
Mechanizing Second-Order Logic in Coq

Final Bachelor Talk

Mark Koch
Advisor: Dominik Kirst
Supervisor: Gert Smolka

August 26, 2021

Saarland University, Programming Systems Lab

1

Introduction

First-order logic
Quantification over individuals:

∀x .∃y . y > x

Second-order logic
Quantification over individuals & their properties:

∀P.P(0)→ (∀x .P(x)→ P(x + 1))→ ∀x . P(x)

⇒ Drastically alters meta-behaviour!

Our goals:

Formalize meta-theoretical properties of SOL in Coq’s constructive type
theory and compare to FOL

Show that SOL with Henkin semantics reduces to FOL

Mechanize undecidability results for SOL

2

Introduction

First-order logic
Quantification over individuals:

∀x .∃y . y > x

Second-order logic
Quantification over individuals & their properties:

∀P.P(0)→ (∀x .P(x)→ P(x + 1))→ ∀x . P(x)

⇒ Drastically alters meta-behaviour!

Our goals:

Formalize meta-theoretical properties of SOL in Coq’s constructive type
theory and compare to FOL

Show that SOL with Henkin semantics reduces to FOL

Mechanize undecidability results for SOL

2

Introduction

First-order logic
Quantification over individuals:

∀x .∃y . y > x

Second-order logic
Quantification over individuals & their properties:

∀P.P(0)→ (∀x .P(x)→ P(x + 1))→ ∀x . P(x)

⇒ Drastically alters meta-behaviour!

Our goals:

Formalize meta-theoretical properties of SOL in Coq’s constructive type
theory and compare to FOL

Show that SOL with Henkin semantics reduces to FOL

Mechanize undecidability results for SOL

2

Introduction

First-order logic
Quantification over individuals:

∀x .∃y . y > x

Second-order logic
Quantification over individuals & their properties:

∀P.P(0)→ (∀x .P(x)→ P(x + 1))→ ∀x . P(x)

⇒ Drastically alters meta-behaviour!

Our goals:

Formalize meta-theoretical properties of SOL in Coq’s constructive type
theory and compare to FOL

Show that SOL with Henkin semantics reduces to FOL

Mechanize undecidability results for SOL

2

Introduction

First-order logic
Quantification over individuals:

∀x .∃y . y > x

Second-order logic
Quantification over individuals & their properties:

∀P.P(0)→ (∀x .P(x)→ P(x + 1))→ ∀x . P(x)

⇒ Drastically alters meta-behaviour!

Our goals:

Formalize meta-theoretical properties of SOL in Coq’s constructive type
theory and compare to FOL

Show that SOL with Henkin semantics reduces to FOL

Mechanize undecidability results for SOL

2

Introduction

First-order logic
Quantification over individuals:

∀x .∃y . y > x

Second-order logic
Quantification over individuals & their properties:

∀P.P(0)→ (∀x .P(x)→ P(x + 1))→ ∀x . P(x)

⇒ Drastically alters meta-behaviour!

Our goals:

Formalize meta-theoretical properties of SOL in Coq’s constructive type
theory and compare to FOL

Show that SOL with Henkin semantics reduces to FOL

Mechanize undecidability results for SOL

2

Introduction

First-order logic
Quantification over individuals:

∀x .∃y . y > x

Second-order logic
Quantification over individuals & their properties:

∀P.P(0)→ (∀x .P(x)→ P(x + 1))→ ∀x . P(x)

⇒ Drastically alters meta-behaviour!

Our goals:

Formalize meta-theoretical properties of SOL in Coq’s constructive type
theory and compare to FOL

Show that SOL with Henkin semantics reduces to FOL

Mechanize undecidability results for SOL

2

Related work

We largely follow [Shapiro, 1991] and [Nour and Raffalli, 2003]

Mechanization based on FOL development in
[Kirst and Larchey-Wendling, 2020] among others

Synthetic undecidability and incompleteness of axiom systems by
[Kirst and Hermes, 2021]

Synthetic computability theory [Bauer, 2006, Forster et al., 2019a] as
employed in the Coq Library of Undecidability Proofs
[Forster et al., 2019b].

3

Related work

We largely follow [Shapiro, 1991] and [Nour and Raffalli, 2003]

Mechanization based on FOL development in
[Kirst and Larchey-Wendling, 2020] among others

Synthetic undecidability and incompleteness of axiom systems by
[Kirst and Hermes, 2021]

Synthetic computability theory [Bauer, 2006, Forster et al., 2019a] as
employed in the Coq Library of Undecidability Proofs
[Forster et al., 2019b].

3

Related work

We largely follow [Shapiro, 1991] and [Nour and Raffalli, 2003]

Mechanization based on FOL development in
[Kirst and Larchey-Wendling, 2020] among others

Synthetic undecidability and incompleteness of axiom systems by
[Kirst and Hermes, 2021]

Synthetic computability theory [Bauer, 2006, Forster et al., 2019a] as
employed in the Coq Library of Undecidability Proofs
[Forster et al., 2019b].

3

Related work

We largely follow [Shapiro, 1991] and [Nour and Raffalli, 2003]

Mechanization based on FOL development in
[Kirst and Larchey-Wendling, 2020] among others

Synthetic undecidability and incompleteness of axiom systems by
[Kirst and Hermes, 2021]

Synthetic computability theory [Bauer, 2006, Forster et al., 2019a] as
employed in the Coq Library of Undecidability Proofs
[Forster et al., 2019b].

3

Standard Tarski Semantics

Definition (Syntax)

t ::= xi | F t (F : Σf)

ϕ,ψ ::= ⊥̇ | P t | pni t | ϕ →̇ ψ | ϕ ∧̇ ψ | ϕ ∨̇ ψ (P : Σp)

| ∀̇ ϕ | ∃̇ ϕ | ∀̇np ϕ | ∃̇np ϕ (i , n : N)

Definition (Standard Tarski Semantics)

A model M consists of a domain D and interpretation I for function and
predicate symbols. Predicate quantifiers range over all properties on D:

ρ � ∀̇np ϕ := ∀PDn→Prop.P · ρ � ϕ

4

Standard Tarski Semantics

Definition (Syntax)

t ::= xi | F t (F : Σf)

ϕ,ψ ::= ⊥̇ | P t | pni t | ϕ →̇ ψ | ϕ ∧̇ ψ | ϕ ∨̇ ψ (P : Σp)

| ∀̇ ϕ | ∃̇ ϕ | ∀̇np ϕ | ∃̇np ϕ (i , n : N)

Definition (Standard Tarski Semantics)

A model M consists of a domain D and interpretation I for function and
predicate symbols.

