
Master’s Thesis

Decidability of S1S
in Constructive Type Theory

Moritz Lichter

Advisor
Prof. Dr. Gert Smolka

Reviewers

Prof. Dr. Gert Smolka
Prof. Bernd Finkbeiner, Ph.D.

submitted on
25th July, 2017

Saarland University

Faculty of Natural Sciences and Technology I

Department of Computer Science

2

Statement in Lieu of an Oath

I hereby confirm that I have written this thesis on my own and that I have
not used any other media or materials than the ones referred to in this thesis.

Declaration of Consent

I agree to make both versions of my thesis (with a passing grade) accessible
to the public by having them added to the library of the Computer Science
Department.

Saarbrücken,

Date Signature

3

4

Abstract

We study monadic second order logic of (N, <), short S1S, in the constructive
type theory of Coq. We focus on decidability of satisfiability and on logical
decidability of satisfaction. We show both properties by translating S1S
formulas to Büchi automata. This translation requires complementation
of Büchi automata. While the complementation operation can be defined,
proving it correct is not possible constructively.

We localize the property not provable in general and separate it in admis-
sible sequence structures. AS structures come with their own representation
of infinite words and a proof for the separated property. We verify the trans-
lation of formulas to Büchi automata and show decidability of satisfiability
and logical decidability of satisfaction for all AS structures.

We consider two AS structures: Ultimately periodic words are admissible
constructively. All infinite words are only admissible assuming Additive
Ramsey. Additive Ramsey is a weakening of Ramsey’s Theorem. Given
Additive Ramsey, an S1S formula is ultimately periodically satisfiable if and
only if it is satisfiable in general. Additive Ramsey is a necessary assumption
because Additive Ramsey, closure under complement of Büchi automata,
and logical decidability of satisfaction in S1S are equivalent. Moreover, the
three properties are independent in constructive type theory. All results are
formalized and verified in a Coq development of about 7000 lines.

5

6

Acknowledgments

I want to thank Prof. Gert Smolka for offering me the chance to work on this
interesting topic. Especially, I am grateful for many interesting discussions,
which helped me to view problems in a different light, constructive criticism,
advice, and his patience for me and my writing.

Moreover, I want to thank Kathrin Stark for reading my thesis with
utmost care, Dominik Kirst for listening to me when I was explaining things
way too complicated, Yannik Forster for helping me making Coq do what I
want, and my other colleagues for discussions, ideas, and the nice working
environment.

Finally, I want to thank Prof. Gert Smolka and Prof. Bernd Finkbeiner
for reviewing this thesis.

7

8

Contents

1 Introduction 11

2 Preliminaries 15

2.1 Type Theory . 15
2.2 Strings . 16
2.3 Sequences . 17

2.3.1 ω-Concatenation and ω-Iteration 19
2.3.2 Sequences Satisfying a Predicate Infinitely Often . . . 19
2.3.3 ω-Filter . 20

2.4 Languages . 20
2.5 Ultimately Periodic Sequences 21

3 Ramseyan Properties 23

3.1 Equivalence of RF and AR . 25
3.2 Excluded Middle Implies RF 26
3.3 Independence of RF . 30

4 NFAs 33

4.1 Reachability in NFAs . 34
4.2 Regular and Büchi Acceptance 35
4.3 Properties of NFAs With Regular Acceptance 36
4.4 Decidability of Emptiness of Büchi Automata 36

5 Basic Operations on Büchi Automata 39

6 Complementation of Büchi Automata 45

6.1 The Büchi Equivalence Relation 46
6.2 Compatibility of the Büchi Equivalence Classes 47
6.3 Totality of the Büchi Equivalence Classes 49

7 Admissible Sequence Structures 51

7.1 Correctness of Complementation 53
7.2 The ω-Structure . 54
7.3 The UP-Structure . 54

9

10 CONTENTS

7.4 BC is equivalent to BU . 55

8 Monadic Second Order Logic S1S 59

8.1 The Core Logic MSO0 . 59
8.2 Translation of Formulas to Büchi Automata 60
8.3 MSO With First Order Variables 63

9 Necessity of Additive Ramsey 67

9.1 BC Implies RF . 67
9.2 SL Implies RF . 68

10 Related Work 73

11 Remarks on Coq Development 77

12 Conclusion and Future Work 81

Chapter 1

Introduction

Monadic second order logic with one successor (short S1S) is a well-known
and powerful logic. Decidability of satisfiability of S1S formulas dates back
to Büchi [3] in 1962. He translated formulas to NFAs on infinite word, now
known as Büchi automata. Büchi automata are useful for formal verification
and much work was done on Büchi automata but on monadic second order
logics, too.

