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Synthetic Computability Theory1

Constructive Type Theory: all functions N → N are computable

⇒ No external model of computation necessary

Instead we use a universal function ϕ:2

ϕ : N︸︷︷︸
code

→ N︸︷︷︸
input

→ N︸︷︷︸
steps

→ ON︸︷︷︸
output

ϕ is a partial function: Either ϕ always returns Some x after some step count or diverges

1Richman 1983; Bridges and Richman 1987; Bauer 2006.
2Forster 2021.
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Church’s Thesis

All Coq functions are computable, so ϕ is universal for all (Coq) functions N → N:

Church’s Thesis3

CT := ∀f : N → N.∃c : N. ∀x : N.∃s : N. ϕs
c x = Some (f x)

There also exists a version of CT for partial (step-indexed) functions f : N → N → ON

3Forster 2021.
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Bijective Binary Encoding

To determine the size of a number we will use a bijective binary encoding:

• ⌈ · ⌉ : N → LB

• ⌊ · ⌋ : LB → N

with

• ∀l : LB. ⌈⌊l⌋⌉ = l

• ∀n : N. ⌊⌈n⌉⌋ = n

For simplicity we assume this encoding.

Smullyan defines the 2-adic representation4:

n 0 1 2 3 4 5 6 7 8 · · ·
⌈n⌉ ϵ 0 1 00 01 10 11 000 001 · · ·

4Smullyan 2016.
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Kolmogorov Complexity5

KC : N︸︷︷︸
code

→ N︸︷︷︸
number

→ N︸︷︷︸
KC

→ P

KCc x k :⇔ least (λk .∃is. |⌈i⌉| = k ∧ ϕs
c i = Some x) k

Notation: KCc x k → p(k) ∼ p(KCc x)

Reminder: Kolmogorov complexity is uncomputable

5Solomonoff 1960; Kolmogorov 1965.
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Universal Codes

Universal codes simulate any other code with linear overhead to the input size!

We have proven the existence of a universal code with CT for partial functions.

In the following c will be a universal code.
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The Random Numbers



The Random Numbers6

More intuitive: incompressible numbers

Definition: random numbers

Rc (x : N) : P := ∀is. ϕs
n i = Some x → |⌈i⌉| ≥ |⌈x⌉|

In the literature: Rc x := KCc x ≥ |⌈x⌉|

These definitions are classically equivalent:
Decide termination of ϕ with excluded middle.

6Kolmogorov 1965.

7



Properties of the Non-Random Numbers

The non-random numbers Rc are

• undecidable7

• enumerable7

• many-one incomplete7

• truth-table complete8

7Zvonkin and Levin 1970.
8Kummer 1996.
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Simple Predicates9

Definition: simple predicate10

A predicate p is simple if

• p is enumerable

• p is infinite

• there is no infinite, enumerable sub-predicate of p

Simple predicates are undecidable and many-one incomplete.

9Post 1944.
10Forster, Jahn, and Smolka 2021.
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Non-Random Numbers: Enumerable

Definition: enumerable predicate11

A predicate p : X → P is enumerable if ∃f : N → OX . ∀x . px ↔ ∃n. fn = Some x

Enumerator for Rc :

λ⟨i , s⟩. if ϕs
c i is Some o

then if i <B o then Some o else None

else None

11Forster, Kirst, and Smolka 2019.
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Random Numbers: Infinite

Definition: infinite predicates12

A predicate p : X → P is infinite if ¬∃l : LX .∀x : X . px → x ∈ l

The random numbers are unbounded:

∀k .¬¬∃x . |⌈x⌉| = k ∧ Rc x

There are 2k − 1 numbers i with |⌈i⌉| < k and 2k numbers o with |⌈o⌉| = k .
⇒ There can be at most 2k − 1 non-random numbers of length k .
Pigeonhole Principle: There exists an x with |⌈x⌉| = k that must be random.

12Forster, Jahn, and Smolka 2021.
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Random Numbers: Infinite

Definition: infinite predicates12

A predicate p : X → P is infinite if ¬∃l : LX .∀x : X . px → x ∈ l

The random numbers are infinite:
Given a list l that contains all random numbers.
By the unboundedness there exists a random number x with |⌈x⌉| = maxy∈l(|⌈y⌉|+ 1).
Contradiction!
⇒ The random numbers must be infinite!

12Forster, Jahn, and Smolka 2021.
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Random Numbers: No infinite, enumerable sub-predicate

Reminder: Uncomputability of Kolmogorov complexity

Berry Paradox13: The smallest number x with KCc(x) > m

Almost identical proof:
The smallest number x that satisfies the sub-predicate and |⌈x⌉| > m.

Remark: Similarly to the uncomputability proof, Markov’s principle is used.

Assuming Markov’s principle, the non-random numbers are simple
and hence undecidable und many-one incomplete!

13Russell 1908.
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Lower Bound for Random
Numbers



A lower bound for the count of random numbers14

Let c be universal:
There exists a constant d so that at least 1

d of the numbers of every length k are random!

• Similar core idea as in Kummer’s truth-table completeness proof

• Currently uses excluded middle

14Kummer 1996.
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Conclusion

Working in synthetic computability is extremely natural and convenient!

Contributions

• To the best of our knowledge, the first formalization of Kolmogorov complexity
• in Coq
• in synthetic computability theory

• Undecidability of Kolmogorov complexity
• Simpleness of the non-random numbers
• Lower bound for the count of random numbers
• First steps towards a truth-table completeness proof of the non-random numbers in

Coq
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Conclusion

Related Work

Catt and Norrish formalized KC in HOL4:

• Classical logic
• With λ-calculus and general recursive functions as model of computation
• Focus on inequalities involving Kolmogorov complexity

Future Work

• Uncomputability/Simpleness: Investigate an elimination of Markov’s principle
• truth-table completeness of the non-random numbers

Thank you!
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Lower Bound for Random
Numbers



Making outputs non-random

Reminder: Invariance Theorem15

univ c → ∀c ′.∃d .∀x .KCc x ≤ KCc ′ x + d

Goal: Make a number x , with |⌈x⌉| = k , non-random with regard to c :

Idea: Construct c ′ with KCc ′ x < k − d

Problem: We cannot know d during the definition of c ′

Solution: Incorporate d into input for c ′.

15Kolmogorov 1965.



The Lower Bound

There exists a function f : N → N so that we can ensure the non-randomness of
2n−f (d) numbers of length n.

Which numbers will we force non-random?

For all x < 2n−f (d): Try to enumerate 2n − x non-random numbers and make a
number that was not enumerated random!

There must be at least 2n−f (d) random numbers of length n

Proof by Contradiction: Assume there are less than 2n−f (d) random numbers. Then
there are more than 2n − 2n−f (d) non-random numbers.

Some x will enumerate all non-random numbers. Hence the number that is made
non-random, is random. Contradiction!
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