Predicate quantifiers range over all properties on D:

ρ � ∀̇np ϕ := ∀PDn→Prop.P · ρ � ϕ

4

Standard Tarski Semantics

Definition (Syntax)

t ::= xi | F t (F : Σf)

ϕ,ψ ::= ⊥̇ | P t | pni t | ϕ →̇ ψ | ϕ ∧̇ ψ | ϕ ∨̇ ψ (P : Σp)

| ∀̇ ϕ | ∃̇ ϕ | ∀̇np ϕ | ∃̇np ϕ (i , n : N)

Definition (Standard Tarski Semantics)

A model M consists of a domain D and interpretation I for function and
predicate symbols. Predicate quantifiers range over all properties on D:

ρ � ∀̇np ϕ := ∀PDn→Prop.P · ρ � ϕ

4

Second-order Peano Arithmetic

Standard semantics can uniquely characterize the numbers via PA2:

Zero Addition : ∀̇x . 0 + x ≡ x

Addition Recursion : ∀̇xy . (Sx) + y ≡ S(x + y)

Disjointness : ∀̇x . 0 ≡ Sx →̇ ⊥̇

Equlity Reflexive : ∀̇x . x ≡ x

Zero Multiplication : ∀̇x . 0 · x ≡ 0

Multiplication Recursion : ∀̇xy . (Sx) · y ≡ y + x · y

Successor Injective : ∀̇xy . Sx ≡ Sy →̇ x ≡ y

Equlity Symmetric : ∀̇xy . x ≡ y →̇ y ≡ x

Induction : ∀̇P.P(0) →̇ (∀̇x .P(x) →̇ P(Sx)) →̇ ∀̇x .P(x)

Theorem (Categoricity)

All models of PA2 are isomorphic. We say that PA2 is categorical.

5

Second-order Peano Arithmetic

Standard semantics can uniquely characterize the numbers via PA2:

Zero Addition : ∀̇x . 0 + x ≡ x

Addition Recursion : ∀̇xy . (Sx) + y ≡ S(x + y)

Disjointness : ∀̇x . 0 ≡ Sx →̇ ⊥̇

Equlity Reflexive : ∀̇x . x ≡ x

Zero Multiplication : ∀̇x . 0 · x ≡ 0

Multiplication Recursion : ∀̇xy . (Sx) · y ≡ y + x · y

Successor Injective : ∀̇xy . Sx ≡ Sy →̇ x ≡ y

Equlity Symmetric : ∀̇xy . x ≡ y →̇ y ≡ x

Induction : ∀̇P.P(0) →̇ (∀̇x .P(x) →̇ P(Sx)) →̇ ∀̇x .P(x)

Theorem (Categoricity)

All models of PA2 are isomorphic. We say that PA2 is categorical.

5

Löwenheim-Skolem

Not possible for FOL because of upward Löwenheim-Skolem theorem:

“Every first-order theory with an infinite model has models
of every greater infinite cardinality.”

Theorem (Failure of SOL Upward Löwenheim-Skolem)

SOL with standard semantics does not have the upward Löwenheim-Skolem
property.

Failure of downwards direction via categoricity of second-order real analysis
[Shapiro, 1991] or set theory [Kirst and Smolka, 2017]

6

Löwenheim-Skolem

Not possible for FOL because of upward Löwenheim-Skolem theorem:

“Every first-order theory with an infinite model has models
of every greater infinite cardinality.”

Theorem (Failure of SOL Upward Löwenheim-Skolem)

SOL with standard semantics does not have the upward Löwenheim-Skolem
property.

Failure of downwards direction via categoricity of second-order real analysis
[Shapiro, 1991] or set theory [Kirst and Smolka, 2017]

6

Löwenheim-Skolem

Not possible for FOL because of upward Löwenheim-Skolem theorem:

“Every first-order theory with an infinite model has models
of every greater infinite cardinality.”

Theorem (Failure of SOL Upward Löwenheim-Skolem)

SOL with standard semantics does not have the upward Löwenheim-Skolem
property.

Failure of downwards direction via categoricity of second-order real analysis
[Shapiro, 1991] or set theory [Kirst and Smolka, 2017]

6

Failure of Compactness

FOL is compact:

“T has a model if every finite subset of T has a model.”

Theorem (Failure of Compactness).

SOL is not compact for standard semantics.

Proof.

Consider the theory T 6= := PA2, x0 6= O, x0 6= S O, x0 6= S (S O), ...

Every finite subset of T6= has a model.

T 6= itself does not have a model. Otherwise, N would also need to be
a model because of categoricity which is not possible. �

7

Failure of Compactness

FOL is compact:

“T has a model if every finite subset of T has a model.”

Theorem (Failure of Compactness).

SOL is not compact for standard semantics.

Proof.

Consider the theory T 6= := PA2, x0 6= O, x0 6= S O, x0 6= S (S O), ...

Every finite subset of T6= has a model.

T 6= itself does not have a model. Otherwise, N would also need to be
a model because of categoricity which is not possible. �

7

Failure of Compactness

FOL is compact:

“T has a model if every finite subset of T has a model.”

Theorem (Failure of Compactness).

SOL is not compact for standard semantics.

Proof.

Consider the theory T 6= := PA2, x0 6= O, x0 6= S O, x0 6= S (S O), ...

Every finite subset of T6= has a model.

T 6= itself does not have a model. Otherwise, N would also need to be
a model because of categoricity which is not possible. �

7

Failure of Compactness

FOL is compact:

“T has a model if every finite subset of T has a model.”

Theorem (Failure of Compactness).

SOL is not compact for standard semantics.

Proof.

Consider the theory T 6= := PA2, x0 6= O, x0 6= S O, x0 6= S (S O), ...

Every finite subset of T6= has a model.

T 6= itself does not have a model. Otherwise, N would also need to be
a model because of categoricity which is not possible. �

7

Failure of Compactness

FOL is compact:

“T has a model if every finite subset of T has a model.”

Theorem (Failure of Compactness).

SOL is not compact for standard semantics.

Proof.

Consider the theory T 6= := PA2, x0 6= O, x0 6= S O, x0 6= S (S O), ...

Every finite subset of T6= has a model.

T 6= itself does not have a model.

Otherwise, N would also need to be
a model because of categoricity which is not possible. �

7

Failure of Compactness

FOL is compact:

“T has a model if every finite subset of T has a model.”

