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Why Turing Machines?

Traditional basis of theory of computation & complexity:

Simple model of computation

Straightforward notion of time & space consumption
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Turing machines are difficult

Hard to construct and verify:

Not inherently compositional:

States & transition function
Number of tapes
Different alphabets

Data not structured: strings over alphabet

Therefore no mechanisation of complexity-theoretic results available like:

P ⊆ NP ⊆ PSPACE ⊆ EXP

Cook-Levin theorem: SAT is NP complete

Time & space hierarchy theorem
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Our vision: Complexity theory in call-by-value λ-Calculus L

Why use L?

Tools for verification and running time analysis in L (Forster&Kunze (2019))

L induces same notion of computability:

Church-Turing thesis: L and TMs can simulate each other

Complexity theory possible?

Invariance thesis justifies this: L and TMs can simulate each other with polynomial time
overhead and constant factor space overhead.

Proof: The Weak Call-By-Value λ-Calculus is Reasonable for Both Time and Space
POPL Wednesday 10:30, Forster&Kunze&Roth (2020) (non-mechanised)

Mechanisation of the POPL result will require resource-aware verification of TMs1

1Church-Turing already mechanised using the results of this paper
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Related Work: Mechanised verification of Turing machines

Mechanised universal Turing machines (correctness & termination):

In Matita: Asperti&Ricciotti (2013,2015)

In Isabelle/HOL, using a Hoare logic: Xu&Zhang&Urban (2013)

We extend Asperti&Ricciotti’s verification approach with time & space analysis, in Coq
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Contribution

A framework to:

Construct Turing machines

Verify correctness & termination

Verify/deduce time and space complexity

Case studies:

Addition and multiplication of numbers

Several operations on lists

Turing machine interpreter (Universal TM)

Multi-tape to single-tape translation
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Constructing Machines

Example: 2 tapes, Copy symbol left of head on tape 0 to tape 1.

CopyLeft : TM2
Σ :=

⇑[0](Move L) ;

Switch (⇑[0] Read)

(λf . match f with
bsc⇒ ⇑[1](Write s)

| ∅⇒Nop)

⇒ qastart

qb

qd

qc qe

a:a,L

b:b,R

b:b,L

a:b,L

a:b,L

b:a,R

b:b,R

a:b,R

Shallowly embedded language constructs machines

Primitive machines: Move d , Read, Write s

Control flow combinators: M1;M2, Switch M (λf .Mf )

Tape selection: ⇑I M
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Approach: Abstraction Layers

0 Multi-tape Turing machines (definition and semantics)

1 Labelled Turing machines & specification predicates

2 Control-flow & lifting operators

3 Registers: tape contain encodable types (N, lists, . . . )
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Layer 0: Bare Turing Machines

From Asperti&Ricciotti:

n-tape Turing machines M : TMn
Σ over alphabet Σ.

Semantics: evaluation in k steps, M(q, t) .k (q′, t ′)

t : TapeΣ is canonical, blank-free representation of tapes

Used space visible in resulting tape since no deallocation can happen
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Layer 1: Labelled Machines & Relations

We only care what can be computed:

Labelled machine M : TMn
Σ(F ) over finite Type F to hide state names:

M = (M ′ : TMn
Σ, lab : QM′ → F )

Realisation of R : TapenΣ → (F × TapenΣ)→ P:

M � R := ∀t q t ′. M(t) . (q, t ′)→ R t (labM q, t ′)

Can include space consumption.

Termination in T : TapenΣ → N→ Prop:

M ↓ T := ∀t k. T t k → ∃c . M(t) .k c

Includes time analysis.
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Layer 2: Basic Machines

The “assembly commands” of our (shallowly embedded) language:

Write symbol s to the tape:

Write s �c λ t t ′. t ′[0] = tape write s t[0]

Read the current symbol:

Read �c λ t (`, t ′). ` = current (t[0]) ∧ t = t ′

Move d
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Layer 2: Control Flow Combinators

M1 � R1 M2 � R2

M1;M2 � R1 ◦ R2

M1 � R1 M1 ↓ T1 M2 ↓ T2

M1;M2 ↓ (λt k. ∃k1 k2. (1 + k1 + k2) ≤ k ∧ T1 t k1 ∧ ∀t ′ `. R1 t (`, t ′)→ T2 t
′ k2)

Conditional: If M1 Then M2 Else M3

Loop doWhileM : TM(F ) (for M : TM(optionF ))
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Layer 2: Liftings

Combine 2-tape machine M and 5-tape machine N:

(⇑[2,4] M);N

Other lifting to change alphabet

Realisation/termination: relations can be lifted as well.
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Layer 3: Compound data in tapes

Type X encodable in alphabet Σ means there exists injective function ε : X → Σ∗

Notion t 'k x means t contains encoding of x and ≤ k other used cells

Encodable: N, pairs, lists, inductive data types...

Constructor and destructor machines, e.g. for N:

ConstrO: Write 0 to tape
ConstrS: Increment number encoded on tape
CaseNat : TM(B): destruct number and return occured constructor.
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How to use all this?

