Completeness of Second-Order Logic for Henkin Semantics
 Second Bachelor Seminar Talk

Mark Koch

Advisor: Dominik Kirst
Supervisor: Gert Smolka

July 5, 2021
Saarland University, Programming Systems Lab

Recap

Second-order logic is incomplete

i.e. there is no deduction system that is complete, sound and enumerable

Second-order logic is incomplete

i.e. there is no deduction system that is complete, sound and enumerable

$$
\begin{gathered}
\frac{A\left[\uparrow_{p}^{n}\right] \vdash_{2} \varphi}{A \vdash_{2} \dot{\forall}_{p}^{n} \varphi} \mathrm{Al} \\
\frac{A \vdash_{\mathrm{p}} \varphi[P]}{A \vdash_{2} \dot{\exists}_{p}^{n} \varphi} \mathrm{El}_{\mathrm{p}}
\end{gathered} \frac{A \vdash_{2} \dot{\forall}_{p}^{n} \varphi}{A \vdash_{2} \varphi[P]} \mathrm{AE}
$$

Second-order logic is incomplete

i.e. there is no deduction system that is complete, sound and enumerable

$$
\begin{gathered}
\frac{A\left[\uparrow_{p}^{n}\right] \vdash_{2} \varphi}{A \vdash_{2} \dot{\forall}_{p}^{n} \varphi} \mathrm{Al} \\
\frac{A \vdash_{2} \varphi[P]}{A \vdash_{2} \dot{\exists}_{p}^{n} \varphi} \mathrm{El}_{p} \quad \frac{A \vdash_{2} \dot{\forall}_{p}^{n} \varphi}{A \vdash_{2} \varphi[P]} \mathrm{AE} \\
\frac{A \vdash_{2} \dot{\exists}_{p}^{n} \varphi}{A \vdash_{2} \dot{\exists}_{p}^{n} P \cdot \dot{\forall} x_{1} \ldots x_{n} . P\left(x_{1}, \ldots, x_{2}\right) \dot{\leftrightarrow} \varphi\left[\uparrow_{p}^{n}\right]} \\
A \vdash_{2} \psi \\
\mathrm{Compr}_{p}
\end{gathered}
$$

Second-order logic is incomplete

i.e. there is no deduction system that is complete, sound and enumerable

$$
\begin{gathered}
\frac{A\left[\uparrow_{p}^{n}\right] \vdash_{2} \varphi}{A \vdash_{2} \dot{\forall}_{p}^{n} \varphi} A I_{p} \frac{A \vdash_{2} \dot{\forall}_{p}^{n} \varphi}{A \vdash_{2} \varphi[P]} \mathrm{AE} \\
\frac{A \vdash_{2} \varphi[P]}{A \vdash_{2} \dot{\exists}_{p}^{n} \varphi} \mathrm{El}_{\mathrm{p}} \quad \frac{A \vdash_{2} \dot{\exists}_{p}^{n} \varphi}{A\left[\uparrow_{p}^{n}\right], \varphi \vdash_{2} \psi\left[\uparrow_{p}^{n}\right]} \\
\frac{A \vdash_{2} \psi}{A \vdash_{2} \dot{\exists}_{p}^{n} P . \dot{\forall} x_{1} \ldots x_{n} . P\left(x_{1}, \ldots, x_{2}\right) \dot{\leftrightarrow} \varphi\left[\uparrow_{p}^{n}\right]} \text { Compr }_{p} \\
\vdash_{2} \text { is incomplete, i.e. } \neg \forall A \varphi \cdot A \vdash_{2} \varphi \rightarrow A \vdash_{2} \varphi .
\end{gathered}
$$

Recap

Second-order logic is incomplete

i.e. there is no deduction system that is complete, sound and enumerable (for standard semantics)

$$
\begin{gathered}
\frac{A\left[\uparrow_{p}^{n}\right] \vdash_{2} \varphi}{A \vdash_{2} \dot{\forall}_{p}^{n} \varphi} \mathrm{AI} \\
\frac{A \vdash_{2} \varphi[P]}{A \vdash_{2} \dot{\exists}_{p}^{n} \varphi} \mathrm{El}_{\mathrm{p}} \quad \frac{A \vdash_{2} \dot{\forall}_{p}^{n} \varphi}{A \vdash_{2} \varphi[P]} \mathrm{AE} \\
\frac{A \vdash_{2} \dot{\exists}_{p}^{n} \varphi}{A \vdash_{2} \dot{\exists}_{p}^{n} P \cdot \dot{\forall} x_{1} \ldots x_{n} . P\left(x_{1}, \ldots, x_{2}\right) \dot{\leftrightarrow} \varphi\left[\uparrow_{p}^{n}\right]} \\
A \vdash_{2}^{n} \psi, \varphi \vdash_{2} \psi\left[\uparrow_{p}^{n}\right] \\
\mathrm{CE}_{\mathrm{p}}
\end{gathered}
$$

\vdash_{2} is incomplete (for standard semantics), i.e. $\neg \forall A \varphi . A \vDash_{2} \varphi \rightarrow A \vdash_{2} \varphi$.

