
Verified Compilation of
Weak Call-by-Value λ-Calculus
into Combinators and Closures

Bachelor’s Talk

Fabian Kunze

Advisor: Prof. Dr. Gert Smolka

computer science

saarland
university

Programming Systems Lab

11.12.2015

Fabian Kunze Verified Compilation of L 11.12.2015 1

L: Weak Call-by-Value λ-Calculus

s, t, u ::= x | λx .s | st (x ∈ N)

xxu := u (st)xu := sxu t
x
u

y xu := y (λy .s)xu := λy .(sxu)

s �L s ′

st �L s ′t

s �L t ′

st �L st ′ (λx .s)(λy .t) �L sxλy .t

Turing complete
Data can be represented as procedure (closed λ-abstraction) using
Church encodeding.

Fabian Kunze Verified Compilation of L 11.12.2015 2

SK Combinatory Logic

X ,Y ,Z ::= x | S | K | XY (x ∈ N)

KXY � X SXYZ � (XZ)(YZ)

X � X ′

XY � X ′Y

Y � Y ′

XY � XY ′

also called SKI, but combinator I can be defined:

I := SKK

IX = SKKX � KX (KX) � X

Fabian Kunze Verified Compilation of L 11.12.2015 3

SK Combinatory Logic (2)

SK can "simulate" substitution:

Example
λx .(xy) ∼ SI(Ky):

(λx .(xy))z � zy

SI(Ky)z � (Iz)(Kyz) �∗ zy

S : ’push’ argument down in application
K : discard ’pushed’ argument
I : take ’pushed’ argument

λ-calculus can be embedded in SK (but altered SK-equivalence).
We will embed L into a call-by-value version of SK!

Fabian Kunze Verified Compilation of L 11.12.2015 4

Content

1 Introduction
L: Weak Call-by-Value λ-Calculus
SK Combinatory Logic

2 SKv: Call-by-Value Combinatory Logic
Pseudo-Abstraction

3 Compiling L into SKv
Soundness
Left-Invertibility of Compilation
Completeness on normalizing terms
Completeness on arbitrary terms

4 LC: L with closures

5 Related Work

Fabian Kunze Verified Compilation of L 11.12.2015 5

SKv: Call-by-Value Combinatory Logic

X ,Y ,Z ::= x | K | S | XY (x ∈ N)

Val 3 X ,Y ::= x | K | KX | S | SX | SXY (x ∈ N)

X �SK X ′

XY �SK X ′Y

Y �SK Y ′

XY �SK XY ′
X ,Y ∈ Val
KXY �SK X

X ,Y ,Z ∈ Val
SXYZ �SK XZ (YZ)

If X1 �k1
SK

Y1 and X2 �k2
SK

Y2, then X1X2 �k1+k2
SK

Y1Y2.
Values are irreducible, and closed irreducible terms are values.
I := SKK yield IX �2

SK
X

Fabian Kunze Verified Compilation of L 11.12.2015 6

Uniform Confluence

Uniform Confluence
x

y1 y2
k1
+
l1

=
k2
+
l2

z

k1 k2

k2≥l1 l2≤k1

Uniform Diamond
If y1 ← x → y2, then either
y1 = y2 or ∃z , y1 → z ← y2.

⇒: Take k1 = k2 = 1.
⇐: Induction on k1 and k2.

Call-by-value systems (like L and SKv) have the uniform diamond:
Redexes are not nested, so the two reductions either contract the same
redex (y1 = y2).
Or they contract disjoint redexes; contracting both joins y1 and y2.

Fabian Kunze Verified Compilation of L 11.12.2015 7

Substitution in SKv

xxZ := u Kx
Z := K (XY)xZ := X x

ZY
x
Z

y xZ := y Sx
Z := S

Substitutivity:
If Y is closed and x 6= z , then z ∈ FV (X) iff z ∈ FV (X x

Y).
No similar lemma for values, e.g. xK 6∈ Val, but (xK)xK = KK ∈ Val.

X is a maximal value iff X ∈ Val , but XY 6∈ Val

So maximal values are values of form x , KX and SXY .
If Y is a maximal value, then X ∈ Val iff X x

Y ∈ Val.

