
Saarland University
Faculty of Natural Sciences and Technology I

Bachelor’s Thesis

Verified Compilation of Weak
Call-by-Value Lambda-Calculus
into Combinators and Closures

Fabian Maximilian Kunze

Advisor:
Prof. Dr. Gert Smolka

Reviewers:
Prof. Dr. Gert Smolka
Prof. Dr. Markus Bläser

Submitted on November 27, 2015

ii

iii

Eidesstattliche Erklärung

Ich erkläre hiermit an Eides Statt, dass ich die vorliegende Arbeit selbst-
ständig verfasst und keine anderen als die angegebenen Quellen und Hilfs-
mittel verwendet habe.

Statement in Lieu of an Oath:

I hereby confirm that I have written this thesis on my own and that I have
not used any other media or materials than the ones referred to in this thesis.

Einverständniserklärung

Ich bin damit einverstanden, dass meine (bestandene) Arbeit in beiden
Versionen in die Bibliothek der Informatik aufgenommen und damit veröf-
fentlicht wird.

Declaration of Consent:

I agree to make both versions of my thesis (with a passing grade) accessible
to the public by having them added to the library of the Computer Science
Department.

Saarbrücken, 27th November, 2015

iv

Abstract

In this thesis, we relate the weak call-by-value λ-calculus L to two other
systems: a call-by-value combinatory logic called SKv and a variant of L
with closures, called LC. All proofs are carried out in the proof assistant
Coq.
We show that L can be fully embedded into SKv by giving an injective

mapping from L to SKv that preserves term equivalence and irreducibility
in both directions.
We show that LC refines the semantics of L: It is sound and complete with

respect to L, while allowing to postpone certain parts of computations until
they become necessary.
We give a sound and complete interpreter for LC that can be used to

interpret L.

v

Acknowledgements

First I would like to express my gratitude to Prof. Smolka for the guidance
during numerous meetings. His support was far above what can be expected.
The other people of the chair were always helpful as well.
I would also like to thank my friends and family for supporting and moti-

vating me during the writing of this thesis. Especially Yannick, Noemi and
Clara for taking time to proofread parts of this thesis.
Finally, I would like to thank Loscher for producing Club Mate.

vi

Contents

Abstract v

1 Introduction 1

2 Uniform Confluence 5

3 L: Weak Call-by-Value λ-Calculus 9
3.1 L as Programming Language 11
3.2 Semi-Automated Internalization 12
3.3 Named L . 12

4 SKv: Call-by-Value Combinatory Logic 15
4.1 Miscellaneous . 17

5 Embedding L into SKv 19
5.1 Pseudo-Abstraction . 19
5.2 Compiling L into SKv . 21
5.3 C is invertible . 22
5.4 C is Complete . 23
5.5 Conclusion . 25

6 LC: L with Closures 27
6.1 Drawbacks of Substitution Semantics in L 27
6.2 Basic Properties of LC . 28
6.3 Connecting LC and L . 29
6.4 LC is Complete . 32
6.5 Evaluating LC . 34
6.6 Related Systems . 35

7 Coq Formalization 37

vii

viii CONTENTS

Chapter 1

Introduction

Since introduced by Church in the 1930s, λ-calculus had a great impact on
the fields of computability theory, programming languages and logic [Bar97]
[Bar84].
The terms of λ-calculus represent higher order functions and are com-

posed from three primitives: variables, abstractions and applications. Other
datatypes and their operations can be encoded as functions.
The different variants of λ-calculus form the base for functional program-

ming languages that are in practical use today, like OCaml or Haskell. In
this thesis, we will mostly refer to λβ, untyped λ-calculus with β-reduction.
Compared with Turing machines, which define the same notion of com-

putability, λβ has an applicative structure that directly allows to compose
two terms, but a fair bit of work is needed to compose two Turing machines
[AR15]. This allows for easier formal reasoning using λβ, whereby using
Turing machines, it is common practice to define an algorithm in terms of
pseudocode or a plain text description and not with giving a concrete Turing
machine.
The benefit of Turing machines is that the inherent notion of a primitive

step directly suggest a reasonable cost model for the time that is required
by a computation. This forms the base for the field of complexity theory.
In contrast to that, the number of primitive steps for a computation in λβ
largely depends on the specific reduction strategy.

Weak Call-by-Value λ-Calculus

The ambiguity in the length of a computation can be resolved by restricting
λβ to weak call-by-value reductions [LM08]. In this system, the number of
primitive steps in a computation is independent of the reduction strategy. As
we will see in this thesis, this is a result of the uniform confluence property,
and strongly connected to the call-by-value aspect of the reduction relation.
Weak call-by-value λ-calculus still is Turing complete, and a lot of pro-

gramming techniques used in λβ or functional programming languages also

1

2 CHAPTER 1. INTRODUCTION

apply to it. But the semantics is considerably simpler since the weak aspect
of the reduction strategy allows for a straightforward notion of substitution
without the need for renaming variables. The weak call-by-value reduction
relation simplifies the proof of basic properties like confluence compared to
untyped λ-calculus. Basic results of computability theory are formalized
for L, a concrete weak call-by-value λ-calculus, in [For14]. An approach to
formal complexity theory using weak call-by-value λ-calculus is shown in
[LM08] and [Rot15].
The interest in the weak call-by-value λ-calculus motivates to transfer re-

sults and ideas from λβ. One is the relation between λβ and the combinatory
logic SKI, another formal system build around higher order functions. SKI
does not allow the definition of arbitrary functions, but only three build-in
functions called combinators, from which new functions can be derived via
composition.
Combinatory logic was introduced in 1920 by Schönfinkel to express first

order logic without the need for bound variables [Sch24]. Later, it was dis-
covered that the combinatory logic SKI can also be used as a computational
system with capabilities similar to λβ.
Despite the seemingly severe restriction to only three build-in functions,

SKI equipped with an extensional notion of term equivalence nearly incor-
porates the full semantics of λβ [HS08]. This shows that the ability to define
arbitrary functions via abstractions is not required, but just is convenient
for a programming system based on functional application.
But the relation between λβ and SKI is not fully satisfying as an altered

notion of term equivalence in SKI is required [HS08].

Contributions

The main contribution of this thesis is the verified compilation of L into two
other formal systems.

Call-by-Value Combinator Logic

In this thesis, we define the call-by-value combinatory logic SKv. We fully
embed L into SKv, that is, we give a left-invertible mapping from L to SKv
such that irreducibility and term equivalence are preserved in both directions.
Since we do not need an altered notion of reducibility and term equivalence
for this, the correspondence between L and SKv is more satisfying than the
one between λβ and SKI.

Weak Call-by-Value λ-Calculus with Closures

We also approach a more practical problem: the efficient evaluation of L.
For this, we introduce LC, a variant of L with closures. Using ideas also
appearing in the definition of Standart ML [MTHM97], the semantics of

3

LC is not defined using substitution. Instead, we annotate L-terms with an
environment. Arguments of abstractions are inserted to the environment and
the value of a bound variable is looked up in the environment when needed.
The motivation introducing LC is the refinement of L with respect to

substitution. The substitution performed in a β-reduction in L corresponds
to several, smaller reduction steps in LC, which are only carried out as far as
needed to proceed with the reduction of the term. Therefore, substitutions
not affecting the result of the evaluation in L can be avoided in LC.

Coq

All our results are formalized in the proof assistant Coq. Coq is an imple-
mentation of the calculus of inductive constructions (CIC), a constructive
type theory. Interestingly, this system ultimately originates from the second
use of λ-calculus intended by Church, as a formal logic.
In Coq, each proposition is a type, and a proof of a proposition is a well-

typed expression of that type. So programming and proving in Coq can be
done in the same system.
The introduction of LC was motivated by the Coq formalization of [For14].

Since reasoning about a programming language often requires the evaluation
of terms, an efficient evaluation was needed to speed up the compilation of
the proofs.

Overview

In the first two chapters, we summarise some results that can be found in
the literature: Chapter 2 contains properties related to uniform confluence
and Chapter 3 gives the definition and basic properties of L.
In Chapter 4, we define the call-by-value combinatory logic SKv. We also

prove some basic properties, like uniform confluence.
We relate L and SKv in Chapter 5 and show that L can be fully embedded

in L. We give a mapping from L to SKv, show that this mapping is compatible
with term equivalence and irreducibility in both directions, and give a left-
inverse allowing to pull back reductions from SKv to L.
In Chapter 6, we define a variant of L with closures: LC. We prove that

the reduction relation in LC refines L-reduction, give an sound and complete
interpreter for LC and show how this can be used to evaluate L-terms.
An overview of the accompanying Coq formalization can be found in Chap-

ter 7.

