The Invariance Thesis for a λ -Calculus

Towards Formal Complexity Theory

Yannick Forster Fabian Kunze Marc Roth

Research Immersion Lab Talk Advisor: Prof. Dr. Gert Smolka

Programming Systems Lab

13.01.2017

Related Work

Formal correctness proofs for TMs are tedious:

- not compositional
- few abstractions (data encoding with finite alphabet, no local variables,...)
- Andrea Asperti and Wilmer Ricciotti

 A formalization of multi-tape Turing machines
 Theoretical Computer Science, 2015
- Eelis van der Weegen, James McKinna
 A Machine-Checked Proof of the Average-Case Complexity of Quicksort in Coq
 TYPES 2008
- Ugo Dal Lago and Simone Martini
 The Weak Lambda Calculus as a Reasonable Machine
 Theoretical Computer Science, 2008

L: Weak Call-by-Value λ -Calculus

L: Syntax and Semantics

$$s,t ::= x \mid \lambda s \mid st \quad (x \in \mathbb{N})$$

 $(\lambda s)(\lambda t) \succ s_{\lambda t}^0$

$$\frac{s \succ s'}{s \ t \succ s' \ t} \qquad \frac{t \succ t'}{s \ t \succ s \ t'}$$

- data represented by abstractions (Scott encoding)
- recursion using fixpoint combinator
- ⇒ Turing complete

The Invariance Thesis

Definition (Invariance Thesis)

"Reasonable" machines can simulate each other within a polynomial bounded overhead in time and a constant-factor overhead in space.

Ensures consistency w.r.t classes closed under poly-time/constant-space reductions.

The Complexity Measures

Consider a term s with the evaluation

$$s = s_0 \succ s_1 \succ \cdots \succ s_k$$

The *time consumption* of *s* is the number of reduction steps:

$$\mathsf{Time}_s := k$$

The *space consumption* of *s* is the maximum of the sizes of intermediate terms of all possible evaluations:

$$\mathsf{Space}_s := \max_{i=0,\dots,k} |s_i|$$

Encoding Terms

- terms: prefix notation
- Positions: strings over $\{Q_L, Q_R, \lambda\}$

Example

 $(\lambda xy.xy)(\lambda x.x) \approx (\lambda\lambda 10)(\lambda 0)$ is encoded by string $@\lambda\lambda @\triangleright|\triangleright\lambda\triangleright$. In this term, '1' occurs at position $@_L\lambda\lambda @_L$

The Naive Interpreter

Idea: evaluate as one would on paper For one step $s \succ s'$:

- copy to pre until $@\lambda$ is read
- copy next complete term to funct (with additional position tape)
- if next token is λ , copy next term to arg and remaining tokens to post
- otherwise, move funct onto pre and start from beginning
- 2 copy funct to pre, replacing bound variables with arg
- \odot copy post to pre, reduced term s' is in pre

Per step: $\mathcal{O}(|s| + |s'|)$ time & $\mathcal{O}(|s| + |s'|)$ space

For whole evaluation: $\mathcal{O}(\sum_{i} |s_{i}|)$ time & $\mathcal{O}(\max_{i} |s_{i}|)$ space

Exponentially Large Terms

 $\overline{2} := \lambda xy.x(xy)$ can double the size of a term in one step:

$$\overline{2}t \succ \lambda y.t(ty)$$

So, with $I := \lambda x.x$:

$$\underbrace{\overline{2}\left(\overline{2}\left(\cdots\left(\overline{2}\ \mathsf{I}\right)\ldots\right)\right.}_{k\ \mathsf{times}}$$

normalizes in k L-steps, but takes $\Omega(2^k)$ time for the naive interpreter \Rightarrow other interpreter needed.

The heap-based Interpreter

Use environments on a heap to delay substitutions:

- call (thunk) $c = s\langle E \rangle$: pair of encoded L-term s and heap-address E
- heap H: list of entries (\perp or c#E'), addressed by position.
- call stack CS: list of tuples $(@_L, c)$ or $(@_R, c)$ (for $@_R, c$ fully reduced)
- interpreter state: current call CC, CS and H.
- initial state: $CC = s\langle 0 \rangle$, CS = [] and $H = [\bot])$

Example

The result of $(\lambda x.x)((\lambda xy.xy)(\lambda x.x)) \succ (\lambda x.x)(\lambda x.xy)_{\lambda x.x}^y$ is represented by

$$CC = (\lambda @ \triangleright | \triangleright) \langle 1 \rangle$$

$$CS = [(@_{R}, (\lambda \triangleright) \langle 0 \rangle)]$$

$$H = [\bot, (\lambda \triangleright) \langle 0 \rangle) \# 0]$$

The heap-based Interpreter (2)

Each step of the interpreter depends on the current call $CC = s\langle E \rangle$:

- if $s = s_L s_R$: push $(\mathbb{Q}_L, s_R[E])$ on CS and set CC to $s_R\langle E \rangle$
- if s = x: get new CC by lookup of x in E
- if $s = \lambda s'$:
 - if CS is empty: the term is fully evaluated
 - if $CS = (\mathbb{Q}_L, c_R) :: CS'$: set $CC := c_R$ and put (\mathbb{Q}_R, CC) on stack instead.
 - if $CS = (0_R, \lambda t \langle E' \rangle) :: CS'$: store $s_R \langle E \rangle \# E'$ on heap as \hat{E} and set $CC := t \langle \hat{E} \rangle$

Observations for evaluation $s_0 \succ s_1 \succ \cdots \succ s_k$:

