
Mechanizing Second-Order Logic in Coq

Final Bachelor Talk

Mark Koch
Advisor: Dominik Kirst
Supervisor: Gert Smolka

August 26, 2021

Saarland University, Programming Systems Lab

1



Introduction

First-order logic
Quantification over individuals:

∀x .∃y . y > x

Second-order logic
Quantification over individuals & their properties:

∀P.P(0)→ (∀x .P(x)→ P(x + 1))→ ∀x . P(x)

⇒ Drastically alters meta-behaviour!

Our goals:

Formalize meta-theoretical properties of SOL in Coq’s constructive type
theory and compare to FOL

Show that SOL with Henkin semantics reduces to FOL

Mechanize undecidability results for SOL
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Related work

We largely follow [Shapiro, 1991] and [Nour and Raffalli, 2003]

Mechanization based on FOL development in
[Kirst and Larchey-Wendling, 2020] among others

Synthetic undecidability and incompleteness of axiom systems by
[Kirst and Hermes, 2021]

Synthetic computability theory [Bauer, 2006, Forster et al., 2019a] as
employed in the Coq Library of Undecidability Proofs
[Forster et al., 2019b].
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Standard Tarski Semantics

Definition (Syntax)

t ::= xi | F t (F : Σf )

ϕ,ψ ::= ⊥̇ | P t | pni t | ϕ →̇ ψ | ϕ ∧̇ ψ | ϕ ∨̇ ψ (P : Σp)

| ∀̇ ϕ | ∃̇ ϕ | ∀̇np ϕ | ∃̇np ϕ (i , n : N)

Definition (Standard Tarski Semantics)

A model M consists of a domain D and interpretation I for function and
predicate symbols. Predicate quantifiers range over all properties on D:

ρ � ∀̇np ϕ := ∀PDn→Prop.P · ρ � ϕ
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Second-order Peano Arithmetic

Standard semantics can uniquely characterize the numbers via PA2:

Zero Addition : ∀̇x . 0 + x ≡ x

Addition Recursion : ∀̇xy . (Sx) + y ≡ S(x + y)

Disjointness : ∀̇x . 0 ≡ Sx →̇ ⊥̇

Equlity Reflexive : ∀̇x . x ≡ x

Zero Multiplication : ∀̇x . 0 · x ≡ 0

Multiplication Recursion : ∀̇xy . (Sx) · y ≡ y + x · y

Successor Injective : ∀̇xy . Sx ≡ Sy →̇ x ≡ y

Equlity Symmetric : ∀̇xy . x ≡ y →̇ y ≡ x

Induction : ∀̇P.P(0) →̇ (∀̇x .P(x) →̇ P(Sx)) →̇ ∀̇x .P(x)

Theorem (Categoricity)

All models of PA2 are isomorphic. We say that PA2 is categorical.
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Löwenheim-Skolem

Not possible for FOL because of upward Löwenheim-Skolem theorem:

“Every first-order theory with an infinite model has models
of every greater infinite cardinality.”

Theorem (Failure of SOL Upward Löwenheim-Skolem)

SOL with standard semantics does not have the upward Löwenheim-Skolem
property.

Failure of downwards direction via categoricity of second-order real analysis
[Shapiro, 1991] or set theory [Kirst and Smolka, 2017]
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Failure of Compactness

FOL is compact:

“T has a model if every finite subset of T has a model.”

Theorem (Failure of Compactness).

SOL is not compact for standard semantics.

Proof.

Consider the theory T 6= := PA2, x0 6= O, x0 6= S O, x0 6= S (S O), ...

Every finite subset of T6= has a model.

T 6= itself does not have a model. Otherwise, N would also need to be
a model because of categoricity which is not possible. �
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Infinitary Incompleteness

Theorem (Infinitary Incompleteness).

Every sound second-order deduction system ` : L(form)→ form→ Prop is
not infinitary complete.

Finitary Completeness: A � ϕ→ A ` ϕ

Lift ` to theories: T ` ϕ := ∃A.A ⊆fin T ∧ A ` ϕ

Infinitary Completeness: T � ϕ→ T ` ϕ
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Infinitary Incompleteness

Theorem (Infinitary Incompleteness).

Every sound second-order deduction system ` : L(form)→ form→ Prop is
not infinitary complete.

Proof.

Let ` be sound and infinitary complete.

Previous proof: There is no model of T6=. Thus

T 6= � ⊥̇
Complete−−−−−−−→ T 6= ` ⊥̇

Def−−−→ A ` ⊥̇
for some A ⊆fin T 6=

Sound−−−−−→ A � ⊥̇

But A ⊆fin T 6= has a model.
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Infinitary Incompleteness

Theorem (Infinitary Incompleteness).

Every sound second-order deduction system ` : L(form)→ form→ Prop is
not infinitary complete for decidable theories.

Proof.

