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Second-order logic is incomplete

i.e. there is no deduction system that is complete, sound and enumerable
(for standard semantics)
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However, i, is complete if one switches to Henkin semantics!

Before: EIZ P.p ~ There exists a predicate P such that ¢ holds.
Now: élg P.p ~ There exists a predicate P in [P, such that ¢ holds.

Definition (Henkin Semantics)

A Henkin model H specifies a set of relations P, : (D" — Prop) — Prop
that constrain the predicates that are quantified over, i.e

HE, W = IPP"7PP P P AH Ep, .

P, should satisfy comprehension, i.e. it must at least contain all second-

order definable properties.

Functions are constrained in the same way via a relation F,.
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Henkin Semantics

® A Henkin model is equivalent to a standard model if F and P contain
everything.

® Henkin semantics allow to recover much of the first-order model theory.
We are most interested in completeness.

® The usual Henkin style completeness proof would work [Shapiro, 1991],
but we want to use a different approach:

SOL with Henkin semantics reduces to (mono-sorted) FOL.
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Translation

Vx. 32 P. P(x,x)

Many-sorted (easy): Mono-sorted:

vx.3p"2. predApp,(p, X, x) Wx-istadi{x ) —TIp-isPreda{p)-A-predAppa{prxx)

@ “Tedious but routine job"” to verify mono-sorted reduction for deduction system
according to textbook [Van Dalen, 1994].

@ More difficult than it seems. Nour and Raffalli “do not know how to end his

proof” [Nour and Raffalli, 2003]. They propose a simpler reduction:
Vx. 3p. predApp,(p, x, x)
= x and p represent individual, function, and predicate at the same time!

Define translation function * : formy(X) — form; (X4 ).
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First-Order to Henkin Model

Convert first-order model M to Henkin model H:

® Dy = D

® P, P := 3p.Vx1..%0. P(x1,..., %) < predAppf,Vl (py X1, -0y X2)

For standard semantics, every predicate would need to be included. But
we have no guarantee that M contains all predicates.

® P, must have comprehension. This holds if M has comprehension.

= Encode this requirement in a theory C.

MEC — (HE¢ < ME¢*) forall closed ¢
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Theorem

We can reduce Henkin validity to first-order validity. For closed second-order
formulas ¢ and theories T it holds that

T'ZQ © T*,C ':1 QD*.

This suffices to show that there exists a sound, complete and enumerable
deduction system for SOL. Simply define

TrHye = THCh1 ¢*
But we want to show our ND system 5 complete. This is the hard part:
T*7C =t ] (p* = Tk ©

From this point on, we only work in the SOL fragment without
function quantifiers and variables!
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Backwards Translation

Define a backwards translation _©: formi(X) — forma(Zer) . For example

(Vx. predAppg(x) A predApp;(x, x))°

0 (0 gl 1 0 A Iy
V. Vo X0 Y5 x5 X A X (i)

(predApp1(f(x),y))® = Erri(y:)

Special error symbol if first argument is not a variable
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Lemma

1. AF1 o — A°HST ¢° 2. Fo &

TEyp «—— T*CF1o*

FOL Completeness Error symbol can occur in this derivation!

[Forster et al., 2021] MP/LEM -7

7'*7 C '71 SD* (1) ’7'*0760 |_<2err/(p*<>

-~

Remove error symbol
using comprehension

2
T+ C2 by *° @) T,CoF2 0
2 proves

comprehension

T"z(p
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Conclusion

Theorem (Completeness)

For closed ¢ and 7 without function quantifiers and variables it holds that

T':2g0—>T|—2g0.

® Semantic reduction straightforward. Also allows to obtain Compactness,
Lowenheim-Skolem, etc. from FOL.
® Deductive part fairly tedious to mechanize (not finished yet)

Overall, the Bachelor's project contributes the first mechanization of SOL,
including:

® Categoricity of PA,
® Undecidability and incompleteness for standard semantics

@® Reduction to mono-sorted FOL and completeness for Henkin semantics
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Coq mechanization

Overview | LOC

Utility | 300

Syntax & Substitutions | 900

Tarski Semantics | 1000

Deduction System | 900
PA & Categoricity | 1200

Undec. & Incompleteness | 400

Henkin Semantics 200
FOL Reduction | 1300

Total | 6200
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