The Invariance Thesis for a A-Calculus
Towards Formal Complexity Theory

Yannick Forster Fabian Kunze Marc Roth

Research Immersion Lab Talk
Advisor: Prof. Dr. Gert Smolka

SAARLAND
UNIVERSITY Y
I —

COMPUTER SCIENCE

PROGRAMMING SYSTEMS LAB

13.01.2017

Fabian Kunze The Invariance Thesis for a A-Calculus 13.01.2017

Related Work

Formal correctness proofs for TMs are tedious:

@ not compositional

e few abstractions (data encoding with finite alphabet, no local variables,...)

[§ Andrea Asperti and Wilmer Ricciotti
A formalization of multi-tape Turing machines
Theoretical Computer Science, 2015

[4 Eelis van der Weegen, James McKinna
A Machine-Checked Proof of the Average-Case Complexity of Quicksort in Coq
TYPES 2008

[§ Ugo Dal Lago and Simone Martini

The Weak Lambda Calculus as a Reasonable Machine
Theoretical Computer Science, 2008

Fabian Kunze The Invariance Thesis for a A-Calculus 13.01.2017 2

L: Weak Call-by-Value A-Calculus

L: Syntax and Semantics

s,t u== x| As | st (x€eN)
s=s t=t
st-=s't st>st (As) (At) = 52,

e data represented by abstractions (Scott encoding)

@ recursion using fixpoint combinator

= Turing complete

Fabian Kunze The Invariance Thesis for a A-Calculus

13.01.2017

The Invariance Thesis

Definition (Invariance Thesis)

"Reasonable" machines can simulate each other within a polynomial bounded overhead in time
and a constant-factor overhead in space.

Ensures consistency w.r.t classes closed under poly-time/constant-space reductions.

Fabian Kunze The Invariance Thesis for a A-Calculus 13.01.2017 4

The Complexity Measures

Consider a term s with the evaluation

S=5) >S5 > "> Sk

The time consumption of s is the number of reduction steps:
Times := k

The space consumption of s is the maximum of the sizes of intermediate terms of all possible
evaluations:
Space, = _max |si]

i=0,...,

Fabian Kunze The Invariance Thesis for a A-Calculus 13.01.2017 5

Encoding Terms

@ terms: prefix notation

e Positions: strings over {@, Og, A}

Example

(Axy.xy) (Ax.x) = (AA10) (A\0) is encoded by string @ANQ > | > A\>.
In this term, "1’ occurs at position @ A\\Q@

Fabian Kunze The Invariance Thesis for a A-Calculus 13.01.2017 6

The Naive Interpreter

Idea: evaluate as one would on paper
For one step s >~ s’

@ find the first 3-Redex and split s onto 4 tapes: -+ @\ -+ A... ...
~— —~ =
pre funct arg post
» copy to pre until @\ is read
» copy next complete term to funct (with additional position tape)
» if next token is A, copy next term to arg and remaining tokens to post

» otherwise, move funct onto pre and start from beginning
@ copy funct to pre, replacing bound variables with arg
© copy post to pre, reduced term s’ is in pre

Per step: O(|s| + |s']) time & O(|s| + |s’|) space
For whole evaluation: O(3_; |si|) time & O(max; |s;|) space

Fabian Kunze The Invariance Thesis for a A-Calculus 13.01.2017

Exponentially Large Terms

2 := Axy.x (x y) can double the size of a term in one step:
2t = Ay.t(ty)

So, with | := \x.x:

22(---(21)...)

k times

|

normalizes in k L-steps, but takes Q(2%) time for the naive interpreter
= other interpreter needed.

Fabian Kunze The Invariance Thesis for a A-Calculus 13.01.2017

The heap-based Interpreter

Use environments on a heap to delay substitutions:
e call (thunk) ¢ = s(E): pair of encoded L-term s and heap-address E
@ heap H: list of entries (L or c#E’), addressed by position.
o call stack CS: list of tuples (@, c) or (@g, c) (for @g, c fully reduced)
@ interpreter state: current call CC, CS and H.
e initial state: CC = s(0), CS =[] and H = [])

Example

The result of (Ax.x) (Axy.xy) (Ax.x)) = (Ax.x) (Ax.x y)§_ is represented by

CC =(\@> |>)(1)
CS =[(©g, (A\>)(0))]
H =[L, (A>)(0))#0]

Fabian Kunze The Invariance Thesis for a A-Calculus 13.01.2017

The heap-based Interpreter (2)

Each step of the interpreter depends on the current call CC = s(E):
e if s = s, sg: push (@, sg[E]) on CS and set CC to sg(E)
e if s = x: get new CC by lookup of x in E
o if s =\
» if CS is empty: the term is fully evaluated
» if CS=(0,cgr):: CS": set CC := cg and put (Qg, CC) on stack instead. A
» if CS = (Q@g, At(E")) :: CS’: store sg(E)#E’ on heap as E and set CC := t(E)
Observations for evaluation sy = s7 = -+ > sg:
@ all calls contain subterms of s
@ Heap contains #H = k + 1 elements, each of size < |s| + 2 - log(#H)
e CS & CC representing s; have size O(|s;|)
= space consumption: O((max; |sj|) + k - (|s| + log(k)))
@ time per interpreter step: O(|s;| - #H 4+ CC + CS)
e amortized, poly(|sp|) interpreter-steps per 3-reduction.