4 CHAPTER 1. INTRODUCTION

Chapter 2

Uniform Confluence

Throughout this thesis, we work with different reduction systems. They
all are uniformly confluent [Nie00], a property implying that the reduction
strategy does not influence the length of normalizing reduction chains.
Since we did not find this and related properties in a condensed and ab-

stract form in the literature, we will do so here.
For this chapter we assume an abstract reduction system consisting of a

set X and a relation → ⊆ X ×X. We use the notations from [BN98]. By
x, y and z we will denote elements of X, while k, l and m range over the
natural numbers.
Recall that → is confluent iff from y1

∗← x
∗→ y2 we can conclude that

there exists z with y1
∗→ z

∗← y2.

Definition 2.1 → is uniformly confluent if from y1
k1← x

k2→ y2 we can
conclude that there exists z, l1 ≤ k2, and l2 ≤ k1 such that y1

l1→ z
l2← y2

with k1 + l1 = k2 + l2.

x

y1 y2

z

∗ ∗

∗ ∗

(a) Confluence

x

y1 y2
k1
+
l1

=
k2
+
l2

z

k1 k2

k2≥l1 l2≤k1

(b) Uniform Confluence

Figure 2.1: Confluences

As seen in Figure 2.1, this refines confluence. Note that in all diagrams
in this chapter, the stated side conditions require the length of reductions to
be uniform over different paths.

5

6 CHAPTER 2. UNIFORM CONFLUENCE

Instantiating Definition 2.1 with k1 = k2 = 1, we conclude a more local
property implied by uniform confluence:

Definition 2.2 → has the uniform diamond property if from y1 ←
x → y2 we can conclude that either y1 = y2 or that there exists z with
y1 → z ← y2.

This property was first mentioned in [New42]. In [Nie00], it is introduced un-
der the name ’uniform confluence’. We reserve this notion for an equivalent,
but more directly applicable characterization.
In this thesis, all reduction relations turn out to have the uniform diamond

property by similar proofs: We only look at call-by-value term rewriting
systems and in those, two redexes in the same term either do not overlap or
are identical. In the first case, we can join the two terms by reducing the
other redex, in the later case, the redexes contract to the same term.
We will now show that the uniform diamond property already implies

uniform confluence. This is shown for a specific relation in [LM08]. We
essentially generalize this proof and follow the idea in [For15].

Lemma 2.3 (Uniform Semi-Confluence) Assume → has the uniform
diamond property and y1 ← x

k→ y2. Then there exist z, l1 ≤ k and
l2 ≤ 1 with y1

l1→ z
l2← y2 such that 1 + l1 = k + l2.

x

y1 y2
1
+
l1

=
k
+
l2

z

k

k≥l1 l2≤1

(a) Statement

x

y1 x′2.2

z′ y2IH

z

k

k≥l1 l2≤1

(b) Inductive Step, Case 2

Figure 2.2: Lemma 2.3

Proof By induction on k. For k = 0, we note that y1 has the desired
properties. Otherwise, we have x 1+k→ y2, so there is x′ with x → x′

k→ y2.
We use the uniform diamond property with y1 ← x→ x′ and get two cases:

• If y1 = y2, then the claim follows for z = y2.

7

x

IHy1 x′

2.3z′ y2

z

k1 k2

k2≥l1 l2≤k1

1≥m1 m2≤l2

Figure 2.3: Recursive Step Theorem 2.4

• Otherwise there is z′ with y1 → z′ ← x′. Then (see Figure 2.2b) the
induction hypothesis applied to z′ ← x′

k→ y2 yields a term z and two
numbers l1 ≤ k and l2 ≤ 1 such that z′ l1→ z

l2← y2 with 1+ l1 = k+ l2.
z has the desired properties. �

Theorem 2.4 A relation is uniformly confluent iff it has the uniform dia-
mond property.

Proof Any uniformly confluent relation has the uniform diamond property
by instantiating k1 = k2 = 1 in Definition 2.1.
For the converse direction, assume that→ has the uniform diamond prop-

erty and y1
k1← x

k2→ y2. We show by induction on k2 that there are z,m1 ≤ k2
and m2 ≤ k1 such that y1

m1→ z
m2← y2 with k1 +m1 = k2 +m2.

For k2 = 0, the claim follows for z = y1. Otherwise, we know that there
is x′ with x k2→ x′ → y2 (see Figure 2.3). By our induction hypothesis used
with y1

k1← x
k2→ y2, there are l1 ≤ k2 and l2 ≤ k1 and a term z′ such that

y1
l1→ z′

l2← x′ with k1 + l2 = k2 + l1.
Using Lemma 2.3 on z′ l2← x′ → y2 yields m1 ≤ 1 and m2 ≤ l2 and a term

z such that z′ m1→ z
m2← y2 with l2 +m1 = 1+m2. The claim follows with z.�

Note that uniform confluence implies the uniform diamond property, but
confluence does not imply the diamond property [BN98]. By arithmetic
reasoning, we can also derive the characterization of uniform confluence (see
Figure 2.4) mentioned in the proof of Proposition 2.4 in [Nie00], .

Corollary 2.5 A relation is uniformly confluent iff from y1
k1← x

k2→ y2, we
can conclude that there exists z and m ≤ min(k1, k2) such that y1

k2−m→
z
k1−m← y2.

8 CHAPTER 2. UNIFORM CONFLUENCE

x

y1 y2k1 ≥ m ≤ k2

z

k1 k2

k2 −m k1 −m

Figure 2.4: Alternative Characterization of Uniform Confluence

In our concrete systems, m corresponds to the number of shared reduction
steps in the two derivations y1

k1← x
k2→ y2.

Proof Assuming uniform confluence, the other characterization follows from
arithmetic reasoning taking m = (k1+k2)− (k1+ l1). In the other direction,
arithmetic reasoning taking l1 = k2 − m and l2 = k1 − m yields uniform
confluence. �

We now derive some properties from uniform confluence. Recall that a rela-
tion→ isChurch-Rosser iff from x1

∗↔ x2 we can conclude that there exists
y with x1

∗→ y
∗← x2. As proven in [BN98], the Church-Rosser property is

equivalent to confluence.

Corollary 2.6 Every uniformly confluent relation is Church-Rosser.

Another relevant consequence was mentioned in [Nie00]. Recall that a term
x is irreducible (or normal) iff there is no y such that x → y. We write
x ⇓k y iff x

k→ y and y is normal. If there is any k with x ⇓k y, we simply
write x ⇓ y.

Corollary 2.7 Let → be an uniformly confluent relation. If x ⇓k1 y1 and
x ⇓k2 y2, then k1 = k2 and y1 = y2.

Proof By uniform confluence, we know that there is a term z and numbers
l1 and l2 such that y1

l1→ z
l2← y2 and k1 + l1 = k2 + l2. But since y1 and y2

are irreducible, they can not reduce. So l1 = l2 = 0 and y1 = z = y2 and
therefore k1 = k2. �

So in uniformly confluent systems, the normal form of a given term (if ex-
isting) and the length of a normalizing reduction chain are independent of
the reduction strategy.

Chapter 3

L: Weak Call-by-Value
λ-Calculus

L is a weak call-by-value λ-calculus. Those restrictions simplify the semantics
compared to λβ without restricting the computational capabilities.
It was used in [For14] as a formal model of computation to allow rigorous

proofs in the context of computability theory.
We briefly restate the properties of L relevant for this thesis. We omit

proofs that can be found in [For14].

Definition 3.1 (Term)

L 3 s, t, u ::= x | λs | st (x ∈ N)

We call x variable, λs is an abstraction with body s and st is the appli-
cation of s to t. We omit parentheses according to (st)u = stu, λ(st) = λst
and s(λt) = sλt.
We use De Bruijn indices for the binding of variables: Abstractions do

not explicitly name the variable they bind, but a variable counts the number
of other abstractions between the variable and the binding abstraction.

Example 3.2 The term λx.xλy.xy (in named representation) is given by
λ0λ10 using De Bruijn indices.

