computation, 31(1):112-151.

Nour, K. and Raffalli, C. (2003).

Simple proof of the completeness theorem for second-order classical and intuitionistic
logic by reduction to first-order mono-sorted logic.

Theoretical computer science, 308(1-3):227-237.

Shapiro, S. (1991).

Foundations without foundationalism: A case for second-order logic, volume 17.
Clarendon Press.

Van Dalen, D. (1994).

Logic and structure, volume 3.

Springer.

12

Coq mechanization

Overview | LOC

Utility | 300

Syntax & Substitutions | 900

Tarski Semantics | 1000

Deduction System | 900
PA & Categoricity | 1200

Undec. & Incompleteness | 400

Henkin Semantics 200
FOL Reduction | 1300

Total | 6200

	Appendix