Theorem (Failure of Compactness).

SOL is not compact for standard semantics.

Proof.

Consider the theory T 6= := PA2, x0 6= O, x0 6= S O, x0 6= S (S O), ...

Every finite subset of T6= has a model.

T 6= itself does not have a model. Otherwise, N would also need to be
a model because of categoricity which is not possible. �

7

Infinitary Incompleteness

Theorem (Infinitary Incompleteness).

Every sound second-order deduction system ` : L(form)→ form→ Prop is
not infinitary complete.

Finitary Completeness: A � ϕ→ A ` ϕ

Lift ` to theories: T ` ϕ := ∃A.A ⊆fin T ∧ A ` ϕ

Infinitary Completeness: T � ϕ→ T ` ϕ

8

Infinitary Incompleteness

Theorem (Infinitary Incompleteness).

Every sound second-order deduction system ` : L(form)→ form→ Prop is
not infinitary complete.

Finitary Completeness: A � ϕ→ A ` ϕ

Lift ` to theories: T ` ϕ := ∃A.A ⊆fin T ∧ A ` ϕ

Infinitary Completeness: T � ϕ→ T ` ϕ

8

Infinitary Incompleteness

Theorem (Infinitary Incompleteness).

Every sound second-order deduction system ` : L(form)→ form→ Prop is
not infinitary complete.

Finitary Completeness: A � ϕ→ A ` ϕ

Lift ` to theories: T ` ϕ := ∃A.A ⊆fin T ∧ A ` ϕ

Infinitary Completeness: T � ϕ→ T ` ϕ

8

Infinitary Incompleteness

Theorem (Infinitary Incompleteness).

Every sound second-order deduction system ` : L(form)→ form→ Prop is
not infinitary complete.

Finitary Completeness: A � ϕ→ A ` ϕ

Lift ` to theories: T ` ϕ := ∃A.A ⊆fin T ∧ A ` ϕ

Infinitary Completeness: T � ϕ→ T ` ϕ

8

Infinitary Incompleteness

Theorem (Infinitary Incompleteness).

Every sound second-order deduction system ` : L(form)→ form→ Prop is
not infinitary complete.

Proof.

Let ` be sound and infinitary complete.

Previous proof: There is no model of T6=. Thus

T 6= � ⊥̇
Complete−−−−−−−→ T 6= ` ⊥̇

Def−−−→ A ` ⊥̇
for some A ⊆fin T 6=

Sound−−−−−→ A � ⊥̇

But A ⊆fin T 6= has a model.

9

Infinitary Incompleteness

Theorem (Infinitary Incompleteness).

Every sound second-order deduction system ` : L(form)→ form→ Prop is
not infinitary complete.

Proof.

Let ` be sound and infinitary complete.

Previous proof: There is no model of T6=.

Thus

T 6= � ⊥̇
Complete−−−−−−−→ T 6= ` ⊥̇

Def−−−→ A ` ⊥̇
for some A ⊆fin T 6=

Sound−−−−−→ A � ⊥̇

But A ⊆fin T 6= has a model.

9

Infinitary Incompleteness

Theorem (Infinitary Incompleteness).

Every sound second-order deduction system ` : L(form)→ form→ Prop is
not infinitary complete.

Proof.

Let ` be sound and infinitary complete.

Previous proof: There is no model of T6=. Thus

T 6= � ⊥̇

Complete−−−−−−−→ T 6= ` ⊥̇
Def−−−→ A ` ⊥̇

for some A ⊆fin T 6=
Sound−−−−−→ A � ⊥̇

But A ⊆fin T 6= has a model.

9

Infinitary Incompleteness

Theorem (Infinitary Incompleteness).

Every sound second-order deduction system ` : L(form)→ form→ Prop is
not infinitary complete.

Proof.

Let ` be sound and infinitary complete.

Previous proof: There is no model of T6=. Thus

T 6= � ⊥̇
Complete−−−−−−−→ T 6= ` ⊥̇

Def−−−→ A ` ⊥̇
for some A ⊆fin T 6=

Sound−−−−−→ A � ⊥̇

But A ⊆fin T 6= has a model.

9

Infinitary Incompleteness

Theorem (Infinitary Incompleteness).

Every sound second-order deduction system ` : L(form)→ form→ Prop is
not infinitary complete.

Proof.

Let ` be sound and infinitary complete.

Previous proof: There is no model of T6=. Thus

T 6= � ⊥̇
Complete−−−−−−−→ T 6= ` ⊥̇

Def−−−→ A ` ⊥̇
for some A ⊆fin T 6=

Sound−−−−−→ A � ⊥̇

But A ⊆fin T 6= has a model.

9

Infinitary Incompleteness

Theorem (Infinitary Incompleteness).

Every sound second-order deduction system ` : L(form)→ form→ Prop is
not infinitary complete.

Proof.

Let ` be sound and infinitary complete.

Previous proof: There is no model of T6=. Thus

T 6= � ⊥̇
Complete−−−−−−−→ T 6= ` ⊥̇

Def−−−→ A ` ⊥̇
for some A ⊆fin T 6=

Sound−−−−−→ A � ⊥̇

But A ⊆fin T 6= has a model.

9

Infinitary Incompleteness

Theorem (Infinitary Incompleteness).

Every sound second-order deduction system ` : L(form)→ form→ Prop is
not infinitary complete.

Proof.

Let ` be sound and infinitary complete.

Previous proof: There is no model of T6=. Thus

T 6= � ⊥̇
Complete−−−−−−−→ T 6= ` ⊥̇

Def−−−→ A ` ⊥̇
for some A ⊆fin T 6=

Sound−−−−−→ A � ⊥̇

But A ⊆fin T 6= has a model.

9

Infinitary Incompleteness

Theorem (Infinitary Incompleteness).

Every sound second-order deduction system ` : L(form)→ form→ Prop is
not infinitary complete.

Proof.

Let ` be sound and infinitary complete.

Previous proof: There is no model of T6=. Thus

T 6= � ⊥̇
Complete−−−−−−−→ T 6= ` ⊥̇

Def−−−→ A ` ⊥̇
for some A ⊆fin T 6=

Sound−−−−−→ A � ⊥̇

But A ⊆fin T 6= has a model.

9

Infinitary Incompleteness

Theorem (Infinitary Incompleteness).

Every sound second-order deduction system ` : L(form)→ form→ Prop is
not infinitary complete for decidable theories.

Proof.

Let ` be sound and infinitary complete.