Henkin Semantics

However, \vdash_{2} is complete if one switches to Henkin semantics!

Henkin Semantics

However, \vdash_{2} is complete if one switches to Henkin semantics! Before: $\exists_{\rho}^{n} P . \varphi \sim$ There exists a predicate P such that φ holds.

Henkin Semantics

However, \vdash_{2} is complete if one switches to Henkin semantics!
Before: $\exists_{\rho}^{n} P . \varphi \sim$ There exists a predicate P such that φ holds. Now: $\quad \dot{\exists}_{p}^{n} P . \varphi \sim$ There exists a predicate P in \mathbb{P}_{n} such that φ holds.

Henkin Semantics

However, \vdash_{2} is complete if one switches to Henkin semantics!
Before: $\dot{\exists}_{p}^{n} P . \varphi \sim$ There exists a predicate P such that φ holds.
Now: $\quad \dot{\exists}_{p}^{n} P . \varphi \sim$ There exists a predicate P in \mathbb{P}_{n} such that φ holds.

Definition (Henkin Semantics)

A Henkin model \mathcal{H} specifies a set of relations $\mathbb{P}_{n}:\left(D^{n} \rightarrow\right.$ Prop $) \rightarrow$ Prop

Henkin Semantics

However, \vdash_{2} is complete if one switches to Henkin semantics!
Before: $\dot{\exists}_{p}^{n} P . \varphi \sim$ There exists a predicate P such that φ holds.
Now: $\quad \dot{\exists}_{p}^{n} P . \varphi \sim$ There exists a predicate P in \mathbb{P}_{n} such that φ holds.

Definition (Henkin Semantics)

A Henkin model \mathcal{H} specifies a set of relations $\mathbb{P}_{n}:\left(D^{n} \rightarrow\right.$ Prop $) \rightarrow$ Prop that constrain the predicates that are quantified over, i.e

$$
\mathcal{H} \vDash_{\rho} \dot{\exists}_{p}^{n} \varphi:=\exists P^{D^{n} \rightarrow \text { Prop } .} \mathbb{P}_{n} P \wedge \mathcal{H} \vDash_{p . \rho} \varphi .
$$

Henkin Semantics

However, \vdash_{2} is complete if one switches to Henkin semantics!
Before: $\dot{\exists}_{p}^{n} P . \varphi \sim$ There exists a predicate P such that φ holds.
Now: $\quad \dot{\exists}_{p}^{n} P . \varphi \sim$ There exists a predicate P in \mathbb{P}_{n} such that φ holds.

Definition (Henkin Semantics)

A Henkin model \mathcal{H} specifies a set of relations $\mathbb{P}_{n}:\left(D^{n} \rightarrow\right.$ Prop $) \rightarrow$ Prop that constrain the predicates that are quantified over, i.e

$$
\mathcal{H} \vDash_{\rho} \dot{\exists}_{p}^{n} \varphi:=\exists P^{D^{n} \rightarrow \text { Prop } . \mathbb{P}_{n} P \wedge \mathcal{H} \vDash_{P . \rho} \varphi . . . ~}
$$

\mathbb{P}_{n} should satisfy comprehension, i.e. it must at least contain all secondorder definable properties.

Henkin Semantics

However, \vdash_{2} is complete if one switches to Henkin semantics!
Before: $\dot{\exists}_{p}^{n} P . \varphi \sim$ There exists a predicate P such that φ holds.
Now: $\quad \dot{\exists}_{p}^{n} P . \varphi \sim$ There exists a predicate P in \mathbb{P}_{n} such that φ holds.

Definition (Henkin Semantics)

A Henkin model \mathcal{H} specifies a set of relations $\mathbb{P}_{n}:\left(D^{n} \rightarrow\right.$ Prop $) \rightarrow$ Prop that constrain the predicates that are quantified over, i.e

$$
\mathcal{H} \vDash_{\rho} \dot{\exists}_{p}^{n} \varphi:=\exists P^{D^{n} \rightarrow \text { Prop } . \mathbb{P}_{n} P \wedge \mathcal{H} \vDash_{P . \rho} \varphi . . . ~}
$$

\mathbb{P}_{n} should satisfy comprehension, i.e. it must at least contain all secondorder definable properties.

Functions are constrained in the same way via a relation \mathbb{F}_{n}.

Henkin Semantics

- A Henkin model is equivalent to a standard model if \mathbb{F} and \mathbb{P} contain everything.

Henkin Semantics

- A Henkin model is equivalent to a standard model if \mathbb{F} and \mathbb{P} contain everything.
- Henkin semantics allow to recover much of the first-order model theory. We are most interested in completeness.