Fabian Kunze Verified Compilation of L 11.12.2015 8

Pseudo-Abstraction

[x].x := I
[x].X := KX if x 6∈ FV (X) ∧ X ∈ Val

[x].(XY) := S([x].X)([x].Y) otherwise

Similarities to L-abstractions:
[x].X is maximal value.
Y value =⇒ ([x].X)Y �+

SK
X x
Y

FV ([x].X) = FV (X) \ {x}
Commutes with Substitution:

Y maximal value ∧ z 6∈ FV (Y) ∧ z 6= x =⇒ ([z].X)xY = [z].(X x
Y)

Proof by Induction on X.
Crucial: z 6∈ FV (X) ∧ X ∈ Val⇐⇒ z 6∈ FV (X x

Y) ∧ X x
Y ∈ Val

Fabian Kunze Verified Compilation of L 11.12.2015 9

Compiling L into SKv

C x := x

C (st) := (C s)(C t)
C (λx .s) := [x].(C s)

For readability: X := C X

If s is closed, then s is abstraction iff C s is a (maximal) value.
I Thus a closed s is L-redex iff s is SKv-redex

If t is a procedure, then sxt = sxt

Soundness
If s is closed and s �L t, then C s �+

SK
C t.

Implies (for closed s):

s �∗
L
t ⇒ C s �∗

SK
C t and s ⇓ t ⇒ C s ⇓ C t

Fabian Kunze Verified Compilation of L 11.12.2015 10

Left-Invertibility of Compilation

[x]−1.(SKK) := x

[x]−1.(SXY) := ([x]−1.X)([x]−1.Y)

[x]−1.(KX) := X

[x]−1.([x].X) = X

C-1 x := x

C-1 X := λx .(C-1 ([x]−1.X)) if X ∈ Val

C-1 (XY) := (C-1 X)(C-1 Y)

C-1 (C s) = s

So C is injective (modulo α-conversion).
Fabian Kunze Verified Compilation of L 11.12.2015 11

Completeness

C s �∗
SK
C t =⇒ s �∗

L
t does not hold:

Example
For a (reasonable) procedure u:
(λx .xx)u = SIIu �SK (Iu) (Iu) = ((λx .x)u) ((λx .x)u),
but (λx .xx)u 6�∗

L
((λx .x)u) ((λx .x)u)

SKv-reductions can be extended to correspond to L-reductions:

s closed ∧ C s �SK X =⇒ ∃t,X �∗
SK
C t ∧ s �L t

Fabian Kunze Verified Compilation of L 11.12.2015 12

Completeness on normalizing terms
SKv-reductions can be extended corresponding to L-reductions:

s closed ∧ C s �SK X =⇒ ∃t,X �∗
SK
C t ∧ s �L t

Proof
Induction on s �SK X :

s is SKv-redex
⇒ s = (λx .s ′)u, where u procedure

I successor of s unique: X
I s = (λx .s ′)u �+

SK
(s ′

x
u)

⇒ t := s ′xu has claimed properties
s not SKv-redex
⇒ s = s1s2, redex contained in s1 or s2
⇒ claim holds by inductive hypothesis

Fabian Kunze Verified Compilation of L 11.12.2015 13

Completeness on normalizing terms(2)

s closed ∧ C s �SK X =⇒ ∃t,X �∗
SK
C t ∧ s �L t

Generalizes to reduction chains:

s closed ∧ C s �∗
SK

X =⇒ ∃t,X �∗
SK
C t ∧ s �∗

L
t

Proof
Induction on length of s �k

SK
X :

k = 0: trivial
k = 1+ k ′: extend, uniform confluence and inductive hypothesis

s Y X

u X ′ t

k ′

∗ ∗
≤k ′ ∗

s

u t
∗

Fabian Kunze Verified Compilation of L 11.12.2015 14

Completeness on normalizing terms (3)

s closed ∧ C s �∗
SK

X =⇒ ∃t,X �∗
SK
C t ∧ s �∗

L
t

For normalizing, closed s:

C s ⇓ X =⇒ s ⇓ C-1 X

Combined with soundness:

C s ⇓ C t ⇐⇒ s ⇓ t

This is satisfying for a term having a normal form, but we can do better!

Fabian Kunze Verified Compilation of L 11.12.2015 15

Completeness on arbitrary terms
We want: C s �∗

SK
C t ⇒ s ≡L t.