= time consumption: O(poly(k, |s|))
13.01.2017

10

Sub-linear-logarithmic Small Terms

Let N := (Axy.xx) |, then

k times
= OW D - (G D))
>2k I k times

Needs 3k entries (with addresses) on heap, but definition permits only O(k) space

Fabian Kunze The Invariance Thesis for a A-Calculus 13.01.2017 11

Complexity Overview

Consider evaluation s = s5 = 51 > - -+ = 5.

‘ naive ‘ heap-based
Times = k O3, Isil*) O(poly(k, |s))
Space, = max; |sj| | O(Space.) | O(Spaces + k2 - (|s| + log(k)))

o If Space, > k2 - (|s| + log(k)), use heap-based interpreter.
Otherwise, use naive interpreter.

@ archived by increasing bound on space of naive interpreter

= the simulation respects the Invariance Thesis (assuming k > |s|)

Fabian Kunze The Invariance Thesis for a A-Calculus 13.01.2017

12

Formalization

Functional
Specification

formalized

Complexity

h

Gallina

Turing
Machines

restricted Gallina:

e functions: operating on tuples/records, representing tapes

e data: (list of) tokens and natural numbers

@ recursion: tail-recursive or explicit iteration of step-function

Fabian Kunze The Invariance Thesis for a A-Calculus

13.01.2017

13

Formalization (2)

spec | proof
L-interpreters 1192 | 1390 | just functional specification
L-extraction framework | 1316 | 610 | partly supporting time-analysis
TM-interpreter 388 | 335 | no complexity analysis
TMs 2254 | 2336

Fabian Kunze The Invariance Thesis for a A-Calculus

13.01.2017

14

Formalizing the Naive Interpreter

Lemma enc_decompose (s: list token) (pos: option (list posToken)):
validOptPos s pos
— enc s = left0Of s pos ++ encAt s pos ++ rightOf s pos.

Inductive nextPos : term — position — option position — Prop :=
| nextPos_AppInit s t: nextPos (app s t) [] (Some [posAppL])
(*2 more *)
| nextPos_LamSome s pl p2: nextPos s pl (Some p2)
— nextPos (lam s) (posLam::pl) (Some (posLam::p2))
(*5 more congruencesx)
| nextPos_closeScope s t pl: nextPos s pl None
— nextPos (app s t) (posAppL::pl) (Some [posAppR]).

Lemma nextPos_left0f’ s pos p’ a rem:

nextPos s pos p’ — enc (getAt s pos) = a::rem
— left0f’ s pos++[a] = leftOf s p’.

Fabian Kunze The Invariance Thesis for a A-Calculus 13.01.2017

Copying whole Subterms

Fixpoint nextTerm’ res rem (stack: option position) :=
match stack, rem with
| None, _ = (res,rem,stack)

| Some stack’, a::rem’ => nextTerm’ (res++[a]) rem’ (updateStack stack’ a)
end.

Lemma nextTerm’_correct res rem pos s stack’:
validPos s pos

— nextTerm’ res (enc (getAt s pos)++rem) (Some (rev pos ++ stack’))
nextTerm’ (res++enc (getAt s pos)) rem (closeScopeStack (rev pos ++ stack’))

Definition nextTerm rem := nextTerm’ [] rem (Some []).

Lemma nextTerm_correct s rem : nextTerm (enc s++rem) = (enc s,rem,None).

Fabian Kunze The Invariance Thesis for a A-Calculus

13.01.2017

16

Finding Redexes

Definition searchRedex_step (comp : searchRedex_state) : searchRedex_state := (*...%).

Inductive searchRedex_inv s comp : Prop :=
| notFound pos: mayFirstRedex s pos
— current comp = remTerm s pos
— preredex comp = left0Of s pos
(* ... *) — searchRedex_inv s comp
| foundRedex pos : firstRedex s = Some pos
— preredex comp = leftOf s (Some pos)
— functional comp = enc(getAt s (pos++[posAppL;posLam]))
(+ ... *) — searchRedex_inv s comp.

Lemma searchRedex_step_correct s comp:

(* invariant preserved *) A (* current comp decreases *).

Definition searchRedex (comp:searchRedex_state) :=

loop (lcurrent compl|) searchRedex_step (fun comp’ = Dec (current comp’ = [])) comp.

Lemma searchRedex_correct’ s comp :
searchRedex_inv s comp
— d comp’, searchRedex comp = Some comp’
A current comp’ = [] A searchRedex_inv s comp’.

Fabian Kunze The Invariance Thesis for a A-Calculus

13.01.2017 17

Summary

The cbv A-Calculus is as reasonable for complexity theory as Turing machines

Possible future work:
o Formalize the complexity analysis

o Complexity theory using L: NP, many-one-reductions, hierarchy theorems. . .

Thanks!

Fabian Kunze The Invariance Thesis for a A-Calculus 13.01.2017 18

	Introduction