Henkin Semantics

- A Henkin model is equivalent to a standard model if \mathbb{F} and \mathbb{P} contain everything.
- Henkin semantics allow to recover much of the first-order model theory. We are most interested in completeness.
- The usual Henkin style completeness proof would work [Shapiro, 1991], but we want to use a different approach:

Henkin Semantics

- A Henkin model is equivalent to a standard model if \mathbb{F} and \mathbb{P} contain everything.
- Henkin semantics allow to recover much of the first-order model theory. We are most interested in completeness.
- The usual Henkin style completeness proof would work [Shapiro, 1991], but we want to use a different approach:

SOL with Henkin semantics reduces to (mono-sorted) FOL.

$$
\forall x . \exists_{p}^{2} P . P(x, x)
$$

Translation

$$
\forall x . \exists_{p}^{2} P . P(x, x)
$$

Many-sorted (easy):

$$
\forall x^{\mathcal{I}} \cdot \exists p^{\mathcal{P}_{2}} \cdot \operatorname{predApp}_{2}(p, x, x)
$$

Translation

$$
\forall x . \exists_{p}^{2} P . P(x, x)
$$

Many-sorted (easy):
$\forall x^{\mathcal{I}} . \exists p^{\mathcal{P}_{2}} . \operatorname{predApp}_{2}(p, x, x)$

Mono-sorted:
$\forall x . \operatorname{isIndi}(x) \rightarrow \exists p . \operatorname{isPred}_{2}(p) \wedge \operatorname{predApp}_{2}(p, x, x)$

Translation

$$
\forall x . \exists_{p}^{2} P . P(x, x)
$$

Many-sorted (easy):
Mono-sorted:

$$
\forall x^{\mathcal{I}} \cdot \exists p^{\mathcal{P}_{2}} \cdot \operatorname{predApp}_{2}(p, x, x) \quad \forall x \cdot \operatorname{isIndi}(x) \rightarrow \exists p . \operatorname{isPred}_{2}(p) \wedge \operatorname{predApp}_{2}(p, x, x)
$$

- "Tedious but routine job" to verify mono-sorted reduction for deduction system according to textbook [Van Dalen, 1994].

Translation

$$
\forall x . \exists_{p}^{2} P . P(x, x)
$$

Many-sorted (easy):
Mono-sorted:
$\forall x^{\mathcal{I}} . \exists p^{\mathcal{P}_{2}} \cdot \operatorname{predApp}_{2}(p, x, x) \quad \forall x . \operatorname{isIndi}(x) \rightarrow \exists p . \operatorname{isPred}_{2}(p) \wedge \operatorname{predApp}_{2}(p, x, x)$

- "Tedious but routine job" to verify mono-sorted reduction for deduction system according to textbook [Van Dalen, 1994].
- More difficult than it seems. Nour and Raffalli "do not know how to end his proof" [Nour and Raffalli, 2003].

Translation

$$
\forall x . \exists_{p}^{2} P . P(x, x)
$$

Many-sorted (easy):

$$
\forall x^{\mathcal{I}} \cdot \exists p^{\mathcal{P}_{2}} \cdot \operatorname{predApp}_{2}(p, x, x)
$$

Mono-sorted:
$\forall x$. isIndi $(x) \longrightarrow \exists p$. isPred $_{2}(p) \wedge \operatorname{predApp}_{2}(p, x, x)$

- "Tedious but routine job" to verify mono-sorted reduction for deduction system according to textbook [Van Dalen, 1994].
- More difficult than it seems. Nour and Raffalli "do not know how to end his proof" [Nour and Raffalli, 2003]. They propose a simpler reduction:

$$
\forall x . \exists p . \operatorname{predApp}_{2}(p, x, x)
$$

Translation

$$
\forall x . \exists_{p}^{2} P . P(x, x)
$$

$$
\begin{array}{cc}
\text { Many-sorted (easy): } & \text { Mono-sorted: } \\
\forall x^{\mathcal{I}} \cdot \exists p^{\mathcal{P}_{2}} \cdot \operatorname{predApp}_{2}(p, x, x) & \forall x . \text { isIndi }(x) \longrightarrow \exists p . \text { isPred }_{2}(p) \wedge \operatorname{predApp}_{2}(p, x, x)
\end{array}
$$

- "Tedious but routine job" to verify mono-sorted reduction for deduction system according to textbook [Van Dalen, 1994].
- More difficult than it seems. Nour and Raffalli "do not know how to end his proof" [Nour and Raffalli, 2003]. They propose a simpler reduction:

$$
\forall x . \exists p . \operatorname{predApp}_{2}(p, x, x)
$$

$\Rightarrow x$ and p represent individual, function, and predicate at the same time!