Previous proof: There is no model of T6=. Thus

T 6= � ⊥̇
Complete−−−−−−−→ T 6= ` ⊥̇

Def−−−→ A ` ⊥̇
for some A ⊆fin T 6=

Sound−−−−−→ A � ⊥̇

But A ⊆fin T 6= has a model.

9

Infinitary Incompleteness

Theorem (Infinitary Incompleteness).

Every sound second-order deduction system ` : L(form)→ form→ Prop is
not infinitary complete for decidable theories.

Remarkably simple and as far as we can tell not discussed in literature

No computability requirements on ` !

But does not rule out completeness for finite contexts:
The “system” A ` ϕ := A � ϕ is sound and finitary complete

⇒ For finitary incompleteness we need to be stricter on what constitutes
deduction: Enumerability of ` does the trick!

However requires much more involved proof!

10

Infinitary Incompleteness

Theorem (Infinitary Incompleteness).

Every sound second-order deduction system ` : L(form)→ form→ Prop is
not infinitary complete for decidable theories.

Remarkably simple and as far as we can tell not discussed in literature

No computability requirements on ` !

But does not rule out completeness for finite contexts:
The “system” A ` ϕ := A � ϕ is sound and finitary complete

⇒ For finitary incompleteness we need to be stricter on what constitutes
deduction: Enumerability of ` does the trick!

However requires much more involved proof!

10

Infinitary Incompleteness

Theorem (Infinitary Incompleteness).

Every sound second-order deduction system ` : L(form)→ form→ Prop is
not infinitary complete for decidable theories.

Remarkably simple and as far as we can tell not discussed in literature

No computability requirements on ` !

But does not rule out completeness for finite contexts:
The “system” A ` ϕ := A � ϕ is sound and finitary complete

⇒ For finitary incompleteness we need to be stricter on what constitutes
deduction: Enumerability of ` does the trick!

However requires much more involved proof!

10

Infinitary Incompleteness

Theorem (Infinitary Incompleteness).

Every sound second-order deduction system ` : L(form)→ form→ Prop is
not infinitary complete for decidable theories.

Remarkably simple and as far as we can tell not discussed in literature

No computability requirements on ` !

But does not rule out completeness for finite contexts:
The “system” A ` ϕ := A � ϕ is sound and finitary complete

⇒ For finitary incompleteness we need to be stricter on what constitutes
deduction:

Enumerability of ` does the trick!

However requires much more involved proof!

10

Infinitary Incompleteness

Theorem (Infinitary Incompleteness).

Every sound second-order deduction system ` : L(form)→ form→ Prop is
not infinitary complete for decidable theories.

Remarkably simple and as far as we can tell not discussed in literature

No computability requirements on ` !

But does not rule out completeness for finite contexts:
The “system” A ` ϕ := A � ϕ is sound and finitary complete

⇒ For finitary incompleteness we need to be stricter on what constitutes
deduction: Enumerability of ` does the trick!

However requires much more involved proof!

10

Infinitary Incompleteness

Theorem (Infinitary Incompleteness).

Every sound second-order deduction system ` : L(form)→ form→ Prop is
not infinitary complete for decidable theories.

Remarkably simple and as far as we can tell not discussed in literature

No computability requirements on ` !

But does not rule out completeness for finite contexts:
The “system” A ` ϕ := A � ϕ is sound and finitary complete

⇒ For finitary incompleteness we need to be stricter on what constitutes
deduction: Enumerability of ` does the trick!

However requires much more involved proof!

10

Finitary Incompleteness

Lemma

The set of closed first-order statements that hold in N is not enumerable

Proof Sketch.

Via Reduction from Hilbert’s tenth problem [Kirst and Hermes, 2021]

x + 2︸ ︷︷ ︸
p

= y2 + z︸ ︷︷ ︸
q

 ϕp,q := ∃̇xyz . x + S (S O) ≡ y · y + z

Enumerator for λϕ.N � ϕ would yield decider for H10 via Post’s theorem:

Enumerate H10 via N � ϕp,q.

Enumerate H10 via N � ¬̇ϕp,q.

11

Finitary Incompleteness

Lemma

The set of closed first-order statements that hold in N is not enumerable,
in that enumerability implies decidability of the halting problem under MP.

Proof Sketch.

Via Reduction from Hilbert’s tenth problem [Kirst and Hermes, 2021]

x + 2︸ ︷︷ ︸
p

= y2 + z︸ ︷︷ ︸
q

 ϕp,q := ∃̇xyz . x + S (S O) ≡ y · y + z

Enumerator for λϕ.N � ϕ would yield decider for H10 via Post’s theorem:

Enumerate H10 via N � ϕp,q.

Enumerate H10 via N � ¬̇ϕp,q.

11

Finitary Incompleteness

Lemma

The set of closed first-order statements that hold in N is not enumerable,
in that enumerability implies decidability of the halting problem under MP.

Proof Sketch.

Via Reduction from Hilbert’s tenth problem [Kirst and Hermes, 2021]

x + 2︸ ︷︷ ︸
p

= y2 + z︸ ︷︷ ︸
q

 ϕp,q := ∃̇xyz . x + S (S O) ≡ y · y + z

Enumerator for λϕ.N � ϕ would yield decider for H10 via Post’s theorem:

Enumerate H10 via N � ϕp,q.

Enumerate H10 via N � ¬̇ϕp,q.

11

Finitary Incompleteness

Lemma

The set of closed first-order statements that hold in N is not enumerable,
in that enumerability implies decidability of the halting problem under MP.

Proof Sketch.

Via Reduction from Hilbert’s tenth problem [Kirst and Hermes, 2021]

x + 2︸ ︷︷ ︸
p

= y2 + z︸ ︷︷ ︸
q

 ϕp,q := ∃̇xyz . x + S (S O) ≡ y · y + z

Enumerator for λϕ.N � ϕ would yield decider for H10 via Post’s theorem:

Enumerate H10 via N � ϕp,q.

Enumerate H10 via N � ¬̇ϕp,q.

11

Finitary Incompleteness

Lemma

The set of closed first-order statements that hold in N is not enumerable,
in that enumerability implies decidability of the halting problem under MP.

Proof Sketch.

Via Reduction from Hilbert’s tenth problem [Kirst and Hermes, 2021]

x + 2︸ ︷︷ ︸
p

= y2 + z︸ ︷︷ ︸
q

 ϕp,q := ∃̇xyz . x + S (S O) ≡ y · y + z

Enumerator for λϕ.N � ϕ would yield decider for H10 via Post’s theorem:

Enumerate H10 via N � ϕp,q.

