Verified Compilation of
Weak Call-by-Value A\-Calculus
into Combinators and Closures

Bachelor's Talk

Fabian Kunze

Advisor: Prof. Dr. Gert Smolka

SAARLAND
UNIVERSITY
I —

COMPUTER SCIENCE

PROGRAMMING SYSTEMS LAB

11.12.2015

Fabian Kunze Verified Compilation of L 11.12.2015

L: Weak Call-by-Value A-Calculus

s,t,u = x | Ax.s | st (x€eN)
Xy = (st)) :==syty
Yii=y (Ay-s)y = Ay.(s])
s= s st
st s't st = st (Ax.5)(Ay-t) = S3y.¢

@ Turing complete
e Data can be represented as procedure (closed A-abstraction) using

Church encodeding.

Fabian Kunze Verified Compilation of L 11.12.2015

SK Combinatory Logic

X, Y, Z := x| S| K| XY (xeN) J
X=X Y =Y
KXY = X SXYZ» (XZ2)(YZ) XY =XY XY= XY

@ also called SKI, but combinator | can be defined:
| := SKK

IX = SKKX = KX(KX) = X

Fabian Kunze Verified Compilation of L 11.12.2015 3

SK Combinatory Logic (2)

SK can "simulate" substitution:
Example
Ax.(xy) ~ SI(Ky):
(Ax.(xy))z = zy
SI(Ky)z = (1z)(Kyz) =* zy

S : 'push’ argument down in application

K : discard 'pushed’ argument

| : take 'pushed’ argument

A-calculus can be embedded in SK (but altered SK-equivalence).
We will embed L into a call-by-value version of SKI!

Fabian Kunze Verified Compilation of L 11.12.2015

Content

@ Introduction
o L: Weak Call-by-Value A-Calculus
@ SK Combinatory Logic

© SKv: Call-by-Value Combinatory Logic
@ Pseudo-Abstraction

© Compiling L into SKv
@ Soundness
o Left-Invertibility of Compilation
@ Completeness on normalizing terms
@ Completeness on arbitrary terms

@ LC: L with closures
© Related Work

Fabian Kunze Verified Compilation of L 11.12.2015

SKv: Call-by-Value Combinatory Logic

X,Y,Z = x | K| S| XY (xeN))

Valo> X, Y = x | K | KX | S | SX | SXY (xeN) |

X sz X! Y sy Y X,Y € Val X,Y,Z € Val
XY 2 X'Y XY XY KXY s X SXYZ =, XZ(Y2) J

o If Xy >é}l? Y1 and X5 >é}l§2 Y, then X1Xo >§Il?+k2 Y1Y5.
@ Values are irreducible, and closed irreducible terms are values.
o | :=SKKyield IX >§f(X

Fabian Kunze Verified Compilation of L 11.12.2015 6

Uniform Confluence

Uniform Confluence

X
AN

ko k
i +=F
b

ko>h w4 W h<k
V4

v

Uniform Diamond

If y1 < x — y», then either
Yi=Yy20r3z,y1 = z24 yo.

@ =: Take k1:k2:1.

@ <: Induction on ki and k».

Call-by-value systems (like L and SKv) have the uniform diamond:
Redexes are not nested, so the two reductions either contract the same

redex (y1 = y2).

Or they contract disjoint redexes; contracting both joins y; and y».

Fabian Kunze Verified Compilation of L

11.12.2015

Substitution in SKv

Xz =u K% :=K (XY)7 = X3Y3
vsi=y S5 =S
Substitutivity:

o If Yis closed and x # z, then z € FV (X) iff z € FV (Xy).
No similar lemma for values, e.g. xK ¢ Val, but (xK)x = KK € Val.

X is a maximal value iff X € Val, but XY ¢ Val

So maximal values are values of form x, KX and SXY.

o If Y is a maximal value, then X € Val iff X{ € Val.

Fabian Kunze Verified Compilation of L 11.12.2015

Pseudo-Abstraction

[x].x =1
[x]. X := KX if xZ FV(X)A X € Val
[x].(XY) := S([x]- X)([x]. Y) otherwise

Similarities to L-abstractions:
@ [x].X is maximal value.
o Y value = ([x].X)Y = XJ
o FV([x].X) =FV(X)\ {x}
Commutes with Substitution:
e Y maximal value Az € FV (Y) Az # x = ([2]. X)} = [2].(X3)
Proof by Induction on X.
Crucial: z FV(X)A X € Val <= z ¢ FV (Xy) A Xy € Val

Fabian Kunze Verified Compilation of L 11.12.2015

Compiling L into SKv

Cx :=x
C(st) :=(Cs)(Ct)
C (Ax.s) :=[x].(Cs)

For readability: X :=CX

o If sis closed, then s is abstraction iff C s is a (maximal) value.
» Thus a closed s is L-redex iff s is SKv-redex

o If t is a procedure, then sy = sf

Soundness
If s is closed and s > t, then Cs =t Ct.

Implies (for closed s):

s="t=Cs=;Ct and sl|t=Cs{Ct

Fabian Kunze Verified Compilation of L 11.12.2015

10

Left-Invertibility of Compilation
[x] " L(SKK) := x

XL (SXY) = (X2 X) (X 1Y)
[x]7L(KX) = X

[x] 7 ([x].X) = X

Clx:=x
ClX = .(C([X]71X)) if X € Val
cl(xy):=@Ctx)(CtY)

cl(Cs)=s

So C is injective (modulo a-conversion).