We formalize S1S in the constructive type theory of Coq [20] and show
decidability of satisfiability and logical satisfiability of satisfaction. For this
we use a minimal system of S1S without first order variables and translate
formulas to Büchi automata. For that purpose, we formalize infinite words
as sequences, which are functions from N to some alphabet. Büchi automata
are merely NFAs with Büchi acceptance for sequences.

Sequences raise several problems constructively. In contrast to (finite)
strings, many properties of sequences are undecidable. Because constructive
logic does not satisfy the law of excluded middle, we need to prove or disprove
that a sequence fulfills a property, e.g. whether a sequence is contained in the
language of a Büchi automaton. This is closely connected to the question
whether satisfaction in S1S is logically decidable in a constructive setting,
i.e., whether ϕ ∨ ¬ϕ is a tautology in S1S.

The translation of formulas to Büchi automata uses closure operations of
Büchi automata. The key is complementation. Complementation of Büchi
automata is still a field with ongoing work, e.g. Tsai et al. [23] compare
different complementation approaches. We follow the so-called Ramsey-
based approach already appearing in Büchi’s seminal paper: For every Büchi
automaton there are finitely many languages covering all sequences. The
union of the languages disjoint from the language of the Büchi automaton
yields its complement. It is possible to implement the complementation
operation, but it cannot be proven correct constructively without assuming
Additive Ramsey, short AR. AR is a restricted version of Ramsey’s theorem.
The idea of AR already appeared in Büchi [4] and the term “additive” was

11

12 CHAPTER 1. INTRODUCTION

used in Shelah [17]. We conjecture that AR is weaker than excluded middle
and show that AR is independent in constructive type theory. The Ramsey-
based complementation approach can be used to show that the word problem
of Büchi automata is logically decidable.

We localize the key properties not provable constructively and separate
them in admissible sequence structures, short AS structures. An AS struc-
ture provides proofs for these properties. The important property is the
conclusion of a lemma called totality needed to prove correctness of com-
plementation. AS structures only provide proofs, but they have no impact
on the constructed Büchi automata. The translation from S1S to Büchi
automata is done for an arbitrary AS structure. Then an interpretation
satisfies a formula if and only if a derived sequence is accepted by the con-
structed Büchi automaton. Decidability of language emptiness of Büchi au-
tomata translates to decidability of satisfiability of S1S formulas. Logically
decidability of the word problem of Büchi automata translates to satisfac-
tion in S1S: satisfaction in S1S is logically decidable, so S1S admits double
negation and ϕ ∨ ¬ϕ is a tautology.

We consider two AS structures. The ω-structure represents all sequences.
We need AR to prove that the ω-structure is admissible. The second and
more restricted AS structure represents only ultimately periodic sequences,
short UP sequences. UP sequences are sequences of the form xyω and can
be represented finitely by the two strings x and y. The UP-structure can
be proven to be admissible completely constructively. Hence, we can view
S1S constructively using UP sequences or more classically assuming AR.
With AR both AS structures agree on satisfiability: a formula is satisfiable
in the ω-structure if and only if it is satisfiable in the UP-structure. This
corresponds to the well-known fact that any nonempty language of a Büchi
automaton contains an UP sequence.

We show that AR is a necessary assumption. For this purpose, we use
Ramseyan factorizations (e.g. occurring in Perrin and Pin [14]) and show
that the following propositions are equivalent:

AR: Additive Ramsey: For every additive and finite coloring of pairs of
numbers, there are infinitely many numbers such that all pairs of dis-
tinct numbers are colored equally.

RF: Every sequence admits a Ramseyan factorization.

BC: Büchi automata are closed under complement and the word problem
for Büchi automata is logically decidable.

BU: If the languages of two Büchi automata contain the same UP se-
quences, then the languages are equal.

