
A certifying extraction with time bounds
from Coq to call-by-value λ-calculus

Yannick Forster Fabian Kunze

computer science

saarland
university

Germany

ITP 2019
September 12

Yannick Forster, Fabian Kunze Certifying extraction with time bounds ITP 2019, September 12 1

Motivation

Formalising computability theory:
Functions definable in constructive type theory are computable, but
this is not provable inside the theory
Explicit model of computation needed for negative results or
complexity theory
We use: call-by-value λ-calculus “L”
Computability provable for every concrete function defined in Coq
But computability proofs tedious and repetitive!

We provide a framework that automates1 this extraction

1for ML-like subset of Coq
Yannick Forster, Fabian Kunze Certifying extraction with time bounds ITP 2019, September 12 2

Idea

Call-by-Value lambda calculus (Plotkin [1975], Forster and Smolka [2017]):

s, t ::= x | λs | st

For each concrete function f : X1 → . . .→ Xn over ML-like data
types,
find a λ-term tf and a time complexity τf such that
for all ~x , tf (enc~x) reduces to enc(f ~x)

within τf ~x many beta-reduction steps (Accattoli and Lago [2016]).
Simple, syntax directed extraction process.

Yannick Forster, Fabian Kunze Certifying extraction with time bounds ITP 2019, September 12 3

Example

Yannick Forster, Fabian Kunze Certifying extraction with time bounds ITP 2019, September 12 4

Example with time

Yannick Forster, Fabian Kunze Certifying extraction with time bounds ITP 2019, September 12 5

Example with recursive function

Yannick Forster, Fabian Kunze Certifying extraction with time bounds ITP 2019, September 12 6

Example with higher order function

Yannick Forster, Fabian Kunze Certifying extraction with time bounds ITP 2019, September 12 7

Outline

What is correctness?
How to extract terms?
How to prove those extractions correct?
Case studies:

I Self-interpreter for L
I Enumerator for diophantine equations (→ Reduction to L)
I Turing machine interpreter

Yannick Forster, Fabian Kunze Certifying extraction with time bounds ITP 2019, September 12 8

What is Correctness?

Yannick Forster, Fabian Kunze Certifying extraction with time bounds ITP 2019, September 12 9

Encoding values: Scott encoding

Inductive values encoded as functions (corresponding to their match):

true λtf . t
false λtf . f

0 λsz .z
1 λsz .s(λsz .z)
S λasz .sa

→ Encoding follows from definition of inductive data type

Yannick Forster, Fabian Kunze Certifying extraction with time bounds ITP 2019, September 12 10

Generating encoding functions

Mechanically derivable2 using Template Coq, part of MetaCoq (Sozeau
et al. [2019]):

Stored in Typeclass, with properties (e.g. injectivity) proven by Ltac.

2for all ML-like (non-dependent, non-mutual) inductive types
Yannick Forster, Fabian Kunze Certifying extraction with time bounds ITP 2019, September 12 11

Correctness predicate

When does a (λ-)term tf compute a (Coq-)function f ?
Example: torb ∼ orb:

∀xy : B, torb (encx) (ency) �∗ enc(orb x y)

Tool: Logical relation!

encAa ∼ a
(for a : A)

tf is closed value ∧

∀(a : A)(ta : T). ta ∼ a→

Σ(v : T).

tf ta

�∗ v ∧ v

∼ fa

tf ∼ f
(for f : A→ B)

Problem: Not strictly positive.
Solution: Recursion on Type...?

Yannick Forster, Fabian Kunze Certifying extraction with time bounds ITP 2019, September 12 12

Correctness predicate

When does a (λ-)term tf compute a (Coq-)function f ?
Example: torb ∼ orb:

∀xy : B, torb (encx) (ency) �∗ enc(orb x y)

Tool: Logical relation!

encAa ∼ a
(for a : A)

tf is closed value ∧

∀(a : A)(ta : T). ta ∼ a→

Σ(v : T).

tf ta

�∗ v ∧ v

∼ fa

tf ∼ f
(for f : A→ B)

Problem: Not strictly positive.
Solution: Recursion on Type...?