- all calls contain subterms of s
- Heap contains #H = k + 1 elements, each of size $\leq |s| + 2 \cdot \log(\#H)$
- CS & CC representing s_i have size $\mathcal{O}(|s_i|)$
- \Rightarrow space consumption: $\mathcal{O}((\max_i |s_i|) + k \cdot (|s| + \log(k)))$
 - time per interpreter step: $\mathcal{O}(|s_i| \cdot \#H + CC + CS)$
 - amortized, poly($|s_0|$) interpreter-steps per β -reduction.
- \Rightarrow time consumption: $\mathcal{O}(\text{poly}(k,|s_0|))$

Sub-linear-logarithmic Small Terms

Let $N := (\lambda xy.xx)I$, then

$$\underbrace{\frac{\mathbb{N}(\cdots(\mathbb{N} \ \mathbb{I})\dots)}{k \text{ times}}}_{k \text{ times}}$$

$$\succeq^{k} \underbrace{(\lambda y. \mathbb{II})(\cdots((\lambda y. \mathbb{II})}_{k \text{ times}} \mathbb{I})\dots)}_{k \text{ times}}$$

Needs 3k entries (with addresses) on heap, but definition permits only $\mathcal{O}(k)$ space

Complexity Overview

Consider evaluation $s = s_0 \succ s_1 \succ \cdots \succ s_k$:

	naive	heap-based
$Time_s = k$	$\mathcal{O}(\sum_i s_i ^2)$	$\mathcal{O}(poly(k, s))$
$Space_s = max_i s_i $	$\mathcal{O}(Space_s)$	$\mathcal{O}(Space_s + k^2 \cdot (s + \log(k)))$

- If Space_s $\geq k^2 \cdot (|s| + \log(k))$, use heap-based interpreter. Otherwise, use naive interpreter.
- archived by increasing bound on space of naive interpreter
- \Rightarrow the simulation respects the Invariance Thesis (assuming k>|s|)

Formalization

restricted Gallina:

- functions: operating on tuples/records, representing tapes
- data: (list of) tokens and natural numbers
- recursion: tail-recursive or explicit iteration of step-function

Formalization (2)

	spec	proof	
L-interpreters	1192	1390	just functional specification
L-extraction framework	1316	610	partly supporting time-analysis
TM-interpreter	388	335	no complexity analysis
TMs	2254	2336	

Formalizing the Naive Interpreter

```
Lemma enc_decompose (s: list token) (pos: option (list posToken)):
  validOptPos s pos
    \rightarrow enc s = leftOf s pos ++ encAt s pos ++ rightOf s pos.
Inductive nextPos : term \rightarrow position \rightarrow option position \rightarrow Prop :=
| nextPos_AppInit s t: nextPos (app s t) [] (Some [posAppL])
  (*2 more *)
| nextPos_LamSome s p1 p2: nextPos s p1 (Some p2)
    \rightarrow nextPos (lam s) (posLam::p1) (Some (posLam::p2))
  (*5 more congruences*)
| nextPos_closeScope s t p1: nextPos s p1 None
    \rightarrow nextPos (app s t) (posAppL::p1) (Some [posAppR]).
Lemma nextPos_leftOf' s pos p' a rem:
  nextPos s pos p' \rightarrow enc (getAt s pos) = a::rem
    \rightarrow leftOf' s pos++[a] = leftOf s p'.
```

Copying whole Subterms

```
Fixpoint nextTerm' res rem (stack: option position) :=
  match stack, rem with
    | None, _ ⇒ (res,rem,stack)
    | Some stack', a::rem' \Rightarrow nextTerm' (res++[a]) rem' (updateStack stack' a)
  end.
Lemma nextTerm'_correct res rem pos s stack':
  validPos s pos
  → nextTerm' res (enc (getAt s pos)++rem) (Some (rev pos ++ stack'))
     = nextTerm' (res++enc (getAt s pos)) rem (closeScopeStack (rev pos ++ stack')).
Definition nextTerm rem := nextTerm' [] rem (Some []).
Lemma nextTerm_correct s rem : nextTerm (enc s++rem) = (enc s,rem,None).
```

Finding Redexes

```
Definition searchRedex_stape (comp : searchRedex_state) : searchRedex_state := (*...*).
Inductive searchRedex_inv s comp : Prop :=
| notFound pos: mayFirstRedex s pos
   \rightarrow current comp = remTerm s pos
   \rightarrow preredex comp = leftOf s pos
   (* ... *) → searchRedex_inv s comp
| foundRedex pos : firstRedex s = Some pos
    → preredex comp = leftOf s (Some pos)
    → functional comp = enc(getAt s (pos++[posAppL;posLam]))
    (* \ldots *) \rightarrow \text{searchRedex\_inv s comp.}
Lemma searchRedex_step_correct s comp:
  (* invariant preserved *) ∧ (* current comp decreases *).
Definition searchRedex (comp:searchRedex_state) :=
  loop (|current comp|) searchRedex_step (fun comp' ⇒ Dec (current comp' = [])) comp.
Lemma searchRedex_correct' s comp :
  searchRedex_inv s comp
    \rightarrow \exists comp', searchRedex comp = Some comp'
         ∧ current comp' = [] ∧ searchRedex_inv s comp'.
```

Summary

The cbv λ -Calculus is as reasonable for complexity theory as Turing machines

Possible future work:

- Formalize the complexity analysis
- Complexity theory using L: NP, many-one-reductions, hierarchy theorems. . .

Thanks!