Enumerate H10 via N � ¬̇ϕp,q.

11

Finitary Incompleteness

Lemma

The set of closed first-order statements that hold in N is not enumerable,
in that enumerability implies decidability of the halting problem under MP.

Proof Sketch.

Via Reduction from Hilbert’s tenth problem [Kirst and Hermes, 2021]

x + 2︸ ︷︷ ︸
p

= y2 + z︸ ︷︷ ︸
q

 ϕp,q := ∃̇xyz . x + S (S O) ≡ y · y + z

Enumerator for λϕ.N � ϕ would yield decider for H10 via Post’s theorem:

Enumerate H10 via N � ϕp,q.

Enumerate H10 via N � ¬̇ϕp,q.

11

Finitary Incompleteness

Lemma

The set of closed first-order statements that hold in N is not enumerable,
in that enumerability implies decidability of the halting problem under MP.

Theorem (Finitary Incompleteness)

Existence of a sound, enumerable and finitary complete deduction system
` : L(form) → form → Prop implies decidability of the halting problem
under MP.

Proof.

` yields enumerator for λϕ.PA2 � ϕ and thus all truths in N.

12

Finitary Incompleteness

Lemma

The set of closed first-order statements that hold in N is not enumerable,
in that enumerability implies decidability of the halting problem under MP.

Theorem (Finitary Incompleteness)

Existence of a sound, enumerable and finitary complete deduction system
` : L(form) → form → Prop implies decidability of the halting problem
under MP.

Proof.

` yields enumerator for λϕ.PA2 � ϕ and thus all truths in N.

12

Undecidability

Theorem (Undecidability).

Validity and satisfiability in PA2 and in the empty signature is undecidable.

Proof Sketch.

p = q has a solution iff ϕp,q is valid / satisfiable in PA2.

p = q has a solution iff ∀̇ f0 fS f+ f× P≡.PA′2 →̇ ϕ′p,q is valid. �

Corollary (Non-Enumerability).

Those problems are also not enumerable under MP.

13

Undecidability

Theorem (Undecidability).

Validity and satisfiability in PA2 and in the empty signature is undecidable.

Proof Sketch.

p = q has a solution iff ϕp,q is valid / satisfiable in PA2.

p = q has a solution iff ∀̇ f0 fS f+ f× P≡.PA′2 →̇ ϕ′p,q is valid. �

Corollary (Non-Enumerability).

Those problems are also not enumerable under MP.

13

Undecidability

Theorem (Undecidability).

Validity and satisfiability in PA2 and in the empty signature is undecidable.

Proof Sketch.

p = q has a solution iff ϕp,q is valid / satisfiable in PA2.

p = q has a solution iff ∀̇ f0 fS f+ f× P≡.PA′2 →̇ ϕ′p,q is valid. �

Corollary (Non-Enumerability).

Those problems are also not enumerable under MP.

13

Undecidability

Theorem (Undecidability).

Validity and satisfiability in PA2 and in the empty signature is undecidable.

Proof Sketch.

p = q has a solution iff ϕp,q is valid / satisfiable in PA2.

p = q has a solution iff ∀̇ f0 fS f+ f× P≡.PA′2 →̇ ϕ′p,q is valid. �

Corollary (Non-Enumerability).

Those problems are also not enumerable under MP.

13

Henkin Semantics

Instead of quantifying over all predicates, specify a universe U:

Definition (Henkin Semantics).

A Henkin model H specifies a set of relations Un : (Dn → Prop) → Prop
that constrain the predicates that are quantified over, i.e

ρ � ∃̇np ϕ := ∃PDn→Prop.Un P ∧ P · ρ � ϕ.

Un should satisfy comprehension, i.e. it must at least contain all second-
order definable properties.

14

Henkin Semantics

Instead of quantifying over all predicates, specify a universe U:

Definition (Henkin Semantics).

A Henkin model H specifies a set of relations Un : (Dn → Prop) → Prop
that constrain the predicates that are quantified over, i.e

ρ � ∃̇np ϕ := ∃PDn→Prop.Un P ∧ P · ρ � ϕ.

Un should satisfy comprehension, i.e. it must at least contain all second-
order definable properties.

14

Henkin Semantics

Instead of quantifying over all predicates, specify a universe U:

Definition (Henkin Semantics).

A Henkin model H specifies a set of relations Un : (Dn → Prop) → Prop
that constrain the predicates that are quantified over, i.e

ρ � ∃̇np ϕ := ∃PDn→Prop.Un P ∧ P · ρ � ϕ.

Un should satisfy comprehension, i.e. it must at least contain all second-
order definable properties.

14

Reduction to FOL [Nour and Raffalli, 2003]

Turn ϕ into ϕ? by replacing predicate quantifiers with individual ones:

∀̇x . ∃̇P.P(x , x) ∀̇x . ∃̇p.App2(p, x , x)

x and p represent individuals and predicates at the same time.

T �2 ϕ (T ∪ Comprehension)? �1 ϕ?

(T ∪ Comprehension)? `1 ϕ?T `2 ϕ

FOL completeness (LEM)
[Forster et al., 2021]Soundness (LEM)

LEM

15

Reduction to FOL [Nour and Raffalli, 2003]

Turn ϕ into ϕ? by replacing predicate quantifiers with individual ones:

∀̇x . ∃̇P.P(x , x) ∀̇x . ∃̇p.App2(p, x , x)

x and p represent individuals and predicates at the same time.

T �2 ϕ (T ∪ Comprehension)? �1 ϕ?

(T ∪ Comprehension)? `1 ϕ?T `2 ϕ

FOL completeness (LEM)
[Forster et al., 2021]Soundness (LEM)

LEM

15

Reduction to FOL [Nour and Raffalli, 2003]

Turn ϕ into ϕ? by replacing predicate quantifiers with individual ones:

∀̇x . ∃̇P.P(x , x) ∀̇x . ∃̇p.App2(p, x , x)

x and p represent individuals and predicates at the same time.

T �2 ϕ (T ∪ Comprehension)? �1 ϕ?

(T ∪ Comprehension)? `1 ϕ?T `2 ϕ

FOL completeness (LEM)
[Forster et al., 2021]Soundness (LEM)

LEM

15

Reduction to FOL [Nour and Raffalli, 2003]

Turn ϕ into ϕ? by replacing predicate quantifiers with individual ones:

∀̇x . ∃̇P.P(x , x) ∀̇x . ∃̇p.App2(p, x , x)

x and p represent individuals and predicates at the same time.

