Formal and Constructive Theory of Computation

Initial Bachelor Seminar Talk

Fabian Kunze
Advisor: Prof. Dr. Gert Smolka

SAARLAND
UNIVERSITY L
I
COMPUTER SCIENCE

24.04.2015

Formal Theory of Computation

Content

© Introduction
@ Previous Work
o L: Call-by-Value A-Calculus
@ SK Combinator Calculus

© SK,: Call-by-Value SK
o (Pseudo)-Abstractions in SK,
@ Isomorphic Translation L — SK,

© SK,-Decidability vs. L-Decidability

@ Further Results and Outlook

Formal Theory of Computation 2/11

Previous Work

J. Roger Hindley and Jonathan P. Seldin.
Introduction to Combinators and A\—Calculus,
Cambridge University Press, 1986.

Yannick Forster
A Formal and Constructive Theory of Computation
Bachelor thesis, Saarland University, 2014

Formal Theory of Computation

L: Call-by-Value A-Calculus

s,t == x | Axs | st (xeN) J
X, =u
(Ax.s) (\y-t) >, st Xy =X if x #y
(Ax.s)} = Ax.s
s>, ¢ t>, ¢ (\x.s), = Ax.(s¥) if x £y
st> st st> st (s t)% = 55t

@ evaluates abstraction only if argument is irreducible
@ strength (and complexity) is in substitution

@ Goal: more basic system that can "compute the same"

Formal Theory of Computation

4/11

SK Combinator Calculus

s,t i=x | S| K| st (xeN) J
s> S t>g t
Kst>g s Sstu> (su)(tu) st>g st st>g st

@ also called SKI, but combinator | can be defined:
=S KK

Ix=SKKx>, Kx (Kx)>, x

@ really short confluence proof in Coq

Formal Theory of Computation 5 /11

SK Combinator Calculus

SK can "simulate" substitution
Example
Ax.(xy)~S 1 (Ky):
(M(xy)z> zy
SI(Ky)z>(z)(Kyz)>"zy

@ S : 'push’ argument down in application
o K : discard 'pushed’ argument

o | : take 'pushed’ argument

@ But SK can not restrict reduction until arguments are irreducible

Formal Theory of Computation 6 /11

SK,: Call-by-Value SK

s,t i=x | K| S| st (xeN)

Val. s,t == x | K| Ks | S| Ss | Sst ,xeN
s, t € Val s, t,u € Val s>s t>t
Kst>s Sstu>su(tu) st>s't st>st

@ values are irreducible
@ closed, irreducible terms are values

e FV(s): free variables in s

e uniform confluent (like L, but not SK/ and A-calculus):

s>tAs>thh=t=tbV((Tu:t1 >uAt >u)

Formal Theory of Computation

7 /11

(Pseudo)-Abstractions in SK,

[x]s:=Ks if x € FV(s)
[x].x =1
[x]-(s t) :=S ([x]-s) ([x]-t) if xe FV(st)

@ behaves like abstraction in L:
s,t € Val = ([x].s) t >* s
@ compatible with substitution:
x#y Ny €V (t) = (Iv]-s); = v].(s5)
o s € Val= [x].s € Val
@ but we can reduce 'under’ the abstraction:
[x].(1) =11>*1=[x].I

idea: use S to separate applications

Formal Theory of Computation 8 /11

Isomorphic Translation L — SK,

Hx := x H'x =K x
H(s t) := (Hs) (Ht) H'(s t) :=S (H's) (H't)
H(Ax.s) :=S ([x].H's) I H'(Ax.s) ==K (S ([x].H's) I)

H' is an S-lifted version of H

H's € Val

u€ Val= (H's) u >*Hs

s>, t=>Hs >T Ht

s € L is irreducible <= Hs € Val

Formal Theory of Computation 9/11

SK,-Decidability vs. L-Decidability
P is L-decidable iff there exists an closed L-term u s.t. for all s:

P(s) Au s> true
V =P(s) Au st >7 false

P is SK,-decidable iff there exists an closed SK,-term u s.t. for all s:

P(s) Au (H"s") >* H true
V =P(s) Au (H"s') >* H false

o [-decidability = SK, -decidability:
For an L-decider u, Hu is the corresponding SK,-decider

@ SK,-decidability = L-decidability:
Encode SK, in L as Scott-encoded datatype and internalize an
step-function. Uniform confluence simplifies proof.

Formal Theory of Computation 10 / 11

Further Results and Outlook

further results:
@ L vs. L, (De Bruijn indices vs. named variables)
@ Tactic for faster normalization in L (using reflection)
@ nice, short confluence proof for SK

outlook:

'L-decidability = SK|-decidability’ in coq
may improve normalization: environments instead of substitution

weaker notion of L-decidability not implying Cog-decidability

o
o
o formalize and prove that L and SK, can compute the same functions
@ use SK, to show that other systems are L-complete

o

show that H maps exactly a-equivalent to the same SK, -term

Formal Theory of Computation 11 /11

© Appendix

@ SK-confluence using Parallel Reduction

Formal Theory of Computation

SK-confluence using Parallel Reduction

s>s t>t
s>s Kst>s Sstu>su(tu) st>s ¢

o> C > C >*

=

s>*te=s>*t

diamond property:
s>tAs>t = TJu,t>uNt >u

confluence for > = confluence for >

Formal Theory of Computation 13 /11

	Introduction
	Previous Work
	Ln: Call-by-Value lambda-Calculus
	SK Combinator Calculus

	SKv: Call-by-Value SK
	(Pseudo)-Abstractions in SKv
	Isomorphic Translation Ln SKv

	SKv-Decidability vs. Ln-Decidability
	Further Results and Outlook
	Appendix
	Appendix
	SK-confluence using Parallel Reduction

