Formal and Constructive Theory of Computation

Second Bachelor Seminar Talk

Fabian Kunze
Advisor: Prof. Dr. Gert Smolka

SAARLAND
UNIVERSITY L
I —

COMPUTER SCIENCE

19.06.2015

Fabian Kunze Formal Theory of Computation 1

Overview

© Review

o L: weak, call-by-value A-Calculus
@ SK: call-by-value Combinator Calculus

© connecting L and SK
@ reduction-respecting L — SK-homomorphism
@ [-decidable = SK-decidable
@ reduction-respecting SK — L-homomorphism
@ SK-decidable = L-decidable

© Lc: L with closures
@ [-normalization tactic in Coq

@ Outlook

Fabian Kunze Formal Theory of Computation

L: weak, call-by-value A-Calculus

s,t i=x | As | st (x€N) J
Xy =u (M)} = M(si™)
Xy =x (st), =s; ty
s> t-t
(As) (At) = s3, st=s't st=st

switched back from named variables to de Bruijn indices:
@ a-equivalence 'for free'
@ simpler inductive definition of closed
@ simple representation of enviroments (for L¢)

= simplifies formal proofs
But: named variables more intuitive = used as human-readable description

Fabian Kunze Formal Theory of Computation 3

SK: call-by-value Combinator Calculus

NM = x | K|S | NM (xeN)

Va NM = x | K| KN | S| SN | SNM (xeN)

N, M € Val N,M,H € Val N~ N
KNM>=N SNMH=NH(MH) NMsN M
M= M
NMs>NM
last talk:

@ uniform confluent

@ reduction-respecting homomorphism from L into SK

Fabian Kunze Formal Theory of Computation 4

reduction-respecting L — SK-homomorphism

desired properties
o : L — SK which is:
@ homomorphic: by definition

")
~
Il
%
|+

@ reduction-respecting: proven
s, t
*
Sy t

@ value preserving: proven

s irreduzible < s € Val

@ tight: not proven yet (but for old version)

s N
Jt,s =, tAN= t

Fabian Kunze Formal Theory of Computation

reduction-respecting L — SK-homomorphism

improved homomorphism

[x].x =1
[x.N:=KN if x ¢ FV(N) and N € Val
[x].(N M) :=S ([x].-N) ([x]. M) otherwise

o N-cVal=>[x].N € Val
o MM e Val= ([x].N) M =* Ny,
o x#y Ny & FV(M)= (ly]l.N)y = v].(N%)

Fabian Kunze Formal Theory of Computation 6

reduction-respecting L — SK-homomorphism

desired properties
o : L — SK which is:
@ homomorphic: by definition

")
~
Il
%
|+

@ reduction-respecting: proven
s, t
*
Sy t

@ value preserving: proven

s irreduzible < s € Val

@ tight: not proven yet (but for old version)

s N
Jt,s =, tAN= t

Fabian Kunze Formal Theory of Computation

[-decidable = SK-decidable

u is L-decider for predicate p: N is SK-decider for predicate p:
Vs,psAus?>"true” 2 Vs,ps AN s =*"true”
V —opsAuTs!=*"false™ V-psANTs?>"false

For L-decider u, u is SK-decider:
o Vs,uls'=u's!
@ o is reduction-respecting

— L-decidable = SK-decidable

Fabian Kunze Formal Theory of Computation 8

reduction-respecting SK — L-homomorphism

desired properties
% :SK — L which is:
@ homomorphic: conflicts with value preservation (but L is)

NM=NM
@ reduction-respecting: proven

N~ M
N>=*M

@ value preserving: proven

N € Val < N irreduzible
@ tight: not proven yet

N>=,s
IM N =g MAs " £

Fabian Kunze Formal Theory of Computation

reduction-respecting SK — L-homomorphism

LK = Ax.Ay.x
LS := Ay z.(x z) (y 2)
L(N M) := LN LM

homomorphism, but for partly applied combinators:
not value-preserving (e.g. L(K K))

K:= Ax.\y.x
(K N):=\y.N (N € Val)
(SN M) :=Xz(N z) (M z) (N, M € Val)
M):=NM otherwise