T �2 ϕ (T ∪ Comprehension)? �1 ϕ?

(T ∪ Comprehension)? `1 ϕ?T `2 ϕ

FOL completeness (LEM)
[Forster et al., 2021]Soundness (LEM)

LEM

15

Reduction to FOL [Nour and Raffalli, 2003]

Turn ϕ into ϕ? by replacing predicate quantifiers with individual ones:

∀̇x . ∃̇P.P(x , x) ∀̇x . ∃̇p.App2(p, x , x)

x and p represent individuals and predicates at the same time.

T �2 ϕ (T ∪ Comprehension)? �1 ϕ?

(T ∪ Comprehension)? `1 ϕ?T `2 ϕ

FOL completeness (LEM)
[Forster et al., 2021]

Soundness (LEM)
LEM

15

Reduction to FOL [Nour and Raffalli, 2003]

Turn ϕ into ϕ? by replacing predicate quantifiers with individual ones:

∀̇x . ∃̇P.P(x , x) ∀̇x . ∃̇p.App2(p, x , x)

x and p represent individuals and predicates at the same time.

T �2 ϕ (T ∪ Comprehension)? �1 ϕ?

(T ∪ Comprehension)? `1 ϕ?T `2 ϕ

FOL completeness (LEM)
[Forster et al., 2021]

Soundness (LEM)
LEM

Theorem (Completeness)

If FOL is complete, then so is SOL with Henkin semantics.

15

Reduction to FOL [Nour and Raffalli, 2003]

Turn ϕ into ϕ? by replacing predicate quantifiers with individual ones:

∀̇x . ∃̇P.P(x , x) ∀̇x . ∃̇p.App2(p, x , x)

x and p represent individuals and predicates at the same time.

T �2 ϕ (T ∪ Comprehension)? �1 ϕ?

(T ∪ Comprehension)? `1 ϕ?T `2 ϕ

FOL completeness (LEM)
[Forster et al., 2021]Soundness (LEM)

LEM

Theorem (Completeness)

If FOL is complete, then so is SOL with Henkin semantics.

15

Compactness

Theorem

If FOL is compact, then so is SOL with Henkin semantics.

Proof Sketch.

Assume every finite A ⊆ T has a Henkin model. We want to show

T has Henkin model
↑

(T ∪ Comprehension)? has first-order model
↑

A?T ++ A?C ⊆ (T ∪ Comprehension)? has first-order model
↑

AT has Henkin model

16

Compactness

Theorem

If FOL is compact, then so is SOL with Henkin semantics.

Proof Sketch.

Assume every finite A ⊆ T has a Henkin model. We want to show

T has Henkin model

↑

(T ∪ Comprehension)? has first-order model
↑

A?T ++ A?C ⊆ (T ∪ Comprehension)? has first-order model
↑

AT has Henkin model

16

Compactness

Theorem

If FOL is compact, then so is SOL with Henkin semantics.

Proof Sketch.

Assume every finite A ⊆ T has a Henkin model. We want to show

T has Henkin model
↑

(T ∪ Comprehension)? has first-order model

↑

A?T ++ A?C ⊆ (T ∪ Comprehension)? has first-order model
↑

AT has Henkin model

16

Compactness

Theorem

If FOL is compact, then so is SOL with Henkin semantics.

Proof Sketch.

Assume every finite A ⊆ T has a Henkin model. We want to show

T has Henkin model
↑

(T ∪ Comprehension)? has first-order model
↑

A?T ++ A?C ⊆ (T ∪ Comprehension)? has first-order model

↑

AT has Henkin model

16

Compactness

Theorem

If FOL is compact, then so is SOL with Henkin semantics.

Proof Sketch.

Assume every finite A ⊆ T has a Henkin model. We want to show

T has Henkin model
↑

(T ∪ Comprehension)? has first-order model
↑

A?T ++ A?C ⊆ (T ∪ Comprehension)? has first-order model
↑

AT has Henkin model

16

Löwenheim-Skolem

We combine upward and downward in one property: “Every theory with an
infinite model has models of every infinite cardinality.”

Theorem (Löwenheim-Skolem)

If FOL has the Löwenheim-Skolem property, then so has SOL with Henkin
semantics.

Proof.

Suppose T has an infinite Henkin model H. Then H? is an infinite model
of T ? and T ? has models of every infinite cardinality. Those can again be
converted into Henkin models of T .

⇒ No categorical axiomatization of N possible!

17

Löwenheim-Skolem

We combine upward and downward in one property: “Every theory with an
infinite model has models of every infinite cardinality.”

Theorem (Löwenheim-Skolem)

If FOL has the Löwenheim-Skolem property, then so has SOL with Henkin
semantics.

Proof.

Suppose T has an infinite Henkin model H.

Then H? is an infinite model
of T ? and T ? has models of every infinite cardinality. Those can again be
converted into Henkin models of T .

⇒ No categorical axiomatization of N possible!

17

Löwenheim-Skolem

We combine upward and downward in one property: “Every theory with an
infinite model has models of every infinite cardinality.”

Theorem (Löwenheim-Skolem)

If FOL has the Löwenheim-Skolem property, then so has SOL with Henkin
semantics.

Proof.

Suppose T has an infinite Henkin model H. Then H? is an infinite model
of T ?

and T ? has models of every infinite cardinality. Those can again be
converted into Henkin models of T .

⇒ No categorical axiomatization of N possible!

17

Löwenheim-Skolem

We combine upward and downward in one property: “Every theory with an
infinite model has models of every infinite cardinality.”

Theorem (Löwenheim-Skolem)

If FOL has the Löwenheim-Skolem property, then so has SOL with Henkin
semantics.

Proof.

Suppose T has an infinite Henkin model H. Then H? is an infinite model
of T ? and T ? has models of every infinite cardinality.

Those can again be
converted into Henkin models of T .

⇒ No categorical axiomatization of N possible!

17

Löwenheim-Skolem

We combine upward and downward in one property: “Every theory with an
infinite model has models of every infinite cardinality.”

Theorem (Löwenheim-Skolem)

If FOL has the Löwenheim-Skolem property, then so has SOL with Henkin
semantics.

Proof.

Suppose T has an infinite Henkin model H. Then H? is an infinite model
of T ? and T ? has models of every infinite cardinality. Those can again be
converted into Henkin models of T .

⇒ No categorical axiomatization of N possible!

17

Löwenheim-Skolem

We combine upward and downward in one property: “Every theory with an
infinite model has models of every infinite cardinality.”