We compare the differences of De Bruijn and named representation, with
respect to the formalization, in Section 3.3. Since named terms are more
human readable, we will sometimes use named terms for examples. They
can be mechanically translated to De Bruijn indices.
The semantics of L is defined in terms of a substitution and a reduction.

9

10 CHAPTER 3. L: WEAK CALL-BY-VALUE λ-CALCULUS

Definition 3.3 (Substitution)

xxu := u

yxu := y if y 6= x

(st)xu := sxut
x
u

(λs)xu := λ(s1+xu).

Definition 3.4 (Reduction)

(λs)(λt) �L s
0
λt

β
s �L s

′

st �L s
′t

AppL
s �L t

′

st �L st
′ AppR

Thus, a redex in L is each term (λs)(λt) that does not appear under an
abstraction.
A term s is closed iff for all x and u we have sxu = s. This coincides

with the intuition of s having no free variable. A procedure is a closed
abstraction.
Some basic properties follow without even looking at the definition of

substitution:

Fact 3.5 If s �k
L
s′ and t �l

L
t′, then st �k+l

L
s′t′.

Theorem 3.6 �L is uniform confluent.

Proof By Theorem 2.4, the claim is equivalent to the uniform diamond
property. The proof of this can be found in [For14] and is similar to the
proofs of Theorem 4.7 and Lemma 6.6. �

Note that substitution in L is capturing: when substituting a term u with
unbound variables into the body of an abstraction, we do not adjust the
variables in the abstraction in any way. This simplification compared to λβ
is possible since L is weak, that is that we can not reduce in the body of
abstraction. Combined with the fact that we are only interested in a reason-
able semantics for terms closed on top-level, we never substitute variables
with non-closed terms.

L is call-by-value as we require the argument in a β-reduction to be irre-
ducible (see Fact 3.7).

Fact 3.7 A closed term is irreducible iff it is an abstraction.

To reason about non-closed terms, we refine the notion of closedness: A term
is k-closed, if it only references variables less than k:

Definition 3.8 (k-closed)

x < k

k-closed x
(1 + k)-closed s
k-closed (λs)

k-closed s k-closed t
k-closed (st)

3.1. L AS PROGRAMMING LANGUAGE 11

We need the following properties in this thesis:

Fact 3.9 s is closed iff s is 0-closed.

Fact 3.10 If s is k-closed and k′ ≥ k, then s is k′-closed.

Fact 3.11 A closed term is k-closed.

Fact 3.12 If s is (k+1)-closed and t is k-closed, then skt is k-closed.

We define the size of a term since we sometimes will use induction on the
size:

|x| := 0

|st| := 1 + |s|+ |t|
|λs| := 1 + |s|

3.1 L as Programming Language

As a justification to use L as a functional Programming language, we briefly
outline how to represent data and perform recursion in L. More details can
be found in [For14].
Data in L can be represented via the Scott encoding: Assume an

inductive data type T with constructors c1, . . . , ck each taking li argu-
ments. Then the Scott encoding of x = cia1 . . . ali is the procedure x =
λc1 · · · ck.ci a1 . . . ali . The constructor ci itself can be represented by the
procedure λa1 · · · ali .λc1 · · · ck.cia1 · · · ali .

Example 3.13 The Scott encoding of a natural number k and the successor
constructor succ are defined as:

0 := λzs.z

k + 1 := λzs.sk

succ := λn.λzs.sn

Thus data is represented by the procedure performing the match-operation
on the data. In the same way, L-terms itself can be represented in L as data.
To use a recursive procedure, we first define the recursion combinator.

Definition 3.14 (Recursion Combinator)

r := λrf.f(λx.rrfx)

ρs := λx.rrsx

12 CHAPTER 3. L: WEAK CALL-BY-VALUE λ-CALCULUS

Note that ρ is not an L-term, but a meta-function.
To write a recursive procedure, we can write a non-recursive procedure s

taking an additional first argument that is used for recursive calls. Then ρs
is the desired recursive procedure:

Fact 3.15 If s is a procedure, then ρs is a procedure.

Fact 3.16 If s and t are procedures, then ρs t �3
L
s(ρs)t.

This way, we can define for example addition on natural numbers:

add := ρ(λfmn.mn(λm′.succ(fm′n))

This definition directly corresponds to the definition of addition in Coq itself:
We take two arguments m and n and want to compute m+ n. Therefore,

we perform pattern-matching on m: In the first case, where m = 0, we
return n. In the second case, we have m = succ m′, use recursion and return
succ (m′ + n).
The definition is formally justified by the correctness lemma:

Fact 3.17 add is a procedure and addmn �∗
L
m+ n

Therefore, we say that addition is internalized by the L-term add. Note
that also the constructor succ is internalized by succ

3.2 Semi-Automated Internalization

Together with Yannick Forster, we developed a framework that automates
the internalization of functions: Yannick Forster mostly worked on Coq-
tactics that transform a Coq-definition into an L-term, and we developed
Coq-tactics that semi-automate the proof of the correctness lemma. The
framework makes use of already internalized functions and their correctness
lemmas when internalizing new functions.
To formally reason about a function in Coq, it first has to be defined.

The semi-automated internalization eases the task to define nearly the same
function again in L, to prove that it is L-computable.
More details can be found in [For15].

3.3 Named L

The version of L with explicit names just differs from the De Bruijn-version
in some details:

s, t, u ::= x | λx.s | st (x ∈ N)

3.3. NAMED L 13

xxu := u

yxu := y if y 6= x

(st)xu := sxut
x
u

(λx.s)xu := λx.s

(λy.s)xu := λy.sxu if y 6= x

(λx.s)(λy.t) �L s
x
λy.t

β
s �L s

′

st �L s
′t

AppL
s �L t

′

st �L st
′ AppR

The benefit of named L is that the representation is more human readable.
For each abstraction, all uses of the bound variable are denoted by syntac-
tical identical variables. That was not the case with De Bruijn indices (see
Example 3.2). Note that the concrete set of variables in named L, in our
case N, does not matter as long it is infinite (and has decidable equality).
When we speak about named L in this thesis, we will always do so modulo

α-conversion: Each syntactic term represents the equivalence class of all
terms obtained by consistently renaming bound variables. So λx.x and λy.y
represent the same object.
But this way of handling α-equivalence is not possible in Coq without

notable overhead. Therefore we studied to what extend is is possible to
formalize named L just using syntactic equality, without any notion of α-
equivalence. In λβ, this is not possible since substitution may has to rename
variables when substituting with non-closed terms.
In our setting, we were able to convert the whole Coq formalization of

[For14] to named L. The only major change was introducing a notion of
k-closedness that does not contain an index, but the set of all unbound
variables.
All other proofs remained nearly the same. Interestingly, uniform conflu-

ence still holds in named L, even without a notion of α-equivalence.
One problem that we were faced with is that for Scott encoded datatypes,

it now is important how the different variables are named. Since at this
point, the Coq formalization in [For14] did not use the automation described
in Section 3.2, we had to manually alter a lot of correctness proofs.
Overall, we decided to stick with using De Bruijn indices, since a formal-

ization of α-equivalence would introduce too much overhead.
Note that on closed terms, the translation from the De Bruijn represen-

tation to th named one and vice versa can be easily defined. Therefore, the
results on closed terms can be translated without any problems between the
two variants of L.

14 CHAPTER 3. L: WEAK CALL-BY-VALUE λ-CALCULUS

Chapter 4

SKv: Call-by-Value
Combinatory Logic

Combinatory Logic, although initially introduced to define first-order logic
without the need for bound variables [Sch24], can be used to eliminate ab-
stractions and substitutions in λβ.
Similar to L beeing a call-by-value variant of λβ, we introduce SKv, a

call-by-value variant of the combinatory logic SKI. We will first show some
basic properties of SKv. In Chapter 5, we the prove that SKv can be used
to eliminate abstractions and substitutions from L.
Definition 4.1 (Term)

X,Y, Z ::= x | K | S | XY (x ∈ N)

The set of all x occurring in X is denoted by FV (X) and a term X is closed
iff FV (X) is empty. We call S and K combinators. Their semantics will
be similar to a function taking multiple arguments. Therefore, a value is a
variable or a combinator not applied to enough other values:

X,Y ::= x | K | KX | S | SX | SXY (x ∈ N)

The semantics of SKv is defined in terms of the reduction relation:

Definition 4.2 (Reduction)

X,Y values
KXY �SK X

K
X,Y, Z values

SXY Z �SK XZ(Y Z)
S

X �SK X ′

XY �SK X ′Y
AppL

Y �SK Y ′

XY �SK XY ′
AppR

Note that for all redexes, that are terms of form KXY and SXY Z with
values X,Y and Z, each proper subterm is a value.

