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Abstract

We present a formalization of Kolmogorov complexity and the non-random num-
bers in synthetic computability theory in the proof assistant Coq. In synthetic com-
putability theory all functions N → N are considered computable and no external
model of computation is required. The Kolmogorov complexity of an object is the
size of its smallest description. A numberwhoseKolmogorov complexity is smaller
than itself is defined as non-random or compressible.
We define Kolmogorov complexity in Coq using a universal interpreter and prove
the invariance theorem. With the Berry paradox we prove the uncomputability of
Kolmogorov complexity.
We formalize the many-one incompleteness of the non-random numbers. This is
achieved by showing the simpleness of the non-random numbers. That means we
show that the non-random numbers are enumerable, infinite and there exists no
infinite, enumerable sub-predicate of the random numbers.
We mechanize Martin Kummer’s proof of the existence of a minimal number of
random numbers for every length. Additionally, Kummer proves the truth-table
completeness of the non-random numbers. We give approaches to a potential for-
malization of this proof in Coq.
Except for Kummer’s proof of theminimal count of random numbers, all of thema-
jor mechanized proofs useMarkov’s principle and do not require excludedmiddle.
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Chapter 1

Introduction

The scientific field called algorithmic information theory emerged in the early
1960s and deals with “the quantity of information in individual objects” [17]. We
mostly associate the algorithmic information theory with Kolmogorov complexity
today. Informally, the Kolmogorov complexity of a number is the size of its small-
est description. This notion was accompanied by the idea to split up the numbers
in two partitions: the random and the non-random numbers. A number is non-
random if and only if its Kolmogorov complexity is smaller than itself. Another,
arguably more intuitive, name for non-randomness is compressibility: If we can
describe a number in such an efficient way so that the description is shorter than
the number itself, then this number is compressible.
These concepts were accompanied by very interesting questions. Already in An-
drei N. Kolmogorov’s first publication on Kolmogorov complexity in 1965 he men-
tions its uncomputability [15]. In contrast to the randomnumbers, the non-random
numbers are recursively enumerable so that the random numbers are undecidable.
This engendered the question whether one can show the undecidability via a re-
duction from the halting problem to the non-random numbers. In other words, are
the non-random numbers complete with regard to many-one, truth-table or Tur-
ing reductions? By 1970, the many-one-completeness of the non-random numbers
could be refuted [42] and also the completeness with respect to Turing reductions
was proven. The status of completeness with regard to truth-table reducibility was
open formore than 30 years untilMartin Kummerwas able to prove the truth-table-
completeness in 1996 [16].
In this thesis, we discuss these results and, to the best of our knowledge, give
the first formalization of Kolmogorov complexity and the random numbers in the
Coq Proof Assistant [37]. We also prove the many-one incompleteness of the non-
randomnumbers. Notably, we give the first formalization of Kolmogorov complex-
ity in the synthetic computability theory. Synthetic computability was proposed by
Richman and Bridges [24, 2], and advanced by Bauer [1]. In contrast to analytic
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computability, in synthetic computability no particularmodel of computation is the
foundation of the work: Synthetic computability is set in constructive logic so that
all functions are inherently computable and we do not need an external model of
computation.

We are buildingupon the formalization of synthetic computability theory by Forster,
Kirst, Smolka, and Jahn [10, 8, 9].

Kolmogorov complexity is also part of the popular culture in the form of code golf.
Code golf is a competition in which people compete to find the smallest program
in a particular programming language that has a desired output [6].
RelatedWork Catt and Norrish formalized Kolmogorov complexity in theHOL4
interactive theorem prover [3]. Unlike our work in the constructive logic of Coq, Catt
andNorrish’s formalization is set in classical logic. The focus of Catt andNorrish is
mainly inequalities involving Kolmogorov complexity. In contrast to the synthetic
approach we have chosen, Catt and Norrish use the λ-calculus and the general re-
cursive functions as their model of computation.
Outline of this Thesis First, we define Kolmogorov complexity in Coq and prove
many interesting properties, in particular the invariance theorem, in Chapter 3.
With that, we will show the uncomputability in Chapter 4. In Chapter 5 we in-
troduce the definition of the random and non-random numbers in Coq and go on
to show that the non-random numbers are undecidable and many-one incomplete.
Additionally, we prove in Coq that there is a lower bound for the count of ran-
dom numbers (Chapter 6). Finally, in Chapter 7 we discuss Kummer’s truth-table-
completeness proof and although we do not provide a Coq mechanization, we will
discuss the difficulties of a mechanization and potential ways to overcome them.
Mechanization As mentioned before, the results of Chapters 2 to 6 are mecha-
nized in Coq. In the digital version of this thesis, definitions and proofs are linked
to an online viewer for the Coq development. Every link directly leads to the rele-
vant position in the Coq code.

The complete files may be accessed here:

https://github.com/uds-psl/coq-kolmogorov-complexity

Contributions We give the first formalization of Kolmogorov complexity in Coq,
to the best of our knowledge. Furthermore, our work is set in synthetic computabil-
ity theory. In this setting, we formalize the uncomputability of Kolmogorov com-
plexity aswell as themany-one incompleteness of the non-randomnumbers inCoq.
Finally, we lay the foundation for a potential mechanization of the truth-table com-
pleteness of the non-random numbers.

https://github.com/uds-psl/coq-kolmogorov-complexity
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1.1 The History of Kolmogorov Complexity
In the 1960s three people around the globe independently discovered the algorith-
mic information theory: Ray J. Solomonoff, Andrei N. Kolmogorov, and Gregory J.
Chaitin.
The literature [17, 11] attributes this development to Alan Turing’s discovery of the
universal Turingmachine in 1937 [38]. Kolmogorov complexity is defined depend-
ing on a machine: The Kolmogorov complexity of a number xwith regard to a ma-
chineM is the size of the smallest input onwhichM returns x. The universal Turing
machine can simulate any other Turing machine so that the Kolmogorov complex-
ity with regard to the universal Turing machine is invariant. That means that in
comparison to any other Turing machine, a number does not have a significantly
greater Kolmogorov complexity with regard to the universal Turing machine, as
the universal machine can simply simulate the other machine. This fact is called
Invariance Theorem and its importance becomes apparent, when we consider that
all three discoverers have independently proposed it almost identically.
The first to propose Kolmogorov complexity was not the eponym himself but Ray J.
Solomonoff in 1960 with “A preliminary report on a general theory of inductive in-
ference” [33]. Solomonoff introduced the universal a priori probability of a sequence
and thereby as a by-product the first occurrence of Kolmogorov complexity. He
states that a number with a small Kolmogorov complexity with respect to a univer-
sal Turing machine has a high a priori probability.
In 1964, he proved the invariance theorem [32]. Vitányi, co-author of the standard
text “An introduction to Kolmogorov complexity and its applications”, lauds this
achievement for “governing Algorithmic Information Theory” [40].
Andrei N. Kolmogorov, was unaware of Solomonoff’s work as he developed similar
ideas in 1963 [14, 13]. According to Shiryaev, a student ofKolmogorov, he discussed
his ideas in a report to the probability section of the Moscow mathematical society
in the same year [27]. In 1965, Kolmogorov followed this up with the paper “Three
approaches to the quantitative definition of information” [15], where he introduces
his version of Kolmogorov complexity. In this paper, he also proves the invariance
theorem.
The last person that independently started working on the field of Kolmogorov
complexity is Gregory J. Chaitin in his 1966 paper [4]. In the successor paper from
1969 [5], Chaitin defines the typical Kolmogorov complexity alongside a proof of
the invariance theorem. Chaitin refers to Kolmogorov, as he later became aware of
his work.
Considering the timeline and the three inventors, one could argue that the name
Kolmogorov complexity does not do the history justice. However, this name has
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been widely established, so we follow the prevalent terminology.
This summary contains only a fraction of the whole story. For an extensive account
we refer the reader to Li and Vitányi [17, 40] and Shiryaev [27].



Chapter 2

Preliminaries

In this chapter, we provide a brief overview of the type theory of Coq, important
definitions for our work, and notations we use.
2.1 The Coq Proof Assistant
The results of this thesis are formalized in the Coq proof assistant. Coq is build
upon the Calculus of Inductive Constructions (CIC) [22] which defines the type the-
ory all definitions and lemmata must adhere to. Every term in Coq has a type;
even types themselves. A statement is a type and in order to prove it, one needs to
provide an inhabitant, i.e. a term with the corresponding type.
Coq’s logic is constructive. That means, we can only prove a proposition by con-
structing an explicit proof. For example, that implies that we cannot prove the law
of excluded middle

LEM := ∀P : P. P ∨ ¬P

This is famously not the case in classical logic, where excluded middle is a staple.
Yet excluded middle is consistent in Coq which means that we can safely assume it
[41]. Propositions like excluded middle that are neither provable nor disprovable
are called independent.
Aweaker, yet still independent [7], version of excludedmiddle isMarkov’s principle:

MP := ∀f : N→ B.¬¬(∃n. fn = true)→ (∃n. fn = true)

In essence, Markov’s principle enables us to locally use excluded middle, when we
are trying to prove the satisfiability of a boolean test. The following fact justifies
this:

Fact 2.1 ∀PQ : P. ((Q∨ ¬Q)→ ¬¬P)→ ¬¬P

https://uds-psl.github.io/coq-kolmogorov-complexity/website/Kolmogorov.preliminaries.html#DN_LM
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Now, we can get the desired fact by instantiating P accordingly in the previous fact:
Fact 2.2

MP→ ∀Q : P. ∀f : N→ B. ((Q∨ ¬Q)→ ¬¬(∃n. fn = true))→ (∃n. fn = true)

In general, many statements in this thesis seem to be intuitionistically unprovable.
Often, we will prove the double negated statement so that we can temporarily use
excluded middle via Fact 2.1. We have multiple paths to resolving a non-trivial
double negation in a hypothesis. If the proof goal itself is double negated it is
straightforward:

Fact 2.3 ∀PQ : P.¬¬Q→ (Q→ ¬¬P)→ ¬¬P

If we want to show falsity then we can also eliminate a double negation in a hy-
pothesis:

Fact 2.4 ∀P : P.¬¬P → (P → ⊥)→ ⊥

Otherwise, excluded middle or Markov’s principle eliminate the double negation:

Fact 2.5 LEM↔ ∀P : P.¬¬P → P

With Fact 2.5 it becomes apparent, that Markov’s principle is weaker than excluded
middle. So, if possible we use MP over LEM to reduce the probability of introduc-
ing inconsistencies, when we are assuming additional axioms.
If we prove a proposition with a double negation, we say that we classically prove
this proposition.
2.2 Important Types
In this section we discuss the standard types we use in this thesis.
The universes T and P Coq has a whole hierarchy of universes [29]. In this thesis
we confine ourselves to a simplified version with the two universes T and P. T is
the type of all types and P is its impredicative subuniverse of propositions.
Basic Inductive Types The natural numbers N are defined with the two value
constructors 0 : N and the successor function S : N → N. There exists a bijection
between N × N and nat. We will use the notation 〈a, b〉 for the embedding of two
numbers into one.
The boolean typeB contains exactly the values true and false. The functions∧B,∨B :

B→ B→ B compute the boolean conjunction and disjunction respectively.

https://uds-psl.github.io/coq-kolmogorov-complexity/website/Kolmogorov.preliminaries.html#MP_LM
https://uds-psl.github.io/coq-kolmogorov-complexity/website/Kolmogorov.preliminaries.html#DN_imp
https://uds-psl.github.io/coq-kolmogorov-complexity/website/Kolmogorov.preliminaries.html#N_imp
https://uds-psl.github.io/coq-kolmogorov-complexity/website/Kolmogorov.preliminaries.html#LM_DN
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With option types OX for any type X, we can either represent some value x : Xwith
◦x or no value with ∅.

The type for lists containing elements of type X is given by LX. A list is built by
starting with the empty list [ ] and successively adding one element to the front of
a list with the cons constructor: For x : X and L : LX the list x :: L is the list L with x
added at the front. The membership of x : X in L : LX is denoted by x ∈ L. We write
L ⊆ L ′ (‘list inclusion’) when all elements of L : LX are members in L ′ : LX. Two
lists L, L ′ : LX are equivalent (L ≡ L ′) if L ⊆ L ′ ∧ L ′ ⊆ L. For two lists L, L ′ : LX, the
concatenation is given by L++L ′. We express the fact that a list L does not contain an
element twice, i.e. is duplicate-free, with NoDupL. If all elements of the list L : LX
satisfy a predicate p : X → P we denote this by Forall p L. For an x : X and n : N
we define xn : LX as the list which exactly contains n times x. The overlapping
with the notation for exponentiation is no problem because the context makes the
correct meaning apparent.

For L, L ′ : LX, we can compute a list L−L ′ containing all the elements from Lwhich
are not in L ′. This is only possible if X is discrete, i.e. there exists a boolean equality
decider for X (see below).

For case analyses on option types, numbers and lists we use the following notation:

if . . . is ◦x then . . . else . . .

