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Motivation

Formalising computability theory:
Functions definable in constructive type theory are computable, but
this is not provable inside the theory
Explicit model of computation needed for negative results or
complexity theory
We use: call-by-value λ-calculus “L”
Computability provable for every concrete function defined in Coq
But computability proofs tedious and repetitive!

We provide a framework that automates1 this extraction

1for ML-like subset of Coq
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Idea

Call-by-Value lambda calculus (Plotkin [1975], Forster and Smolka [2017]):

s, t ::= x | λs | st

For each concrete function f : X1 → . . .→ Xn over ML-like data
types,
find a λ-term tf and a time complexity τf such that
for all ~x , tf (enc~x) reduces to enc(f ~x)

within τf ~x many beta-reduction steps (Accattoli and Lago [2016]).
Simple, syntax directed extraction process.
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Example
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Example with time
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Example with recursive function
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Example with higher order function
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Outline

What is correctness?
How to extract terms?
How to prove those extractions correct?
Case studies:

I Self-interpreter for L
I Enumerator for diophantine equations (→ Reduction to L)
I Turing machine interpreter
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What is Correctness?
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Encoding values: Scott encoding

Inductive values encoded as functions (corresponding to their match):

true λtf . t
false λtf . f

0 λsz .z
1 λsz .s(λsz .z)
S λasz .sa

→ Encoding follows from definition of inductive data type
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Generating encoding functions

Mechanically derivable2 using Template Coq, part of MetaCoq (Sozeau
et al. [2019]):

Stored in Typeclass, with properties (e.g. injectivity) proven by Ltac.

2for all ML-like (non-dependent, non-mutual) inductive types
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Correctness predicate

When does a (λ-)term tf compute a (Coq-)function f ?
Example: torb ∼ orb:

∀xy : B, torb (encx) (ency) �∗ enc(orb x y)

Tool: Logical relation!

encAa ∼ a
(for a : A)

tf is closed value ∧

∀(a : A)(ta : T). ta ∼ a→

Σ(v : T).

tf ta

�∗ v ∧ v

∼ fa

tf ∼ f
(for f : A→ B)

Problem: Not strictly positive.
Solution: Recursion on Type...?
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Correctness predicate (2)

Inductive T : Type → Type :=
T _base A ‘{registered A} : T A

| T _arr A B (τ_1 : T A) (τ_2 : T B) : T (A → B).

Fixpoint computes {A} (τ : T A): A → T → Type :=
match τ with
T _base ⇒ fun x xInt ⇒ (xInt = enc x)

| @T _arr A B τ1 τ2 ⇒
fun f t_f ⇒

proc t_f * ∀ (a : A) t_a,
computes τ1 a t_a
→ {v : term & (t_f t_a >* v) * computes τ2 (f a) v}

end%type.
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Complexity functions

Describe number of steps dependent on input.
Example:

orb true false
(fun x y : bool ⇒ if x then true else y) true false

(fun y : bool ⇒ if true then true else y) false
(if true then true else false)

true

⇒ Time described by function

τorb : B→ N× (B→ N) := λx .(1, λy .2)
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Complexity functions (2)

Recursive functions:

τ+ : N→ N× (N→ N) := λm.(c1, λn.m · c2 + c3)

Higher-order functions: Type for time-complexity functions actually
more involved, see paper for full truth.
Correctness predicate easily extended with time-complexity functions:

tf ∼τf f
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Extracting Functions
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Extracting functions

Variables translate to variables according to environment
Abstraction translates to lambda
Fixpoints translate to fixed-point combinator ρ

Fixpoint extract (env : nat → nat) (s : Ast.term) (fuel : nat) :
TemplateMonad T :=

match fuel with 0 ⇒ tmFail "out of fuel" | S fuel ⇒
match s with

Ast.tRel n ⇒ ret (var (env n))
| Ast.tLambda _ _ s ⇒

t ← extract (↑ env) s fuel ;;
ret (lam t)

| Ast.tFix [Ast.mkdef _ _ _ s _] _ ⇒
t ← extract (⇑ env) s fuel ;;

ret (ρ (lam t))
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Extracting functions (2)