Let ` be sound and infinitary complete.

Previous proof: There is no model of T6=. Thus
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Infinitary Incompleteness

Theorem (Infinitary Incompleteness).

Every sound second-order deduction system ` : L(form)→ form→ Prop is
not infinitary complete for decidable theories.

Remarkably simple and as far as we can tell not discussed in literature

No computability requirements on ` !

But does not rule out completeness for finite contexts:
The “system” A ` ϕ := A � ϕ is sound and finitary complete

⇒ For finitary incompleteness we need to be stricter on what constitutes
deduction: Enumerability of ` does the trick!

However requires much more involved proof!
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Finitary Incompleteness

Lemma

The set of closed first-order statements that hold in N is not enumerable

Proof Sketch.

Via Reduction from Hilbert’s tenth problem [Kirst and Hermes, 2021]

x + 2︸ ︷︷ ︸
p

= y2 + z︸ ︷︷ ︸
q

 ϕp,q := ∃̇xyz . x + S (S O) ≡ y · y + z

Enumerator for λϕ.N � ϕ would yield decider for H10 via Post’s theorem:

Enumerate H10 via N � ϕp,q.

Enumerate H10 via N � ¬̇ϕp,q.
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 ϕp,q := ∃̇xyz . x + S (S O) ≡ y · y + z

Enumerator for λϕ.N � ϕ would yield decider for H10 via Post’s theorem:

Enumerate H10 via N � ϕp,q.

Enumerate H10 via N � ¬̇ϕp,q.
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Undecidability

Theorem (Undecidability).

Validity and satisfiability in PA2 and in the empty signature is undecidable.

Proof Sketch.

p = q has a solution iff ϕp,q is valid / satisfiable in PA2.

p = q has a solution iff ∀̇ f0 fS f+ f× P≡.PA′2 →̇ ϕ′p,q is valid. �

Corollary (Non-Enumerability).

Those problems are also not enumerable under MP.
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Henkin Semantics

Instead of quantifying over all predicates, specify a universe U:

Definition (Henkin Semantics).

A Henkin model H specifies a set of relations Un : (Dn → Prop) → Prop
that constrain the predicates that are quantified over, i.e

ρ � ∃̇np ϕ := ∃PDn→Prop.Un P ∧ P · ρ � ϕ.

Un should satisfy comprehension, i.e. it must at least contain all second-
order definable properties.
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Reduction to FOL [Nour and Raffalli, 2003]

Turn ϕ into ϕ? by replacing predicate quantifiers with individual ones:

∀̇x . ∃̇P.P(x , x)  ∀̇x . ∃̇p.App2(p, x , x)

x and p represent individuals and predicates at the same time.

T �2 ϕ (T ∪ Comprehension)? �1 ϕ?

(T ∪ Comprehension)? `1 ϕ?T `2 ϕ

FOL completeness (LEM)
[Forster et al., 2021]Soundness (LEM)

LEM
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Compactness

Theorem

If FOL is compact, then so is SOL with Henkin semantics.

Proof Sketch.

Assume every finite A ⊆ T has a Henkin model. We want to show

T has Henkin model
↑

(T ∪ Comprehension)? has first-order model
↑

A?T ++ A?C ⊆ (T ∪ Comprehension)? has first-order model
↑

AT has Henkin model
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Löwenheim-Skolem

We combine upward and downward in one property: “Every theory with an
infinite model has models of every infinite cardinality.”

Theorem (Löwenheim-Skolem)

If FOL has the Löwenheim-Skolem property, then so has SOL with Henkin
semantics.

Proof.

Suppose T has an infinite Henkin model H. Then H? is an infinite model
of T ? and T ? has models of every infinite cardinality. Those can again be
converted into Henkin models of T .

⇒ No categorical axiomatization of N possible!
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Conclusion

Contributions: To the best of our knowledge, first mechanization of SOL.

Formalized the following meta-theoretic properties:

Semantics N Categorical Completeness Compactness Löwenheim-Skolem
Standard 3 7 7 7 (upward)
Henkin 7 3 3 (3)

3= holds 7= does not hold

Undecidability of validity & satisfiability in PA2 and in the empty signature

Mechanization: ∼ 10,000 LOC overall

Formalization of categoricity worked relatively smoothly

Henkin reduction by far the most difficult part (∼ 2,000 LOC)
⇒ Especially handling of de Bruijn encoding challenging

18
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Future Work

Merge development into Coq Library of Undecidability Proofs
[Forster et al., 2019b]

Connect with FOL completeness mechanization [Forster et al., 2021]

Conservativity of PA2 over PA1

Second-order set-theory & real analysis

Internal categoricity [Väänänen and Wang, 2012]
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Undecidability of Validity

∀M.M � ∀̇ f0 fS f+ f× P≡.PA′2 →̇ ϕ′p,q

l
∀M.M � PA2 →M � ϕp,q

Lemma

p = q has a solution iffM � ϕp,q for all models withM � PA2.

