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Recap

Second-order logic is incomplete
i.e. there is no deduction system that is complete, sound and enumerable

(for standard semantics)

A[↑np] `2 ϕ
A `2 ∀̇np ϕ

AIp
A `2 ∀̇np ϕ
A `2 ϕ[P]

AEp

A `2 ϕ[P]

A `2 ∃̇np ϕ
EIp

A `2 ∃̇np ϕ A[ ↑np ], ϕ `2 ψ[ ↑np ]

A `2 ψ
EEp

A `2 ∃̇np P. ∀̇x1...xn.P(x1, ..., x2) ↔̇ ϕ[ ↑np ]
Comprp

`2 is incomplete, i.e. ¬∀Aϕ.A �2 ϕ→ A `2 ϕ.
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Henkin Semantics

However, `2 is complete if one switches to Henkin semantics!

Before: ∃̇np P. ϕ ∼ There exists a predicate P such that ϕ holds.

Now: ∃̇np P. ϕ ∼ There exists a predicate P in Pn such that ϕ holds.

Definition (Henkin Semantics)

A Henkin model H specifies a set of relations Pn : (Dn → Prop) → Prop
that constrain the predicates that are quantified over, i.e

H �ρ ∃̇np ϕ := ∃PDn→Prop.Pn P ∧H �P·ρ ϕ.

Pn should satisfy comprehension, i.e. it must at least contain all second-
order definable properties.

Functions are constrained in the same way via a relation Fn.
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Henkin Semantics

A Henkin model is equivalent to a standard model if F and P contain
everything.

Henkin semantics allow to recover much of the first-order model theory.
We are most interested in completeness.

The usual Henkin style completeness proof would work [Shapiro, 1991],
but we want to use a different approach:

SOL with Henkin semantics reduces to (mono-sorted) FOL.
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Translation

∀x . ∃2p P.P(x , x)

Many-sorted (easy):

∀xI .∃pP2 . predApp2(p, x , x)

Mono-sorted:

∀x . isIndi(x)→ ∃p. isPred2(p) ∧ predApp2(p, x , x)

“Tedious but routine job” to verify mono-sorted reduction for deduction system
according to textbook [Van Dalen, 1994].

More difficult than it seems. Nour and Raffalli “do not know how to end his

proof” [Nour and Raffalli, 2003]. They propose a simpler reduction:

∀x .∃p. predApp2(p, x , x)

⇒ x and p represent individual, function, and predicate at the same time!

Define translation function _? : form2(Σ)→ form1(Σ+).
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Henkin to First-Order Model

Convert Henkin model H to first-order modelM:

DH FH PH

DM

p

x

x0 f 20 p20

H � ϕ ↔ M � ϕ? for all closed ϕ
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First-Order to Henkin Model

Convert first-order modelM to Henkin model H:

DH := DM

Pn P := ∃p. ∀x1...xn.P (x1, ..., xn) ↔ predAppMn (p, x1, ..., x2)

For standard semantics, every predicate would need to be included. But
we have no guarantee thatM contains all predicates.

Pn must have comprehension. This holds ifM has comprehension.
⇒ Encode this requirement in a theory C.

M � C → (H � ϕ ↔ M � ϕ?) for all closed ϕ
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Reduction

Theorem

We can reduce Henkin validity to first-order validity. For closed second-order
formulas ϕ and theories T it holds that

T �2 ϕ ↔ T ?, C �1 ϕ
?.

This suffices to show that there exists a sound, complete and enumerable
deduction system for SOL. Simply define

T `′2 ϕ := T ?, C `1 ϕ?

But we want to show our ND system `2 complete. This is the hard part:

T ?, C `1 ϕ? → T `2 ϕ

From this point on, we only work in the SOL fragment without
function quantifiers and variables!

8
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Backwards Translation

Define a backwards translation _� : form1(Σ+)→ form2(Σ) .

For example

(

∀x . predApp0(x) ∧̇ predApp1(x , x)

)�

||

∀xi .∀0p x0p .∀1p x1p .

x0p ∧̇ x1p (xi)

(predApp1(f (x), y))� = Err1(yi)

Special error symbol if first argument is not a variable
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Completeness

Lemma

1. A `1 ϕ → A� `

err

2 ϕ�

2. `2 ϕ?� ↔̇ ϕ

T �2 ϕ T ?, C �1 ϕ
?

T ?, C `1 ϕ? T ?�, C� `

err

2 ϕ?�

T ?�, C� `2 ϕ?� T , C� `2 ϕ T `2 ϕ

FOL Completeness
[Forster et al., 2021] MP/LEM

(1)

Remove error symbol
using comprehension

(2)

`2 proves
comprehension

Error symbol can occur in this derivation!
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Conclusion

Theorem (Completeness)

For closed ϕ and T without function quantifiers and variables it holds that

T �2 ϕ→ T `2 ϕ.

Semantic reduction straightforward. Also allows to obtain Compactness,
Löwenheim-Skolem, etc. from FOL.
Deductive part fairly tedious to mechanize (not finished yet)

Overall, the Bachelor’s project contributes the first mechanization of SOL,
including:

Categoricity of PA2

Undecidability and incompleteness for standard semantics
Reduction to mono-sorted FOL and completeness for Henkin semantics
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Coq mechanization

Overview LOC

Utility 300

Syntax & Substitutions 900

Tarski Semantics 1000

Deduction System 900

PA & Categoricity 1200

Undec. & Incompleteness 400

Henkin Semantics 200

FOL Reduction 1300

Total 6200
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