15

16 CHAPTER 4. SKV: CALL-BY-VALUE COMBINATORY LOGIC

We define the identity combinator I := SKK. Note that I has indeed
the properties of the identity, as for all values X, we have IX �2

SK
X. In

contrast to SKI in [HS08], we did not choose to include the identity as a
basic combinator in the definition of SKv.

Fact 4.3 If X �k
SK
X ′ and Y �l

SK
Y ′, then XY �k+l

SK
X ′Y ′.

The notion of values is justified:

Fact 4.4 Every value is irreducible.

Note that the converse does not hold, since for example xK is irreducible
and not a value. But since for our final results, we are mostly interested
in closed terms, we define the interaction between values and variables such
that convenient substitution lemmas hold, for example Fact 4.14.
For closed terms, we have the expected property:

Fact 4.5 A closed term is irreducible iff it is a value.

Corollary 4.6 If X is a value and X �∗
SK
Y , then X = Y .

Confluence now follows by the same argument as for L in Theorem 3.6.

Theorem 4.7 �SK is uniformly confluent.

Proof By Theorem 2.4, uniform confluence is equivalent to the diamond
property.
So assuming X �SK Y1 and X �SK Y2, we show that either Y1 = Y2 or there

exists Z with Y1 �SK Z and Y2 �SK Z.
All proper subterms of redexes are values and therefore, redexes are not

nested. So either the two reductions Y1 �SK Z and Y2 �SK Z already determin-
isticly contracted the same redex and we have Y1 = Y2. Or they contracted
non-overlapping redexes and we can join Y1 and Y2 by contracting the other
redex as well. �

By Corollary 2.6, we conclude:

Corollary 4.8 �SK is Church-Rosser.

Together with Fact 4.4, this yields two corollaries:

Corollary 4.9 If Y is a value and X ≡SK Y , then X �∗
SK
Y .

Corollary 4.10 If X and Y are values and X ≡SK Y , then X = Y .

4.1. MISCELLANEOUS 17

4.1 Miscellaneous

We close this chapter with some more specific properties of SKv needed in
later chapters.
Since SKv is call-by-value, each subterm of a redex must be normalized.

So we can decompose reduction paths:

Lemma 4.11 For every reduction X �k
SK
Y with k > 0 there are X1X2 = X

and Y1, Y2 with Xi �kiSK
Yi such that one of two cases holds:

Either Y = Y1Y2 with k = k1 + k2, or the Yi are values and there are Z
and k′ with Y1Y2 �SK Z and Z �k′

SK
Y , where k = k1 + k2 + 1 + k′.

Proof If X reduces, it is an application X = X1X2. Then either somewhere
in the reduction path there is the first redex on top level and the second case
suffices. Or there is no redex at all on toplevel and the first case suffices. �

Fact 4.12 If X is closed and X �∗
SK
X ′, then X ′ is closed.

We define substitution in a straightforward manner:

xxY := Y

(XY)xZ := Xx
ZY

x
Z

Xx
Y := X otherwise

Definition 4.13 X is a maximal value if X is a value, but XY is not for
any Y .

So maximal values are variables, SXY orKX. The motivation is that we can
substitute variables for other maximal values without affecting valueness:

Fact 4.14 If Y is a maximal value, then X is a value iff Xx
Y is a value.

For non-maximal values, this does not hold since for example xK is not a
value, but (xK)xK = KK is a value.

Fact 4.15 If X and Y are values, the successor of XY is unique. That is,
from (XY) �SK Z1 and (XY) �SK Z2, we know Z1 = Z2.

Fact 4.16 If Y is closed and x 6= z, then z ∈ FV (X) iff z ∈ FV (Xx
Y).

We define the size of a term since we sometimes will use induction on the
size, not just the structure of a term:

|XY | := 1 + |X|+ |Y |
|X| := 0 otherwise

18 CHAPTER 4. SKV: CALL-BY-VALUE COMBINATORY LOGIC

Chapter 5

Embedding L into SKv

It is known that λβ and SKI are strongly related [HS08]. But there is no
known mapping from λβ to SKI that is fully compatible with the intensional
notions of equivalence, not even for the broader notion of equivalence in λβη
In a call-by-value setting, this is different: We give a compiler C from L

to SKv that preserves irreducibility and is fully compatible with our non-
extensional term equivalences, that is s ≡L t iff C s ≡SK C t. So L can be fully
embedded into SKv.
Several undecidable, extensional properties in L like term equivalence or

evaluation are known, so this shows that the corresponding problem in SKv
is undecidable as well.
In this chapter, we will assume a named variant of L (see Section 3.3)

instead of De Bruijn indices, so the syntactic representation of an L-term in
this chapter is only unique up to consistent renaming of bound variables.
There is not much insight in using De Brujin indices here, but handling the

indices distracts from the main idea of the proofs. The Coq formalization of
this chapter still uses De Brujin indices, so the differing details can be found
there.

5.1 Pseudo-Abstraction

We will give a computable function [x].X called pseudo-abstraction of x with
respect to X. Pseudo-abstractions have properties similar to abstractions in
L.

Definition 5.1 (Pseudo-Abstraction)

[x].x := I

[x].X := KX if x 6∈ FV (X) and X value
[x].(XY) := S([x].X)([x].Y) otherwise

Fact 5.2 [x].X is a maximal value.

19

20 CHAPTER 5. EMBEDDING L INTO SKV

This relates to the fact that abstractions in L are irreducible, but may reduce
if applied to another value.

The pseudo-abstractions presented in [HS08] do not have this property.
The difference to our pseudo-abstraction is that the third equation of Def-
inition 5.1 applies to all non-values. This ’lifting’ with S turns non-values
into values: While in [HS08], the pseudo-abstraction of II is K(II) and not
a value, we have [x].II = SII, which is a value.

The notion of ’pseudo-abstraction’ is justified and a pseudo-abstraction
similar to an L-abstraction:

Theorem 5.3 (Correctness) For all values Y , we have ([x].X)Y �+
SK
Xx
Y

Proof Induction on X. In all cases that lead to the first two equations in
Definition 5.1, the claim follows by the semantics of SKv. Otherwise, we
know that X = X1X2 and the third equation in Definition 5.1 applies. By
the induction hypothesis, ([x].Xi)Y �∗SK

Xi
x
Y for i = 1, 2, which together with

Fact 5.2 concludes the claim:

([x].X1X2)Y = S([x].X1)([x].X1)Y

�SK ([x].X1)Y (([x].X1)Y)

�∗
SK
X1

x
YX2

x
Y

= (X1X2)
x
Y �

On certain terms, substitution and pseudo abstraction commute:

Lemma 5.4 Let Y be a closed, maximal value and x 6= z. Then ([z].X)xY =
[z].(Xx

Y).

Proof Induction on X. For variables X = z 6= x, the equation is trivial.
Otherwise, by Fact 4.14 and Fact 4.16, we know that the conditions that
z 6∈ FV (X) and X is a value hold if and only if the conditions z 6∈ FV (Xx

Y)
and Xx

Y is a value. Therefore the same equations in the definition of the
pseudo-abstraction are applicable to both sides:

• Assuming z 6∈ FV (X) and X is a value, we get ([z].X)xY = (KX)xY =
KXx

Y = [z].(Xx
Y)

• Otherwise, X = X1X2 with the induction hypothesis ([z].Xi)
x
Y =

[z].Xi
x
Y for i = 1, 2. We get ([z].X1X2)

x
Y = (S([z].X1)([z].X2))

x
Y =

S([z].X1)
x
Y ([z].X2)

x
Y = [z].((X1X2)

x
Y) �

Note that the side conditions in the definition of pseudo-abstraction are cho-
sen carefully. For other variants resembling the ones from [HS08], Lemma 5.4
does not hold since it may be the case that different cases of Definition 5.1
apply to X and Xx

Y . Also the precondition that Y is a maximal value in
Lemma 5.4 is required, beeing a maximal value is required as otherwise,
Fact 4.14 is not applicable.