Yannick Forster, Fabian Kunze Certifying extraction with time bounds ITP 2019, September 12 12

Correctness predicate

When does a (λ-)term tf compute a (Coq-)function f ?
Example: torb ∼ orb:

∀xy : B, torb (encx) (ency) �∗ enc(orb x y)

Tool: Logical relation!

encAa ∼ a
(for a : A)

tf is closed value ∧
∀(a : A)(ta : T). ta ∼ a→ Σ(v : T). tf ta �∗ v ∧ v ∼ fa

tf ∼ f
(for f : A→ B)

Problem: Not strictly positive.
Solution: Recursion on Type...?

Yannick Forster, Fabian Kunze Certifying extraction with time bounds ITP 2019, September 12 12

Correctness predicate

When does a (λ-)term tf compute a (Coq-)function f ?
Example: torb ∼ orb:

∀xy : B, torb (encx) (ency) �∗ enc(orb x y)

Tool: Logical relation!

encAa ∼ a
(for a : A)

tf is closed value ∧
∀(a : A)(ta : T). ta ∼ a→ Σ(v : T). tf ta �∗ v ∧ v ∼ fa

tf ∼ f
(for f : A→ B)

Problem: Not strictly positive.
Solution: Recursion on Type...?

Yannick Forster, Fabian Kunze Certifying extraction with time bounds ITP 2019, September 12 12

Correctness predicate (2)

Inductive T : Type → Type :=
T _base A ‘{registered A} : T A

| T _arr A B (τ_1 : T A) (τ_2 : T B) : T (A → B).

Fixpoint computes {A} (τ : T A): A → T → Type :=
match τ with
T _base ⇒ fun x xInt ⇒ (xInt = enc x)

| @T _arr A B τ1 τ2 ⇒
fun f t_f ⇒

proc t_f * ∀ (a : A) t_a,
computes τ1 a t_a
→ {v : term & (t_f t_a >* v) * computes τ2 (f a) v}

end%type.

Yannick Forster, Fabian Kunze Certifying extraction with time bounds ITP 2019, September 12 13

Complexity functions

Describe number of steps dependent on input.
Example:

orb true false
(fun x y : bool ⇒ if x then true else y) true false

(fun y : bool ⇒ if true then true else y) false
(if true then true else false)

true

⇒ Time described by function

τorb : B→ N× (B→ N) := λx .(1, λy .2)

Yannick Forster, Fabian Kunze Certifying extraction with time bounds ITP 2019, September 12 14

Complexity functions (2)

Recursive functions:

τ+ : N→ N× (N→ N) := λm.(c1, λn.m · c2 + c3)

Higher-order functions: Type for time-complexity functions actually
more involved, see paper for full truth.
Correctness predicate easily extended with time-complexity functions:

tf ∼τf f

Yannick Forster, Fabian Kunze Certifying extraction with time bounds ITP 2019, September 12 15

Extracting Functions

Yannick Forster, Fabian Kunze Certifying extraction with time bounds ITP 2019, September 12 16

Extracting functions

Variables translate to variables according to environment
Abstraction translates to lambda
Fixpoints translate to fixed-point combinator ρ

Fixpoint extract (env : nat → nat) (s : Ast.term) (fuel : nat) :
TemplateMonad T :=

match fuel with 0 ⇒ tmFail "out of fuel" | S fuel ⇒
match s with

Ast.tRel n ⇒ ret (var (env n))
| Ast.tLambda _ _ s ⇒

t ← extract (↑ env) s fuel ;;
ret (lam t)

| Ast.tFix [Ast.mkdef _ _ _ s _] _ ⇒
t ← extract (⇑ env) s fuel ;;

ret (ρ (lam t))

Yannick Forster, Fabian Kunze Certifying extraction with time bounds ITP 2019, September 12 17

Extracting functions (2)