SL: Satisfaction in S1S is logically decidable.

13

By the prior argumentation, AR implies BC and SL. With basic facts about
finite semigroups AR can be shown equivalent to RF. Equivalence of BC

and BU is established using results for UP-sequences. Because we have a
constructive proof that complementation is correct for UP sequences, BC

and BU are equivalent. To show that BC implies RF, we give a Büchi au-
tomaton accepting sequences admitting a Ramseyan factorization. Lastly,
we show that SL implies RF. The proof follows ideas given by Khoussainov
and Nerode [10] and by Shelah [17]. Proving gets simpler when using S1S
with first order variables. We give a (well-known) reduction from S1S with
first and second order variables to S1S only with second order variables us-
ing singleton sets. We show that excluded middle implies RF and that RF

implies Markovs’ principle to show that RF is independent. For an overview
of the implications see Figure 9.1 on page 71.

In this work we develop the mentioned results in informal math-
ematical language based on our formal development in the construc-
tive type theory of Coq. This work and the formal development are
aligned. Occasionally, we hide some complications of the formal devel-
opment or uncommon definitions, which make proving there easier. All
presented theorems and lemmas are formalized and proven in our devel-
opment. Whenever appropriate, we point out differences between the
formal development and this thesis. The formal development is available at
http://www.ps.uni-saarland.de/~lichter/master/.

This work is organized as follows: We start with preliminaries of con-
structive type theory and formalization of sequences in Chapter 2. In Chap-
ter 3 we introduce AR and RF and show that they are equivalent and indepen-
dent in constructive type theory. In Chapter 4 we define Büchi acceptance
for NFAs. We show selected properties of regular languages and prove that
emptiness for Büchi automata is decidable. In Chapter 5 we prove correct-
ness of all needed closure operations of Büchi automata excluded comple-
mentation. Complementation is mostly covered in Chapter 6. We define the
complementation operation and give the important correctness proofs for
sequences. The final correctness proof of the complementation construction
is deferred to Chapter 7. There we introduce admissible sequence structures
and give correctness proofs of all closure operation for AS structures. We
show that AR implies BC and that BC is equivalent to BU. Then we define
S1S in Chapter 8. We give two systems MSO and MSO0 with and without
first order variables and show that MSO can be reduced to MSO0. We prove
that the reduction from MSO0 formulas to Büchi automata is correct and
show that in MSO and MSO0 satisfiability is decidable and that satisfaction
is logically decidable. We instantiate these results for the ω-structure and
the UP-structure and show that under AR both structures agree on satisfi-
ability. In Chapter 9 we establish the equivalence between AR, RF, BC, BU,
and SL by giving the missing implications from BC to RF and from SL to
RF.

http://www.ps.uni-saarland.de/~lichter/master/

14 CHAPTER 1. INTRODUCTION

Chapter 2

Preliminaries

In the following we introduce preliminaries from constructive type theory,
strings, sequences, and languages.

2.1 Type Theory

We formalize our results in the constructive and intensional type theory of
Coq. Because the logic is constructive, it does not satisfy the law of excluded
middle, and because it is intensional, pointwise equal functions or pointwise
equivalent predicates are not necessarily equal. Because there is no excluded
middle, decidable predicates are important. For some type X, a predicate p
on X is decidable if it is possible to compute whether px holds or px does
not hold meaning that there is a function of type ∀x. (px) + (¬(px)).

A type X is discrete if equality on X is decidable. A finite type is
a discrete type together with a list containing all elements of X. We write
|X| for the number of elements of X. Finite and discrete types are closed
under forming product, sum, and option types: if X and Y are finite types,
so are X × Y , X + Y , and X⊥.

If X is a finite type, then the Σ-Type Σx.px is finite if p is proof irrel-
evant. All decidable predicates can be turned to an equivalent and proof
irrelevant predicate [19]. Finite types come with a power operation: if X
and Y are finite types, so is XY . We call v : XY a vector and the type XY

a vector type. The vector type XY represents all functions from Y to X
up to extensionality. For a vector v : XY we write vy for the element of X
to which y is mapped. To build a vector of type XY we write (fy)y where
f is a function from Y to X.

