A synthetic undecidability proof of Kolmogorov complexity

Nils Lauermann

Advisor: Fabian Kunze

Programming Systems Lab Saarland University

June 24, 2021

2021 - Catt/Norrish: On the Formalisation of Kolmogorov Complexity (HOL4) 2021 - Forster et al.: A Constructive and Synthetic Theory of Reducibility (Coq)

The Framework

Model of Computation¹

$$\forall nisr, T \ n \ i \ s =$$
Some $r \rightarrow \forall s', s' \ge s \rightarrow T \ n \ i \ s' =$ Some r

T represents a partial function!

¹[Forster et al., 2021]

Assumption: Every total function $\mathbb{N} \to \mathbb{N}$ is computable by T

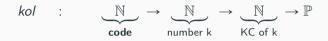
$$\texttt{Axiom} \ C\mathcal{T}: \forall (f:\mathbb{N}\to\mathbb{N}), \exists (c:\mathbb{N}), \forall (x:\mathbb{N}), \exists s, \mathcal{T} \ c \ x \ s = \texttt{Some} \ (f(x))$$

 \Rightarrow Every Coq function $\mathbb{N} \rightarrow \mathbb{N}$ is computed by a code c given by CT.

¹[Forster et al., 2021]

Kolmogorov Complexity (KC)

Kolmogorov Complexity (KC)



 $kol \ n \ k \ c \quad :\Leftrightarrow \quad \exists x : \mathbb{N}, \texttt{least} \ (\lambda x \Rightarrow \exists s, T \ n \ x \ s = \texttt{Some} \ k) \ x \ \land \ \mathsf{log}_2 \ x = c$

Why $\log_2 x = c$? Most proofs rely on length as metric (including Kummer's)

Notation: KC_c

$$KC_c(x) = y \sim kol \ c \ x \ y$$

Not all codes are equal!

$$CT \ (\lambda x \Rightarrow 1)$$

Not interesting!

We want more general codes

Universal Codes

We will need a lot more generality:

Universal codes must simulate any other code with linear overhead!

Why do we need that?

• Invariance Theorem:

universal
$$c \rightarrow \forall c', \exists k, \forall x, KC_c(x) \leq KC_{c'}(x) + k$$

KC of function values:

universal $c \to \forall f : \mathbb{N} \to \mathbb{N}, \exists k, \forall m, KC_c(f(m)) \leq \log_2(m) + k$

Idea: Simulate code received by (CT f)

From now on, c will be a universal code.

Incomputability of Kolmogorov Complexity

History

- first published in 1908^2
- predates KC by more than 50 years

"The least integer not nameable in fewer than nineteen syllables"

Berry Paradox for Kolmogorov Complexity

computable $KC_c \rightarrow$

computable ($\lambda x \Rightarrow$ "The smallest natural number n with $KC_c(n) > x$ ")

Why is that function computable?

For all x there exists such an n:

- universal $c \rightarrow c$ can simulate identity function
- There are only 2^k numbers y with $log_2(y) = k \Rightarrow KC_c$ is unbounded

 \Rightarrow We can compute the least such number *n* when KC_c is computable

Contradiction!

Apply the function to the size *s* of itself: $\Rightarrow KC_{C}(n) > s \land KC_{C}(n) \leq s$ $KC_{c} \text{ is not computable!}$

```
Lemma incomputability (n : nat) :
LEM \rightarrow univ n \rightarrow \neg (exists f, forall x, kol n x (f x)).
```

Excluded Middle is necessary for the unboundedness proof of KC_c

Conclusion

Contributions

- Formalisation of Kolmogorov Complexity in the synthetic setting in Coq
- Proving the incomputability, invariance theorem and various auxiliary lemmata

Difficulties

- Finding the most suitable definitions
- First concepts of the unboundedness proof of KC were much more involved

The road ahead

- Is Excluded Middle really necessary for the incomputability?
- Possible alternative approach to incomputability proof
- Investigating the relationship between different KC definitions
- Formalisation of Kummer's undecidability proof in Coq (assuming the construction)

Thank you!