Applications are application
Extractions of constants get reused using Typeclasses

| Ast.tApp s R ⇒
params ← tmDependentArgs s;;
if params =? 0 then

t ← extract env s fuel;;
monad_fold_left (fun t1 s2 ⇒ t2 ← extract env s2 fuel ;; ret (app t1
t2)) R t

else
let (P, L) := (firstn params R,skipn params R) in
s’ ← tmEval cbv (Ast.tApp s P);;
a ← tmUnquote s’ ;;
a’ ← tmEval cbn (my_projT2 a);;
nm ← (tmEval cbv (String.append (name_of s) "_term")�=tmFreshName);;
i ← tmTryInfer nm (Some cbn) (extracted a’) ;;
let t := (@int_ext _ _ i) in
monad_fold_left (fun t1 s2 ⇒ t2 ← extract env s2 fuel ;; ret (app t1
t2)) L t

Yannick Forster, Fabian Kunze Certifying extraction with time bounds ITP 2019, September 12 18

Proving correctness

Yannick Forster, Fabian Kunze Certifying extraction with time bounds ITP 2019, September 12 19

Proving correctness

Each extracted term is certified using Ltac:
Tactic reducing λ-terms keeping track of number of steps
Show correctness by following same case distinctions/recursions as
used in the extracted function

Yannick Forster, Fabian Kunze Certifying extraction with time bounds ITP 2019, September 12 20

Proving correctness, example

Yannick Forster, Fabian Kunze Certifying extraction with time bounds ITP 2019, September 12 21

Proving correctness, example

Yannick Forster, Fabian Kunze Certifying extraction with time bounds ITP 2019, September 12 21

Proving correctness, example

Yannick Forster, Fabian Kunze Certifying extraction with time bounds ITP 2019, September 12 21

Proving correctness, example

Yannick Forster, Fabian Kunze Certifying extraction with time bounds ITP 2019, September 12 21

Proving correctness, example

Yannick Forster, Fabian Kunze Certifying extraction with time bounds ITP 2019, September 12 21

Proving correctness, example

Yannick Forster, Fabian Kunze Certifying extraction with time bounds ITP 2019, September 12 21

Proving correctness, example

Yannick Forster, Fabian Kunze Certifying extraction with time bounds ITP 2019, September 12 21

Proving correctness, example

Yannick Forster, Fabian Kunze Certifying extraction with time bounds ITP 2019, September 12 21

Deriving time complexity
Solving recurrence relations interactively

Yannick Forster, Fabian Kunze Certifying extraction with time bounds ITP 2019, September 12 22

Deriving time complexity
Solving recurrence relations interactively

Yannick Forster, Fabian Kunze Certifying extraction with time bounds ITP 2019, September 12 22

Deriving time complexity
Solving recurrence relations interactively

Yannick Forster, Fabian Kunze Certifying extraction with time bounds ITP 2019, September 12 22

Deriving time complexity
Solving recurrence relations interactively

Yannick Forster, Fabian Kunze Certifying extraction with time bounds ITP 2019, September 12 22

Case Study

Yannick Forster, Fabian Kunze Certifying extraction with time bounds ITP 2019, September 12 23

Library of datatypes and functions

Build upon shared extraction of:
B, options, pairs . . .
N: addition, multiplication, equality . . .
Lists: map, filter, . . .
≈ 360 lines

Yannick Forster, Fabian Kunze Certifying extraction with time bounds ITP 2019, September 12 24

Self interpreter for L

Universal L-term:
Function eva : N→ T→ T⊥ with s �∗ t ⇔ ∃n, eva n s = t

Base for many results in computability theory
20 lines from specification in Coq to correct extraction in L

Yannick Forster, Fabian Kunze Certifying extraction with time bounds ITP 2019, September 12 25

Self interpreter for L

Yannick Forster, Fabian Kunze Certifying extraction with time bounds ITP 2019, September 12 25

Self interpreter for L

Yannick Forster, Fabian Kunze Certifying extraction with time bounds ITP 2019, September 12 25

Self interpreter for L

Yannick Forster, Fabian Kunze Certifying extraction with time bounds ITP 2019, September 12 25

Self interpreter for L

Yannick Forster, Fabian Kunze Certifying extraction with time bounds ITP 2019, September 12 25

Diophantine equations

Diophantine sets are recursively enumerable
⇒ Many-one reduction from diophantine equations to L-halting
problem
≈ 200 lines

Yannick Forster, Fabian Kunze Certifying extraction with time bounds ITP 2019, September 12 26

Turing machine interpreter

Each step of a TM can be computed in constant time in L:
Global Instance term_loopM :

let c1 := (haltTime + n*121 + transTime + 76) in
let c2 := 13 + haltTime in
computableTime (loopM (M:=M))

(fun _ _ ⇒ (5,fun k _ ⇒ (c1 * k + c2,tt))).