Quantification over finite types preserves decidability. If a predicate p is
decidable, then ∀x. px and ∃x. px are decidable, too.

15

16 CHAPTER 2. PRELIMINARIES

Fact 2.1. Let p be an decidable predicate on N. Then the following is
decidable:

∃n ≤ k. pn ∃n < k. pn

∀n ≤ k. pn ∀n < k. pn

We say that a proposition p is logically decidable if p ∨ ¬p. Because
we are working in a constructive logic without excluded middle, not all
propositions are logically decidable.

A type X is countable if there are functions f : X → N and g : N → X⊥

such that ∀x. g(fx) = Some x. In particular N and all finite types are
countable. Every countable type X admits constructive choice. This
means that X has a choice operator. Let p be a decidable predicate on X.
Then there is a function of type (∃x. px) → X such that p is satisfied by
the element of X given by the function.

For N there are specialized choice functions: For a decidable predicate p
on N and a number n one can give a function next : (∃m ≥ n. pm) → N

which computes the least position greater or equal to n at which p holds. If
H is a proof of ∃m ≥ n. pm, then

1. p(next H),

2. n ≤ next H, and

3. ∀k. n ≤ k < next H → ¬pk.

If the existence of a proof for ∃m ≥ n. pm is clear from the context, we
write next p n because the proof is only used to guarantee termination, but
in constructive type theory the proof is the main argument.

2.2 Strings

An alphabet is a type and we use letters Σ or Γ for alphabets. The members
of an alphabet are called symbols. We use letters a, b, c, and d for symbols.
In this section alphabets may be finite or infinite if not stated differently.
Later, we restrict ourselves to finite alphabets.

A string over Σ is a list over Σ. We denote the type of strings over Σ
with Σ∗ and the type of nonempty strings over Σ with Σ+. We use letters x,
y, u, and v for strings and write ε for the empty string. The length of a string
is provided by |x| and the n-th element of a string by x[n] if n < |x|. The
concatenation of two strings is denoted by x · y or by xy. We write x[n..m)
for the substring of x from n inclusively to m exclusively. Concatenating a
string n times is written as xn.

2.3. SEQUENCES 17

2.3 Sequences

An ω-sequence over an alphabet Σ is a function from N to Σ. We will use
the term sequences if it is clear that we refer to ω-sequences. We denote the
type of sequences with Σω and use letters σ and τ for sequences. The n-th
symbol of a sequence σ is simply σn.

The operation x · σ prepends the string x on the sequence σ:

(a · σ) 0 := a

(a · σ) (n+ 1) := σ n

ε · σ := σ

(a :: x) · σ := a · (x · σ)

The operation σ[n..] drops the first n positions of σ and is defined as

σ[0..] := σ

σ[n+ 1..] k := σ[n..](k + 1)

The operation σ[0..n) yields the prefix of length n of σ :

σ[0..0) := ε

σ[0..n+ 1) := (σ 0) :: (σ[1..][0..n))

The operation σ[n..n+ k) yields the string of length k starting at position
n in σ.

σ[n..n+ k) := σ[n..][0..k)

σ[n..m) := σ[n..n+ (m− n))

We use the second definition in the case that m ≥ n only (although it is
defined always).

Fact 2.2. The former operations behave as expected, e.g.

(x · σ)n = x[n] for n < |x|

(x · σ)(|x| + n) = σn

σ[n..]m = σ(n+m)

σ[n..m)[k] = σ (n+ k) for k ≤ (m− n)

Definition 2.3 (Equivalence of Sequences). Two sequences are equivalent
if they are pointwise equal.

σ ≡ τ := ∀n. σn = τn

Equivalent sequences are not necessarily equal because sequences are
functions.

18 CHAPTER 2. PRELIMINARIES

Fact 2.4. The operations above are compatible with sequence equivalence.
If σ ≡ τ , then

σ[n..] ≡ τ [n..] x · σ ≡ x · τ σ[n..m) = τ [n..m)

Fact 2.5. Dropping cancels prepending and vice versa.

(xσ)[|x|..] ≡ σ (σ[0..n)) · (σ[n..]) ≡ σ

Sequences can be composed with other functions. For a sequence σ
over Σ and a function f from Σ to Γ composition is defined as

σ ◦ f := λn.f(σn).