Sigma Types and Sum Types Coq separates between the computational (T) and
propositional level (P): The elimination restriction disallows the extraction of infor-
mation from existential quantifications ∃ and disjunctions ∨ in a computational
context. Therefore, Coq provides computational equivalents that are situated in T.

The computational analogue of existential quantifications are sigma types (Σx : X. px)
with p : X → T whose values are so-called dependent pairs (x, a) with x : X and
a : px. This name stems from the fact that the second component is depending on
the value given in the first component. We can access both components of the pair.
So, we can define projection functions π1 and π2: For (x, a) : (Σx : X. px) we have
π1(x, a) = x and π2(x, a) = a.

Sum types correspond to disjunctions. For two types X and Y, the sum type X+Y : T
has the value constructors L : X → X + Y and R : Y → X + Y. So a value of a sum
type X+ Y can either contain a value x : X or y : Y.
Discrete Types A type X is called discrete, if there exists a boolean equality de-
cider f : X→ X→ B, i.e. ∀xy. x = y↔ f x y = true.
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2.3 Synthetic Computability
In this section we recapitulate the most important definitions by Forster et al. [8,
10, 9].
2.3.1 Standard Notions of Computability Theory
Let p : X→ P.
We say that p is subfinite if there exists a list that exhausts p, that is all values sat-
isfying p are contained in this list.
Definition 2.6 (Subfinite Predicate) Xp := ∃l : LX. ∀x : X. px→ x ∈ l

We call p infinite iff p is not subfinite.
Definition 2.7 (Decidable Predicate) Dp := ∃f : X→ B. ∀x. px↔ fx = true
Definition 2.8 (Enumerable Predicate) Ep := ∃f : N→ OX. ∀x. px↔ ∃n. fn = ◦x

The function f in Definition 2.8 is called an enumerator for p.
Reductions
Let p : X→ P, q : Y → P.
Definition 2.9 (Many-one Reduction) p �m q := ∃f : X→ Y. ∀x. px↔ q(fx)

Truth-table reductions�tt areweaker thanmany-one reductions, i.e. ∀pq. p �m q→
p �tt q.
We do not give Forster’s completely formal definition of �tt in Coq [8] because we
do not formalize any truth-table reductions. This intuitive description is sufficient
for our discussion of Kummer’s truth-table reduction in Chapter 7.
A function f : X→ LY × (LB→ B) is a truth-table reduction from p to q if

f x = ([y1, . . . , yn], t)→ (∀i. 1 6 i 6 n→ q(yi)↔ bi = true)
→ p(x)↔ t[b1, . . . , bn] = true

We denote the fact that there exists a truth-table reduction from p to q by p �tt q.
Completeness
Forster’s completeness definition deviates from the usual definition: A complete
predicate does not need to be enumerable. Additionally, we restrict complete pred-
icates to predicates on numbers to simplify the definition.
Definition 2.10 (many-one complete) Let p, q : N → P. q is called many-one com-
plete (m-complete) if Ep→ p �m q.
Definition 2.11 (truth-table complete) Let p, q : N→ P. q is called truth-table com-
plete (tt-complete) if Ep→ p �tt q.
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Simple Sets

The notion of simple sets was first introduced by Emil L. Post in 1944 [23]. A simple
set S is enumerable and infinite, and the complement of S is infinite and contains
no infinite enumerable subset. Post proved that simple sets are not complete with
regard to many-one reductions.

Definition 2.12 simple p := Ep∧ ¬Xp∧ ¬∃q.(∀x.qx→ px)∧ Eq∧ ¬Xq

Fact 2.13 Simple predicates are undecidable.

Fact 2.14 Simple predicates are m-incomplete.

The following definition and fact are not formalized, but they will be interesting in
the following chapters. Smullyan introduced the effectively simple setswhose com-
plement’s finite subsets additionally need to be bounded in size by a computable
function [30]. Martin then showed that every effectively simple set is completewith
respect to Turing reductions [18].
2.3.2 Partial Functions

It is only possible to define terminating, total functions in Coq. However, we will
want to use partial functions in the following. For that, we use stationary sequences
[8].
Definition 2.15

stationary (f : N→ OX) := ∀s1v. f s1 = ◦v→ ∀s2. s2 > s1 → f s2 =
◦v

We can interpret the input to f as a step count: If f returns ◦v for some step count
then we want that a higher step count does not change the return value. Addition-
ally, f can diverge if it returns ∅ for all step counts.

A partial function f : X ⇀ Y is represented in Coq by f : X → (N → OY) with
∀x : X. stationary (f x).

Two partial functions f, g : X → (N → OY) compute the same partial function if f
outputs y on input x at some point if and only if g does so too.

Definition 2.16 f ' g := ∀xa. (∃s. f x s = ◦a)↔ (∃s. g x s = ◦a)

This predicate models an equivalence relation and in particular, it is transitive:

Fact 2.17 ∀fgh. f ' g→ g ' h→ f ' h

https://uds-psl.github.io/coq-kolmogorov-complexity/website/Kolmogorov.preliminaries.html#agree
https://uds-psl.github.io/coq-kolmogorov-complexity/website/Kolmogorov.preliminaries.html#agree_trans
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2.3.3 Church’s Thesis
Our formalization does not follow the traditional approach of definingKolmogorov
complexity in one particularmodel of computation like the λ-calculus or the general
recursive functions. Instead, our work uses the synthetic approach by Richman
and Bridges [24, 2] and Bauer [1]. That means, we natively work in Coq without
imposing an additional model of computation.
The definitions in this section are the work of Yannick Forster [8]. We assume a
partial, abstract universal computation function φ : N → N → N → ON. We fol-
low Forster’s notation φsc x for the execution of an input x on the code c for s steps
(φcx s). As φsc x is partial, we have ∀cx. stationary φc x.
In reference to theChurch-Turing thesis, Forster introducesChurch’s thesis: Church’s
thesis states that every (total) Coq function f : N→ N is computed by φ via some
code.
Definition 2.18 (Church’s Thesis (CT))

CTφ := ∀f : N→ N. ∃c : N. ∀x : N. ∃s : N. φsc x =
◦(f x)

The idea is, that every definable Coq function is by design computable, and accord-
ingly the universal computation function must compute all of these.
Additionally, we require Church’s thesis for partial, i.e. stationary, functions:
Definition 2.19 (Church’s Thesis for partial functions (PCT))

PCTφ := ∀f : N→ N→ ON. (∀x. stationary (f x))→ ∃c : N. φc ' f

Forster’s name for a stronger version of PCT is “enumerability of partial functions”
(EPF). EPF is stronger because it is applicable to whole families of partial functions
[8]. For CT, Forster also introduces such a stronger version, synthetic Church’s
thesis (SCT), for families of total functions which can be regarded as a combination
ofCT and the Smn theorem. Theweaker versions presented here suffice for ourwork.
An explicit consistency proof of CT in Coq is still outstanding but Forster gives
many convincing arguments why it is safe to assume the consistency of CT [8].
CT is consistent with Markov’s Principle according to Forster who refers to Swan
and Uemura [35]. The situation for the law of excluded middle remains unclear.
Forster speculates that CT and LEM are consistent. Whenever possible, we try to
forgo using LEM which will succeed with the exception of the result of Chapter 6.
2.4 Existential and Least Witness Operator
The following facts are already proven in the mechanization by Forster et al. [9]
which is why we do not prove them again.

https://uds-psl.github.io/coq-kolmogorov-complexity/website/Kolmogorov.preliminaries.html#CT
https://uds-psl.github.io/coq-kolmogorov-complexity/website/Kolmogorov.preliminaries.html#PCT
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Existential Witness Operator As discussed above, it is not possible to retrieve
information from a propositional existential quantification in a computational con-
text. Nevertheless, there is an exception for decidable predicates on numbers:
Fact 2.20 ∀p : N→ P.Dp→ (∃x. p x)→ (Σx. p x)

Least Witness The least witness of p : N → P is defined as the smallest number
satisfying p.
Definition 2.21 (Least Witness) leastpn := pn∧ ∀k. pk→ k > n

Fact 2.22 ∀pxy. leastpx→ leastpy→ x = y

Proof By the antisymmetry of >. �

It is possible to compute the least witness of a satisfiable and decidable predicate:
Fact 2.23 (Least Witness Operator)

∀p : N→ P.Dp→ (Σx. p x)→ (Σx. leastpx)

Acombination of existential and leastwitness operator provides the existential least
witness operator:
Fact 2.24 (Existential Least Witness Operator)

∀p : N→ P.Dp→ (∃x. p x)→ (Σx. leastpx)

Additionally, we introduce a slightly altered, classical version for propositional ex-
istence:
Fact 2.25 (Constructive least witness operator)

∀p : N→ P.¬¬(∃x. p x)→ ¬¬(∃x. leastpx)

For propositional existence, logical decidability suffices which is provided by the
double negation. The double negation of the argument ¬¬(∃x. p x) has no impact
on this proof as it can be eliminatedwith Fact 2.3. With this double negationwe can
use the local excludedmiddlewhenwe prove the satisfiability of p in an application
of the constructive least witness operator.
2.5 Pigeonhole Principles
The following proofs stem from Forster et al. [9]. In the following, if we are using
the pigeonhole principle, we are referring to one of the following facts.
Fact 2.26 ∀ll ′. (∀xy.D(x 6= y))→ NoDup l→ |l| > |l ′|→ Σx. x ∈ l∧ x /∈ l ′

Alternatively, an existential quantification can be the return type instead of a sigma
type. In this case logical decidability even suffices. Another version, with a double
negated existential quantification does not require any decidability.
Fact 2.27 ∀l. (∀xy. (x 6= y)∨ ¬(x 6= y))→ NoDup l→ ∀l ′. l ⊆ l ′ → |l| 6 |l ′|

https://uds-psl.github.io/coq-kolmogorov-complexity/website/Kolmogorov.preliminaries.html#constructive_least_witness
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2.6 Binary numbers
Our binary numbers are represented by lists of boolean values. Additionally, for
our conveniencewewant that this binary encoding is bijective so that every number
has a unique binary representation and leading zeros are not valueless. It is defini-
tively possible to define such an encoding but for the sake of simplicity, we assume
it as an axiom. Below, we give convincing arguments why it is indeed possible.

Axiom 2.28 (Binary encoding) Let d · e : N → LB and b · c : LB → N have the follow-
ing properties:

1. ∀l : LB. dblce = l

2. ∀n : N. bdnec = n

3. ∀n : N. |dne| 6 log2(n) + 1
4. ∀xy : N. x 6 y→ |dxe| 6 |dye|

To argue why it is possible to define this encoding, we want to refer to Catt and
Norrish [3]whodefined the 2-adic binary representation by Smullyan [31] inHOL4
and proved properties 1, 2 and 4. Additionally, they remark that |d · e| “is essentially
a natural number logarithm”with |d0e| = 0, |d1e| = 1 and for 0 < k, |d2ke| = k. Hence,
|dne| 6 log2(n)+1 holds for n < 2. For n > 2 there exists a k > 0with 2k 6 n < 2k+1,
so that for the natural number logarithm log2(n) = k. We know that property 4 is
satisfied byCatt andNorrish’s encoding, so that |dne| 6 |d2k+1e| = k+1. Thatmeans
we have |dne| 6 log2(n) + 1 so that property 3 is fulfilled by their encoding.
For property 3wewant to give another, more intuitive justification. Smullyan states
that the 2-adic binary representation is identical to mapping every string in {0, 1}∗

to its position in the shortlex order, i.e. the lexicographical order with precedence
for shorter strings. Intuitively, this encoding is just a denser version of the regular
encoding, i.e. the length of a number in the bijective encoding is less or equal to the
length of the same value (without leading zeros) in the regular encoding. The reg-
ular encoding satisfies property 3 (disregarding leading zeros), so that the bijective
encoding also satisfies this property.
As logarithms are sublinear, so is the length of the binary representation:

Fact 2.29 ¬∃c. ∀n.n 6 |dne|+ c

In the following, if we mention the length of a number x : N we refer to |dxe|. In
general, as the encoding is bijective, we use the natural number and its binary rep-
resentation often synonymously.

https://uds-psl.github.io/coq-kolmogorov-complexity/website/Kolmogorov.binaryEncoding.html#encodeDecode
https://uds-psl.github.io/coq-kolmogorov-complexity/website/Kolmogorov.binaryEncoding.html#decodeEncode
https://uds-psl.github.io/coq-kolmogorov-complexity/website/Kolmogorov.binaryEncoding.html#encode_logarithmic
https://uds-psl.github.io/coq-kolmogorov-complexity/website/Kolmogorov.binaryEncoding.html#encode_monotone
https://uds-psl.github.io/coq-kolmogorov-complexity/website/Kolmogorov.binaryEncoding.html#l_sublinear
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For all n : N, we can compute a duplicate-free list containing all elements of length
n. We denote this list by Ln. The duplicate-free list L6n contains all numbers of
length 6 n.