Theorem (Löwenheim-Skolem)

If FOL has the Löwenheim-Skolem property, then so has SOL with Henkin
semantics.

Proof.

Suppose T has an infinite Henkin model H. Then H? is an infinite model
of T ? and T ? has models of every infinite cardinality. Those can again be
converted into Henkin models of T .

⇒ No categorical axiomatization of N possible!
17

Conclusion

Contributions: To the best of our knowledge, first mechanization of SOL.

Formalized the following meta-theoretic properties:

Semantics N Categorical Completeness Compactness Löwenheim-Skolem
Standard 3 7 7 7 (upward)
Henkin 7 3 3 (3)

3= holds 7= does not hold

Undecidability of validity & satisfiability in PA2 and in the empty signature

Mechanization: ∼ 10,000 LOC overall

Formalization of categoricity worked relatively smoothly

Henkin reduction by far the most difficult part (∼ 2,000 LOC)
⇒ Especially handling of de Bruijn encoding challenging

18

Conclusion

Contributions: To the best of our knowledge, first mechanization of SOL.

Formalized the following meta-theoretic properties:

Semantics N Categorical Completeness Compactness Löwenheim-Skolem
Standard 3 7 7 7 (upward)
Henkin 7 3 3 (3)

3= holds 7= does not hold

Undecidability of validity & satisfiability in PA2 and in the empty signature

Mechanization: ∼ 10,000 LOC overall

Formalization of categoricity worked relatively smoothly

Henkin reduction by far the most difficult part (∼ 2,000 LOC)
⇒ Especially handling of de Bruijn encoding challenging

18

Conclusion

Contributions: To the best of our knowledge, first mechanization of SOL.

Formalized the following meta-theoretic properties:

Semantics N Categorical Completeness Compactness Löwenheim-Skolem
Standard 3 7 7 7 (upward)
Henkin 7 3 3 (3)

3= holds 7= does not hold

Undecidability of validity & satisfiability in PA2 and in the empty signature

Mechanization: ∼ 10,000 LOC overall

Formalization of categoricity worked relatively smoothly

Henkin reduction by far the most difficult part (∼ 2,000 LOC)
⇒ Especially handling of de Bruijn encoding challenging

18

Conclusion

Contributions: To the best of our knowledge, first mechanization of SOL.

Formalized the following meta-theoretic properties:

Semantics N Categorical Completeness Compactness Löwenheim-Skolem
Standard 3 7 7 7 (upward)
Henkin 7 3 3 (3)

3= holds 7= does not hold

Undecidability of validity & satisfiability in PA2 and in the empty signature

Mechanization: ∼ 10,000 LOC overall

Formalization of categoricity worked relatively smoothly

Henkin reduction by far the most difficult part (∼ 2,000 LOC)
⇒ Especially handling of de Bruijn encoding challenging

18

Conclusion

Contributions: To the best of our knowledge, first mechanization of SOL.

Formalized the following meta-theoretic properties:

Semantics N Categorical Completeness Compactness Löwenheim-Skolem
Standard 3 7 7 7 (upward)
Henkin 7 3 3 (3)

3= holds 7= does not hold

Undecidability of validity & satisfiability in PA2 and in the empty signature

Mechanization: ∼ 10,000 LOC overall

Formalization of categoricity worked relatively smoothly

Henkin reduction by far the most difficult part (∼ 2,000 LOC)
⇒ Especially handling of de Bruijn encoding challenging

18

Conclusion

Contributions: To the best of our knowledge, first mechanization of SOL.

Formalized the following meta-theoretic properties:

Semantics N Categorical Completeness Compactness Löwenheim-Skolem
Standard 3 7 7 7 (upward)
Henkin 7 3 3 (3)

3= holds 7= does not hold

Undecidability of validity & satisfiability in PA2 and in the empty signature

Mechanization: ∼ 10,000 LOC overall

Formalization of categoricity worked relatively smoothly

Henkin reduction by far the most difficult part (∼ 2,000 LOC)
⇒ Especially handling of de Bruijn encoding challenging 18

Future Work

Merge development into Coq Library of Undecidability Proofs
[Forster et al., 2019b]

Connect with FOL completeness mechanization [Forster et al., 2021]

Conservativity of PA2 over PA1

Second-order set-theory & real analysis

Internal categoricity [Väänänen and Wang, 2012]

19

Future Work

Merge development into Coq Library of Undecidability Proofs
[Forster et al., 2019b]

Connect with FOL completeness mechanization [Forster et al., 2021]

Conservativity of PA2 over PA1

Second-order set-theory & real analysis

Internal categoricity [Väänänen and Wang, 2012]

19

Future Work

Merge development into Coq Library of Undecidability Proofs
[Forster et al., 2019b]

Connect with FOL completeness mechanization [Forster et al., 2021]

Conservativity of PA2 over PA1

Second-order set-theory & real analysis

Internal categoricity [Väänänen and Wang, 2012]

19

Future Work

Merge development into Coq Library of Undecidability Proofs
[Forster et al., 2019b]

Connect with FOL completeness mechanization [Forster et al., 2021]

Conservativity of PA2 over PA1

Second-order set-theory & real analysis

Internal categoricity [Väänänen and Wang, 2012]

19

Future Work

Merge development into Coq Library of Undecidability Proofs
[Forster et al., 2019b]

Connect with FOL completeness mechanization [Forster et al., 2021]

Conservativity of PA2 over PA1

Second-order set-theory & real analysis

Internal categoricity [Väänänen and Wang, 2012]

19

References i

Bauer, A. (2006).
First steps in synthetic computability theory.
Electronic Notes in Theoretical Computer Science, 155:5–31.
Proceedings of the 21st Annual Conference on Mathematical Foundations of Programming
Semantics (MFPS XXI).

Forster, Y., Kirst, D., and Smolka, G. (2019a).
On synthetic undecidability in coq, with an application to the entscheidungsproblem.
In Proceedings of the 8th ACM SIGPLAN International Conference on Certified Programs and
Proofs, CPP 2019, page 38–51, New York, NY, USA. Association for Computing Machinery.

Forster, Y., Kirst, D., and Wehr, D. (2021).
Completeness theorems for first-order logic analysed in constructive type theory:
Extended version.
Journal of Logic and Computation, 31(1):112–151.

Forster, Y., Larchey-Wendling, D., Dudenhefner, A., Heiter, E., Kirst, D., Kunze, F., and
Smolka, G. (2019b).
A coq library of undecidable problems.