References

References

Gatt, E. and Norrish, M. (2021).

On the formalisation of kolmogorov complexity.

In Proceedings of the 10th ACM SIGPLAN International Conference on Certified Programs and Proofs, pages 291–299.

Forster, Y., Jahn, F., and Smolka, G. (2021).

A constructive and synthetic theory of reducibility.

Unpublished draft.

Russell, B. (1908).

Mathematical logic as based on the theory of types.

American journal of mathematics, 30(3):222–262.

Component	LOC
Preliminaries	244
Definitions	13
Invariance Theorem	26
Incomputability	252
Univ code constr.	125
Other lemmata	42
Def./proofs for Kummer (wip)	481
total	1165

Incomputability of Kolmogorov Complexity

Incomputability: Proof Outline³

Lemma 1:

 $\forall n(f:\mathbb{N}\rightarrow\mathbb{N}), \textit{univ } n \rightarrow \exists c:\mathbb{N}, \forall m \ k:\mathbb{N}, \textit{kol } n \ (f(m)) \ k \rightarrow k \leqslant \log_2 m + c$

n is a universal code:

Due to CT any function can be simulated with some constant overhead $\ensuremath{\mathsf{c}}$

Theorem 2:

 $\forall n : \mathbb{N}, LEM \rightarrow univ \ n \rightarrow \neg(\exists f : \mathbb{N} \rightarrow \mathbb{N}, \forall x : \mathbb{N}, kol \ n \ x \ (f(x)))$

Assume $f : \mathbb{N} \to \mathbb{N}$ with $\forall x : \mathbb{N}$, kol $n \times (f(x))$ Define $g : \mathbb{N} \to \mathbb{N} := \lambda m \Rightarrow \min\{x : \mathbb{N} \mid m \leq f(x)\}$

$$\begin{array}{c} \stackrel{\text{Def. g}}{\Rightarrow} \forall m, m \leqslant f(g(m))) \\ \stackrel{\text{Lem. 1}}{\Rightarrow} \exists c, \forall m, f(g(m)) \leqslant \log_2(m) + c \end{array} \right\} \quad (\exists c, \forall m, m \leqslant \log_2(m) + c) \to \bot$$

³[Catt and Norrish, 2021]

The proof in Coq

Define $g : \mathbb{N} \to \mathbb{N} := \lambda m \Rightarrow \min\{x : \mathbb{N} \mid m \leq f(x)\}$

- Use least witness operator
- We need to show: $\forall m : \mathbb{N}, \exists x : \mathbb{N}, m \leq f(x)$

 $\forall m: \mathbb{N}, \neg \neg \exists x: \mathbb{N}, m \leq f(x)$

- To show: Kolmogorov Complexity is unbounded (for *univ* n)
- Create list L containing all outputs of n with all inputs of length $\leqslant m$
 - We need to know if n terminates

 \Rightarrow Use Excluded Middle (through double negation)

• \mathbb{N} is infinite: $\exists x, x \notin L$

 $\Rightarrow m \leq f(x)$

Construction of a Universal Code

Construction of a Universal Code

Reminder: Universal Code

 $\textit{univ} (n:\mathbb{N}):\mathbb{P}:=\forall m:\mathbb{N}, \exists g:\texttt{list} \ \mathbb{B}, \forall x:\mathbb{N}, (T \ m \ x) \approx (T \ n \ (\texttt{decode}(g \ \texttt{+encode} \ x)))$

- We require Church Thesis for partial functions (PCT):
- Define $(f : \mathbb{N} \to \mathbb{N} \to \text{option } \mathbb{N})$:
 - Receives an input $(\operatorname{decode}(g + \operatorname{encode} x))$ and step count s
 - g contains the code m to be simulated:

 $g = \underbrace{false :: \cdots :: false}_{|encode m|} :: true :: encode m$

- return $(T m \times s)$
- The code returned by (PCT f) is universal