Fact 2.30 For all n : N, there are exactly 2n distinct numbers of length n.

Proof By induction on n. �

Fact 2.31 For all n : N, there are exactly 2(n+1) − 1 distinct numbers of length 6 n.

Proof By induction on n, using Fact 2.30. �

2.7 Auxiliary Lemmata
We use many auxiliary lemmata, e.g. for numbers and lists, throughout this thesis.
Here, we list the most important ones.
The following fact was proven by Yannick Forster. We can classically decide every
predicate for a finite number of values:

Fact 2.32 ∀X. ∀p : X→ Prop. ∀l.¬¬∃l ′. ∀x. x ∈ l ′ ↔ px∧ x ∈ l

Proof By induction on l. In the inductive step we have x :: l and we use the double
negation to decide if px holds. The inductive hypothesis gives us the desired list l ′
for l. If px holds then x :: l ′, otherwise l ′. �

The following fact is part of the Coq standard library:

Fact 2.33 ∀X. ∀ll ′ : LX.NoDup l→ |l ′| 6 |l|→ l ⊆ l ′ → l ′ ⊆ l

The next fact states, that two duplicate-free lists that form a partition of another
duplicate-free list, contain together exactly the same elements as the partitioned
list.

Fact 2.34

∀X. ∀Lll ′ : LX.NoDupL→ NoDup l→ NoDup l ′
→ l ⊆ L→ l ′ ⊆ L
→ (∀x.¬(x ∈ l∧ x ∈ l ′))→ |L| = |l|+ |l ′|

→ (l++ l ′) ≡ L

Proof By induction on l ′ with L and l quantified. �

https://uds-psl.github.io/coq-kolmogorov-complexity/website/Kolmogorov.binaryEncoding.html#n_list_length
https://uds-psl.github.io/coq-kolmogorov-complexity/website/Kolmogorov.binaryEncoding.html#le_n_list_length
https://uds-psl.github.io/coq-kolmogorov-complexity/website/Kolmogorov.preliminaries.html#p_sublist
https://uds-psl.github.io/coq-kolmogorov-complexity/website/Kolmogorov.listFacts.html#NoDup_partition




Chapter 3

Kolmogorov Complexity in Coq

In this chapter, we define Kolmogorov complexity in Coq. We define universal
codes and also construct a universal code. With these definitions we prove the
invariance theorem and discuss its importance. Additionally, we show many facts
involvingKolmogorov complexity. Finally, we give an account of Kolmogorov com-
plexity in the literature and compare our definition with the definitions from the
literature.
3.1 Kolmogorov Complexity
In the introduction we mentioned the uncomputability of Kolmogorov complex-
ity, so consequently we cannot define Kolmogorov complexity as a Coq function.
Hence, we define it as a predicate. For that, we use the leastwitness predicate (Defi-
nition 2.21) to capture the minimality aspect of Kolmogorov complexity. The pred-
icate KC : N→ N→ N→ P receives a code for φ, the number whose Kolmogorov
complexity is stated, and the corresponding Kolmogorov complexity:
Definition 3.1 (Kolmogorov complexity)

KC (c x k : N) := least (λk. ∃ys. |dye| = k ∧ φsc y = ◦x) k

For KC c x k we introduce the notation KCc x = k. We also abbreviate propositions
like (KCc x = k → p k) to (p (KCc x)), for some predicate p : N → P. For better
readability, we often use the term complexity, whenwe are referring toKolmogorov
complexity in the following.
Because we do not have any immediate knowledge of the binary encoding of a
number, it seems unnecessary to use it to define the size of a number. Alternatively,
we could simply use the binary logarithm with identical results. However, it is
much more convenient to explicitly use the lists, as this enables us to concatenate
two binary numbers without having to deal with logarithms.
The following fact is straightforward because the least witness is functional (Fact
2.22).

https://uds-psl.github.io/coq-kolmogorov-complexity/website/Kolmogorov.kolmogorov.html#kol
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Fact 3.2 (Kolmogorov complexity is functional)

∀c x kc kc ′.KCc x = kc→ KCc x = kc ′ → kc = kc ′

3.2 Universal Codes
In the introduction (Chapter 1.1) we briefly discussed the importance of the uni-
versal Turing machine. Therefore, we want an equivalent construct for φ. Hence,
we define a code as universal if it can simulate any other code with some prefix to
the input.
Definition 3.3 (Universal code)

univ c := ∀c ′. ∃p : LB. ∀x : N. φc ′ x ' φc bp++dxec

Our definition does not capture every universal code, as the definition restricts the
input to the form bp++dxec. We follow Catt and Norrish [3] with this restriction.
This constraint is not a problem, since we only need the existence of some code
that can simulate other codes with a reasonable increase of input length. The latter
is satisfied with this definition, since we have constant overhead in length of the
input for each code that is simulated. So, we only need to prove the existence of a
universal code, which we do now.
Lemma 3.4 (Existence of a universal code) Assuming PCT, there exists a universal
code.

Proof We define a partial function f : N → N → ON that simulates any code in the
way a universal code does. Then we can obtain a universal code by applying PCT
to f.
We define f on inputs like bfalse|dce|++[true] ++dce++dxec. This pattern enables us
to recover c ′ as well as x from the list, because we know the length of dc ′e from the
number of leading false and thus the start of dxe.

f bfalse|dc ′e|++[true] ++dc ′e++dxec s := φsc ′ x

f is stationary becauseφ is stationary. Thismeanswe can apply PCT to f and receive
a code c with ∀x. f x ' φc x. The code c is universal: Given a code c’ and an input
x, pick the prefix false|dc ′e|++[true] ++dc ′e. We then have

φc bfalse|dc
′e|++[true] ++dc ′e++dxec ' f bfalse|dc ′e|++[true] ++dc ′e++dxec ' φc ′ x

Then, c is universal by the transitivity of ' (Fact 2.17). �

In combination with CT, we can prove that a universal code c can also efficiently
simulate any Coq function f : N→ N:

https://uds-psl.github.io/coq-kolmogorov-complexity/website/Kolmogorov.kolmogorov.html#kol_functional
https://uds-psl.github.io/coq-kolmogorov-complexity/website/Kolmogorov.kolmogorov.html#univ
https://uds-psl.github.io/coq-kolmogorov-complexity/website/Kolmogorov.kolmogorov.html#exists_univ
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Fact 3.5

CT→ ∀c.univ c→ ∀f : N→ N. ∃d : N. ∀x : N. ∃is : N. φsc i =
◦(fx)∧ |die| 6 |dxe|+ d

Proof With CT we receive a code c ′ that computes f. c ′ can be simulated by the
universal code cwith a prefix p. We pick |p| for the desired d.

Assume an x : N. We choose bp++dxec for i and we know by the definition of CT
that there exists a step count s so that φsc bp++dxec = ◦(fx). We also have |p++dxe| =
|dxe|+ d so that the claim holds. �

3.3 Invariance Theorem
The definition of a universal code enables the simulation of any other code with
an input that is only longer by a constant. This has an important implication for
the complexity with regard to a universal code: The Kolmogorov complexity with
regard to a universal code compared to an arbitrary code is only greater by a con-
stant. This is because the universal code can always simulate the respective other
code with constant overhead to the input so that the complexity must be smaller
than the length of this input.

Theorem 3.6 (Invariance Theorem)

∀cc ′.univ c→ ∃d. ∀x kc kc ′.KCc x = kc→ KCc ′ x = kc ′ → kc 6 kc ′ + d

Proof Let c be a universal code. Choose the length of the boolean list p obtained
from the universality of c as the constant d. Now we receive a number x, kc and
kc ′ where kc and kc ′ are the Kolmogorov complexity of x with regard to c and
c ′ respectively. Let y and y ′ be the inputs for c and c’ that justify the Kolmogorov
complexities kc and kc ′. We know thatφc bp++dy ′ec outputs x at somepoint. By the
minimality of Kolmogorov complexity we then have kc 6 |p++dy ′e| = |p |+ |dy ′e| =
kc ′ + |p |. �

The importance of the invariance theorem for the field of Kolmogorov complexity
cannot be understated. Kolmogorov called this the “main discovery” of Solomonoff
and himself as this enabled them to define “complexity in an almost invariant way”
[14]. Without this theorem the notion of Kolmogorov complexity would have no
greater significance because the Kolmogorov complexity of a number differs vastly
betweenmachines. The invariance theorem introduces a greater order that justifies
a universal measurement of complexity.

https://uds-psl.github.io/coq-kolmogorov-complexity/website/Kolmogorov.kolmogorov.html#univ_upper_bound
https://uds-psl.github.io/coq-kolmogorov-complexity/website/Kolmogorov.kolmogorov.html#InvarianceTheorem
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3.4 Properties of Kolmogorov Complexity
Due to the minimality aspect in the definition of Kolmogorov complexity, many
Facts cannot be proven constructively without a double negation. Alternatively, we
can assume the complexity of a number as a hypothesis to show that Kolmogorov
complexity fulfils a certain property.
The Kolmogorov complexity of any function value is bound by the size of the re-
spective function argument and some function-specific constant.
Fact 3.7

CT→ ∀c.univ c→ ∀f : N→ N. ∃d. ∀m kc. KCc (fm) = kc→ kc 6 |dme|+ d

Proof Follows by the minimality of Kolmogorov complexity and Fact 3.5. �

Fact 3.8 ∀cyxs.φsc y = ◦x→ ¬¬∃kc.KCc x = kc
Proof Apply the constructive least witness operator (Fact 2.25) to λy. ∃s. φsc y = ◦x.
We receive the smallest input y which returns x on c. By the monotonicity of the
binary encoding (2.28.4) we have KCc x = |dye|. �

Fact 3.9 CT→ ∀c.univ c→ ∀x.¬¬∃kc.KCc x = kc
Proof Follows immediately with Fact 3.8, the code given by (CTφ (λx. x)), and the
universality of c. �

3.5 Kolmogorov Complexity in the Literature
In this section we want to give an overview over the definitions of Kolmogorov
complexity in the literature and want to compare these to the definition we use.
All definitions agree on the fact that the Kolmogorov complexity of some object x
is the size of the smallest description of x. Nevertheless, there are small differences
in the concrete definitions.
Kolmogorov uses general recursive functions N×N→ N as the model of computation
[15]. For some general function ϕ : N × N → N, the complexity of x is defined as
the length of the smallest program p that outputs x on input 1:

Kϕ(x) =

 min
ϕ(p,1)=x

length(p)
∞ if there is no such p with ϕ(p, 1) = x

The input 1 is a remnant of the related conditional complexity. Conditional com-
plexity is defined depending on the second input component ofϕ andmeasures the
complexity of a numberwhen this additional input is serves as an additional source
of information. The unconditional complexity receives no additional information
and hence this second component is fixed as 1.

https://uds-psl.github.io/coq-kolmogorov-complexity/website/Kolmogorov.kolmogorov.html#upper_bound
https://uds-psl.github.io/coq-kolmogorov-complexity/website/Kolmogorov.kolmogorov.html#exists_kol
https://uds-psl.github.io/coq-kolmogorov-complexity/website/Kolmogorov.kolmogorov.html#univ_exists_kol
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Solomonoff’s definitions rely on Turing machines and omit the second input compo-
nent, as he did not introduce conditional complexity [32].

In contrast to Kolmogorov and Solomonoff, Michael F. Sipser also incorporates the
size of the Turingmachine in the definition of Kolmogorov complexity: Specifically,
he defines the Kolmogorov complexity of x as |M|+ |y|whereM is a Turingmachine
which returns x on input y and there is no other machine M ′ which returns x on
input y ′ so that |M ′|+|y ′| is smaller [28].1 Thatmeans, he regardsKolmogorov com-
plexity on a higher level, thanmost: Themajority compare the complexity of objects
between different machines in their chosen model of computation, whereas Sipser
does not distinguish betweenTuringmachines anddefinesKolmogorov complexity
in an absolute way. His invariance theorem compares with other models or rather
“description languages”, which are functions p : Σ∗ → Σ∗ with some alphabet Σ,
that are computable by a Turingmachine. Sipser defines the Kolmogorov complex-
ity of xwith respect to p as the length of the smallest y ∈ Σ∗, so that p(y) = x.

A slightly different perspective on Sipser’s approach shows that this definition is
very much in line with Kolmogorov and Solomonoff. Instead of saying that Sipser
incorporates the machine length into the Kolmogorov complexity, we could also
interpret the Kolmogorov complexity as being defined with regard to a fixed uni-
versal machine which receives a machine and an input on its input tape. The de-
scription languages are computed by some Turing machine so that we can simply
omit this layer and directly address them as Turing machines. Hence, the invari-
ance theorem states the usual relationship between a universal machine and all
other machines.

In contrast to these definitions, we use the synthetic approach in our formalization
so that we do not use an external model of computation.

Normally, the size function returns the length of the input number. Traditionally,
many use the binary system [32, 20, 27], while others do not elaborate on the nu-
meral system [15, 28]. Piergiorgio Odifreddi deviates from the usual definition by
using the number itself as its size [21].