Recall Example:

CopyLeft : TM2
Σ := ⇑[0] Move L; Switch (⇑[0] Read)(λf . match f with . . .

We want CopyLeft � CopyLeftRel

Our framework and automation reduces all this to relational inclusion:

⇑[0](λ t0 t1. t1[0] = tape move L t0[0])

◦
(
λ t1 ((`′ : 1), t3).
∃t2 (` : option(Σ)). (⇑[0](λ t1 (`, t2). ` = current(t[0]) ∧ t2 = t1)) t1 (`, t2)

∧(match ` with
bsc ⇒LiftTapes(λ t2 t3. t3[0] = tape write s t2[0])[1] t2 t3

| ∅ ⇒ t3 = t2)
)

⊆ CopyLeftRel

And similar for termination/time.
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Main improvements compared to Asperti&Ricciotti

Explicit handling of time and space

Explicit notion of encoded datatypes (Layer 3)

Labelled machines
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Case studies

Addition and multiplication of numbers 2

Several list operations

Turing machine interpreter (Universal TM)

Multi-tape to single-tape translation (without layer 3)

2unary, but binary in files
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Universal 1-tape Turing Machine

Theorem

There exists a universal Turing machine UnivΣ that, given an encoded single-tape machine M
over Σ and an encoded input tape tM , simulates M on tM with polynomial time overhead and
constant-factor space overhead.

Actually two theorems, e.g. for correctness/space:

UnivΣ � λt t ′.

∀(M : TM1
ΣM

) (tM : TapeΣM
) (q : QM) (s1 s2 s3 s4 s5 : N).

t[0] ' tM → t[1] 's1 δM → t[2] 's2 q →
isVoids3(t[3])→ isVoids4(t[4])→ isVoids5(t[5])→
∃(t ′M : TapeΣM

) (q′ : QM). M(q, tM) . (q′, t ′M) ∧
t ′[0] ' t ′M ∧ t ′[1] 's1 δM ∧ t[2] '(2+|QM |+max cM s2) q

′ ∧
isVoidmax cM s3(t ′[3]) ∧ isVoidmax cM s4(t ′[4]) ∧ isVoidmax cM s5(t ′[5]) , where cM := |ε(δM)|+ 1

And similarly for time.
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Mechanisation in Coq

Useful features:

Tactics and Ltac (proof state unmanageable otherwise)

Existential variables

smpl plugin3 by Sigurd Schneider:

Automated forward reasoning and simplification
Extendable by hints
Should be part of Coq’s auto

Lessons learned:

We should have used mathcomp for finite types.

Inductive tape (Sigma:finType) := ...

3https:/github.com/sigurdschneider/smpl
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Mechanisation in Coq (2)

Paper hyperlinks to Coq development

5 min compile time

Total: 19,100 loc

Universal machine: 1844 lines
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Lesson learned

The project started October 2016. Now, the verifications are possible, yet very tedious.

Formalising4 complexity theoretical results,
(like Cook-Levin theorem, P ⊆ NP ⊆ PSPACE ⊆ EXP . . . )

with Turing machines is inherently infeasable.

4not only mechanising
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Conclusion

Future Work:

Mechanise call-by-value λ-calculus interpreters needed for invariance thesis:

Yannick Forster & Fabian Kunze & Marc Roth;
The Weak Call-By-Value λ-Calculus is Reasonable for Both Time and Space;
POPL 2020, Wednesday 10:30

Investigate complexity theory in the call-by-value λ-calculus:

Time hierarchy
Cook-Levin theorem (SAT is NP-complete)

Framework used in the library for undecidable problems to reduce halting problem from L to
TMs: CoqPL(Saturday 16:05), github.com/uds-psl/coq-library-undecidability

Thanks
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Lines of Code

Component Spec Proof

Libraries (finite types, retractions, etc.) 2157 2716

L0&L1 Semantics of (labelled)
TMs

644 288

Primitive Machines 178 48

L2 Lifts 367 195
Combinators 561 541
Simple machines 598 432

L3 Encodable types 282 179
Tape-containment 171 43
(De-) constructors 501 511
CopyValue, Reset,
Compare

538 548

Refinement on alphabet-
lift

139 93

Ltac automation (for L2 and L3) 156 15

Complexity Time (infrastructure and machines) 268 279
Space (infrastructure and machines) 259 193

Add and Mult 222 276

M1 Encoding 76 65
Implementation 783 1186
Time bounds 236 371

Univ Lookup in association list 169 120
Implementation 324 333
Time bounds 146 212
Space bounds 240 300

MU (single-tape Univ for multi-tape machines) 408 637

Total (excl. libraries) 7327 6957

5 minutes @ Intel(R) Core(TM) i7-6600U CPU @ 2.60GHz machine.
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Semantics TM

M : TMn
Σ := (Q : finType,

s : Q,

h : Q → B,
δ : Q × (option(Σ))n → Q × (option(Σ)×Move)n)

Forster, Kunze, Wuttke Verified Programming of TMs in Coq January 20 CPP 2020 24


	Introduction
	Appendix