Verified Compilation of L 11.12.2015

11

Completeness

Cs >éf{ Ct=s >L* t does not hold:

Example

For a (reasonable) procedure u:

(Axxx)u = SHu >, (lu) (lu) = ((Ax.x)u) (Ax.x)u),
but (Ax.x)u #* ((Ax.x)u) ((Ax.x)u)

SKv-reductions can be extended to correspond to L-reductions:

sclosed A\Cs iy X = Jt, X = CtAs> t

Fabian Kunze Verified Compilation of L 11.12.2015

12

Completeness on normalizing terms

SKv-reductions can be extended corresponding to L-reductions:

sclosed A\Cs iy X == Jt, X = CtAs~ t

Proof
Induction on s >, X:

@ s is SKv-redex
= s = (Ax.s')u, where u procedure
successor of s unique: X
X
s = (Mxshuxt (s7)

= t := s}, has claimed properties

@ s not SKv-redex
= s = 515, redex contained in s; or 53
= claim holds by inductive hypothesis

Fabian Kunze Verified Compilation of L 11.12.2015

13

Completeness on normalizing terms(2)

sclosed NCs = X = 3t, X = CtAs~ t

Generalizes to reduction chains:
* * *
sclosed N\Cs = X = 3t,X = CtAs="t

Proof
Induction on length of s >§I’§ X:
@ k=0: trivial

@ k =1+ k': extend, uniform confluence and inductive hypothesis

k/
S— Y — X 5
<k/ *
U =K e * U—— 5 ¢
”
Fabian Kunze Verified Compilation of L 11.12.2015

14

Completeness on normalizing terms (3)

* * *
sclosed N\Cs = X = 3t,X = CtAs="t

For normalizing, closed s:
CsiX=sl|CtX
Combined with soundness:
CslCt<=slt

This is satisfying for a term having a normal form, but we can do better!

Fabian Kunze Verified Compilation of L 11.12.2015 15

Completeness on arbitrary terms
We want: Cs =/ Ct=s= t.
We study the C-image of (closed) /3-redexes, depending on the body:

Assume an abstraction s and (Ax.s)t =* u. Then (Ax.s)t = v J

Proof
We have (Ax.s)t || sy.
We use completeness on normalizing terms and confluence of SKv.

For other bodies:

Assume a non-abstraction s and (Ax.s)t >, Y.
Then there is a closed s’ with s’ = Y and (Ax.s)t = ¢

Proof

By exhausting case distinction on s (variable and closed or non-closed
application).

v

Fabian Kunze Verified Compilation of L 11.12.2015 16

Completeness on arbitrary terms (2)

k —
sclosed \Cs = Ct=s=t

Idea: Decompose X1.Xo >§I’§ Y1 Yo:

. /
Xi >5§’ Yi V X >SII§ LiN D12y 5 Y ANY >S§ Y1Yo
~—
redex
Proof by Lexicographic induction on (k, s)
s = Mx.s': s=1t= s =t by injectivity.
t = Ax.t’: completeness on normalizing terms.
Decompose s = 51 52 >§1k< t =1t
°s; >§Ik<' t; with k; < k: inductive hypothesis = s; = u;

® s; >é§’ up up up g Y5 Y >é§ t; ki +ko+1+k'=k; u; procedures.

By inductive hypothesis: s;
Body of u; abstraction: viup = t. So sy = upup =t
Body of u; non-abstraction: 3s’ such that Y =’ and uju, = 5.
So s1s = i = s =t

= Uu;.

Fabian Kunze Verified Compilation of L 11.12.2015

17

Summary

C compiles L into SKv and is fully compatible with term equivalence,
evaluation and normality on closed terms s,t:

s= t<=Cs=xC(Ct J
syt<=Cs{|Ct J
s normal <= C s normal J

So the whole semantic structure of L can be embedded in SKv and also be
pulled back to L using C*.

Fabian Kunze Verified Compilation of L 11.12.2015 18

LC: L with closures

p,g,r o= x | s[lo] | pg (x€N,;sel,o:N— LC)

Intuition: Carry out substitution as deep as needed

X[o] #c o(x) (Ax.9)[o]-(Ay-1)[7] Hc slx = (Ay-t)7], o]0
Prich qmcqd
stlo] +c slo]-tlo] Pq e Pq P-q>ic Pq
e call-by-value = uniformly confluent
@ admissible terms: derivable from closed L-terms in empty context.
@ []: Lc — L substitutes using the environments
e Simulation Lemma: [p] || t <= 3q,pl gAt =[q].
@ We also have a complete interpreter for LC.

Fabian Kunze Verified Compilation of L 11.12.2015

19

Completeness on arbitrary terms

E

E

J. Roger Hindley and Jonathan P. Seldin.
Introduction to Combinators and A—Calculus,
Cambridge University Press, 1986.

Yannick Forster
A Formal and Constructive Theory of Computation
Bachelor thesis, Saarland University, 2014

Martin Abadi, Luca Cardelli, Pierre-Louis Curien, and Jean-Jacques
Lévy.

Explicit substitutions

J. Funct. Program.,1(4):375-416, 1991

Jean-Jacques Lévy and Luc Maranget.
Explicit substitutionsand programming languages
19th FSTTCS, p. 181-200, 1999

Fabian Kunze Verified Compilation of L 11.12.2015

20

	Introduction
	L: Weak Call-by-Value -Calculus
	SK Combinatory Logic

	SKv: Call-by-Value Combinatory Logic
	Pseudo-Abstraction

	Compiling L into SKv
	Soundness
	Left-Invertibility of Compilation
	Completeness on normalizing terms
	Completeness on arbitrary terms

	LC: L with closures
	Related Work