Translation

$$
\forall x . \exists_{p}^{2} P . P(x, x)
$$

$$
\begin{array}{cr}
\text { Many-sorted (easy): } & \text { Mono-sorted: } \\
\forall x^{\mathcal{I}} \cdot \exists p^{\mathcal{P}_{2}} \cdot \operatorname{predApp}_{2}(p, x, x) & \forall x . \text { islndi }(x) \longrightarrow \exists p . \text { isPred }_{2}(p) /
\end{array}
$$

- "Tedious but routine job" to verify mono-sorted reduction for deduction system according to textbook [Van Dalen, 1994].
- More difficult than it seems. Nour and Raffalli "do not know how to end his proof" [Nour and Raffalli, 2003]. They propose a simpler reduction:

$$
\forall x . \exists p . \operatorname{predApp}_{2}(p, x, x)
$$

$\Rightarrow x$ and p represent individual, function, and predicate at the same time!
Define translation function ${ }^{*}:$ form $_{2}(\Sigma) \rightarrow$ form $_{1}\left(\Sigma_{+}\right)$.

Henkin to First-Order Model

Convert Henkin model \mathcal{H} to first-order model \mathcal{M} :

Henkin to First-Order Model

Convert Henkin model \mathcal{H} to first-order model \mathcal{M} :

Henkin to First-Order Model

Convert Henkin model \mathcal{H} to first-order model \mathcal{M} :

Henkin to First-Order Model

Convert Henkin model \mathcal{H} to first-order model \mathcal{M} :

Henkin to First-Order Model

Convert Henkin model \mathcal{H} to first-order model \mathcal{M} :

Henkin to First-Order Model

Convert Henkin model \mathcal{H} to first-order model \mathcal{M} :

Henkin to First-Order Model

Convert Henkin model \mathcal{H} to first-order model \mathcal{M} :

Henkin to First-Order Model

Convert Henkin model \mathcal{H} to first-order model \mathcal{M} :

Henkin to First-Order Model

Convert Henkin model \mathcal{H} to first-order model \mathcal{M} :

Henkin to First-Order Model

Convert Henkin model \mathcal{H} to first-order model \mathcal{M} :

First-Order to Henkin Model

Convert first-order model \mathcal{M} to Henkin model \mathcal{H} :

First-Order to Henkin Model

Convert first-order model \mathcal{M} to Henkin model \mathcal{H} :

- $D_{\mathcal{H}}:=D_{\mathcal{M}}$

First-Order to Henkin Model

Convert first-order model \mathcal{M} to Henkin model \mathcal{H} :

- $D_{\mathcal{H}}:=D_{\mathcal{M}}$

○ $\mathbb{P}_{n} P:=\exists p . \forall x_{1} \ldots x_{n} . P\left(x_{1}, \ldots, x_{n}\right) \leftrightarrow \operatorname{predApp}_{n}^{\mathcal{M}}\left(p, x_{1}, \ldots, x_{2}\right)$

First-Order to Henkin Model

Convert first-order model \mathcal{M} to Henkin model \mathcal{H} :

- $D_{\mathcal{H}}:=D_{\mathcal{M}}$

○ $\mathbb{P}_{n} P:=\exists p . \forall x_{1} \ldots x_{n} . P\left(x_{1}, \ldots, x_{n}\right) \leftrightarrow \operatorname{predApp}_{n}^{\mathcal{M}}\left(p, x_{1}, \ldots, x_{2}\right)$
For standard semantics, every predicate would need to be included. But we have no guarantee that \mathcal{M} contains all predicates.

First-Order to Henkin Model

Convert first-order model \mathcal{M} to Henkin model \mathcal{H} :

- $D_{\mathcal{H}}:=D_{\mathcal{M}}$
- $\mathbb{P}_{n} P:=\exists p . \forall x_{1} \ldots x_{n} . P\left(x_{1}, \ldots, x_{n}\right) \leftrightarrow \operatorname{predApp}_{n}^{\mathcal{M}}\left(p, x_{1}, \ldots, x_{2}\right)$

For standard semantics, every predicate would need to be included. But we have no guarantee that \mathcal{M} contains all predicates.

- \mathbb{P}_{n} must have comprehension.

First-Order to Henkin Model

Convert first-order model \mathcal{M} to Henkin model \mathcal{H} :

- $D_{\mathcal{H}}:=D_{\mathcal{M}}$
- $\mathbb{P}_{n} P:=\exists p . \forall x_{1} \ldots x_{n} . P\left(x_{1}, \ldots, x_{n}\right) \leftrightarrow \operatorname{predApp}_{n}^{\mathcal{M}}\left(p, x_{1}, \ldots, x_{2}\right)$

For standard semantics, every predicate would need to be included. But we have no guarantee that \mathcal{M} contains all predicates.

- \mathbb{P}_{n} must have comprehension. This holds if \mathcal{M} has comprehension.

First-Order to Henkin Model

Convert first-order model \mathcal{M} to Henkin model \mathcal{H} :

- $D_{\mathcal{H}}:=D_{\mathcal{M}}$
- $\mathbb{P}_{n} P:=\exists p . \forall x_{1} \ldots x_{n} . P\left(x_{1}, \ldots, x_{n}\right) \leftrightarrow \operatorname{predApp}_{n}^{\mathcal{M}}\left(p, x_{1}, \ldots, x_{2}\right)$

For standard semantics, every predicate would need to be included. But we have no guarantee that \mathcal{M} contains all predicates.

