The Invariance Thesis for a λ-Calculus
Towards Formal Complexity Theory

Yannick Forster Fabian Kunze Marc Roth

Research Immersion Lab Talk
Advisor: Prof. Dr. Gert Smolka

13.01.2017
Related Work

Formal correctness proofs for TMs are tedious:

- not compositional
- few abstractions (data encoding with finite alphabet, no local variables,...)

Andrea Asperti and Wilmer Ricciotti
A formalization of multi-tape Turing machines
Theoretical Computer Science, 2015

Eelis van der Weegen, James McKinna
A Machine-Checked Proof of the Average-Case Complexity of Quicksort in Coq
TYPES 2008

Ugo Dal Lago and Simone Martini
The Weak Lambda Calculus as a Reasonable Machine
Theoretical Computer Science, 2008
L: Weak Call-by-Value λ-Calculus

L: Syntax and Semantics

$s, t ::= x \mid \lambda s \mid s \cdot t \quad (x \in \mathbb{N})$

\[
\begin{align*}
 s & \succ s' \\
 s \cdot t & \succ s' \cdot t \\
 t & \succ t' \\
 s \cdot t & \succ s \cdot t' \\
 (\lambda s)(\lambda t) & \succ s_{\lambda t}^0
\end{align*}
\]

- data represented by abstractions (Scott encoding)
- recursion using fixpoint combinator

\Rightarrow Turing complete
The Invariance Thesis

Definition (Invariance Thesis)

"Reasonable" machines can simulate each other within a polynomial bounded overhead in time and a constant-factor overhead in space.

Ensures consistency w.r.t classes closed under poly-time/constant-space reductions.
The Complexity Measures

Consider a term s with the evaluation

$$s = s_0 \succ s_1 \succ \cdots \succ s_k$$

The *time consumption* of s is the number of reduction steps:

$$\text{Time}_s := k$$

The *space consumption* of s is the maximum of the sizes of intermediate terms of all possible evaluations:

$$\text{Space}_s := \max_{i=0,\ldots,k} |s_i|$$
Encoding Terms

- terms: prefix notation
- Positions: strings over \{@_L, @_R, \lambda\}

Example

\((\lambda xy.x y)(\lambda x.x) \approx (\lambda \lambda 10) (\lambda 0)\) is encoded by string \(_@\lambda \lambda @_\triangleright \triangleright \lambda \triangleright\). In this term, '1' occurs at position \(_@L \lambda \lambda @_L\)
The Naive Interpreter

Idea: evaluate as one would on paper
For one step $s \Rightarrow s'$:

1. find the first β-Redex and split s onto 4 tapes:

```
<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>pre</td>
<td>@λ</td>
<td>funct</td>
<td>arg</td>
</tr>
</tbody>
</table>
```

- copy to pre until $@\lambda$ is read
- copy next *complete* term to funct (with additional position tape)
- if next token is λ, copy next term to arg and remaining tokens to post
- otherwise, move funct onto pre and start from beginning

2. copy funct to pre, replacing bound variables with arg

3. copy post to pre, reduced term s' is in pre

Per step: $O(|s| + |s'|)$ time & $O(|s| + |s'|)$ space
For whole evaluation: $O(\sum_i |s_i|)$ time & $O(max_i |s_i|)$ space
Exponentially Large Terms

\(\bar{2} := \lambda xy.x (x y) \) can double the size of a term in one step:

\[
\bar{2} t \Rightarrow \lambda y.t (t y)
\]

So, with \(I := \lambda x.x \):

\[
\bar{2} (\bar{2} (\cdots (\bar{2} I) \cdots)) \\
\text{k times}
\]

normalizes in \(k \) L-steps, but takes \(\Omega(2^k) \) time for the naive interpreter

⇒ other interpreter needed.
The heap-based Interpreter

Use environments on a heap to delay substitutions:

- call (thunk) \(c = s\langle E \rangle \): pair of encoded L-term \(s \) and heap-address \(E \)
- heap \(H \): list of entries (\(\bot \) or \(c \# E' \)), addressed by position.
- call stack \(CS \): list of tuples (\(@_L, c \)) or (\(@_R, c \)) (for \(@_R \), \(c \) fully reduced)
- interpreter state: current call \(CC \), \(CS \) and \(H \).
- initial state: \(CC = s\langle 0 \rangle \), \(CS = [\] \) and \(H = [\bot] \)

Example

The result of \((\lambda x. x) ((\lambda xy. x y) (\lambda x. x)) \triangleright (\lambda x. x) (\lambda x. x y)_{\lambda x.x}^y\) is represented by

\[
CC = (\lambda @ \triangleright |\triangleright\rangle \langle 1
CS = [(@_R, (\lambda \triangleright \rangle \langle 0\rangle)]
H = [\bot, (\lambda \triangleright \rangle \langle 0\rangle) \# 0]
\]
The heap-based Interpreter (2)

Each step of the interpreter depends on the current call $CC = s \langle E \rangle$:

- if $s = s_L s_R$: push $(@_L, s_R[E])$ on CS and set CC to $s_R \langle E \rangle$
- if $s = x$: get new CC by lookup of x in E
- if $s = \lambda s'$:
 - if CS is empty: the term is fully evaluated
 - if $CS = (@_L, c_R) :: CS'$: set $CC := c_R$ and put $(@_R, CC)$ on stack instead.
 - if $CS = (@_R, \lambda t \langle E' \rangle) :: CS'$: store $s_R \langle E \rangle \# E'$ on heap as \hat{E} and set $CC := t \langle \hat{E} \rangle$

Observations for evaluation $s_0 \succ s_1 \succ \cdots \succ s_k$:

- all calls contain subterms of s
- Heap contains $\# H = k + 1$ elements, each of size $\leq |s| + 2 \cdot \log(\# H)$
- CS & CC representing s_i have size $O(|s_i|)$

\Rightarrow space consumption: $O((\max_i |s_i|) + k \cdot (|s| + \log(k)))$

- time per interpreter step: $O(|s_i| \cdot \# H + CC + CS)$
- amortized, $\text{poly}(|s_0|)$ interpreter-steps per β-reduction.

\Rightarrow time consumption: $O(\text{poly}(k, |s_0|))$
Sub-linear-logarithmic Small Terms

Let $N := (\lambda xy.x x) I$, then

$$N (\cdots (N I) \ldots)$$

let k times

$$\prec^k ((\lambda y. I I) (\cdots ((\lambda y. I I) I) \ldots)$$

let k times

$$\prec 2^k I$$

 Needs $3k$ entries (with addresses) on heap, but definition permits only $O(k)$ space
Consider evaluation $s = s_0 \succ s_1 \succ \cdots \succ s_k$:

<table>
<thead>
<tr>
<th></th>
<th>naive</th>
<th>heap-based</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time$_s = k$</td>
<td>$O(\sum_i</td>
<td>s_i</td>
</tr>
<tr>
<td>Space$_s = \max_i</td>
<td>s_i</td>
<td>$</td>
</tr>
</tbody>
</table>

- If $\text{Space}_s \geq k^2 \cdot (|s| + \log(k))$, use heap-based interpreter.
- Otherwise, use naive interpreter.
- archived by increasing bound on space of naive interpreter

\Rightarrow the simulation respects the Invariance Thesis (assuming $k > |s|$)
restricted Gallina:

- functions: operating on tuples/records, representing tapes
- data: (list of) tokens and natural numbers
- recursion: tail-recursive or explicit iteration of step-function
Formalization (2)

<table>
<thead>
<tr>
<th></th>
<th>spec</th>
<th>proof</th>
</tr>
</thead>
<tbody>
<tr>
<td>L-interpreters</td>
<td>1192</td>
<td>1390</td>
</tr>
<tr>
<td>L-extraction framework</td>
<td>1316</td>
<td>610</td>
</tr>
<tr>
<td>TM-interpreter</td>
<td>388</td>
<td>335</td>
</tr>
<tr>
<td>TMs</td>
<td>2254</td>
<td>2336</td>
</tr>
</tbody>
</table>

just functional specification
partly supporting time-analysis
no complexity analysis