We study the C-image of (closed) β-redexes, depending on the body:

Assume an abstraction s and (λx .s)t �∗
SK

u. Then (λx .s)t ≡L u

Proof
We have (λx .s)t ⇓ sxt .
We use completeness on normalizing terms and confluence of SKv.

For other bodies:

Assume a non-abstraction s and (λx .s)t �SK Y .
Then there is a closed s ′ with s ′ = Y and (λx .s)t ≡L s ′

Proof
By exhausting case distinction on s (variable and closed or non-closed
application).

Fabian Kunze Verified Compilation of L 11.12.2015 16

Completeness on arbitrary terms (2)

s closed ∧ C s �k
SK
C t =⇒ s ≡L t

Idea: Decompose X1X2 �k
SK

Y1Y2:

Xi �ki
SK

Yi
∨

Xi �k
SK

Zi ∧ Z1Z2︸ ︷︷ ︸
redex

�SKY ∧ Y �k ′

SK
Y1Y2

Proof by Lexicographic induction on (k , s)

s = λx .s ′: s = t ⇒ s = t by injectivity.
t = λx .t ′: completeness on normalizing terms.
Decompose s = s1 s2 �k

SK
t1 t2 = t:

si �ki
SK

ti with ki ≤ k : inductive hypothesis ⇒ si ≡L ui

si �ki
SK

ui ; u1 u2 �SK Y ; Y �k ′

SK
t; k1+k2+1+k ′=k ; ui procedures.

By inductive hypothesis: si ≡L ui .
I Body of u1 abstraction: u1u2 ≡L t. So s1s2 ≡L u1u2 ≡L t
I Body of u1 non-abstraction: ∃s ′ such that Y = s ′ and u1u2 ≡L s ′.

So s1s2 ≡L u1u2 ≡L s ′ ≡L t.

Fabian Kunze Verified Compilation of L 11.12.2015 17

Summary

C compiles L into SKv and is fully compatible with term equivalence,
evaluation and normality on closed terms s,t:

s ≡L t ⇐⇒ C s ≡SK C t

s ⇓ t ⇐⇒ C s ⇓ C t

s normal⇐⇒ C s normal

So the whole semantic structure of L can be embedded in SKv and also be
pulled back to L using C-1 .

Fabian Kunze Verified Compilation of L 11.12.2015 18

LC: L with closures

p, q, r ::= x | s[σ] | p·q (x ∈ N, s ∈ L, σ : N→ LC)

Intuition: Carry out substitution as deep as needed

x [σ] �LC σ(x) (λx .s)[σ]·(λy .t)[τ] �LC s[x 7→ (λy .t)[τ] , σ]σ

st[σ] �LC s[σ]·t[σ]
p �LC p′

p·q �LC p′·q
q �LC q′

p·q �LC p·q′

call-by-value ⇒ uniformly confluent
admissible terms: derivable from closed L-terms in empty context.
d·e : LC → L substitutes using the environments
Simulation Lemma: dpe ⇓ t ⇐⇒ ∃q, p ⇓ q ∧ t = dqe.
We also have a complete interpreter for LC.

Fabian Kunze Verified Compilation of L 11.12.2015 19

Completeness on arbitrary terms

J. Roger Hindley and Jonathan P. Seldin.
Introduction to Combinators and λ–Calculus,
Cambridge University Press, 1986.

Yannick Forster
A Formal and Constructive Theory of Computation
Bachelor thesis, Saarland University, 2014

Martín Abadi, Luca Cardelli, Pierre-Louis Curien, and Jean-Jacques
Lévy.
Explicit substitutions
J. Funct. Program.,1(4):375–416, 1991

Jean-Jacques Lévy and Luc Maranget.
Explicit substitutionsand programming languages
19th FSTTCS, p. 181–200, 1999

Fabian Kunze Verified Compilation of L 11.12.2015 20

	Introduction
	L: Weak Call-by-Value -Calculus
	SK Combinatory Logic

	SKv: Call-by-Value Combinatory Logic
	Pseudo-Abstraction

	Compiling L into SKv
	Soundness
	Left-Invertibility of Compilation
	Completeness on normalizing terms
	Completeness on arbitrary terms

	LC: L with closures
	Related Work