The product operation ⊗ combines a sequence over Σ and another one
over Γ to one sequence over Σ × Γ.

σ ⊗ τ := λn.(σn, τn)

We generalize the product operation from two sequences to finitely many
sequences: Let X be a finite type and f a function from X to Σω. The
operation

⊗

X f yields the sequence over ΣX by taking the product over all
fx.

⊗

X f is defined recursively over the list of elements ofX. For a sequence
σ over ΣX the function πx yields the sequence over Σ when choosing the
entry for x at each position : πxσn := (σn)x.

Fact 2.6. Let X be a finite type and f be a function from X to Σω. Then
πx(
⊗

X f) ≡ fx.

Lastly, we need to introduce a function @ yielding a sequence which is
constant a apart from position n where it is b:

a@nb := λm.if n = m then b else a

A function f from N to N is strictly monotone if ∀n. fn < f(n +
1). Strictly monotone sequences can be used to form subsequences: if f is
strictly monotone, than f ◦ σ is the subsequence of σ containing only the
positions given by f .

Fact 2.7. If f and g are strictly monotone, then f ◦ g is strictly monotone.

The following lemma is sometimes known as the finite pigeonhole prin-
ciple and requires the alphabet to be finite.

Lemma 2.8. For any finite alphabet Γ and for any string x with |x| > |Γ|
(or sequence σ) we can construct two indices i < j such that x[i] = x[j] (or
σi = σj).

Proof. Brute force searching for a duplicate symbol in σ[0..k + 1) must find
such a symbol, because otherwise there are more than |Γ| different symbols
in Γ.

2.3. SEQUENCES 19

2.3.1 ω-Concatenation and ω-Iteration

Let f be a function from N to Σ+. The operation Πf yields the ω-concate-

nation of all strings in f to the sequence f0 · f1 · f2 · To define Πf
we use the function Π#f yielding pairs (i, j) such that the ω-concatenation
of f can be obtained as (fi)[j]:

Π#f 0 :=(0, 0)

Π#f (n+ 1) :=let (i, j) := Π#f n in

if j + 1 = |fi| then (i+ 1, 0) else (i, j + 1)

Πf n :=let (i, j) := Π#f n in (fi)[j]

Note that it is crucial that f is a function to Σ+ and not to Σ∗. Otherwise
one might not obtain a sequence in the second case.

Fact 2.9. If ∀n. |fn| = |gn|, then Π#f ≡ Π#f .

Fact 2.10. If f ≡ g, then Πf ≡ Πg.

We will write Πxi instead of Πf when we do not need f explicitly but
we ensure that the xis are given by a function. You still may read Πxi as
x0 · x1 · x2 · . . . for intuition.

The ω-iteration of a nonempty string x, written xω, is the sequence
repeating x:

xω := Π(λn.x)

Fact 2.11. The ω-iteration of x is unaffected by prepending or iterating x.

xω ≡ xxω xω ≡ xnxω xω ≡ (xn)ω, for n > 0

Fact 2.12. (xy)ω ≡ x(yx)ω

2.3.2 Sequences Satisfying a Predicate Infinitely Often

Let p be a predicate on Σ.

Definition 2.13. A sequence σ satisfies p infinitely often if ∀n. ∃m ≥
n. p(σm).

A symbol a occurs infinitely often in a sequence σ if σ satisfies the
predicate λb.a = b infinitely often.

Fact 2.14. If σ satisfies p infinitely often, then both σ[n..] and xσ satisfy p
infinitely often.

A string x satisfies p (at least) once if there is an n < |x| with p(x[n]).

Fact 2.15. Let f be a function from N to Σ+. The sequence Πf satisfies p
infinitely often if and only if fn satisfies p once for infinitely many n.

Corollary 2.16. If x satisfies p once, then xω satisfies p infinitely often.

20 CHAPTER 2. PRELIMINARIES

2.3.3 ω-Filter

Let p be a decidable predicate on Σ and let σ satisfy p infinitely often. We
want to define the sequence σ#p of all positions of σ satisfying p and the
ω-filter σ|p yielding the subsequence of σ at which p holds everywhere.