- \mathbb{P}_{n} must have comprehension. This holds if \mathcal{M} has comprehension. \Rightarrow Encode this requirement in a theory \mathcal{C}.

First-Order to Henkin Model

Convert first-order model \mathcal{M} to Henkin model \mathcal{H} :

- $D_{\mathcal{H}}:=D_{\mathcal{M}}$
- $\mathbb{P}_{n} P:=\exists p . \forall x_{1} \ldots x_{n} . P\left(x_{1}, \ldots, x_{n}\right) \leftrightarrow \operatorname{predApp}_{n}^{\mathcal{M}}\left(p, x_{1}, \ldots, x_{2}\right)$

For standard semantics, every predicate would need to be included. But we have no guarantee that \mathcal{M} contains all predicates.

- \mathbb{P}_{n} must have comprehension. This holds if \mathcal{M} has comprehension.
\Rightarrow Encode this requirement in a theory \mathcal{C}.

$$
\mathcal{M} \vDash \mathcal{C} \rightarrow\left(\mathcal{H} \vDash \varphi \leftrightarrow \mathcal{M} \vDash \varphi^{\star}\right) \quad \text { for all closed } \varphi
$$

Theorem

We can reduce Henkin validity to first-order validity. For closed second-order formulas φ and theories \mathcal{T} it holds that

$$
\mathcal{T} \vDash_{2} \varphi \leftrightarrow \mathcal{T}^{\star}, \mathcal{C} \vDash_{1} \varphi^{\star} .
$$

Reduction

Theorem

We can reduce Henkin validity to first-order validity. For closed second-order formulas φ and theories \mathcal{T} it holds that

$$
\mathcal{T} \vDash_{2} \varphi \leftrightarrow \mathcal{T}^{\star}, \mathcal{C} \vDash_{1} \varphi^{\star}
$$

This suffices to show that there exists a sound, complete and enumerable deduction system for SOL. Simply define

$$
\mathcal{T} \vdash_{2}^{\prime} \varphi:=\mathcal{T}^{\star}, \mathcal{C} \vdash_{1} \varphi^{\star}
$$

Reduction

Theorem

We can reduce Henkin validity to first-order validity. For closed second-order formulas φ and theories \mathcal{T} it holds that

$$
\mathcal{T} \vDash_{2 \varphi} \leftrightarrow \mathcal{T}^{\star}, \mathcal{C} \vDash_{1} \varphi^{\star}
$$

This suffices to show that there exists a sound, complete and enumerable deduction system for SOL. Simply define

$$
\mathcal{T} \vdash_{2}^{\prime} \varphi:=\mathcal{T}^{\star}, \mathcal{C} \vdash_{1} \varphi^{\star}
$$

But we want to show our ND system \vdash_{2} complete. This is the hard part:

$$
\mathcal{T}^{\star}, \mathcal{C} \vdash_{1} \varphi^{\star} \rightarrow \mathcal{T} \vdash_{2} \varphi
$$

Reduction

Theorem

We can reduce Henkin validity to first-order validity. For closed second-order formulas φ and theories \mathcal{T} it holds that

$$
\mathcal{T} \vDash_{2} \varphi \leftrightarrow \mathcal{T}^{\star}, \mathcal{C} \vDash_{1} \varphi^{\star} .
$$

This suffices to show that there exists a sound, complete and enumerable deduction system for SOL. Simply define

$$
\mathcal{T} \vdash_{2}^{\prime} \varphi:=\mathcal{T}^{\star}, \mathcal{C} \vdash_{1} \varphi^{\star}
$$

But we want to show our ND system \vdash_{2} complete. This is the hard part:

$$
\mathcal{T}^{\star}, \mathcal{C} \vdash_{1} \varphi^{\star} \rightarrow \mathcal{T} \vdash_{2} \varphi
$$

From this point on, we only work in the SOL fragment without function quantifiers and variables!

Backwards Translation

Define a backwards translation ${ }^{\circ}: \operatorname{form}_{1}\left(\Sigma_{+}\right) \rightarrow$ form $_{2}(\Sigma)$.

Backwards Translation

Define a backwards translation ${ }^{\circ}$: form ${ }_{1}\left(\Sigma_{+}\right) \rightarrow$ form $_{2}(\Sigma)$. For example

$$
\forall x \cdot \operatorname{predApp}_{0}(x) \dot{\wedge} \operatorname{predApp}_{1}(x, x)
$$