5.2. COMPILING L INTO SKV 21

5.2 Compiling L into SKv

We can now define the SKv-term corresponding to a given L-term:

C x := x

C (st) := (C s) (C t)
C (λx.s) := [x].(C s)

In proofs, we write s instead of C s for readability. This also allows to drop
parenthesis.

Fact 5.5 s is closed iff C s is closed.

Note that on the left, we speak about L-closedness, while on the right, we
have SKv-closedness.

Fact 5.6 A closed term s is an abstraction iff C s is a value.

The closedness of s is required since for example C x is a value, but x is not
an abstraction.

Theorem 5.7 A closed term s is irreducible iff C s is irreducible.

Proof Fact 5.6 with Fact 4.4 and Fact 3.7. �

Fact 5.8 (C s) Y is not a value.

For the soundness of C , the following compatibility lemma with SKv- and
L-substitution is essential:

Lemma 5.9 If t is a procedure, then (C s)xC t = C (sxt).

Proof Induction on s. The cases for variables and applications are trivial.
In the remaining case s = λz.s′, we have the induction hypothesis s′xt = (s′xt).
We want to prove ([z].s′)xt = (λz.s′)xt with x 6= z. This follows by

Lemma 5.4 with Fact 5.2 and the induction hypothesis. �

Proposition 5.10 (Soundness) For all closed terms s with s �L t, we have
C s �+

SK
C t.

Proof Induction on s �L t. All cases except the base case are straightfor-
ward.
In the base case, we have s = (λx.s′)u where u is a procedure, so t = s′xu.

We need to prove (λx.s′)u �+
SK

s′xu. This holds by using Lemma 5.9 and
Theorem 5.3: (λx.s′)u = ([x].s′)u �+

SK
s′xu = (s′xu) �

Corollary 5.11 If s is closed and s �∗
L
t, then C s �∗

SK
C t.

Corollary 5.12 If s and t are closed and s ≡L t, then C s ≡SK C t.

Together with Theorem 5.7, we also conclude:

Fact 5.13 If s is closed and s ⇓ t, then C s ⇓ C t.

22 CHAPTER 5. EMBEDDING L INTO SKV

5.3 C is invertible

By Fact 5.13, we may normalize C s to get C t, where t is the normal form of
s. But for this property to be even more useful, we need a left-inverse of C
to pull back the term t from C t.

We first give the left-inverse of our pseudo-abstraction:

Definition 5.14

[x]−1.(SKK) := x

[x]−1.(SXY) := ([x]−1.X)([x]−1.Y)

[x]−1.(KX) := X

Note that this is only a partial function, but for our results, the result on
other arguments does not matter.

Proposition 5.15 [x]−1.([x].X) = X

Proof Induction on X. �

Therefore, the pseudo-abstraction is injective.

Definition 5.16 (Left Inverse of C)

C-1 x := x

C-1X := λx.(C-1 ([x]−1.X)) if X is a value

C-1 (XY) := (C-1X)(C-1 Y)

In the second rule, x is any fresh variable. As we identify named L-terms
modulo α-equivalence, this still defines a function.
The definition is well-founded since the inverse of pseudo-abstraction de-

creases the size of arguments that are no variables.

Proposition 5.17 C-1 (C s) = s

Proof Induction on the size of s, using Fact 5.6 and Fact 5.8 to show that
the corresponding equations in the definitions of C and C-1 apply. �

We have now shown that C is injective and that we can compute the normal
form of s, if it exists, by normalizing C s to X and the computing C-1X. But
we have not proven that for a diverging term s, the compilation C s diverges
as well.

5.4. C IS COMPLETE 23

5.4 C is Complete

We now want to prove that the compilation is complete, that is that s �SK t
translates back to s ≡L t.
Note that a stronger notion of completeness like s �SK t⇒ s �∗

L
t (similar

to Proposition 5.10) does not hold:

Example 5.18 For a procedure u, we have (λx.xx)u = SIIu �SK (Iu)(Iu) =
((λx.x)u)((λx.x)u), but we can not reduce (λx.xx)u to ((λx.x)u)((λx.x)u)

Instead, a SKv-reduction of a term C s is just the prefix of a path correspond-
ing to an L-reduction:

Lemma 5.19 For a closed term s with C s �SK X, there is t such that s �L t
and X �∗

SK
C t.

Proof Induction on s. As it is closed and reducible, it must be an application
s = s1s2. We now distinguish how s1s2 �SK X is derived:

• The derivation is due to AppL. So X = X1s2 with s1 �SK X1, our
induction hypothesis yields t′ with X1 = t′ and s1 �L t′, so the claim
follows with t = t′s2.

• The case for AppR is symmetric.

• The cases for S and K can be handled uniformly: By Fact 5.6, we
know that s1 = λx.s′1 and s2 = λy.s′2 are both procedures. So we
have s1s2 = ([x]. s′1)λy.s

′
2 �SK X. Because of λx.s′1s2 �L (s′1)

x
s2

with
Proposition 5.10 we also know s1s2 �+

SK
s′1
x
s2
. By Fact 4.15, X is the

same as the first sucessor in the reduction s1s2 �+
SK

s′1
x
s2

and therefore
X itself reduces to s′1

x
s2

as well.

So the claim follows with t = s′1
x
s2 �

This translates to arbitrary reduction paths:

Proposition 5.20 For a closed term s with C s �∗
SK
X, there is t such that

s �∗
L
t and X �∗

SK
C t.

Proof Complete induction on the k in s �k
SK
X. For k=0, we take t = s.

Otherwise, there is Y with s �SK Y and Y �k
SK

X. By Proposition 5.20,
there is k′ and u such that s �L u and Y �k′

SK
u. By the uniform confluence

of SKv, we can join this reduction path with Y �k
SK
X and get l ≤ k and X ′

such that u �l
SK
X ′ and X �∗

SK
X ′.

We now apply our induction hypothesis on u �l
SK

X ′. This yields t with
u �∗

L
t and X ′ �∗

SK
t. With t, the claim holds: s �L u �∗L t and X �∗

SK
X ′ �∗

SK

t. �

24 CHAPTER 5. EMBEDDING L INTO SKV

Note that without the uniform confluence of SKv, the induction in the proof
of Proposition 5.20 would not necessarily be well-founded.

Corollary 5.21 If s is closed and C s ⇓ X, then s ⇓ C-1X.

Proof From Proposition 5.20 using Fact 5.6 we have t such that C t = X
and s ⇓ t. The claim follows the correctness of C-1 . �

From Corollary 5.21, we conclude completeness w.r.t closed, normalizing
terms:

Corollary 5.22 If s is a closed term and C s ⇓ C t, then s ⇓ t.

Combined with Fact 5.13, this suffices to reduce the halting problem or term
evaluation from L to SKv.
We want to go further and show that term equivalence, even for non-

terminating terms, is preserved. Therefore, we show completeness for arbi-
trary, closed terms. To avoid the problems from Example 5.18, we first study
the structure of reductions of the image of β-redexes under C.

Lemma 5.23 Assume (λx.s)t �∗
SK
u, where s is an abstraction, λx.s is closed

and t is a procedure. Then (λx.s)t ≡L u

Proof Note that u is closed by Fact 5.5 because ([x].s)t is closed.
We know that (λx.s)t reduces to sxt = sxt by Theorem 5.3 and Lemma 5.9.

This even is the normal form by Fact 5.6, as sxt must be an abstraction.
Because of confluence, u has normal form sxt as well. By Corollary 5.22,

we conclude sxt ≡L u. Thus the claim holds by β-reducing (λx.s)t. �

If s is not an abstraction, we have:

Lemma 5.24 Assume (λx.s)t �SK Y , where s is not an abstraction, λx.s is
closed and t is a procedure. Then there exists a closed s′ with Y = s′ such
that (λx.s)t ≡L s

′.

Proof Because λx.s is closed, we distinguish three cases for λx.s = [x].s

• If s is a variable, then it must be the bound x. The assumed reduction
of (λx.x)t = It = SKKt is deterministic since t is a value. So Y =
(Kt)(Kt) and the claim follows with s′ = (λx.t)(λx.t).

• If s is a closed, we have (λx.s)t = Ks t. Since s and t are values, the
reduction Ks t �SK Y is deterministic with Y = s. Thus the claim
follows with s′ = s.