@ L5>*3

Fabian Kunze Formal Theory of Computation 10

reduction-respecting SK — L-homomorphism

desired properties
% :SK — L which is:
@ homomorphic: conflicts with value preservation (but L is)

NM=NM
@ reduction-respecting: proven

N~ M
N>=*M

@ value preserving: proven

N € Val < N irreduzible
@ tight: not proven yet

N>=,s
IM N =g MAs " £

Fabian Kunze Formal Theory of Computation

11

SK-decidable = L[-decidable

N is SK-decider for predicate p: u is L-decider for predicate p:
Vs,psAN s =" "true” Y Vs,psAus? =" true”
V-opsANTsT =" false™ V apsAuTs! =" false™

Just @ does not suffice: B B
We know about N "s™ and N ("s™), not about N s™

e internalize LH € L with LH "s™ »* ("s™)
o N(LHTsT) =* N ("s) (=*("b)))

o ("b™) "true™ Malse™ =* "b™ for booleans

— N is SK-decider = Ax.(N (LH x) "true™ "false™) is L-decider:
— SK-decidable = L-decidable

Fabian Kunze Formal Theory of Computation 12

Lc: L with closures

p,qg == s[C] | pg (selL, CeLclist)

Intuition: Computation tree of L-interpreter using stack as environments

(As)[C] (AB)[D] = s[(At)[D] :: C] (s t)[C] = s[C] t[C]
p-p q-dq
x[C] = Clix pg-pq pa-pdq

p € ValComp :& p closed and environments contain only lambdas
Te7: Lc — L (substitutes the enviroments)
uniform confluent

Sound: If p € ValComp and p > q, then "p™ >, Tq™ (easy induction)

Complete: If p € ValComp and "p >, s,
then there is g s.t. s ="q" and p >=* g (induction)

Fabian Kunze Formal Theory of Computation 13

step-indexed interpreter for L¢

Eval 0 p =p

Eval (S n) ((As[A]) (At)[B]) = Eval n (s[(At[B]) :: A])

Eval (S n) (s[A] t[B]) = Eval n ((Eval n s[A]) (Eval n t[B]))
Eval (S n) ((s t)[A]) = Eval n (s[A] t[A])

Eval (S n) (x[A]) = Allx

o Correct: s >* (Eval n s)

o Efficient: linear in length of reduction (fixed depth of binding)

Formal Theory of Computation 14

L-normalization tactic in Coq

Example (Old Proof terms)
(AxAy.x) L= Ay x)f 1= Ayd) 1= =1

@ rewrite step by step
@ executes substitutions

= 0(n?) for n-long reduction (e.g. (Ax1.Axo.... Axp.x1) 1... I)

Example (New Proof terms)
(AxAy.x) 11>=*TEval n (Ax.Ay.x) 1 D[] =1

= O(n) for n-long reduction

Benchmark
Q "Ax.x7=* T Ax.x"
Old: 27 sec
New: 0.3 sec

Fabian Kunze Formal Theory of Computation

L-normalization tactic in Coq

Improved usability for intermediate reductions:
@ crush old: proofs goal or diverges(or unfolds everything)
@ crush: unfolds everything and normalizes as far as possible
@ wecrush: normalizes, do not unfold

@ ccrush: normalizes, do not unfold, use correctness lemmas

Demo

Fabian Kunze Formal Theory of Computation

16

Outlook

@ are the reduction homomorphisms:
> tight?
> injective?
@ L-undecidable properties of SK-Terms:

» term-equivalence
» halting problem

o Multivariate M\-Calculus
If there is enough time left:

@ undecidability of intuitionistic first-order-logic

Fabian Kunze Formal Theory of Computation

17

	Review
	L: weak, call-by-value -Calculus
	SK: call-by-value Combinator Calculus

	connecting L and SK
	reduction-respecting LSK-homomorphism
	L-decidable SK-decidable
	reduction-respecting SKL-homomorphism
	SK-decidable L-decidable

	: L with closures
	L-normalization tactic in Coq

	Outlook