We follow the traditional approach by defining the size of a number as the length
of its binary representation.

Instead, we could also adopt Odifreddi’s [21] approach of using the number itself
as its size. However, for the invariance theorem (Theorem 3.6) we require a bijec-
tion between N× N and N, where the size of the encoded pair increases at most by
one if we increase the size of the second component by one. For the identity as size

1In reality Sipser does not use |M| + |y| but instead 2 ∗ |M| + |y| + 2. This is due to the fact that he
encodes the machine and the input into one string to measure their length.
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function it is impossible to define such a bijection. It is known from Cantor’s pair-
ing function that, figuratively speaking, only diagonals in the cartesian coordinate
system result in a bijection so that a straight line along one axis cannot work. This
makes it impossible to prove the standard version of the invariance theoremwhich
only adds an additive constant. Odifreddi does not require the invariance theo-
rem for his short introduction to Kolmogorov complexity, so that this definition is
sufficient.



Chapter 4

The Uncomputability of Kolmogorov Complexity

The standard proof of the uncomputability of Kolmogorov complexity is an appli-
cation of the Berry paradox that predates the discovery of Kolmogorov complexity
by more than 50 years. This paradox goes back to the librarian G.G. Berry (1867-
1928) and was first published by Bertrand Russell in 1908 [26, 12]. The original
wording of this paradox is “the least integer not nameable in fewer than nineteen
syllables”. However, this phrase only contains eighteen syllables, so that this ‘de-
fined’ number would be nameable in less than nineteen syllables. Hence, there
must be a contradiction and we cannot define a number this way.

The parallels to Kolmogorov complexity are evident. We could regard this mea-
surement of syllables as an informal approach to Kolmogorov complexity. In our
setting, we would rather state this paradox as “the least natural number with a
Kolmogorov complexity greater thanm” for somem : N.

The origin of the first uncomputability proof is not completely certain. Vitányi [39]
speculates that the first complete proofwas published byZvonkin andLevin in 1970
[42]. Zvonkin and Levin themselves refer to Kolmogorov who claimed the uncom-
putability of Kolmogorov complexity in 1965 by pointing to the undecidability of
the halting problem [15].

Without explicit reference to the Barry paradox, Zvonkin and Levin take advan-
tage of this idea. To this day, this proof is adopted practically unchanged in the
textbooks. Catt and Norrish also follow it in their HOL4 formalization [3]. Our
proof presented here does so, too.
4.1 The Unboundedness of Kolmogorov Complexity
Intuitively, it is easy to see that for a universal code there cannot exist a number that
has the largest Kolmogorov complexity: Fact 3.9 guarantees that every number has
a Kolmogorov complexity and it is obvious that there are only finitely many binary
numbers of some length. The rigorous Coq proof is not as straightforward.
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In order to prove the unboundedness, we need a list that contains all numbers with
a Kolmogorov complexity smaller than some bound. First, we prove the existence
of such a list containing all the numbers with one particular complexity:
Lemma 4.1

∀c.univ c→ ∀n.¬¬∃L. ∀x.KCc x = n→ x ∈ L

Proof It suffices to find a list that contains all the outputs of c on numbers of length
n, as all numbers with the Kolmogorov complexity n must be in this list. It is not
possible to simply map φ to Ln, as we do not know if and when φ terminates for an
element of Ln. That means, we need to consider every element on its own, so that
we can use the double negation to decide whether φc terminates.
We can achieve this by proving that for allm there exists a list containing all outputs
of φc on the firstm elements of Ln. This is possible by induction onm. For the base
casem = 0, the empty list [ ] suffices. In the successor case, we have the desired list
L for the firstm elements by the inductive hypothesis. We use the double negation
to decide whether φc terminates on them-th element of Ln, if it exists.
Ifφ terminateswith ◦o then o :: L has the required properties. Otherwise, L contains
all the desired numbers. �

From this Lemma, we can then derive the existence of the corresponding list for all
lengths smaller or equal to the bound:
Lemma 4.2

∀c.univ c→ ∀n.¬¬∃L. ∀m.m 6 n→ ∀x.KCc x = m→ x ∈ L

Proof By induction on n. For the inductive step, append the list for Sn obtained
from Lemma 4.1 to the list of the inductive hypothesis. �

With this Lemma it is now straightforward to prove that there is no upper bound
on the Kolmogorov complexity.
Theorem 4.3 (Unboundedness of KC)

∀c.univ c→ ∀n.¬¬∃x kc.KCc x = kc∧ n 6 kc

Proof By the infiniteness of the natural numbers, we can obtain a number x that
is not an element of the list L from Lemma 4.2, i.e. that has a greater Kolmogorov
complexity than n. With Fact 3.9 we receive the precise Kolmogorov complexity
kc which must be greater than n, because else x would have been in L in the first
place. �
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Now it is obvious, why we did not require the lists from Lemma 4.1 and 4.2 to
contain only the numbers with the relevant complexity. The additional elements
do no harm, as we can always find an element not contained in this list. Therefore,
it is sensible not to bother defining a list that satisfies the equivalence.
4.2 The Uncomputability of Kolmogorov Complexity
With the unboundedness of Kolmogorov complexity we have everything that is
needed for the Berry paradox. Hence, we can now prove the uncomputability of
Kolmogorov complexity.

Theorem 4.4 (The uncomputability of Kolmogorov complexity) Given Markov’s
principle, there exists no function computing the Kolmogorov complexity of every number
for some universal code.

Proof We assume a universal code c, a function kc : N → N that computes Kol-
mogorov complexity, i.e. ∀x.KCc x = kc(x), and derive a contradiction. With the
existential least witness operator 2.24 we can define the certifying function

H : ∀m.Σx. least (λx.m 6 kc(x)) x

with the decidability of 6, and the unboundedness of Kolmogorov complexity
(∀m. ∃x.m 6 kc(x)). In Theorem 4.3 we proved the unboundedness with a dou-
ble negation. With Markov’s principle we can derive the plain unboundedness.
Now,we candefine g := λm. π1(Hm)with ∀m.m 6 kc(g(m))). Additionally, Lemma
3.7 gives us a d such that ∀m.kc(g(m)) 6 |dme|+d. Hence, the transitivity of6 gives
us ∀m.m 6 |dme|+ d, which is a contradiction with Fact 2.29. �

The Berry paradox is very prominent in the proof: The hypothesis H is an immedi-
ate translation of the paradox into Coq.
4.3 Markov’s Principle in the Uncomputability Proof
We firmly believe that the proof, in the way presented here, is only possible with
Markov’s principle. We use MP to obtain the unboundedness without a double
negation. The unboundedness proof requires the double negation in order to de-
cide the termination of φ.
Alternatively, we could preserve the double negation by using the constructive least
witness operator (Fact 2.25) to obtain H : ∀m.¬¬∃x. least (λx.m 6 kc(x)) x. As we
are deriving a contradiction, i.e. proving falsity, we could remove the double nega-
tion for finitely many instances ofm. This is not sufficient to derive a contradiction:
Note, that we use ¬∃d. ∀m.m 6 |dme| + d (Fact 2.29) in order to prove falsity. So,
it is not sufficient to show ∃d.m 6 |dme| + d for one special m. That means we re-
quire the (total) computable function g with ∀m.m 6 kc(g(m))). Hence, we need
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to remove the double negation for allm, i.e. infinitely many instances, which is not
possible without MP.
Yannick Forster suggested, that a different approach could obviate the need for
Markov’s principle: He hypothesized, that defining g as a partial function, although
nettlesome, could succeed in eliminating Markov’s principle.
4.4 Discussion
The uncomputability explains the profusion of double negations in Chapter 3. If
we could compute Kolmogorov complexity, many of these facts would be trivially
provable without the double negation. Hence, the double negation is required,
because we need to logically decide the termination of φ.



Chapter 5

The Random Numbers

With the notion of Kolmogorov complexity it seems natural to distinguish between
numbers that are ‘easy’ to compute and the ones that are not. With Lemma 3.7 we
know that the size of a number and a constant form an upper bound on the Kol-
mogorov complexity of the number itself. Intuitively, a numberwith a Kolmogorov
complexity smaller than the size of the number must be computable in an easier
way than simply using a print machine. For example, there could be a repeating
pattern or another characteristic so that an efficient algorithm could retrieve this
information from a very small input.
If we compare the following string

126744325745103315

to strings like
333333333333333333

or even
112233445566778899

it is clear that the latter strings can be computed by a simple algorithm and a small
input, whereas the computation of the former most likely needs to settle with a
print machine.
The terminology that has developed for the differentiation of these kinds of strings
is random and non-random. The benchmark for these classes is indeed the size of
the number. That means, we call a number random, if its Kolmogorov complexity
is greater or equal to its own size. Conversely, a number is non-random, if it is not
random. Another name for randomness and non-randomness used in the literature
is incompressibility and compressibility respectively [17]. These names may be more
intuitive: A non-random number is compressible into a smaller input.
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The first to discuss the concept of random numbers was Kolmogorov [15] in 1965.
He informally proposed a slightly different approach: Simply put, he calls an ele-
ment of a set of sizeN that can be computed by a program a lot smaller than log2N
random, if its Kolmogorov complexity is close to log2N. This idea is not as dif-
ferent to the approach stated above as one might think. For instance, the set of
binary numbers of length k contains 2k elements, so that a random number in that
set would have a complexity of at least k which coincides with the approach used
here. In general, these definitions do not always agree.
Li and Vitányi use the “compressibility” terminology because with “randomness”
they refer to the work of Per Martin-Löf. Martin-Löf, a student of Kolmogorov,
showed that incompressible strings are random in the way we look at it in proba-
bility theory [19]. He stated that for a random number with regard to Kolmogorov
complexity “the number of ones in ξ1ξ2 · · · ξn should be close to n/2”. For the gen-
eral case, he defined a universal test for randomness and extended his approach to
infinite binary sequences.
We use the “random” terminology instead of “incompressible”.
5.1 The Definitions in Coq
Like the complexity itself, the random and non-random numbers are defined de-
pending on a code c.
Definition 5.1 (Random Numbers) Rc x := ∀ys.φsc y = ◦x→ |dye| > |dxe|

Definition 5.2 (Non-random Numbers) Rc x := ∃ys.φsc y = ◦x∧ |dye| < |dxe|

The canonical approach would be to define the non-random numbers as not ran-
dom, i.e. Rc x := ¬Rc x. We have decided on two separate definitions, as we work
with the existential quantification instead of the negated universal quantification
in the proofs anyway. This way we can omit the conversion in facts on non-random
numbers.
The conversion between random and not non-random numbers is a consequence
of the de Morgan law for existential quantification:
Fact 5.3 ∀x.Rc x↔ ¬Rc x

In the constructive setting of Coq, the de Morgan law for universal quantification
in general only holds with excluded middle. That means, the equivalence of not
random and non-random numbers does not follow immediately. The direction
Rc x → ¬Rc x works without additional axioms because for the order of numbers
∀xy : N. x < y+ x > y holds.
Fact 5.4 ∀x.Rc x→ ¬Rc x
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For the converse, Markov’s principle suffices because given an input and a step
count we can define a boolean test for the non-randomness of the corresponding
output.
Fact 5.5 MP→ ∀x.¬Rc x→ Rc x

Our definition of (non-)randomness deviates from the usual definition found in the
literature. The difference for the definition of non-randomness is, that it suffices for
us to find some input that is smaller than the number it is outputting. This need not
be necessarily the smallest one, i.e. we do not explicitly require the Kolmogorov
complexity of x to be smaller than x itself. This definition is classically equivalent
with Fact 3.9.
Fact 5.6 LEM→ ∀x. Rc x↔ (∃k.KCc x = k∧ k < |dxe|)

Similarly, for the random numbers we do not require the Kolmogorov complexity
to be greater than the length of the number itself. A definition closer to the textbook
also needs to capture that the Kolmogorov complexity can also be ∞. Classically,
these definitions are also equivalent:
Fact 5.7 LEM→ ∀x. Rc x↔ (∃k.KCc x = k∧ k > |dxe|)∨ (∀k.¬KCc x = k)

For our formalization we choose these definition, as it often renders the need for
excluded middle unnecessary. For example, Fact 5.5 would also require excluded
middlewith the alternative definition. This is because a boolean test cannot capture
the minimality of Kolmogorov complexity, as φ is partial.
5.2 The Unboundedness of the Random Numbers
For the unboundedness of the randomnumbers for a universal c, we cannot entirely
reuse the approach for the unboundedness of Kolmogorov complexity (Chapter
4.1). The main idea of the latter proof is to use the fact that all numbers have a
Kolmogorov complexity but there are only finitely many binary numbers of every
respective length. Although not immediately apparent from the proof itself, this
is an application of the pigeonhole principle. In the unboundedness proof for Rc
we also make use of the pigeonhole principle multiple times and even in a more
explicit way.
Similarly to the previous unboundedness proof, we prove that for every list L con-
taining non-random numbers of length k, there exists a duplicate-free list L ′ con-
taining inputs which justify the non-randomness of all members of L. In other
words, L ′ contains only elements with length smaller than k and their outputs on
c are members of L.
Lemma 5.8 For every code c : N, k : N and duplicate-free L : LN where L
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• only contains numbers of length k

• only contains non-random numbers with regard to c

there exists a duplicate-free list L ′ : LN which satisfies

• |L| = |L ′|

• ∀i ∈ L ′. ∃os. o ∈ L∧ φsc i = ◦o∧ |die| < |doe|

Proof By induction on L. In the base case [ ] satisfies the properties. In the inductive
step we have the list o :: L. We know o must be non-random and consequently we
get i and swith |die| < |doe| andφsc i = ◦o. Therefore, i :: L ′ satisfies the properties.�

With this Lemma, we can now prove that there are < 2k non-random numbers of
length k.