• If s is not closed and not a variable, s = s1s2 is an application
and x (and only x) occurs unbound in s. We have (λx.s1s2)t =
S([x]. s1)([x]. s2)t. Since ([x]. s1) and t are values, the successor Y
of S([x].s1)([x].s2)t is unique with Y = (([x].s1)t)(([x].s2)t). Thus the
claim follows for s′ = ((λx.s1)t)((λx.s2)t). �

5.5. CONCLUSION 25

Proposition 5.25 (Completeness) If s is closed and C s �∗
SK
C t, then

s ≡L t.

Proof Assume a closed term s such that s �l
SK

t. We now perform induc-
tion on the lexicographical order on (l, s), so we may assume our induction
hypothesis for any s′, t′ and l′ with s′ �l′

SK
t′ as long as either l′ < l, or l′ = l

and |s′| < |s|. Note that t is closed since s �∗
L
t.

If s is an abstraction, then by Fact 5.6 we know that s is irreducible and
thus s = t. By injectivity of C we have s = t and the claim holds.
Otherwise, since s is closed, s = s1s2 is an application. If t is an abstrac-

tion, the claim holds by Corollary 5.22. Otherwise, since t is closed, s = t1t2
is an application.
So we have s1s2 �kSK

t1t2 and distinguish cases with Lemma 4.11:

• For k = 0 we have s1s2 = t1t2, and the claim follows by injectivity of
C.

• Assume s1 �k1SK
t1 and s2 �k1SK

t1 with k = k1 + k2. Since |si| < |s|, our
induction hypothesis is applicable and yields s1 ≡L t1 and s1 ≡L t1.
Thus the claim s1s2 ≡L t1t2 holds.

• Assume s1 �k1SK
X1, s2 �k1SK

X2, X1X2 �SK Y and Y �k′
SK

t1t2 with
k = k1 + k2 + 1 + k′, where X1 and X2 are values.

As for i = 1, 2 the term si converges to Xi, we can apply Corollary 5.21
and get procedures λx.ui with si �L λx.ui and Xi = λx.ui. We know
that X1X2 = λx.u1 λx.u2 �SK Y and distinguish whether u1 is an
abstraction:

– If u1 is an abstraction, the claim follows form λx.u1 λx.u2 �∗SK
t1t2

with Lemma 5.23.
– Otherwise, Lemma 5.24 on λx.u1 λx.u2 �SK Y yields a closed s′

with Y = s′ and (λx.u1)(λx.u2) ≡L s
′.

We now use our induction hypothesis on Y = s′ �k′
SK

t1t2 which
yields s′ ≡L t1t2. Thus the claim holds. �

5.5 Conclusion

So the structure of L is fully captured in SKv using C:

Theorem 5.26 If s and t are closed terms, then s ≡L t iff C s ≡SK C t.

Proof One direction is Proposition 5.10.
For the reverse direction, we first use the Church-Rosser property on s ≡SK

t to get Y with s �∗
SK
Y and t �∗

SK
Y . From Proposition 5.20, we get u such

that Y �∗
SK

u. The claim follows via Proposition 5.25 used on s �∗
SK

u and
t �∗

SK
u. �

26 CHAPTER 5. EMBEDDING L INTO SKV

Recall that Theorem 5.7 states that C preserves reducibility. So combined,
we can conclude:

Theorem 5.27 If s is a closed term, then s ⇓ t iff C s ⇓ C t

Thus we can say that we fully embedded L into SKv. That also means that
each semantic property on L-terms can be reduced to a similar, semantic
property on SKv-terms.

Chapter 6

LC: L with Closures

The substitution semantics for L in Chapter 3 is short and suitable for the-
oretical reasoning. But for reasons we point out, this semantics does not
suggest an efficient interpreter for L.
To reason about the correctness of a more realistic interpreter, we in-

troduce LC, a variant of L with closures. It was inspired both by explicit
substitution semantics for λ-calculus [ACCL91] and variant of λ-calculus in
[LM99]. We prove that LC is sound and complete with respect to L. We then
argue why LC is computationally more efficient and give an interpreter for
which we prove soundness and completeness. We prove that this interpreter
can be used to interpret L as well.

6.1 Drawbacks of Substitution Semantics in L

One practical problem with a naive implementation of an interpreter per-
forming substitutions is the need to traverse the whole body of the abstrac-
tion for each β-reduction.

Example 6.1 Let bn be defined by b0 := I := λx.x and b1+n := λx.bnx.
Then bn I �n+1

L
I. But although |bn| is in θ(n), the naive interpreter needs

to substitute into each of the bi for i = 0, . . . , n taking time |bi| each, so
the overall time required is in O(n2), where n is linear to the length of the
reduction.

Also, the naive implementation using substitution even traverses closed sub-
terms, for example Scott-encoded datatypes, and traverses subterms not
effecting the final normal form. And every subterm under multiple abstrac-
tions is possibly traversed multiple times.
Besides those practical problems, the worst time complexity of an inter-

preter that fully prints the resulting term must be exponential as there
are terms that grow exponentially in the number of performed reductions
[LM08]:

27

28 CHAPTER 6. LC: L WITH CLOSURES

Example 6.2 For arbitrary terms s and t, let s0t := t and sk+1t := s(skt)
and let n := λx.λy.xny be the Church numeral for n. Then n 2 normalizes
in linearly many steps, but has an exponentially large normal form.

The semantics of LC corresponds to a way functional programming languages
in practice can be implemented without substitution, but using environments
to remember bound variables, like for example in the formal specification of
SML [MTHM97].
This approach only traverses those sub-expressions really needed for the

evaluation, and only does so once. More details on the computational aspects
can be found in Section 6.5.

6.2 Basic Properties of LC

We now define LC and give basic properties that do not even require rea-
soning using L.

Definition 6.3 (Term)

p, q, r ::= x | s[σ] | p·q (x ∈ N, s ∈ L, σ ∈ list LC)

We write application in LC with · in between and omit parenthesis according
to (st)[σ] = st[σ], p·(s[σ]) = p·s[σ], and (λs)[σ] = λs[σ].

The term s[σ] will be called a closure, and will refer to the subterm s as
body and to the list σ as environment of the closure. We write s[] for the
term s in the empty environment.

A closure with an abstraction as body is a value. Values will correspond
to abstractions in L.

Before we introduce the semantics of LC, we briefly specify the notations
and operations on lists we require. We write [] for the empty list and a::A for
the list obtained by prepending a in front of A. The length of A is denoted
by |σ|. The nth element of a list (starting from 0) with default value d is
defined as:

0-thd (a::A) := a

k-thd [] := d

(k + 1)-thd (a::A) := k-thdA

Since we use De Bruijn indices, the list σ represents a substitution: The
term corresponding to x in the environment σ is x-thx σ.
We can now define the semantics of LC:

6.3. CONNECTING LC AND L 29

Definition 6.4 (Reduction)

x[σ] �LC x-thx σ
Var

λs[σ]·λt[τ] �LC s[λt[τ]::σ]
β

st[σ] �LC s[σ]·t[σ]
App

p �LC p
′

p·q �LC p
′·q

AppL
q �LC q

′

p·q �LC p·q
′ AppR

The idea is that β-reduction in LC corresponds to β-reduction in L. The
reductions App and Var are simplification steps, as they correspond to
performing the L-substitution in small, parallel steps. We will define a func-
tion performing multiple simplification steps later. We did not integrate
this function into β-reduction since our more fine-grained semantics eases
inductive reasoning.
In contrast to L, where substitution traverses the whole body of an ab-

straction, a value in LC is just traversed as deep as currently needed: We
must not push the environment under an abstraction, but only as far as
needed to verify whether a term is a value.
We conclude this section with basic properties independent of L:

Fact 6.5 If p �k
LC
p′ and q �l

LC
q′ then p·q �k+l

LC
p′·q′.

Lemma 6.6 �LC is uniform confluent.

Proof By Theorem 2.4, uniform confluence is equivalent to the uniform
diamond property.
So under the assumption that p �LC q1 and p �LC q2, we show that either

q1 = q2 or there exists r with q1 �LC r and q2 �LC r.
As the redexes in the definition of �LC do not overlap and are deterministic.

Therefore either the two reductions p �LC q1 and p �LC q2 either contracted
the same redex and q1 = q2. Or they contracted non-overlapping redexes
and we can get r by reducing both redexes. �

With Corollary 2.6 we conclude:

Corollary 6.7 �LC is Church-Rosser.