Backwards Translation

Define a backwards translation ${ }^{\circ}$: form $m_{1}\left(\Sigma_{+}\right) \rightarrow$ form $_{2}(\Sigma)$. For example
$\left(\forall x \cdot \operatorname{predApp}{ }_{0}(x) \dot{\wedge} \operatorname{predApp}_{1}(x, x)\right)^{\diamond}$
||

$$
x_{p}^{0} \dot{\wedge} x_{p}^{1}\left(x_{i}\right)
$$

Backwards Translation

Define a backwards translation ${ }^{\circ}$: form ${ }_{1}\left(\Sigma_{+}\right) \rightarrow$ form $_{2}(\Sigma)$. For example

$$
\begin{gathered}
\left(\forall x \cdot \operatorname{predApp}_{0}(x) \dot{\wedge} \operatorname{predApp}_{1}(x, x)\right)^{\diamond} \\
\| \\
\forall x_{i} \cdot \forall_{p}^{0} x_{p}^{0} \cdot \forall_{p}^{1} x_{p}^{1} \cdot x_{p}^{0} \dot{\wedge} x_{p}^{1}\left(x_{i}\right)
\end{gathered}
$$

Backwards Translation

Define a backwards translation ${ }^{\circ}$: form ${ }_{1}\left(\Sigma_{+}\right) \rightarrow$ form $_{2}(\Sigma)$. For example

$$
\begin{gathered}
\left(\forall x \cdot \operatorname{predApp}_{0}(x) \dot{\wedge} \operatorname{predApp}_{1}(x, x)\right)^{\diamond} \\
\| \\
\forall x_{i} \cdot \forall_{p}^{0} x_{p}^{0} \cdot \forall_{p}^{1} x_{p}^{1} \cdot x_{p}^{0} \dot{\wedge} x_{p}^{1}\left(x_{i}\right) \\
\left(\operatorname{predApp}_{1}(f(x), y)\right)^{\diamond}=
\end{gathered}
$$

Backwards Translation

Define a backwards translation ${ }_{-}^{\diamond}$: form ${ }_{1}\left(\Sigma_{+}\right) \rightarrow$ form $_{2}\left(\Sigma_{\text {err }}\right)$. For example

$$
\begin{gathered}
\left(\forall x \cdot \operatorname{predApp}_{0}(x) \dot{\wedge} \operatorname{predApp}_{1}(x, x)\right)^{\diamond} \\
\| \\
\forall x_{i} \cdot \forall_{p}^{0} x_{p}^{0} \cdot \forall_{p}^{1} x_{p}^{1} \cdot x_{p}^{0} \dot{\wedge} x_{p}^{1}\left(x_{i}\right) \\
\left(\operatorname{predApp}_{1}(f(x), y)\right)^{\diamond}=\operatorname{Err}_{1}\left(y_{i}\right)
\end{gathered}
$$

Special error symbol if first argument is not a variable

Completeness

Lemma

1. $A \vdash_{1} \varphi \rightarrow A^{\diamond} \vdash_{2} \varphi^{\diamond}$

Completeness

Lemma

1. $A \vdash_{1} \varphi \rightarrow A^{\diamond} \vdash_{2} \varphi^{\diamond}$
2. $\vdash_{2} \varphi^{\star \Delta} \dot{\leftrightarrow} \varphi$

Completeness

$$
\begin{aligned}
& \quad \frac{\text { Lemma }}{\text { 1. } A \vdash_{1} \varphi \rightarrow A^{\diamond} \vdash_{2} \varphi^{\diamond}} \quad \text { 2. } \vdash_{2} \varphi^{* \diamond} \dot{\leftrightarrow} \varphi \\
& \mathcal{T} \vDash_{2} \varphi
\end{aligned}
$$

Completeness

$$
\begin{gathered}
\frac{\text { Lemma }}{\text { 1. } A \vdash_{1} \varphi \rightarrow A^{\diamond} \vdash_{2} \varphi^{\diamond}} \quad \text { 2. } \vdash_{2} \varphi^{\star \diamond} \dot{\leftrightarrow} \varphi \\
\mathcal{T} \vDash_{2} \varphi \longleftrightarrow \mathcal{T}^{\star}, \mathcal{C} \vDash_{1} \varphi^{\star}
\end{gathered}
$$

Completeness

$$
\begin{gathered}
\frac{\text { Lemma }}{\text { 1. } A \vdash_{1} \varphi \rightarrow A^{\diamond} \vdash_{2} \varphi^{\diamond}} \quad \text { 2. } \vdash_{2} \varphi^{\star \diamond} \dot{\leftrightarrow} \varphi \\
\mathcal{T} \vDash_{2} \varphi \longleftrightarrow \mathcal{T}^{\star}, \mathcal{C} \vDash_{1} \varphi^{\star} \\
\left.\begin{array}{c}
\text { FOL Completeness } \\
\text { [Forster et al., 2021] }
\end{array}\right|_{\text {MP/LEM }} \\
\mathcal{T}^{\star}, \mathcal{C} \vdash_{1} \varphi^{\star}
\end{gathered}
$$