Applications are application
Extractions of constants get reused using Typeclasses

| Ast.tApp s R ⇒
params ← tmDependentArgs s;;
if params =? 0 then

t ← extract env s fuel;;
monad_fold_left (fun t1 s2 ⇒ t2 ← extract env s2 fuel ;; ret (app t1
t2)) R t

else
let (P, L) := (firstn params R,skipn params R) in
s’ ← tmEval cbv (Ast.tApp s P);;
a ← tmUnquote s’ ;;
a’ ← tmEval cbn (my_projT2 a);;
nm ← (tmEval cbv (String.append (name_of s) "_term")�=tmFreshName);;
i ← tmTryInfer nm (Some cbn) (extracted a’) ;;
let t := (@int_ext _ _ i) in
monad_fold_left (fun t1 s2 ⇒ t2 ← extract env s2 fuel ;; ret (app t1
t2)) L t
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Proving correctness
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Proving correctness

Each extracted term is certified using Ltac:
Tactic reducing λ-terms keeping track of number of steps
Show correctness by following same case distinctions/recursions as
used in the extracted function
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Proving correctness, example
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Proving correctness, example
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Deriving time complexity
Solving recurrence relations interactively
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Case Study
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Library of datatypes and functions

Build upon shared extraction of:
B, options, pairs . . .
N: addition, multiplication, equality . . .
Lists: map, filter, . . .
≈ 360 lines
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Self interpreter for L

Universal L-term:
Function eva : N→ T→ T⊥ with s �∗ t ⇔ ∃n, eva n s = t

Base for many results in computability theory
20 lines from specification in Coq to correct extraction in L
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Self interpreter for L
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Self interpreter for L
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Self interpreter for L
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Diophantine equations

Diophantine sets are recursively enumerable
⇒ Many-one reduction from diophantine equations to L-halting
problem
≈ 200 lines
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Turing machine interpreter

Each step of a TM can be computed in constant time in L:
Global Instance term_loopM :

let c1 := (haltTime + n*121 + transTime + 76) in
let c2 := 13 + haltTime in
computableTime (loopM (M:=M))

(fun _ _ ⇒ (5,fun k _ ⇒ (c1 * k + c2,tt))).

Many-one reduction from TM-halting to L-halting problem
≈ 400 lines

Yannick Forster, Fabian Kunze Certifying extraction with time bounds ITP 2019, September 12 27



Future Work

Formalise complexity theory:
I Extract efficient self interpreter
I Time Hierarchy Theorem
I NP-Completeness

Include space analysis in framework
Verify extraction process using MetaCoq
Better treatment of dependent functions (realisability model for Coq)
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Related Work

Myreen and Owens: HOL4 to CakeML
Hupel and Nipkow: Isabelle/HOL to CakeML
Köpp: Minlog to λ-Calculus
Œuf project: Verified compiler from Coq-Subset to Assembly
CertiCoq project: Verified extraction from Coq to Clight.
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Contribution

A plugin extracting Coq functions of simple polymorphic types to cbv
λ-calculus L
Logical relations connecting Coq functions with correct extractions
and time bounds
Automated correctness and semi-automated time analysis for
extracted terms
Three case studies and library including N and lists:

I Universal L-term
I Reduction from Diophantine equations to L-halting problem
I Polynomial-time simulation of Turing machines in L

Contributed to library of undecidable problems in Coq:
github.com/uds-psl/coq-library-undecidability

Thank you!
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LoC

Framework:
loc

Correctness predicate 370
Extraction 380
Simplification Tactics 950
Verifying Tactics 420
total 2100

Case Studies:
spec proof

Library 355 282
Universal Term 13 7
H10 79 124
Universal TM 243 151
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Correctness with time bounds

encAa ∼τ a
(for a : A)

tf is a procedure ∧ ∀ataτa. ta ∼τa a→ Σv : T.
tf ta �≤n v ∧ v ∼τ fa where τf aτa = (n, τ)

tf ∼τa f
(for f : A→ B)
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