6.3 Connecting LC and L

Our intention is that an LC-reduction path of s[] correspond to an L-
reduction paths of s itself and vice versa. To formalize this, we introduce
the L-term corresponding to a given LC-term.
We first of all notice that, by the semantics of LC, only a subset of syn-

tactically possible terms can possibly be reduced from a closed L-term in the
empty environment:

30 CHAPTER 6. LC: L WITH CLOSURES

Definition 6.8 (Admissible)

|σ|-closed s ∀p ∈ σ, admissible p ∧ value p
admissible s[σ]

admissible p admissible q
admissible p·q

Note that LC-variables are never admissible and any closed L-term in the
empty environment is admissible.

Fact 6.9 If p �∗
LC
q and p is admissible, then q is admissible.

We can now state in which sense our definition of a value is justified:

Fact 6.10 An admissible LC-term is a value iff it is irreducible.

We now want to translate LC terms into corresponding L-terms. For a
closure, we will first translate the environment and substitute the resulted list
of L-terms into the body. As we use De Bruijn indices, this can be performed
elegantly by the parallel substitution (·){·}· : L → list L → N → L,
defined by:

x{A}k := (x− k)-thxA if k ≤ x
x{A}k := x otherwise

(st){A}k := s{A}k t{A}k

(λs){A}k := λ(s{A}k+1)

The parameter k corresponds to the fact that when substituting under k
abstractions, we do not want to substitute De Bruijn indices less than k.

Parallel substitution satisfies two characteristic equations:

Fact 6.11 s{[]}x = s

Lemma 6.12 s{t::A}k = (s{A}k+1)
k

t for any list A of closed L-terms.

Proof By induction on s. The cases for application and abstraction follow
directly from the induction hypothesis. In the last case s = x is a variable.
By case distinction, the claimed equality x{t::A}k = (x{A}k+1)

k

t holds:

• For k > x, both sides are x.

• For k = x, both sides are t.

• For k < x and |t::A| < x− k, both sides are x.

• Otherwise, we have k < x ≤ |t::A| + k and therefore, both parallel
substitutions yield the same element of A. The claim holds since all
elements in A are closed, so the substitution of k for t on the right does
not change the term. �

6.3. CONNECTING LC AND L 31

As expected, the result of a parallel substitution is closed if the list is long
enough and closed:

Lemma 6.13 Let A be a list of closed L-terms. If s ∈ L is a |A|-closed,
then s{A}0 is closed.

Proof We generalize the statement: If s is (y + |A|)-closed, then s{A}y is
y-closed. From that, the claim follows with k = 0 using Fact 3.9.
The generalized claim holds by induction on A using the two characteristic

equations for the parallel substitution, Fact 6.11 and Lemma 6.12, as well as
Fact 3.12 and Fact 3.11. �

We now can finally define the translation d·e : LC → L, the L-term
corresponding to an LC-term:

dxe := x

dp·qe := dpe dqe
ds[σ]e := s{dσe}0,

where dσe is the pointwise translation of σ.

Proposition 6.14 If p is admissible, then dpe is closed.

Proof By induction on p. Since p is admissible, is must be an application or
a closure. The first case is trivial. In the second case, we know that p = s[σ] is
admissible, therefore s is |σ|-closed. By the induction hypothesis, all terms
in dσe are closed. With Lemma 6.13 we conclude that s{dσe}0 = dpe is
closed. �

Theorem 6.15 (Soundness) If p is admissible and p �LC q, then dpe �≤1L

dqe

Proof By induction on p �LC q:

• The cases App and Var we directly conclude dpe = dqe.

• In the cases AppL and AppR we have p = p1·p2 and q = q1·q2. By
the induction hypothesis, for one side i of dpe = dp1e dp2e we have
dpie �≤1L

dqie and for the other side j, pj = qj . We conclude dpe =
dp1e dp2e

≤1→ dq1e dq2e = dqe.

• In the case β, we show that dλs[σ]e dλt[τ]e �L dλs[λt[τ]::σ]e. We
note that dλs[σ]e dλt[τ]e = λ(s{dσe}1) λ(t{dτe}1). This reduces to
(s{dσe}1)0λ(t{dτe}1). By Lemma 6.12, that is equal to dλs[λt[τ]::σ]e,
thus the claim holds. �

Corollary 6.16 If p is admissible and p �∗
LC
q, then dpe �∗

L
dqe.

Proof Soundness combined with Fact 6.9. �

32 CHAPTER 6. LC: L WITH CLOSURES

6.4 LC is Complete

Only reductions due to β affect the result of d·e. The simplification steps
due to App and Var vanish modulo d·e. We therefore define the simplifi-
cation (·)

: LC → LC that performs as much simplifications as possible in
admissible terms:

x

:= x

(p·q)

:= p

·q

(x[σ])

:= x-thx σ
(st[σ])

:= s[σ]

·t[σ]

(λs[σ])

:= λs[σ]

We call a term p simplified iff p

= p. Note that an admissible term is
simplified iff it contains no Var- or App-redex.
From definition, we conclude three properties of simplification. They are

proven by induction on the LC-term, whereby in the case of a closure, an
additional induction on the body of the closure is needed:

Fact 6.17 p �∗
LC
p

Fact 6.18
⌈
p

 ⌉
= dpe

Fact 6.19 If p is admissible, then p

is simplified.

Note that we need admissibility here because all terms in all environments
must be values.

Corollary 6.20 If p is admissible, then p

is admissible as well.

Proof Fact 6.9 with Fact 6.17. �

Fact 6.21 If p is admissible and simplified and p �LC q, then dpe �L dqe.

Proof Induction on p �LC q. The cases for App and Var contradict the
assumptions. The other cases follow with the corresponding rule from L. �

So simplification really performs every applicable simplification step, as every
additional reduction would reduce the corresponding L-term.

Theorem 6.22 (Completeness) Assume an admissible p such that dpe �L
t. Then there is q with t = dqe and p �+

LC
q

Proof We will prove the statement for simplified p. The general claim
follows via Facts 6.17, 6.18, 6.19 and Corollary 6.20 (see Figure 6.1)
So out claim is that for any admissible, simplified p with dpe �L t, there is

q with t = dqe and p �+
LC
q. We prove this by induction on p:

By admissibility, p is an application or a closure:

6.4. LC IS COMPLETE 33

p · · · p

q

s t

d·e d·e d·e· · ·

Figure 6.1: Sketch of Completeness Proof

• Assume p = p1·p2 is an application. Case distinction on dp1e dp2e �L t.
The cases for the recursive rules are straightforward by the induction
hypothesis.

In the other case, dp1e dp2e �L t is a β-reduction. Thus there are s′1, s′2
such that dpie = λs′i for i = 1, 2 and t = s′1

0
λs′2

.

This means that p1 = λs1[σ1] for suitable s1 and σ1. This follows
by a case distinction on pi: all other possible cases for pi lead to a
contradiction since the pi are admissible and simplified with dpie = λs′i.
By the same argument, there are s2 and σ2 with p2 = λs2[σ2].

Now the claim holds for q = s1[p2::σ1]: First note that from dpie = λs′i,
with pi = λsi[σi], we conclude s′i = si{dσie}1 by Lemma 6.12. Together
with Lemma 6.12 the first claimed property of q, namely t = dqe, holds.
The other property p �+

LC
q follows by β-reduction.

• Assume p = s[σ] is a closure. Since p is simplified, s must be an
abstraction. Then p

is an abstraction as well, and thus irreducible,
contradicting dpe �L t. �

Note that without the restriction to simplified terms in the proof of The-
orem 6.22, the prove would require an additional induction on the body
of closures, where the case for L-application and LC-application are nearly
identical. Introducing simplification straightens the proof and also shows
more explicitly how �LC refines �L module d·e (see Figure 6.1).
We can also use simplification to connect normal forms of L and LC:

Corollary 6.23 For admissible p, dpe is irreducible iff p

is irreducible.

Proof We use Fact 6.21 (with Fact 6.18) to translate a reduction of dpe =⌈
p

 ⌉
into a reduction of p

.
In the other direction, we use Theorem 6.22. �

Via induction, Theorem 6.22 translates to arbitrary reduction paths:

Corollary 6.24 If dpe �∗
L
t with admissible p, then there is q with t = dqe

and p �∗
LC
q.