Many-one reduction from TM-halting to L-halting problem
≈ 400 lines

Yannick Forster, Fabian Kunze Certifying extraction with time bounds ITP 2019, September 12 27

Future Work

Formalise complexity theory:
I Extract efficient self interpreter
I Time Hierarchy Theorem
I NP-Completeness

Include space analysis in framework
Verify extraction process using MetaCoq
Better treatment of dependent functions (realisability model for Coq)

Yannick Forster, Fabian Kunze Certifying extraction with time bounds ITP 2019, September 12 28

Related Work

Myreen and Owens: HOL4 to CakeML
Hupel and Nipkow: Isabelle/HOL to CakeML
Köpp: Minlog to λ-Calculus
Œuf project: Verified compiler from Coq-Subset to Assembly
CertiCoq project: Verified extraction from Coq to Clight.

Yannick Forster, Fabian Kunze Certifying extraction with time bounds ITP 2019, September 12 29

Contribution

A plugin extracting Coq functions of simple polymorphic types to cbv
λ-calculus L
Logical relations connecting Coq functions with correct extractions
and time bounds
Automated correctness and semi-automated time analysis for
extracted terms
Three case studies and library including N and lists:

I Universal L-term
I Reduction from Diophantine equations to L-halting problem
I Polynomial-time simulation of Turing machines in L

Contributed to library of undecidable problems in Coq:
github.com/uds-psl/coq-library-undecidability

Thank you!

Yannick Forster, Fabian Kunze Certifying extraction with time bounds ITP 2019, September 12 30

github.com/uds-psl/coq-library-undecidability

References

Beniamino Accattoli and Ugo Dal Lago. (Leftmost-Outermost) Beta
Reduction is Invariant, Indeed. Logical Methods in Computer Science, 12
(1), 2016. doi: 10.2168/LMCS-12(1:4)2016.

Yannick Forster and Gert Smolka. Weak call-by-value lambda calculus as a
model of computation in Coq. In ITP 2017, pages 189–206. Springer,
2017.

Gordon D. Plotkin. Call-by-Name, Call-by-Value and the lambda-Calculus.
Theor. Comput. Sci., 1(2):125–159, 1975. doi:
10.1016/0304-3975(75)90017-1.

Matthieu Sozeau, Abhishek Anand, Simon Boulier, Cyril Cohen, Yannick
Forster, Fabian Kunze, Gregory Malecha, Nicolas Tabareau, and Théo
Winterhalter. The MetaCoq Project. working paper or preprint, June
2019. URL https://hal.inria.fr/hal-02167423.

Yannick Forster, Fabian Kunze Certifying extraction with time bounds ITP 2019, September 12 31

https://hal.inria.fr/hal-02167423

LoC

Framework:
loc

Correctness predicate 370
Extraction 380
Simplification Tactics 950
Verifying Tactics 420
total 2100

Case Studies:
spec proof

Library 355 282
Universal Term 13 7
H10 79 124
Universal TM 243 151

Yannick Forster, Fabian Kunze Certifying extraction with time bounds ITP 2019, September 12 32

Correctness with time bounds

encAa ∼τ a
(for a : A)

tf is a procedure ∧ ∀ataτa. ta ∼τa a→ Σv : T.
tf ta �≤n v ∧ v ∼τ fa where τf aτa = (n, τ)

tf ∼τa f
(for f : A→ B)

Yannick Forster, Fabian Kunze Certifying extraction with time bounds ITP 2019, September 12 33

	What is Correctness?
	Time bounds

	Extracting Functions
	Proving correctness
	Case Study
	Appendix
	References