Completeness

$$
\begin{gathered}
\frac{\text { Lemma }}{\text { 1. } A \vdash_{1} \varphi \rightarrow A^{\diamond} \vdash_{2} \varphi^{\diamond}} \quad \text { 2. } \vdash_{2} \varphi^{\star \diamond} \leftrightarrow \varphi \\
\mathcal{T} \vDash_{2} \varphi \longleftrightarrow \mathcal{T}^{\star}, \mathcal{C} \vDash_{1} \varphi^{\star} \\
\left.\begin{array}{c}
\text { FOL Completeness } \\
\text { [Forster et al., 2021] }
\end{array}\right|_{\text {MP/LEM }} ^{\longleftrightarrow} \\
\mathcal{T}^{\star}, \mathcal{C} \vdash_{1} \varphi^{\star} \xrightarrow{(1)} \mathcal{T}^{\star \diamond}, \mathcal{C}^{\diamond} \vdash_{2} \varphi^{\star \diamond}
\end{gathered}
$$

Completeness

$$
\begin{gathered}
\frac{\text { Lemma }}{\text { 1. } A \vdash_{1} \varphi \rightarrow A^{\diamond} \vdash_{2}^{\text {err }} \varphi^{\diamond}} \quad \text { 2. } \vdash_{2} \varphi^{\star \diamond} \dot{\leftrightarrow} \varphi \\
\mathcal{T} \vDash_{2} \varphi \longleftrightarrow \mathcal{T}^{\star}, \mathcal{C} \vDash_{1} \varphi^{\star} \\
\begin{array}{c}
\text { FOL Completeness } \\
\text { [Forster et al., 2021] }
\end{array} \left\lvert\, \begin{array}{ll}
\text { MP/LEM } & \text { Error symbol can occur in this derivation! } \\
\mathcal{T}^{\star}, \mathcal{C} \vdash_{1} \varphi^{\star} \xrightarrow{(1)} \mathcal{T}^{\star \diamond}, \mathcal{C}^{\diamond} \vdash_{2}^{\text {err }} \varphi^{\star \diamond}
\end{array}\right.
\end{gathered}
$$

Completeness

$$
\begin{aligned}
& \text { Lemma } \\
& \text { 1. } A \vdash_{1} \varphi \rightarrow A^{\diamond} \vdash_{2}^{\text {err }} \varphi^{\diamond} \quad \text { 2. } \vdash_{2} \varphi^{* \diamond} \dot{\leftrightarrow} \varphi \\
& \mathcal{T} \vDash_{2} \varphi \longleftrightarrow \mathcal{T}^{\star}, \mathcal{C} \vDash_{1} \varphi^{\star} \\
& \text { FOL Completeness MP/LEM Error symbol can occur in this derivation! } \\
& \text { [Forster et al., 2021] } \\
& \mathcal{T}^{\star}, \mathcal{C} \vdash_{1} \varphi^{\star} \xrightarrow{(1)} \mathcal{T}^{\star \diamond}, \mathcal{C}^{\diamond} \vdash_{2}^{\mathrm{err}}{ }^{-} \varphi^{\star \diamond} \\
& \text { Remove error symbol } \\
& \text { using comprehension } \\
& \mathcal{T}^{\star \diamond}, \mathcal{C}^{\diamond} \vdash_{2} \varphi^{\star \diamond}
\end{aligned}
$$

Completeness

$$
\begin{aligned}
& \text { Lemma } \\
& \text { 1. } A \vdash_{1} \varphi \rightarrow A^{\diamond} \vdash_{2}^{\text {err }} \varphi^{\diamond} \quad \text { 2. } \vdash_{2} \varphi^{* \diamond} \dot{\leftrightarrow} \varphi \\
& \mathcal{T} \vDash_{2} \varphi \longleftrightarrow \mathcal{T}^{\star}, \mathcal{C} \vDash_{1} \varphi^{\star} \\
& \text { FOL Completeness } \quad \text { MP/LEM Error symbol can occur in this derivation! } \\
& \text { [Forster et al., 2021] } \\
& \mathcal{T}^{\star}, \mathcal{C} \vdash_{1} \varphi^{\star} \xrightarrow{(1)} \mathcal{T}^{\star \diamond}, \mathcal{C}^{\diamond} \vdash_{2}^{\mathrm{err}} \varphi^{\star} \varphi^{\star \diamond} \\
& \text { Remove error symbol } \\
& \text { using comprehension } \\
& \mathcal{T}^{\star \diamond}, \mathcal{C}^{\diamond} \vdash_{2} \varphi^{\star \diamond} \stackrel{(2)}{\longleftrightarrow} \mathcal{T}, \mathcal{C}^{\diamond} \vdash_{2 \varphi}
\end{aligned}
$$