Lemma 5.9 Any duplicate-free list L containing only non-random numbers of length k
contains less than 2k elements, for a universal c.

Proof It suffices to show |L| 6= 2k because there are only 2k distinct numbers of
length k. So, we assume |L| = 2k and derive a contradiction. From Lemma 5.8 we
receive a duplicate-free list L ′ with |L ′| = |L| = 2k and Forall (λx. |dxe| < k) L ′. This
is a contradiction by the pigeonhole principle, as we know there are only 2k − 1
numbers which have a length smaller than k (Fact 2.31), so that L ′ cannot contain
2k different numbers. �

Corollary 5.10 GivenMarkov’s principle, any duplicate-free list L containing all random
numbers of length k contains at least one element, for a universal c.

Finally, we can prove the unboundedness of the random numbers: For every k : N
there exists a number x of length k which is random with respect to a universal c.

Lemma 5.11 (Unboundedness of the Random Numbers)

∀c.univ c→ ∀k.¬¬∃x. |dxe| = k∧ Rc x

Proof With Fact 2.32 we receive a list l containing all non-random numbers of
length k. There exists an equality decider for N so that we can compute a duplicate-
free version of l that is equivalent to the original list. By the pigeonhole principle
applied to Lk and l with Fact 2.30 and Lemma 5.9, we obtain a number that is not
in l and thus random. �
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5.3 The Non-Random Numbers are Simple
In this section, we prove that the predicate of non-random numbers is simple. This
result is important as we are able to derive the many-one incompleteness of the
non-random numbers from this (see Chapter 2). Furthermore, the non-random
numbers are a natural example of a simple set in contrast to, for example, Post’s
simple set which seems very artificial [23]. This is remarkable, as there are only a
few known natural sets which are simple, i.e. not decidable but the halting problem
is not many-one reducible to it [8].
Zvonkin and Levin refer to Y.M. Barzdin as the original discoverer of the proof
in the late 1960s [42]. He even proved the simpleness of a more general set: His
set contains the numbers x with Kolmogorov complexity smaller or equal to the
function value f(x) of some unbounded general recursive function f.
Our proof generally follows the outline of Odifreddi [21], albeit there were sev-
eral adjustments necessary. First and foremost, Odifreddi defined the Kolmogorov
complexity with the number itself as its size, as discussed in Chapter 3.5. In the
grand scheme of things, this is only minor, as the proof itself still follows the ideas
of Barzdin’s general proof.
In order to show that Rc is a simple predicate for a universal c, we need to prove
three sub-results: Rc needs to be enumerable, there must be infinitely many ran-
dom numbers and there must not exist a infinite, enumerable predicate subsumed
by the random numbers.
Lemma 5.12 (Rc is enumerable) E Rc

Proof We define a function f : N → ON that enumerates Rc. An input p is inter-
preted as a pair 〈x, s〉 by f. Then compute x on the code c for s steps. If ∅ is returned,
then f also returns ∅. Otherwise, c outputs ◦y. If y is guaranteed to be non-random,
i.e. |dye| < |dxe|, then ◦y is returned by f. In the opposite case ∅ is returned.
Due to the fact that the pairing function is bijective, we know that for every such
pair 〈x, s〉 exists a number p that is mapped to the pair. By definition of Rc it is
obvious that f enumerates every non-random number. �

Lemma 5.13 (Rc is infinite) ¬X Rc

Proof We assume a list l containing all the random numbers and derive a contra-
diction. By the unboundedness (Lemma 5.11), we can get a random number x that
has length S(max

x∈l
|dxe|). x must be in l by the definition of l and consequently we

have |dxe| 6max
x∈l

|dxe|. This is a contradiction. �

Last, we need to prove that there is no infinite, enumerable sub-predicate of the
random numbers:
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Lemma 5.14 MP→ ¬(∃q : N→ P.Eq∧ ¬Xq∧ (∀x : N. q x→ Rc x).

Proof We assume the infinite, enumerable predicate q which is a sub-predicate of
Rc. Due to the fact that q is infinite and has an enumerator f : N → ON, we know
that for every numberm, there classically exists a number n so that f(n) = ◦x with
|dxe| > m and qx.
With Markov’s principle we can eliminate the double negation and get:

∀m : N. ∃n : N. if (fn) is (◦x) then |dxe| > m else ⊥

With this we only have the propositional existence of such an n which we cannot
use in a computational context. We can get a computational function with the ex-
istential witness operator (Fact 2.20), as the the order of numbers is decidable and
hence the whole body of the existential quantification.
Now we can compute for allm an n on which f enumerates a number longer than
m. Let g : N → N be the function which receives m and directly outputs a num-
ber longer than m which satisfies q. In other words, g satisfies q(g(m)) and m <

|dg(m)e|, for allm.
With Fact 3.5 we have a k such that ∀m.∃is.φsc i = ◦(g(m)) ∧ |die| 6 |dme| + k. Fur-
thermore, q(g(m)) implies Rc (g(m)) and hence |dg(m)e| 6 i. Overall we have

m
Def. g
< |dg(m)e|

Rc (g(m))

6 |die| 6 |dme|+ k

and the transitivity of leq gives us m 6 |dme| + k. This is a contradiction with Fact
2.29. �

Itmight seemunnecessary thatwe are looking for an indexn so that the enumerator
outputs a number x with |dxe| > m. However, if we are looking for a number x
directly so that qx ∧ |dxe| > m then Markov’s principle would not suffice: q is not
decidable and hence we cannot define a boolean test for qx ∧ |dxe| > m. By using
the enumerator, we automatically get that the enumerated number satisfies q and
if (fn) is (◦x) then |dxe| > m else ⊥ can be computed by a boolean test. Hence, this
way Markov’s principle suffices.
The idea of this lemma is similar to the proof of the uncomputability of Kolmogorov
complexity, as it also makes use of the Berry paradox. Accordingly, the use of
Markov’s principle is necessary for the same reasons as in the uncomputability
proof.
With these results, the simpleness of the non-random numbers follows immedi-
ately:
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Theorem 5.15 MP→ univ c→ simple Rc
Proof By Lemma 5.12, Lemma 5.13 and Lemma 5.14. �

With the simpleness of Rc we can conclude that the non-random numbers are un-
decidable and many-one incomplete:
Corollary 5.16 The non-random numbers are undecidable.

Proof Theorem 5.15 and Fact 2.13. �

Corollary 5.17 The non-random numbers are many-one incomplete.

Proof Theorem 5.15 and Fact 2.14. �

5.4 Comparison to the Textbook Proof
With Odifreddi’s design decision to use the identity as size there are multiple mi-
nor differences between his proof and our formalization. Additionally, he uses the
equivalent of our codes as the measurement for the Kolmogorov complexity. In
contrast, we measure the complexity with the input for the code.
His approach enables Odifreddi to give a second proof for the non-existence of an
infinite, recursively enumerable set of random numbers. The proof utilizes Roger’s
fixed-point theorem [25] besides the Berry paradox and crucially depends on the
fact that the fixed-point theoremmakes a statement about the input that is the basis
for Kolmogorov complexity.
This proof is not feasible in our setting for two reasons: First, our version ofChurch’s
thesis for partial functions is not potent enough to prove the fixed-point theorem,
as Forster’s version for whole families of functions is needed [8]. Second, our defi-
nition of Kolmogorov complexity is based on the level of inputs, whereas the fixed-
point theorem makes a statement about codes, so that it cannot manipulate the
complexity in the way it would be required.
5.5 Discussion
The choice of our definition for (non-)randomness is essential for obviating the
need for excluded middle. Alternatively, if we had followed the predominant ap-
proach of defining a number as non-random, if its Kolmogorov complexity is smaller
than itself, then the non-random numbers would not be enumerable (Lemma 5.12)
in constructive logic. To prove the enumerability in this scenario, we need to com-
pute the Kolmogorov complexity of a number x, only given an input shorter than x
and a step count so that φ outputs x. Not even Markov’s principle suffices for that
because wewould need to define a boolean test which computes Kolmogorov com-
plexity. This is not possible due to the uncomputability of Kolmogorov complexity
(Theorem 4.4).
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The non-random numbers are not only interesting because they are one of the few
known simple sets which have an organic background. Additionally, we could
prove their simpleness with solely Church’s thesis. Forster’s proofs of simple pred-
icates always required the Smn theorem [8].
Odifreddi also discussed that the non-random numbers are effectively simple [21].
With that, the question for completeness with respect to Turing reductions of the
non-random numbers can be answered affirmatively. In Chapter 7 we will discuss
the situation for truth-table reductions.



Chapter 6

A Lower Bound for the Random Numbers

With the fact that there is at least one random number of every length (Lemma
5.9), the question of the ratio between random and non-random numbers arises.
Naturally, no absolute answer is possible, as it highly depends on the respective
code. Yet for universal codes we can still give a lower bound for the portion of
random numbers for every length. Martin Kummer proved in 1996 that for every
universal code c and length n there exists a constant k so that at least 1k of the
numbers with length n are random [16].
In this chapter we introduce the notation Rnc /Rnc for the random/non-random num-
bers of length n. We treat these like lists, but of course they are not computable.
In reality, every proof that uses this notation assumes a duplicate-free list which
contains exactly the random/non-random numbers of length n.
6.1 The Proof on Paper
We assume a universal code c. Kummer’s idea is to define a partial function η :

N → N → ON which only outputs non-random numbers. With a clever definition
Kummer forces η to output a random number if there are less than 2n

k random
numbers of length n which leads to a contradiction. In the following we discuss
Kummer’s proof. Note that for this introduction we temporarily revert to the usual
definition of binary numberswith valueless leading zeros to stay true to the original
proof. In particular, we use the same notations (d · e : N → LB and b · c : LB → N)
but the functions are changed accordingly. Afterwards, we deal with the explicit
Coq proof.
Making the outputs non-random If we consider the complexity with regard to
η, it is easy to define η in such a way that every output is non-random: For an input
i simply output any number owith |doe| < |die|.1 For the input 0, simply diverge.

1Note that this does not pose a contradiction to the previously discussed facts: η is not universal
so that not all numbers need to have a (finite) complexity and hence we can only output non-random
numbers.
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However, this is not sufficient as the non-randomness for η does not imply the same
for the universal code c. Yet it is possible to achieve this with the powerful in-
variance theorem (Theorem 3.6). Through PCT, we can obtain a code computing
the partial function η. The invariance theorem then gives us a constant d so that
∀x.KCc x 6 KCη x+ d. Hence, some xwould be non-random with respect to c if

KCη x+ d < |dxe| ⇔ KCη x < |dxe|− d ⇔ KCη x 6 |dxe|− d− 1

Consequently, η shall output some o on input i with |die|+ d+ 1 6 |doe|. There is
one apparent problemwith this proposal: We cannot possibly know the constant d
when we are defining η considering d in turn depends on η, so that this would be
a circular definition.
Kummer’s solution to this problem is to incorporate the value of d in the input. That
means we do not limit ourselves to one value for d but essentially cover all possible
values of d. For that η interprets the number of leading false until the first true in
the input as the value of d. With that all the information for the determination of the
minimal length of the output is self-contained in every input. We still do not know
the true d for η but we cover every possibly d so that one of these guesses must be
correct. Hence, we can define η so that for the correct number of leading false in
the input, η outputs only non-random numbers with respect to c. The construction
is uniform in d but only the actual d is relevant for the proof. Because of that, we
use d as if it is already the real one, as we necessarily cover it.
As a result of this addition of d in the input, our lower bound for the length of the
output needs to be adapted. The inputs nowhave the form die = falsed++[true] ++di ′e
so that |die| = |di ′e| + d + 1. Overall, we then have the following constraint for the
output o:

|di ′e|+ 2d+ 2 6 |doe|

With this property, we ensure the non-randomness of every output of η for the cor-
rect dwith regard to the universal c. To bemore precise, the length n of the outputs
o is chosen as exactly the lower bound, i.e. n = |doe| = |di ′e| + 2d + 2. This exposes
the problem that we can only ensure the non-randomness of numbers with length
n > 2d + 2 as |di ′e| > 0. So, for n > 2d + 2 we know that η can output 2n−2d−2
different non-random numbers for every output length n. Kummer’s concrete def-
inition of η guarantees that 2n−2d−2 is also the lower bound for |Rnc | and hence we
have k = 22d+2 for the constant whose existence is asserted in this lemma.
The concrete definition of η Wewant to derive a contradiction if |Rnc | < 2n−2d−2.
We know |Rnc | > 1 and hence n > 2d+ 22. Consequently, η can output non-random
numbers of length n.