Proof.

→: Two possible proofs:
If p = q has a solution, then N � ϕp,q. By categoricity it holds for all
models of PA2.
Translate p = q solution toM using a homomorphism µ : N→M.

←: InstantiateM with standard model N to obtain N � ϕp,q.



Undecidability of Satisfiability

∃Mρ.M �ρ ∃̇ f0 fS f+ f× P≡.PA′2 ∧̇ ϕ′p,q
l

∃Mρ.M, ρ � PA2 ∧M, ρ � ϕp,q

Lemma

p = q has a solution iff there is a model M � PA2 and ρ such that
M �ρ ϕp,q.

Proof.

→: If p = q has a solution, then the standard model N fulfils N � ϕp,q.

←: IfM, ρ � ϕp,q then also N � ϕp,q by categoricity.

Note that categoricity was required here, whereas it is optional for validity.



Non-Enumerability

Theorem.

Enumerability of validity in PA2 implies decidability of the halting problem
under MP.

Proof.

Enumerate H10 via PA2 � ϕp,q.

Enumerate H10 via ¬PA2 � ϕp,q ↔ PA2 � ¬̇ϕp,q (Categoricity).

Yields decider via Post’s theorem.



Natural Deduction

A[↑np] `2 ϕ
A `2 ∀̇np ϕ

AIp
A `2 ∀̇np ϕ
A `2 ϕ[P]

AEp

A `2 ϕ[P]

A `2 ∃̇np ϕ
EIp

A `2 ∃̇np ϕ A[ ↑np ], ϕ `2 ψ[ ↑np ]

A `2 ψ
EEp

A `2 ∃̇np P. ∀̇x1...xn.P(x1, ..., x2) ↔̇ ϕ[ ↑np ]
Comprp



Semantic Henkin Reduction

Turn Henkin model H into first-order model H? with D? := D ∪ U and
Appn (x :: v) := toPredn x (toIndi v)

H �2 ϕ ↔ H? �1 ϕ?

Turn first-order modelM into Henkin modelM� with D� := D and U
induces by interpretation of App.

M �1 Comprehension? → M� �2 ϕ ↔ M �1 ϕ?
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Undecidability of Satisfiability

∃Mρ.M �ρ ∃̇ f0 fS f+ f× P≡.PA′2 ∧̇ ϕ′p,q
l

∃Mρ.M � PA2 ∧M �ρ ϕp,q

Lemma

p = q has a solution iff there is a model M � PA2 and ρ such that
M �ρ ϕp,q.

Proof.

→: If p = q has a solution, then the standard model N fulfils N � ϕp,q.

←: IfM �ρ ϕp,q then also N � ϕp,q by categoricity.
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Natural Deduction

A[ ↑nf ] ` ϕ
A ` ∀̇nf ϕ

AIf
A ` ∀̇nf ϕ
A ` ϕ[f ]

AEf

A ` ϕ[f ]

A ` ∃̇nf ϕ
EIf

A ` ∃̇nf ϕ A[ ↑nf ], ϕ ` ψ[ ↑n ]f
A ` ψ

EEf

∃̇np P. ∀̇x1...xn.P(x1, ..., x2) ↔̇ ϕ[ ↑np ]
Compr



Backwards Translation

Define a backwards translation _� : form1(Σ+)→ form2(Σerr). For example

(∀x . predApp0(x) ∧̇ predApp1(x , x))�

||

∀xi .∀0p x0p .∀1p x1p . x0p ∧̇ x1p (xi)

(predApp1(f (x), y))� = Err1(yi)

Special error symbol if first argument is not a variable



Completeness

Lemma

1. A `1 ϕ → A� `err2 ϕ� 2. `2 ϕ?� ↔̇ ϕ

T �2 ϕ T ?, C �1 ϕ?

T ?, C `1 ϕ? T ?�, C� `err2 ϕ?�

T ?�, C� `2 ϕ?� T , C� `2 ϕ T `2 ϕ

FOL Completeness
[Forster et al., 2021] LEM

(1)

Remove error symbol
using comprehension

(2)

`2 proves
comprehension

Error symbol can occur in this derivation!



Internal Categoricity [Väänänen and Wang, 2012]

Consider a theory T depending on a single predicate symbol P

Categ(T ) := ∀̇D1D2P1P2. T (P1)D1 →̇ T (P2)D2 →̇ ∃̇ ∼= . Iso(∼=,D1,D2,P1,P2)

where T (P1)D1 replaces P with the variable P1 and guards all quantifiers with
the domain predicate D1.

T is categorical iff � Categ(T )

Provable in many cases (despite incompleteness), e.g. ` Categ(PA2).
⇒ Categoricity can be written and proven at the object level, without

depending on any external set theory (or type theory in our case)
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