Completeness

$$
\begin{aligned}
& \text { 2. } \vdash_{2} \varphi^{\star \Delta} \dot{\leftrightarrow} \varphi \\
& \mathcal{T} \vDash_{2} \varphi \longleftrightarrow \mathcal{T}^{\star}, \mathcal{C} \vDash_{1} \varphi^{\star} \\
& \text { FOL Completeness } \quad \text { MP/LEM Error symbol can occur in this derivation! } \\
& \text { [Forster et al., 2021] } \\
& \mathcal{T}^{\star}, \mathcal{C} \vdash_{1} \varphi^{\star} \xrightarrow{(1)} \mathcal{T}^{\star \diamond}, \mathcal{C}^{\diamond} \vdash_{2}^{\text {err }} \varphi^{\star \star} \\
& \text { Remove error symbol } \\
& \text { using comprehension } \\
& \mathcal{T} \star \diamond, \mathcal{C}^{\diamond} \vdash_{2} \varphi^{\star \diamond} \stackrel{(2)}{\longleftrightarrow} \mathcal{T}, \mathcal{C}^{\diamond} \vdash_{2} \varphi \underset{\begin{array}{c}
\vdash_{2} \text { proves } \\
\text { comprehension }
\end{array}}{ } \mathcal{T} \vdash_{2} \varphi
\end{aligned}
$$

Conclusion

Theorem (Completeness)

For closed φ and \mathcal{T} without function quantifiers and variables it holds that

$$
\mathcal{T} \vDash_{2} \varphi \rightarrow \mathcal{T} \vdash_{2} \varphi .
$$

Conclusion

Theorem (Completeness)

For closed φ and \mathcal{T} without function quantifiers and variables it holds that

$$
\mathcal{T} \vDash_{2} \varphi \rightarrow \mathcal{T} \vdash_{2} \varphi .
$$

- Semantic reduction straightforward. Also allows to obtain Compactness, Löwenheim-Skolem, etc. from FOL.

Conclusion

Theorem (Completeness)

For closed φ and \mathcal{T} without function quantifiers and variables it holds that

$$
\mathcal{T} \vDash_{2} \varphi \rightarrow \mathcal{T} \vdash_{2} \varphi .
$$

- Semantic reduction straightforward. Also allows to obtain Compactness, Löwenheim-Skolem, etc. from FOL.
- Deductive part fairly tedious to mechanize (not finished yet)

Conclusion

Theorem (Completeness)

For closed φ and \mathcal{T} without function quantifiers and variables it holds that

$$
\mathcal{T} \vDash_{2} \varphi \rightarrow \mathcal{T} \vdash_{2} \varphi .
$$

- Semantic reduction straightforward. Also allows to obtain Compactness, Löwenheim-Skolem, etc. from FOL.
- Deductive part fairly tedious to mechanize (not finished yet)

Overall, the Bachelor's project contributes the first mechanization of SOL, including:

Conclusion

Theorem (Completeness)

For closed φ and \mathcal{T} without function quantifiers and variables it holds that

$$
\mathcal{T} \vDash_{2} \varphi \rightarrow \mathcal{T} \vdash_{2} \varphi .
$$

- Semantic reduction straightforward. Also allows to obtain Compactness, Löwenheim-Skolem, etc. from FOL.
- Deductive part fairly tedious to mechanize (not finished yet)

Overall, the Bachelor's project contributes the first mechanization of SOL, including:

- Categoricity of PA_{2}

Conclusion

Theorem (Completeness)

For closed φ and \mathcal{T} without function quantifiers and variables it holds that

$$
\mathcal{T} \vDash_{2} \varphi \rightarrow \mathcal{T} \vdash_{2} \varphi .
$$

- Semantic reduction straightforward. Also allows to obtain Compactness, Löwenheim-Skolem, etc. from FOL.
- Deductive part fairly tedious to mechanize (not finished yet)

Overall, the Bachelor's project contributes the first mechanization of SOL, including:

- Categoricity of PA_{2}
- Undecidability and incompleteness for standard semantics

Conclusion

Theorem (Completeness)

For closed φ and \mathcal{T} without function quantifiers and variables it holds that

$$
\mathcal{T} \vDash_{2} \varphi \rightarrow \mathcal{T} \vdash_{2} \varphi .
$$

- Semantic reduction straightforward. Also allows to obtain Compactness, Löwenheim-Skolem, etc. from FOL.
- Deductive part fairly tedious to mechanize (not finished yet)

Overall, the Bachelor's project contributes the first mechanization of SOL, including:

- Categoricity of PA_{2}
- Undecidability and incompleteness for standard semantics
- Reduction to mono-sorted FOL and completeness for Henkin semantics

References i

Forster, Y., Kirst, D., and Wehr, D. (2021).
Completeness theorems for first-order logic analysed in constructive type theory: Extended version.
Journal of Logic and Computation, 31(1):112-151.
Nour, K. and Raffalli, C. (2003).
Simple proof of the completeness theorem for second-order classical and intuitionistic logic by reduction to first-order mono-sorted logic.
Theoretical computer science, 308(1-3):227-237.
Shapiro, S. (1991).
Foundations without foundationalism: A case for second-order logic, volume 17.
Clarendon Press.
Van Dalen, D. (1994).
Logic and structure, volume 3.
Springer.

Coq mechanization

Overview	LOC
Utility	300
Syntax \& Substitutions	900
Tarski Semantics	1000
Deduction System	900
PA \& Categoricity	1200
Undec. \& Incompleteness	400
Henkin Semantics	200
FOL Reduction	1300
Total	6200