2Corollary 5.10 proves this for the bijective binary encoding. The proof is identical for the ordinary
binary encoding.
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There are exactly 2n−2d−2 possible cardinalities of Rnc that we want to prove im-
possible. The proof idea is based on the fact, that η can output exactly 2n−2d−2
non-random numbers of length n. Therefore, η is defined in such a way that we
can explicitly lead every value of |Rnc | that is smaller than 2n−2d−2 to a contradic-
tion. We construe i ′ as |Rnc | so that if |Rnc | < 2n−2d−2 then i ′ necessarily assumes the
value |Rnc |.
This is extremely valuable because for the correct i ′ = |Rnc | we can infer |Rnc | =

2n − 1− i ′. From Fact 5.12, we have the enumerability of the non-random numbers
and we know that exactly 2n− 1− i ′ distinct numbers from Rnc can be enumerated.
So, we wait until all 2n − 1 − i ′ different non-random numbers of length n were
enumerated and let η return any number of length n that was not enumerated.
Hence, the output of ηmust be randomwhich is a contradiction as every output of
η (for the correct d) is non-random.
In the case that i ′ 6= |Rnc |, η calculates the return value identically and thus diverges
if i ′ < |Rnc |.
6.2 The Proof in Coq
From here on we revert to the bijective binary encoding (Axiom 2.28).
There are some evident and some rather hidden hurdles we need to overcome for
the formalization of this proof in Coq. To begin with, we want to enumerate m
different elements of Rnc into a list, if they exist. Second, we need to find a way to
deal with the necessity of leading zeros, as the values of our binary numbers are
changed by attaching any digit.
6.2.1 A List of enumerated Numbers of Length n
Given a step count it is easy to enumerate some non-random numbers of length n
in a list. Then, when there a m distinct values, we would be done. Unfortunately,
we have to consider a few more factors that need to be fulfilled.
First of all, η needs to be monotonic, i.e. not suddenly change the output with a
higher step count. Consequently, we have to ensure that once we have enumerated
m distinct elements, that these numbers do not change and no other number gets
added with more steps. Otherwise, ηmight return a number that is not in this list
for s steps, but might appear in it after s + 1 steps, so that it cannot be returned by
η anymore.
Second, for our convenience we want this list to be duplicate-free by definition.
This simplifies detecting when m distinct elements have been reached and makes
it easier to compute a number of length n not in this list.
With these things in mind it is not too hard to compute this list. Nevertheless, we
have tried two approaches to define a corresponding function and can conclude
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that one of them seems to be strictly easier in terms of proving the desired proper-
ties.
Our first attempt, made use of predefined functions like nodup and skipn which
remove duplicates and cut off a specified number of elements respectively. The
main difficulty was to prove that the final m elements enumerated, if they exists,
are unaltered for a higher step count. This was due to the fact that the function
was a composition of five predefined functions and depended considerably on the
internal details of their definitions. Therefore, the properties provided by the stan-
dard library were not sufficient, and unpleasant inductive proofs would have been
necessary.
It turns out that it is easier to define this function from the ground up. This way we
can explicitly ensure the desired properties in a straightforward way that combines
the steps that would be ‘executed’ by the predefined functions in succession.
This is the final definition we settled on:
Definition 6.1 Let f : N→ ON be the enumerator of the non-random numbers.

F m n 0 := if f(0) is ◦x
then if |dxe| = n∧m 6= 0 then [x] else [ ]

else [ ]

F m n Ss := if f(Ss) is ◦x
then if |dxe| = n∧m 6= |F m n s| ∧ x /∈ (F m n s) then x :: (F m n s)

else F m n s

else F m n s

F evidently satisfies all the properties we demanded and proving most of them is
straightforward. Nevertheless, some facts require a lot of work.
All the following facts are straightforward with induction on the step count s.
Fact 6.2 ∀mns ∈ N.NoDup (F m n s)

Fact 6.3 ∀mns ∈ N. |F m n s| 6 m

Fact 6.4 ∀mns ∈ N. |F m n s| 6 Ss

Fact 6.5 ∀mnsx ∈ N. x ∈ (F m n s)→ Rc x

Fact 6.6 ∀mnsx ∈ N. x ∈ (F m n s)→ |dxe| = n

Fact 6.7 ∀mns ∈ N. (F m n s) ⊆ (F m n (Ss))

These properties are all trivial consequences of the definition of F so that the in-
duction easily goes through with case analyses on the various conditions of the
conditional.
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Facts for the step count Next, we prove a generalized version of Fact 6.7 which is
necessary for the monotonicity of η.
Lemma 6.8 ∀mnss ′ ∈ N. s ′ > s→ (F m n s) ⊆ (F m n s ′)

Proof Induction on s ′. In the base case also s must be equal to 0, so that the goal
follows by the reflexivity of list inclusion.
In the successor case, we have Ss ′ = s∨ s ′ > s from Ss ′ > s. The case Ss ′ = s is also
proved with the reflexivity of the inclusion. For s ′ > s, we use the transitivity of
list inclusion with Fact 6.7 and the inductive hypothesis. �

Fact 6.9 ∀mnss ′ ∈ N. s ′ > s→ |(F m n s ′)| > |(F m n s)|

Proof By the pigeonhole principle and Lemma 6.8. �

Fact 6.10 ∀mnss ′ ∈ N. |(F m n s ′)| = |(F m n s)|→ (F m n s ′) ≡ (F m n s)

Proof We either have s 6 s ′ or s ′ 6 s. Both cases are analogous so that we assume
s 6 s ′. (F m n s) ⊆ (F m n s ′) is a consequence of Fact 6.8. We know |(F m n s ′)| =

|(F m n s)|, NoDup (F m n s) (Fact 6.2) and (F m n s) ⊆ (F m n s ′) (Fact 6.8). Hence,
we have (F m n s ′) ⊆ (F m n s) with Fact 2.33. �

Facts for the desired length Now, we turn from facts focusing on the step count
s, to similar properties for the desired size m. These proofs are a lot more tedious
because F recurses on s and m is left unchanged so that induction on m is futile.
All the main facts basically need to be proven by brute force: Induction on the step
count and case analysis on the conditions of the conditionals.
Lemma 6.11

∀mns ∈ N. ∃L : LN. |L| 6 1∧ F (Sm) n s ≡ L++(F m n s)∧NoDup (L++(F m n s))

Proof By induction on s and case analysis following the definition of F. In the
inductive step the inductive hypothesis either gives us the desired list containing
one element or [ ]. In the [ ] case we check if an element is added to F (Sm) n s

that cannot be added to F m n s anymore. If there is such an element x then [x] is
the desired list. Otherwise, [ ] works because either an element is added to both
F (Sm) n s and F m n s or to neither. In both cases, these lists are equivalent with
the inductive hypothesis. �

Fact 6.12 ∀mns ∈ N. |F (Sm) n s| = Sm→ |F m n s| = m

Proof With Lemma 6.11 and the fact that duplicate-free and equivalent lists have
the same length. �

Fact 6.13 ∀mm ′ns ∈ N.m ′ > m→ |F m ′ n s| = m ′ → |F m n s| = m

https://uds-psl.github.io/coq-kolmogorov-complexity/website/Kolmogorov.random_lower_bound.html#enum_p_list_incl
https://uds-psl.github.io/coq-kolmogorov-complexity/website/Kolmogorov.random_lower_bound.html#enum_p_list_mono_length
https://uds-psl.github.io/coq-kolmogorov-complexity/website/Kolmogorov.random_lower_bound.html#enum_p_list_equiv
https://uds-psl.github.io/coq-kolmogorov-complexity/website/Kolmogorov.random_lower_bound.html#enum_p_m_Sm
https://uds-psl.github.io/coq-kolmogorov-complexity/website/Kolmogorov.random_lower_bound.html#enum_p_m_step_length
https://uds-psl.github.io/coq-kolmogorov-complexity/website/Kolmogorov.random_lower_bound.html#enum_p_m_length'


38 A Lower Bound for the Random Numbers

Proof By induction on m’. In the inductive step, we knowm ′ > m∨ Sm ′ = m.
For m ′ > m, the goal follows with Fact 6.11 and the inductive hypothesis. For
Sm ′ = m, the claim is exactly given by the hypothesis |F (Sm ′) n s| = Sm ′. �

Lemma 6.14 ∀mns ∈ N. |F (Sm) n s| 6 m→ F m n s ≡ F (Sm) n s

Proof By induction on s and case analysis following the definition of F. �

Lemma 6.15 ∀mm ′ns ∈ N. |F m ′ n s| > m→ |F m n s| = m

Proof By induction on m ′. In the base case we have m = 0 by Fact 6.3. The goal
also follows with Fact 6.3.
In the inductive step we either have Sm ′ = m ∨m 6 m ′ by Fact 6.3. The first case
follows with Fact 6.3.
For m 6 m ′, it suffices to show |F m ′ n s| = |F (Sm ′) n s| ∨ |F m ′ n s| = m ′: If we
have |F m ′ n s| = |F (Sm ′) n s| then the goal follows immediately by the inductive
hypothesis. With |F m ′ n s| = m ′, the goal follows with Fact 6.13.
We need to show |F m ′ n s| = |F (Sm ′) n s| ∨ |F m ′ n s| = m ′. With Fact 6.3, we have
|F (Sm ′) n s| = Sm ′ ∨ |F (Sm ′) n s| 6 m ′. In the first case |F m ′ n s| = m ′ follows
immediatelywith Fact 6.12. Given |F (Sm ′)n s| 6 m ′, we know Fm ′ n s ≡ F (Sm ′)n s
by Lemma 6.14. |F m ′ n s| = |F (Sm ′) n s| is a consequence of the fact that both of
these lists are duplicate-free (Fact 6.2). �

These facts all focused on the implications of anm ′ on am 6 m ′. Now we want to
consider the opposite direction:

Fact 6.16 ∀mns. , (F m n s) ⊆ (F (Sm) n s)

Proof By induction on s and case analysis following the definition of F. �

Lemma 6.17 ∀mm ′ns. ,m ′ > m→ (F m n s) ⊆ (F m ′ ns)

Proof By induction on m’ and Fact 6.16 in the successor case. �

The correctness of F Now, we also want to show that (F m n s) at some point
returns a list with m elements, if there are m different non-random elements of
length n. For that, we need the following lemmata:

Lemma 6.18 Let f : N → ON be the enumerator of the non-random numbers. For all
n,m, s, x, y : N with fx = ◦y, |dye| = n and x 6 s, it holds that y ∈ (F m n s) or
|F m n s| = m∧m 6 s
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Proof By induction on s. The base case follows by case analysis on m. For the
successor case, we do a case analysis on x 6 s∨ x = Ss.
In the case x 6 s, we do case analysis on the inductive hypothesis. For x ∈ (F m n s)

we show x ∈ (F m n (Ss)) with Fact 6.7. If we have |F m n s| = m∧m 6 s, we easily
get |F m n Ss| = m∧m 6 Sswith Fact 6.9 and 6.3.
For x = Ss, we know that y fulfills all conditions to be in (F m n (Ss)) unless
|F m n s| = m. In this case, Fact 6.9 and 6.3 gives us |F m n (Ss)| = m. m > Ss

results in a contradiction as |F m n s| 6 Ss by Fact 6.4. �

Lemma 6.19 Let f : N → ON be the enumerator of the non-random numbers. For
duplicate-free lists L of non-random numbers, there exists a duplicate-free list L ′ so that
◦x ∈ (f@ L ′) if and only if x ∈ L.
Proof Similarly to previous proofs, it suffices to find an L ′ for the firstm elements
of L. By the definition of enumerability (Definition 2.8), for all x ∈ L there exists an
n : N so that fn = ◦x. In the inductive step, the list L ′ is obtained by attaching the
corresponding n to the start of the list from the inductive hypothesis. �

Lemma 6.20 Given a duplicate-free list L which contains m non-random elements of
length n, there exists a step count s so that |F m n s| = m.