34 CHAPTER 6. LC: L WITH CLOSURES

Combined with Corollary 6.23 and the soundness of C , we conclude:

Fact 6.25 (Simulation) If p is admissible, then dpe ⇓ t iff there exists q
such that t = dqe and p ⇓ q.

For some closed term s, taking p = s[] in Fact 6.25 justifies that an inter-
preter for LC can be used to interpret L as well.

6.5 Evaluating LC

We now define a step-indexed interpreter eval(·)(·) : N→ LC→ option LC:

evalk+1(x[σ]) = (x-thx σ)>
evalk+1(λs[σ]) = (λs[σ])>
evalk+1(st[σ]) = evalk(s[σ]·t[σ])

evalk+1(x) = x>

evalk+1(λs[σ]·λt[τ]) = evalk(s[λt[τ]::σ])
evalk+1(p1·p2) = evalk(q1·q2) if evalk(pi) = qi> for i = 1, 2

evalk(p) = ⊥ otherwise

Note that the first applicable equation shall be used.

Proposition 6.26 (Correctness) p ⇓ q iff evalk(p) = q> for some k.

Proof The direction for soundness is straightforward: Assuming evalk(p) =
q>, we can prove that there is a value q with p �∗

LC
q by induction on k, as

each defining equation for the interpreter is sound.
For the completeness, we prove the stronger claim p ⇓k w ⇒ ∃k : ∀k′ ≥

k : evalk′(p) = q by complete induction on k and case distinction on p.
The only interesting case is p = p1·p2 being an application: We use a

helping lemma that allows to decompose the normalizing reduction of p1p2
into three reductions; two normalizing ones for each of the pi into p′i and
one that first contracts p′1p′2 into q (by β) and then normalizes q, where the
sum of the length of the the three normalizing reductions is k − 1 (since we
isolated one β-reduction). This lemma is similar to Lemma 4.11.
As this decomposition corresponds to the computation performed by the

step-indexed interpreter, the claim follows by using the induction hypothesis
on the three decomposed reductions. �

So combining the qualitative results of this chapter, we conclude that we can
evaluate every L-term using LC:

Proposition 6.27 If s ⇓ t, then there is k such that t> = devalk(s[])e.

6.6. RELATED SYSTEMS 35

LC and a similar interpreter was used to prove that L can be simulated by
a Turing machine in polynomial time. We conjecture that the time bound
in [Rot15] can be even more improved, particularly that if s ⇓n t, then LC
can be used to evaluate s in time O(n |s|+ |t|).
We use a Coq-tactic based on Proposition 6.27 to evaluate L-terms. Note

that to be more efficient, we use a lazy evaluation strategy in Coq to profit
from hashconsing, a technique used in the evaluation of functional program-
ming languages where common subterms are only stored once and referenced
multiple times. Otherwise, the reduction st[σ] �LC s[σ]·t[σ] would copy the
whole environment each time.
With this approach, we can evaluate terms like bn from Example 6.1 sig-

nificantly faster than with the naive approach: For example, b2500 normalizes
in 0.01 instead of 15 seconds.
The use of the corresponding Coq-tactic reduced the compilation time of

the whole Coq formalization in [For15] by a factor of ∼ 3.5, from 7 to 2
minutes.

6.6 Related Systems

The relation between L and LC is similar to the one between λβ and λσ, a
variant of λβ with explicit substitution [ACCL91].
In both LC and λσ, we have an explicit, syntactic representation of sub-

stitutions. But similar to L allowing for a simpler substitution than λβ as
described in Chapter 3, LC allows for a simpler explicit representation of
substitutions than λσ.
In [LM99], weak explicit substitution calculi similar to LC are studied.

Especially the system ’weak explicit substitutions with ministeps semantics’
has a fine grained semantics close to LC, but is not call-by-value. This
requires the calculi in [LM99] to also allow the reduction of terms inside
an explicit substitution, while for LC, we do not need allow this to have
confluence.

36 CHAPTER 6. LC: L WITH CLOSURES

Chapter 7

Coq Formalization

This thesis is accompanied1 by a formalization in the formal proof manage-
ment system Coq, compiled using version 8.5beta2 (August 2015).
The files are organized as follows:

File Specification Proofs Belongs to
UnifConfl.v 35 58 Chapter 2
L.v 156 233 Chapter 3
SKv.v 165 200 Chapter 4
SKvAbstraction.v 141 373 Chapter 5
LC.v 180 295 Chapter 6
LC_eval.v 35 51 Section 6.5
In Total 712 1210

Files with Number of Lines

Note that L.v is nearly completely taken over from [For14].

1available at http://www.ps.uni-saarland.de/~kunze/bachelor.php

37

http://www.ps.uni-saarland.de/~kunze/bachelor.php

38 CHAPTER 7. COQ FORMALIZATION

Bibliography

[ACCL91] Martín Abadi, Luca Cardelli, Pierre-Louis Curien, and Jean-
Jacques Lévy. Explicit substitutions. J. Funct. Program.,
1(4):375–416, 1991.

[AR15] Andrea Asperti and Wilmer Ricciotti. A formalization of multi-
tape turing machines. Theoretical Computer Science, 603:23 –
42, 2015. Logic, Language, Information and Computation.

[Bar84] Henk Barendregt. The Lambda Calculus Its Syntax and Seman-
tics, volume 103. North Holland, revised edition, 1984.

[Bar97] Henk Barendregt. The impact of the lambda calculus in logic
and computer science. The Bulletin of Symbolic Logic, 3(2):181–
215, 1997.

[BN98] Franz Baader and Tobias Nipkow. Term Rewriting and All That.
Cambridge University Press, Cambridge, 1998.

[For14] Yannick Forster. A Formal and Constructive Theory of Com-
putation. Bachelor’s Thesis, Saarland University, 2014. URL:
http://www.ps.uni-saarland.de/~forster/bachelor.php.

[For15] Yannick Forster. Verified Extraction from Coq to a Lambda-
Calculus. Research Immersion Lab, Saarland University,
2015. URL: http://www.ps.uni-saarland.de/~forster/
ri-lab.php.

[HS08] J. Roger Hindley and Jonathan P. Seldin. Lambda-Calculus and
Combinators: An Introduction. Cambridge University Press,
2008.

[LM99] Jean-Jacques Lévy and Luc Maranget. Explicit substitutions
and programming languages. In In 19th Conference on Founda-
tions of Software Technology and Theoretical Computer Science
(FSTTCS), pages 181–200. Springer, 1999.

39

http://www.ps.uni-saarland.de/~forster/bachelor.php
http://www.ps.uni-saarland.de/~forster/ri-lab.php
http://www.ps.uni-saarland.de/~forster/ri-lab.php

40 BIBLIOGRAPHY

[LM08] Ugo Dal Lago and Simone Martini. The weak lambda calculus
as a reasonable machine. Theor. Comput. Sci., 398(1-3):32–50,
2008.

[MTHM97] Robin Milner, Mads Tofte, Robert Harper, and David Mac-
queen. The Definition of Standard ML - Revised. The MIT
Press, May 1997.

[New42] Maxwell Newman. On theories with a combinatorial definition
of “equivalence”. Annals of Math., 43(2):223–243, 1942.

[Nie00] Joachim Niehren. Uniform confluence in concurrent computa-
tion. Journal of Functional Programming, 10(5):453–499, sep
2000.

[Rot15] Marc Roth. A reasonable time measure for the weak call-by-value
lambda calculus. Research Immersion Lab, Saarland University,
2015. URL: http://www.ps.uni-saarland.de/~roth/ri-lab.
php.

[Sch24] M. Schönfinkel. Über die Bausteine der mathematischen Logik.
Mathematische Annalen, 92:305–316, 1924.

http://www.ps.uni-saarland.de/~roth/ri-lab.php
http://www.ps.uni-saarland.de/~roth/ri-lab.php

	Abstract
	Introduction
	Uniform Confluence
	L: Weak Call-by-Value Lambda-Calculus
	L as Programming Language
	Semi-Automated Internalization
	Named L

	SKv: Call-by-Value Combinatory Logic
	Miscellaneous

	Embedding L into SKv
	Pseudo-Abstraction
	Compiling L into SKv
	C is invertible
	C is Complete
	Conclusion

	LC: L with Closures
	Drawbacks of Substitution Semantics in L
	Basic Properties of LC
	Connecting LC and L
	LC is Complete
	Evaluating LC
	Related Systems

	Coq Formalization

