Formal and Constructive Theory of Computation Initial Bachelor Seminar Talk

Fabian Kunze Advisor: Prof. Dr. Gert Smolka

24.04.2015

Content

- Introduction
 - Previous Work
 - L: Call-by-Value λ -Calculus
 - SK Combinator Calculus
- $2 SK_v$: Call-by-Value SK
 - (Pseudo)-Abstractions in SK_v
 - Isomorphic Translation $L \to SK_v$
- 3 SK_v -Decidability vs. L-Decidability
- 4 Further Results and Outlook

Previous Work

J. Roger Hindley and Jonathan P. Seldin. Introduction to Combinators and λ -Calculus, Cambridge University Press, 1986.

Yannick Forster

A Formal and Constructive Theory of Computation Bachelor thesis, Saarland University, 2014

L: Call-by-Value λ -Calculus

$$s,t ::= x \mid \lambda x.s \mid s t \quad (x \in \mathbb{N})$$

$$(\lambda x.s) (\lambda y.t) >_{L} s_{\lambda y.t}^{x}$$

$$\frac{s >_{L} s'}{s t >_{L} s' t} \qquad \frac{t >_{L} t'}{s t >_{L} s t'}$$

$$x_{u}^{x} = u$$

$$x_{u}^{y} = x \qquad \text{if } x \neq y$$

$$(\lambda x.s)_{u}^{x} = \lambda x.s$$

$$(\lambda x.s)_{u}^{y} = \lambda x.(s_{u}^{y}) \qquad \text{if } x \neq y$$

$$(s t)_{u}^{x} = s_{u}^{x} t_{u}^{x}$$

- evaluates abstraction only if argument is irreducible
- strength (and complexity) is in substitution
- Goal: more basic system that can "compute the same"

SK Combinator Calculus

$$s,t ::= x \mid S \mid K \mid st \quad (x \in \mathbb{N})$$

$$\frac{s>_{SK}s'}{\mathsf{K}\;s\;t>_{SK}s} \qquad \frac{s>_{SK}s'}{\mathsf{S}\;t\;u>_{SK}(s\;u)\;(t\;u)} \qquad \frac{s>_{SK}s'}{s\;t>_{SK}s'\;t} \qquad \frac{t>_{SK}t'}{s\;t>_{SK}s\;t'}$$

also called SKI, but combinator I can be defined:

$$I := S K K$$

$$I x = S K K x >_{SK} K x (K x) >_{SK} x$$

really short confluence proof in Coq

SK Combinator Calculus

SK can "simulate" substitution

Example

$$\lambda x.(x \ y) \sim S \mid (K \ y):$$

$$(\lambda x.(x \ y)) \ z >_{\iota} z \ y$$

$$S \mid (K \ y) \ z > (I \ z) \ (K \ y \ z) >^* z \ y$$

- S: 'push' argument down in application
- K : discard 'pushed' argument
- I: take 'pushed' argument
- But SK can not restrict reduction until arguments are irreducible

SK_v: Call-by-Value *SK*

$$s,t ::= x \mid \mathsf{K} \mid \mathsf{S} \mid st \quad (x \in \mathbb{N})$$

$$Val: s, t ::= x \mid K \mid K s \mid S \mid S s \mid S s t , x \in \mathbb{N}$$

$$\frac{s,t \in Val}{\mathsf{K} \; s \; t > s} \qquad \frac{s,t,u \in Val}{\mathsf{S} \; s \; t \; u > s \; u \; (t \; u)} \qquad \frac{s > s'}{s \; t > s' \; t} \qquad \frac{t > t'}{s \; t > s \; t'}$$

- values are irreducible
- closed, irreducible terms are values
- FV (s): free variables in s
- uniform confluent (like L, but not SKI and λ -calculus):

$$s > t_1 \land s > t_2 \Longrightarrow t_1 = t_2 \lor (\exists u : t_1 > u \land t_2 > u)$$