Proof With Fact 6.19we obtain a list L ′ : LNwhich contains the numbers onwhich f
enumerates exactly the members of L. We claim that the step count s = maxx∈L ′(x)
satisfies |F m n s| = m.
If we could show that all elements from L are in F m n (maxx∈L ′(x)) then we would
be done by the pigeonhole principle. Unfortunately, that must not necessarily be
the case as there could be a non-random element not in L that fills up one of them
spaces. With Fact 6.15 it would suffice to show that for an m ′ > m there would be
at leastm elements in F m ′ n (maxx∈L ′(x)). To ensure that all the desired elements
enumerated in themaxx∈L ′(x) steps end up in F m ′ n (maxx∈L ′(x)), we choosem ′ =
S(maxx∈L ′(x)).
We need to prove |F (S(maxx∈L ′(x))) n (maxx∈L ′(x))| > m = |L|. For that we use the
pigeonhole principle and must show L ⊆ (F (S(maxx∈L ′(x))) n (maxx∈L ′(x))).
It suffices to show that for all a : N the first a elements of L are contained in

(F (S(maxx∈L ′(x))) n (maxx∈L ′(x)))
Use induction on a. The base case is trivial. For the inductive step, we know that
the first a elements of L fulfill the property by the inductive hypothesis. If there is
an a-th element x in L, then we know that there is also an element y in L ′ so that
fy = ◦x. With Lemma 6.18 and the fact that y 6 (maxx∈L ′(x)), we have the desired
goal or (S(maxx∈L ′(x))) 6 (maxx∈L ′(x)). The latter is evidently a contradiction. �
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6.2.2 Computing the Return Value
We can now enumerate Rc into a list with the desired properties, if it exists. Then,
η needs to return a number that is not present in the list but has the same length
as all the elements. It is easy to prove that η always returns the same number for a
higher step count if we return the least number not included in the list.

Lemma 6.21 ∀mns ∈ N.m < 2n → Σx : N. least (λx. x /∈ (F m n s)∧ |dxe| = n) x

Proof We apply the existential least witness operator (Fact 2.24). The decidability
is easy because N is discrete hence list membership is also decidable for LN. To
prove the existence of a number of length n that is not in (F m n s), we use the
pigeonhole principle. We havem < 2n and consequently |F m n s| < 2n by Fact 6.3.
This closes the proof. �

The argument m < 2n in the proof above is superfluous as we know that the non-
random numbers always satisfy this property (Lemma 5.9). Nevertheless, it sim-
plifies the proof as we do not need to prove that |F m n s| is always smaller than 2n.
We never choosem > 2n, so that this decision is convenient.
For η, we only want to return this least element from Lemma 6.21 if |F m n s| = m,
as otherwise not enough elements have been enumerated yet. Additionally, we
requirem < 2n so that Lemma 6.21 can compute the number in the first place.

Lemma 6.22 We can define a function G : N → N → N → ON with G m n s = ◦x if
|F m n s| = m and m < 2n, where x is the least element provided by Lemma 6.21, and
G m n s = ∅ otherwise.

Proof By case analysis on |F m n s| = m∨ |F m n s| < m andm < 2n ∨m > 2n and
Lemma 6.21. �

Finally, we discuss the monotonicity of G. The groundwork for this result was laid
in the preceding facts.

Lemma 6.23 G m n is monotonic, for allm,n : N.

Proof We are given x, s, s ′ : N with G m n s = ◦x and s 6 s ′ and need to show
G m n s ′ = ◦x. G m n s ′ = ∅ is a contradiction with Fact 6.9 and Lemma 6.22.
Hence, G m n s ′ = ◦x ′ and it suffices to show x = x ′. Follows by the uniqueness of
the least witness (Fact 2.22) and Fact 6.10. �

6.2.3 Defining η
In the previous sections, we have seen all tools necessary to define η. However, we
still need to imitate the leading zeros Kummer used to obtain a longer number with
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the same value. As discussed above, leading zeros that have no effect on the value
do not exist in the bijective binary encoding. Consequently, we need to artificially
increase the length of a binary number without changing the number itself.
We achieve this in a similar fashion to the pairing of two binary strings, which
appends leading falses and one true as a separator to represent the length of the
first component. Such a separator symbol marks the end of the valueless leading
falses and the start of the real number. A problem we have to consider is that we
lose one digit for the input because the true used as a separator is a mandatory part
of the string. The proof expounded above relies on the fact that we can evidently
express 2n−2d−2 values with n− 2d− 2 bits. However, if we subtract the separator
bit we only have n− 2d− 2− 1 bits left and hence 2n−2d−2 − 1 distinct numbers in
the bijective encoding (Fact 2.31), so that we are off by one.
Recall that there is at least one random number of every length (Lemma 5.11) and
that i ′ in the input of η can assume any possible value |Rnc | < 2

n−2d−2. Hence, we
do not actually require 2n−2d−2 values because we can rule out |Rnc | = 0. Thus, we
interpret i ′ as |Rnc |− 1.
With that, we can define η in Coq.
Definition 6.24

η bfalsed++[true] ++ falsea++[true] ++ i ′c s := letn := (Sa+|i ′|+2d+2) inG (2n−Sbic)n s

Note that here n even cannot be smaller than 2d+ 2+ 1 due to the additional sepa-
rator bit. This does not pose a problem in the proof.

Lemma 6.25 η x is monotonic for all x : N.

Proof By Lemma 6.23. �

6.2.4 The Proof
The complete proof is now only a matter of putting the pieces together.

Theorem 6.26 Given excluded middle and PCT, there exists a constant k : N so that every
duplicate-free list containing all random numbers of some length n : N contains at least 2nk
elements.

Proof We assume a duplicate-free list l : LNwhich contains all random numbers of
length n. By PCT and the invariance theorem (Theorem 3.6) we can obtain a code
c ′ with φc ′ ' η and a constant d so that ∀x.KCc x 6 KCc ′ x+ d.
We choose k = 22d+2 and show that |l| < 2n−2d−2 leads to a contradiction. From
Corollary 5.10 we know |l| > 1 and hence n > 2d + 2 + 1, so that η can output
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numbers of length n. We use excluded middle to decide whether
η bfalsed++[true] ++ false(n−2d−2)−S|d|l|−1e|++[true] ++d|l|− 1ec

terminates. If η does not terminate we have a contradiction with Ln − l ′ and Fact
6.20. So, we know η terminates in s steps with ◦o. We want to prove falsity, hence
we can eliminate double negations and obtain the complexity kc of owith regard to
c and kc ′ with regard to c ′. By the definition of Kolmogorov complexity, we know
that
kc ′ 6 |falsed++[true] ++ false(n−2d−2)−S|d|l|−1e|++[true] ++d|l|− 1e| = n− d− 1

Rc o follows then by the invariance theorem
kc 6 kc ′ + d 6 n− d− 1+ d < n

We prove that o is in F (2n − |l|) n s which is a contradiction by the definition of η.
It suffices to show that all non-random numbers of length n are in F (2n − |l|) n s.
So, let x be a non-random number of length n. We know with Fact 2.34 that xmust
be in F (2n − |l|) n s or in l. If x ∈ l then x is random which contradicts Rc x. �

We believe that excluded middle is not necessary for this proof as the termination
of η can be proved with Lemma 6.20. First rough, incomplete sketches which only
require Markov’s principle already exist.
6.3 Discussion
Our formalization closely follows Kummer’s proof albeit we deviate from the origi-
nal as we enumerate 2n− |Rnc | non-random elements instead of Kummer’s proposed
|Rnc |. We believe that Kummer’s proof is erroneous here as we cannot comprehend
how the output of η is necessarily random with his approach.
Instead of defining η with the separator symbol so that the input can assume the
value |Rnc |naturally, we could also omit the separator symbol and subtract the small-
est value of length n− 2d− 2 from the input value. This way, we would have
2n−2d−2 inputs while also getting all values smaller than 2n−2d−2 as an input. Un-
fortunately, we have no knowledge of the smallest number of length n, as we as-
sume the binary encoding as an axiom. Hence, this approach is not possible for
us.
The formalization of this result was very painful at times because handling these
long input lists and hypotheses can become confusing quickly.
This result was not only interesting intrinsically but also as a case study for this
proof method. Kummer’s proof of the truth-table completeness of the non-random
numbers uses an almost identical approach. We will discuss this in detail in the
following chapter.



Chapter 7

Towards a Formalization of the tt-completeness of
the Non-Random Numbers

As discussed in Chapter 5 the m-incompleteness of the non-random numbers was
discovered relatively swiftly in the late 1960s after the introduction of Kolmogorov
complexity at the start of the decade. The completeness with respect to Turing
reductions is also established. However, the question for the situation with regard
to truth-table reductions was open for a long time.
In 1996, Martin Kummer was able to finally solve this problem by proving the tt-
completeness of the non-random numbers [16]. The core idea of this proof is very
similar to the approach he used for proving the lower bound of the random num-
bers, that we discussed in the previous chapter. Nevertheless, his construction is
much more intricate and very sophisticated. In this chapter, we discuss Kummer’s
proof. The foundation of a potential formalization has been laid in the previous
chapter but there are many difficult problems left that need to be solved.
7.1 A high-level Overview of Kummer’s Proof
In this section, we give a cursory overview of Kummer’s proof on a high level.
Afterwards, we discuss Kummer’s elaborate construction in detail.
We assume a universal code c in this chapter. To prove the tt-completeness of Rc
we assume an enumerable predicate p : N→ P and show p �tt Rc.
Kummer constructs for almost every x : N a list Sx so that p(x) ↔ (Forall Rc Sx).
For that, Kummer utilizes the approach used in Chapter 6 to define a function
η : N → N → ON that can output 2n−2d−2 non-random numbers of every length
n. Likewise, the concrete d is unknown during the definition of η but all possible
values of d are covered as the construction is uniform in d. In the following we
assume that d is the true constant. Furthermore, we do not consider the internal
mechanics of η in detail again, but instead we directly use the ability of η to make
numbers non-random: For every length n > 2d + 2 we can use η to ensure the
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non-randomness of exactly 2n−2d−2 numbers of length n. That means, any list that
we construct which contains (no more than) 2n−2d−2 elements, all of which have
length n, can be certified non-random by η. Note that for every length n this is only
possible for a total of 2n−2d−2 numbers, so only for one such aforementioned list.
For a justification of this fact, we refer the reader to Chapter 6.1.

Kummer associates every x with one exclusive n > 2d + 2 so that Sx only contains
numbers of length n, |Sx| = 2n−2d−2 and no Sy with y = x contains numbers of
length n. That means with ηwe can ensure the non-randomness of the elements of
Sx. With that we would necessarily have p(x)→ (Forall Rc Sx) but this would ren-
der (Forall Rc Sx) → p(x) impossible for non-trivial predicates p. η needs to make
sure that p(x) holds before it makes the elements of Sx non-random. Therefore, we
enumerate p, and if x gets enumerated then η terminates and outputs the elements
of Sx.

With that, we have ensured that ηmakes the elements of Sx non-random if x satisfies
p. Nevertheless, it is still possible that the elements of Sx are non-random on their
own. To guarantee (Forall Rc Sx) → p(x), Kummer makes clever arrangements.
The following intuitive explanation is only indicative of the real proof. In the next
section, we give a complete and detailed description of Kummer’s construction.

To prevent Forall Rc Sx when p(x) does not hold, we enumerate as many non-
random numbers of length n as possible and only stop at some step s if and only
if the enumerator of p has outputted x after s steps. The crux is that due to the
construction we will know that there exists an i : N such that the number k of enu-
merated numbers of length n satisfies i ∗ 2n−2d−2 6 k < (i+ 1) ∗ 2n−2d−2. This k is
agnostic towards the fact whether the enumeration stopped prematurely, because
p(x), holds or if all non-random numbers of length n are asymptotically enumer-
ated, because p(x) does not hold. So, we know at least i ∗ 2n−2d−2 non-random
numbers get enumerated. We define Sx as the 2n−2d−2 smallest numbers of length
nwhich are not among these i ∗ 2n−2d−2 enumerated numbers.

If p(x) holds then the 2n−2d−2 numbers in Sx are non-random through η. If p(x)
does not hold then at least one number in Sxmust be random. Otherwise, we know
that in addition to the i∗2n−2d−2 non-random numbers that were enumerated, the
2n−2d−2 numbers in Sx are non-random, too. Sx and the enumerated numbers are
disjoint so that there would be at least i ∗ 2n−2d−2 + 2n−2d−2 = (i + 1) ∗ 2n−2d−2
non-random numbers. The enumeration does not stop because p(x) does not hold
and hence (i + 1) ∗ 2n−2d−2 non-random numbers get enumerated at some point.
This is a contradiction because we know that less than (i + 1) ∗ 2n−2d−2 numbers
get enumerated.