20

References ii

Kirst, D. and Hermes, M. (2021).
Synthetic undecidability and incompleteness of first-order axiom systems in coq.
In ITP.

Kirst, D. and Larchey-Wendling, D. (2020).
Trakhtenbrot’s theorem in coq: A constructive approach to finite model theory.
International Joint Conference on Automated Reasoning.

Kirst, D. and Smolka, G. (2017).
Categoricity results for second-order zf in dependent type theory.
In ITP.

Nour, K. and Raffalli, C. (2003).
Simple proof of the completeness theorem for second-order classical and intuitionistic
logic by reduction to first-order mono-sorted logic.
Theoretical computer science, 308(1-3):227–237.

Shapiro, S. (1991).
Foundations without foundationalism: A case for second-order logic, volume 17.
Clarendon Press.

21

References iii

Väänänen, J. and Wang, T. (2012).
Internal categoricity in arithmetic and set theory.
Notre Dame Journal of Formal Logic, 56.

22

Undecidability of Validity

∀M.M � ∀̇ f0 fS f+ f× P≡.PA′2 →̇ ϕ′p,q

l
∀M.M � PA2 →M � ϕp,q

Lemma

p = q has a solution iffM � ϕp,q for all models withM � PA2.

Proof.

→: Two possible proofs:
If p = q has a solution, then N � ϕp,q. By categoricity it holds for all
models of PA2.
Translate p = q solution toM using a homomorphism µ : N→M.

←: InstantiateM with standard model N to obtain N � ϕp,q.

Undecidability of Satisfiability

∃Mρ.M �ρ ∃̇ f0 fS f+ f× P≡.PA′2 ∧̇ ϕ′p,q
l

∃Mρ.M, ρ � PA2 ∧M, ρ � ϕp,q

Lemma

p = q has a solution iff there is a model M � PA2 and ρ such that
M �ρ ϕp,q.

Proof.

→: If p = q has a solution, then the standard model N fulfils N � ϕp,q.

←: IfM, ρ � ϕp,q then also N � ϕp,q by categoricity.

Note that categoricity was required here, whereas it is optional for validity.

Non-Enumerability

Theorem.

Enumerability of validity in PA2 implies decidability of the halting problem
under MP.

Proof.

Enumerate H10 via PA2 � ϕp,q.

Enumerate H10 via ¬PA2 � ϕp,q ↔ PA2 � ¬̇ϕp,q (Categoricity).

Yields decider via Post’s theorem.

Natural Deduction

A[↑np] `2 ϕ
A `2 ∀̇np ϕ

AIp
A `2 ∀̇np ϕ
A `2 ϕ[P]

AEp

A `2 ϕ[P]

A `2 ∃̇np ϕ
EIp

A `2 ∃̇np ϕ A[↑np], ϕ `2 ψ[↑np]

A `2 ψ
EEp

A `2 ∃̇np P. ∀̇x1...xn.P(x1, ..., x2) ↔̇ ϕ[↑np]
Comprp

Semantic Henkin Reduction

Turn Henkin model H into first-order model H? with D? := D ∪ U and
Appn (x :: v) := toPredn x (toIndi v)

H �2 ϕ ↔ H? �1 ϕ?

Turn first-order modelM into Henkin modelM� with D� := D and U
induces by interpretation of App.

M �1 Comprehension? → M� �2 ϕ ↔ M �1 ϕ?

Undecidability of Validity

∀M.M � ∀̇ f0 fS f+ f× P≡.PA′2 →̇ ϕ′p,q

l
∀M.M � PA2 →M � ϕp,q

Lemma

p = q has a solution iffM � ϕp,q for all models withM � PA2.

Proof.

→: Two possible proofs:
If p = q has a solution, then N � ϕp,q. By categoricity it holds for all
models of PA2.
Translate p = q solution toM using a homomorphism µ : N→M.

←: InstantiateM with standard model N to obtain N � ϕp,q.

Undecidability of Satisfiability

∃Mρ.M �ρ ∃̇ f0 fS f+ f× P≡.PA′2 ∧̇ ϕ′p,q
l

∃Mρ.M � PA2 ∧M �ρ ϕp,q

Lemma

p = q has a solution iff there is a model M � PA2 and ρ such that
M �ρ ϕp,q.

Proof.

→: If p = q has a solution, then the standard model N fulfils N � ϕp,q.

←: IfM �ρ ϕp,q then also N � ϕp,q by categoricity.

Note that categoricity was required here, whereas it is optional for validity.

Natural Deduction

A[↑nf] ` ϕ
A ` ∀̇nf ϕ

AIf
A ` ∀̇nf ϕ
A ` ϕ[f]

AEf

A ` ϕ[f]

A ` ∃̇nf ϕ
EIf

A ` ∃̇nf ϕ A[↑nf], ϕ ` ψ[↑n]f
A ` ψ

EEf

∃̇np P. ∀̇x1...xn.P(x1, ..., x2) ↔̇ ϕ[↑np]
Compr

Backwards Translation

Define a backwards translation _� : form1(Σ+)→ form2(Σerr). For example

(∀x . predApp0(x) ∧̇ predApp1(x , x))�

||

∀xi .∀0p x0p .∀1p x1p . x0p ∧̇ x1p (xi)

(predApp1(f (x), y))� = Err1(yi)

Special error symbol if first argument is not a variable

Completeness

Lemma

1. A `1 ϕ → A� `err2 ϕ� 2. `2 ϕ?� ↔̇ ϕ

T �2 ϕ T ?, C �1 ϕ?

T ?, C `1 ϕ? T ?�, C� `err2 ϕ?�

T ?�, C� `2 ϕ?� T , C� `2 ϕ T `2 ϕ

FOL Completeness
[Forster et al., 2021] LEM

(1)

Remove error symbol
using comprehension

(2)

`2 proves
comprehension

Error symbol can occur in this derivation!

Internal Categoricity [Väänänen and Wang, 2012]

Consider a theory T depending on a single predicate symbol P

Categ(T) := ∀̇D1D2P1P2. T (P1)D1 →̇ T (P2)D2 →̇ ∃̇ ∼= . Iso(∼=,D1,D2,P1,P2)

where T (P1)D1 replaces P with the variable P1 and guards all quantifiers with
the domain predicate D1.

T is categorical iff � Categ(T)

Provable in many cases (despite incompleteness), e.g. ` Categ(PA2).
⇒ Categoricity can be written and proven at the object level, without

depending on any external set theory (or type theory in our case)

	Appendix