(Pseudo)-Abstractions in SK_v

$$[x].s := \mathsf{K} \ s \qquad \qquad \text{if} \ x \notin \mathsf{FV}(s) \\ [x].x := \mathsf{I} \\ [x].(s \ t) := \mathsf{S} \ ([x].s) \ ([x].t) \qquad \qquad \text{if} \ x \in \mathsf{FV}(s \ t)$$

behaves like abstraction in L:

$$s, t \in Val \Longrightarrow ([x].s) \ t >^* s_t^x$$

compatible with substitution:

$$x \neq y \land y \notin \mathsf{FV}(t) \Longrightarrow ([y].s)_t^{\times} = [y].(s_t^{\times})$$

- $s \in Val \Longrightarrow [x].s \in Val$
- but we can reduce 'under' the abstraction:

$$[x].(II) = II >^* I = [x].I$$

idea: use S to separate applications

Isomorphic Translation $L o SK_{v}$

$$\begin{aligned} \mathsf{H}x &:= x & \mathsf{H}'x &:= \mathsf{K} \ x \\ \mathsf{H}(s \ t) &:= (\mathsf{H}s) \ (\mathsf{H}t) & \mathsf{H}'(s \ t) &:= \mathsf{S} \ (\mathsf{H}'s) \ (\mathsf{H}'t) \\ \mathsf{H}(\lambda x.s) &:= \mathsf{S} \ ([x].\mathsf{H}'s) \ \mathsf{I} & \mathsf{H}'(\lambda x.s) &:= \mathsf{K} \ (\mathsf{S} \ ([x].\mathsf{H}'s) \ \mathsf{I}) \end{aligned}$$

- H' is an S-lifted version of H
- H's ∈ Val
- $u \in Val \Longrightarrow (H's) \ u >^* Hs$
- $s >_{t} t \Longrightarrow Hs >^{+} Ht$
- $s \in L$ is irreducible \iff $Hs \in Val$

SK_v -Decidability vs. L-Decidability

P is L-decidable iff there exists an closed L-term u s.t. for all s:

$$P(s) \wedge u \lceil s \rceil >_{L}^{*} \text{ true}$$

 $\vee \neg P(s) \wedge u \lceil s \rceil >_{L}^{*} \text{ false}$

P is SK_v -decidable iff there exists an closed SK_v -term u s.t. for all s:

$$P(s) \land u \ (H \ \ulcorner s \urcorner) >^* H \ true$$

 $\lor \neg P(s) \land u \ (H \ \ulcorner s \urcorner) >^* H \ false$

- L-decidability $\Longrightarrow SK_{\nu}$ -decidability: For an L-decider u, Hu is the corresponding SK_{ν} -decider
- SK_{ν} -decidability \Longrightarrow L-decidability: Encode SK_{ν} in L as Scott-encoded datatype and internalize an step-function. Uniform confluence simplifies proof.

Further Results and Outlook

further results:

- L vs. L_n (De Bruijn indices vs. named variables)
- Tactic for faster normalization in *L* (using reflection)
- nice, short confluence proof for *SK*

outlook:

- 'L-decidability \Longrightarrow SK_{ν} -decidability' in coq
- may improve normalization: environments instead of substitution
- weaker notion of L-decidability not implying Coq-decidability
- ullet formalize and prove that L and $SK_{
 u}$ can compute the same functions
- use SK_v to show that other systems are L-complete
- show that H maps exactly α -equivalent to the same SK_{ν} -term

- 6 Appendix
 - SK-confluence using Parallel Reduction

SK-confluence using Parallel Reduction

$$\frac{s \gg s}{\mathsf{K} \; s \; t \gg s} \qquad \frac{\mathsf{S} \; s \; t \; u \gg s \; u \; (t \; u)}{\mathsf{S} \; s \; t \gg s' \; t'}$$

- \bullet > \subsetneq \gg \subsetneq >*
- $s >^* t \iff s \gg^* t$
- diamond property:

$$s \gg t \land s \gg t' \Longrightarrow \exists u, t \gg u \land t' \gg u$$

confluence for ≫ ⇒ confluence for >