This cursory description gives an idea of the argument which serves as the founda-
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tion of the proof. Themain challenge the proof overcomes is to ensure i∗2n−2d−2 6
k < (i + 1) ∗ 2n−2d−2. We see that this problem is also solved non-constructively.
That means we construct these sets for all possible values of i and one of these i
must necessarily work.
7.2 Kummer’s tt-completeness Proof
We will now discuss Kummer’s proof in detail. Except for small details and differ-
ent wording, this is exactly the proof Kummer has constructed [16].
7.2.1 Preliminaries
We assume an enumerable predicate p : N → P from which we truth-table reduce
to Rc.
In the construction we enumerate non-random numbers of length n in a list for
some number of steps s. This list is denoted byMn,s. For the computation of this
list we can use the function F (Definition 6.1) from the previous chapter:

Mn,s := F 2
n n s

We define sequences of lists of numbers S0, . . . , S2d+1. The current length of the
sequence Si is given by l(i). We use the notation Si,x for the x-th list in the i-th
sequence. If defined,mi,x indicates the length of Si,x.
In addition to these sequences, we define lists Enwhich each contain 2n−2d−2 num-
bers of length n > 2d+ 2. These lists are the ones which are made non-random by
η. This works because the lists are enumerable with the construction below. So, η
computes the construction below and if the desired En is defined then ηmakes its
elements non-random. Otherwise, η diverges for the inputs which output numbers
of length n.
In Kummer’s proof all the occurrences of lists are sets. We will represent these sets
with lists because we will see that in every concrete step these sets are all finite.
7.2.2 The Construction
Initially, all lengths n are available, all sequences are empty and mi,x is undefined
for all i, x.
In step s, the greatest i < 22d+2 is selected for which an 2d + 2 6 n 6 s + 2d + 2

exists such that
• n is available
• ∀jx. , j > i→ n 6= mj,x

• i ∗ 2n−2d−2 6 |Mn,s| < (i+ 1) ∗ 2n−2d−2
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For this i, the smallest such n is selected. Then the following is done:
• make allmj,x withmj,x = n undefined
• Si,l(i) := smallest 2n−2d−2 elements from Ln −Mn,s

• mi,l(i) := n

• l(i) := l(i) + 1

Finally, for all x that get enumerated by the enumerator of p within s steps and for
all j so thatmj,x is defined and available:

• Emj,x
:= Sj,x

• mj,x is now unavailable
7.2.3 The Proof
In the previous section, we presented Kummer’s construction which is used to con-
struct the truth-table reduction. Now, we discuss how this reduction is realized.

Fact 7.1 There exists a greatest i0 such that the sequence Si0 is infinite

Proof In every step s one sequence gets extended: n = s+2d+2 is always available
in step s as it could not have been selected in an earlier step because n must be
6 s+ 2d+ 2. Additionally, we know 0 6 |Mn,s| < 2

n from Lemma 5.9. Hence, there
exists an iwith 0 6 i < 22d+2 such that i ∗ 2n−2d−2 6 |Mn,s| < (i+ 1) ∗ 2n−2d−2

There are finitely many sequences and at least one sequence is infinite. Conse-
quently, there must be a greatest i0 such that Si0 is infinite. �

With this fact we know that there alsomust exist a step count s0 so that no sequence
Sj with j > i0 gets extended in a step s > s0. Furthermore, any mi0,x defined after
step s0 never becomes undefined again because this only happens if a sequence Sj
with j > i0 gets selected which does not happen after step s0. Let x0 be the smallest
number so that ∀x > x0.mi0,x gets defined after step s0.

Theorem 7.2 ∀x > x0. p(x)↔ Forall Rc (Si0,x)

Proof Let x > x0.
For the→directionwe assume p(x). Thatmeans that the enumerator for p outputs x
after some step s. We knowmi0,x gets defined in some step s ′ because Si0 is infinite
and mi0,x never gets undefined again. Hence, in step max{s, s ′} the construction
defines Emi0,x

:= Si0,x and η ensures the non-randomness of Si0,x.
For← we assume Forall Rc (Si0,x) and ¬p(x), and derive a contradiction. Si0,x was
defined in a step s > s0 as the 2n−2d−2 smallest elements in Ln −Mn,s for some
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n. We know that all elements in Si0,x are non-random by the assumption andMn,s

only contains non-random elements by definition. Additionally,Mn,s and Si0,x are
disjoint by the definition of Si0,x. Lemma 6.20 applied to Si0,x++Mn,s togetherwith
Lemma 6.17 and 6.9 gives us an s ′ > s so that |Mn,s ′ | = |Si0,x|+ |Mn,s|.
In the construction, i is selected so that i ∗ 2n−2d−2 6 |Mn,s| < (i + 1) ∗ 2n−2d−2.
Therefore, |Mn,s ′ | > 2n−2d−2 + i0 ∗ 2n−2d−2 = (i0 + 1) ∗ 2n−2d−2. ¬p(x) implies
that mi0,x = n never becomes unavailable so that in a step s1 > s an i > i0 and n
get selected. This is a contradiction because s1 > s0 which means no i > i0 can get
selected in step s1. �

Corollary 7.3 p �tt Rc

Proof For the finite number of x < x0 we can decide if p(x) holds. Therefore, if
x < x0 and p(x) holds the reduction returns ([ ], (λx. true)). If x < x0 and p(x) does
not hold the reduction returns ([ ], (λx. false)).
For x > x0, the reduction uses Theorem 7.2. We need a function which computes
the conjunction over all elements of a bool list because all elements of Si0,x must be
non-random.

allTrue (l : LB) : B := if l is x :: lr then (x∧B (allTrue lr)) else true

With that, the reduction returns (Si0,x, allTrue).
The correctness follows with Theorem 7.2. �

7.3 Ideas for a Coq Formalization
The non-constructiveness of the construction already indicates that excluded mid-
dle orMarkov’s principle is required for this proof in Coq. In general, a Coq formal-
ization of this tt-completeness proof will have to deal with a lot of difficult prob-
lems. We addressmany of these problems and if possible we try to give approaches
to overcome them. Note that the following considerations are very schematic.
7.3.1 The Construction
Although the sequences are extended infinitely often, in each concrete step the cur-
rent state is finite. That means the sequence Si which contains lists of numbers can
be represented in step s by a list of list of numbers, i.e. seq : Type := L(LN). Addi-
tionally, we have exactly 22d+2 sequences so that we can represent all sequences in
a step swith a list of sequences L(seq).
The En lists can be represented by a list of list of numbers too, but they do not
necessarily need to be defined in order and some Enmight never be defined. Hence,
we use L(O(LN)) so that in the case that En is defined but Em withm < n does not
exist, we can use the value ∅ as a placeholder for Em.
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For themi,x values for the i−th sequencewe could also use lists of numbers, butwe
have to consider that these values can become undefined again. Hence, we could
use lists ofON, so that ∅ is used for values that were defined once but are undefined
now. The representation of them values for all sequences would then be L(L(ON)).
The lengths that are unavailable are also finite in each step so that we could repre-
sent these with a list of numbers LN.
We have already mentioned that the listsMn,s can be computed by F 2n n s (Defi-
nition 6.1).
Finding the greatest i and the corresponding smallest n is possible in each step:
There are only finitely many choices for i (i < 22d+2) and n (2d+2 6 n 6 s+2d+2)
so that we can check for all possible i and n if they fulfil the (decidable) properties.
Consequently, we can define a function C that given s returns the state of the con-
struction after s steps. C would have the following type in this encoding:

C : N︸︷︷︸
The steps

→ L(seq)︸ ︷︷ ︸
The sequences

× L(L(ON))︸ ︷︷ ︸
Them values

× LN︸︷︷︸
The unavailable lengths

× L(O(LN))︸ ︷︷ ︸
The En lists

7.3.2 The Definition of η
For η : N→ N→ ON we use the approach from Chapter 6.2.3.
The length n of the numbers which η outputs is encoded in the input and as a
partial function, η receives a step count s. η computes C(s) and if En is defined then
η outputs the 2n−2d−2 elements of En and otherwise ∅.
We have to consider that η needs to output 2n−2d−2 numbers of length n but the
definition in Chapter 6.2.3 only allows 2n−2d−2−1 outputs. In contrast to this proof,
here we do not need to ignore leading zeros so that we can make use of all 2n−2d−2
inputs.
7.3.3 Finding i0
Proving that there is a greatest i such that Si is infinite, is one of the hardest chal-
lenges of a formalization of this proof. Specifying the infiniteness of a sequence
is not trivial either. One possibility to express the infiniteness of the sequence i
could be that for all a there exists a step s in which Si is longer than a. If we could
find some i so that Si is infinite then we could find the greatest i0 so that Si0 is infi-
nite. For thatwe could use a ‘greatest witness operator’ which provides the greatest
number in a list which satisfies a predicate.
Additionally, we also need to find the step count s0 after which only sequences Si
with i 6 i0 are extended. These proofs are most likely very challenging and require
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hard work.
7.4 Discussion
The experience from the previousChapter shows that a tt-completeness proof of the
non-random numbers in Coq would be very tedious. In the lower bound proof for
the non-random numbers we have laid the groundwork for a tt-completeness proof
but the complexity of Kummer’s construction is considerable. Especially, showing
the required properties for the constructed lists will be an enormous task.
Nevertheless, both proofs have a common underlying approach: Enumerate many
non-random numbers so that (almost) all non-random numbers were enumerated.
Then, define η so that numbers that were not enumerated become non-random.
With that we either have derived a contradiction or ensured a property.





Chapter 8

Conclusion

In this chapter, we want to discuss our overall results, related work, and potential
future work.
In this thesis, we gave the first formalization of Kolmogorov complexity in synthetic
computability theory in Coq. With this foundation, we proved the uncomputabil-
ity of Kolmogorov complexity as well as the m-incompleteness of the non-random
numbers. Furthermore, we proved the existence of a lower bound for the count of
random numbers.
The usage of synthetic computability throughout this thesis was extremely natural.
Obtaining codes with Church’s thesis is extremely convenient. Without this com-
fort the proof of the lower bound for the non-random numbers probably becomes
completely impractical. Having to define the elaborate η function (Definition 6.24)
in a foreignmodel of computation like the λ-calculus seems extremely intricate. The
considerably more complex construction for the tt-completeness proof is already a
difficult challenge for the synthetic approach so that the usage of the λ-calculus
almost seems unfeasible.
8.1 The Coq Mechanization
External Code We use many proofs from the Coq standard library, for example
proofs on lists or arithmetic facts. Additionally, we also use the Equations plugin
[34] and the std++ library [36].
Our mechanization is build upon the definitions and proofs belonging to the paper
by Forster, Jahn, and Smolka [9]. Besides the fundamental axioms, we also use
lemmata like the pigeonhole principle and the least/existential witness operator
from this work.
A few proofs are from “Modeling and Proving in Computational Type Theory Us-
ing the Coq Proof Assistant” by Gert Smolka [29]. These facts are annotated ac-
cordingly.
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Size of the Proofs The sizes of the Coq proofs are in general manageable. Only
the lower bound proof for the random numbers (Chapter 6) is bigger in size. The
main reason for this is the elaborate constructionwhich necessitatesmany auxiliary
facts.

Content Spec Proof
Preliminaries 34 167
List Facts 78 557

Binary Encoding 65 453
Kolmogorov Complexity and Facts for KC 21 157

The Uncomputability of KC 14 162
Simpleness of the Non-Random Numbers 47 365
Lower Bound for the Random Numbers 64 838

Total 323 2699
8.2 Related Work
Catt and Norrish have formalized Kolmogorov complexity in the HOL4 interactive
theorem prover [3]. HOL4’s logic is classical in contrast to Coq’s constructive logic.
Catt and Norrish prove the invariance theorem and the uncomputability of Kol-
mogorov complexity but their overall focus is more on inequalities involving Kol-
mogorov complexity. Their work also considers variations of Kolmogorov com-
plexity, like the conditional Kolmogorov complexity [15] which is the complexity
of a number given additional information.
Their formalization relies on the λ-calculus and in parts on the general recursive
functions as their model of computation. λ-calculus terms alone make up about
200 lines of code of Catt and Norrish’s whole HOL4 formalization which has ap-
proximately 6000 lines of code.1 This estimation does not include the overhead for
proving results for the λ-calculus.
We believe that our synthetic approach to Kolmogorov complexity is less demand-
ing as we can use the usual comfort for function definitions provided by Coq. This
is because we can obtain a code for any function by simply defining the function in
Coq and applying Church’s thesis to it. Most of Catt and Norrish’s theorems and
inequalities require the coding in the λ-calculus or the general recursive functions
so that the extra effort is not negligible.
8.3 Future Work
A major part of this thesis is the completeness status of the non-random numbers
with respect to different reductions. We have proven themany-one incompleteness

1Determined with grep by searching for the constructors of λ-terms and specific functions return-
ing λ-terms.
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of the non-random numbers in Chapter 5 A formalization of the truth-table com-
pleteness of the non-random numbers in Coq is still missing. In Chapter 7 we dis-
cussed approaches to a formalization of this proof and many necessary definitions
and facts for this proof were discussed in Chapter 6. This proof is very interesting
but definitely a major challenge that will require a lot of work.
The main results in this thesis all require additional axioms like Markov’s principle
or excluded middle. For example, the uncomputability proof of Kolmogorov com-
plexity (Chapter 4) requires Markov’s principle. Yannick Forster suggested that it
could be possible to prove the uncomputability of Kolmogorov complexity without
Markov’s principle by using partial functions.
The lower bound proof for the non-random numbers uses excluded middle in the
current state. Further investigations to see which axiom is really needed would be
very interesting.
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