Fabian Kunze
The Invariance Thesis for a λ-Calculus
13.01.2017
Formalizing the Naive Interpreter

Lemma enc_decompose \((s: \text{list} \ \text{token}) \ (pos: \text{option} \ (\text{list} \ \text{posToken}))\):
\[
\text{validOptPos} \ s \ pos \rightarrow \text{enc} \ s = \text{leftOf} \ s \ pos \ ++ \ \text{encAt} \ s \ pos \ ++ \ \text{rightOf} \ s \ pos.
\]

Inductive nextPos : \(\text{term} \rightarrow \text{position} \rightarrow \text{option} \ \text{position} \rightarrow \text{Prop} :=
\]
\[
| \ \text{nextPos} \text{AppInit} \ s \ t: \text{nextPos} \ (\text{app} \ s \ t) \ [] \ (\text{Some} \ [\text{posAppL}])
(*2 \ more *)
\]
\[
| \ \text{nextPos} \text{LamSome} \ s \ p1 \ p2: \text{nextPos} \ s \ p1 \ (\text{Some} \ p2)
\rightarrow \text{nextPos} \ (\text{lam} \ s) \ (\text{posLam::p1}) \ (\text{Some} \ (\text{posLam::p2}))
(*5 \ more \ congruences*)
\]
\[
| \ \text{nextPos} \text{closeScope} \ s \ t \ p1: \text{nextPos} \ s \ p1 \ \text{None}
\rightarrow \text{nextPos} \ (\text{app} \ s \ t) \ (\text{posAppL::p1}) \ (\text{Some} \ [\text{posAppR}]).
\]

Lemma nextPos_leftOf’ \(s \ \text{pos} \ p’ \ a \ \text{rem}:
nextPos \ s \ \text{pos} \ p’ \rightarrow \text{enc} \ (\text{getAt} \ s \ \text{pos}) = a::\text{rem}
\rightarrow \text{leftOf’} \ s \ \text{pos++}[a] = \text{leftOf} \ s \ p’.
Fixpoint nextTerm’ res rem (stack: option position) :=
 match stack, rem with
 | None, _ ⇒ (res,rem,stack)
 | Some stack’, a::rem’ ⇒ nextTerm’ (res++[a]) rem’ (updateStack stack’ a)
end.

Lemma nextTerm’_correct res rem pos s stack’:
 validPos s pos
 → nextTerm’ res (enc (getAt s pos)++rem) (Some (rev pos ++ stack’))
 = nextTerm’ (res++enc (getAt s pos)) rem (closeScopeStack (rev pos ++ stack’)).

Definition nextTerm rem := nextTerm’ [] rem (Some []).

Lemma nextTerm_correct s rem : nextTerm (enc s++rem) = (enc s,rem,None).
Definition searchRedex_step (comp : searchRedex_state) : searchRedex_state := (*...*).

Inductive searchRedex_inv s comp : Prop :=
| notFound pos: mayFirstRedex s pos → current comp = remTerm s pos → preredex comp = leftOf s pos (*...*) → searchRedex_inv s comp
| foundRedex pos : firstRedex s = Some pos → preredex comp = leftOf s (Some pos) → functional comp = enc(getAt s (pos++[posAppL;posLam])) (*...*) → searchRedex_inv s comp.

Lemma searchRedex_step_correct s comp:
(* invariant preserved *) ∧ (* current comp decreases *).

Definition searchRedex (comp:searchRedex_state) :=
loop (|current comp|) searchRedex_step (fun comp’ ⇒ Dec (current comp’ = [])) comp.

Lemma searchRedex_correct’ s comp :
searchRedex_inv s comp
→ ∃ comp’, searchRedex comp = Some comp’ ∧ current comp’ = [] ∧ searchRedex_inv s comp’.
Summary

The cbv λ-Calculus is as reasonable for complexity theory as Turing machines

Possible future work:

- Formalize the complexity analysis
- Complexity theory using L: NP, many-one-reductions, hierarchy theorems...

Thanks!