(σ#p) 0 := next p′ 0

(σ#p) (n+ 1) := next p′ (1 + (σ#p) n)

σ|p := (σ#p) ◦ σ

where p′ := λm.p(σm). Recall that we can use next p′ n from Section 2.1
to obtain the smallest position greater or equal to n at which p holds. This
is possible because σ satisfies p infinitely often. So σ#p and σ|p are only
defined if σ satisfies p infinitely often, which ensures that the ω-filter yields
a sequence.

Fact 2.17. The function σ#p is strictly monotone.

Fact 2.18. The function σ#p selects all positions of σ at which p holds.

Fact 2.19. The predicate p holds at all positions in σ|p.

Consequently, if (σ#p) n < k < (σ#p) (n+ 1) then ¬p(σk).

2.4 Languages

A string language is a predicate on Σ∗ and an ω-language is a predicate
on Σω. We write x ∈ L for Lx, σ ∈ L for Lσ, L ⊆ Σω (L ⊆ Σ∗) if L is
an ω-language (string language), and {x|px} for λx.px. Disjunction yields
union, conjunction yields intersection, and negation yields complementation.
We call two languages equivalent and write L1 ≡ L2 if L1 and L2 contain
the same sequences (or strings). Because our type theory is intensional,
equivalent languages are not necessarily equal. An ω-language L is exten-

sional if L is closed under sequence equivalence. Because all ω-languages
occurring later will be extensional, we use extensionality of languages tacitly.

Let f be a function from Σ to Γ. The image of Lω ⊆ Σω under f is the
sequences language obtained by applying f pointwise to sequences of Lω:

f(Lω) := {σ|∃τ ∈ Lω. σ ≡ τ ◦ f}

For Lω ⊆ Γω we write f−1(Lω) for the preimage of Lω under f :

f−1(Lω) := {σ|σ ◦ f ∈ Lω}

Remark 2.20. When applying morphisms to ω-languages, one usually con-
siders functions from Σ to Γ+. Such morphisms could be defined using
ω-concatenation but this would make things more complicated and the sim-
pler case suffices for our purpose.

2.5. ULTIMATELY PERIODIC SEQUENCES 21

For languages L ⊆ Σ∗ and Lω ⊆ Σω the language L ·Lω prepends L to
Lω.

L · Lω := {σ|∃x ∈ L, τ ∈ Lω. σ ≡ xτ}

We write LLω for L · Lω if not confusing.
The ω-iteration of the string language L ⊆ Σ∗ is the ω-language Lω that

contains the sequences obtained by concatenating infinitely many nonempty
strings from L.

Lω := {σ|∃f. σ ≡ Πf ∧ ∀n. (fn) ∈ L}

Note that this definition allows ε ∈ L because f is required to be a function
from N to Σ+.

Fact 2.21. If there is a strictly monotone function g such that g0 = 0 and
σ[gn..g(n+ 1)) ∈ L for all n, then σ ∈ Lω.

Proof. Pick fn := σ[gn..g(n+ 1)). Because g0 = 0 we have σ ≡ Πf and
fn ∈ L by assumption. Hence σ ∈ Lω.

2.5 Ultimately Periodic Sequences

Sequences of the form xyω are called ultimately periodic, or short UP.
Such sequences can be represented finitely by the strings x and y. We prove
that UP sequences are closed under the operations ◦, ⊗, and @.

Fact 2.22. Let f be a function from Σ to Γ. Then xyω ◦ f is UP as well.

Proof. As xyω ◦ f ≡ (fx)(fy)ω where fx it the string obtained by applying
f pointwise the the symbols in x.

The closure of UP sequences under ⊗ is more involved because the strings
may have different length.

Fact 2.23. If |x| ≤ n, then there are x′ and y′ such that xyω ≡ x′y′ω and
|x′| = n.

Proof. We pick

x′ := x · yn[0..n− |x|)

y′ := yn[n− |x|..|yn|) · yn[0..n− |x|).

x′y′ω ≡ xy(yn)ω by Fact 2.12. Then xy(yn)ω ≡ xyω by Fact 2.11. Finally,
|x′| = |x| + n− |x| = n.

Fact 2.24. If |x| = |u|, then xyω ⊗ uvω is UP.

22 CHAPTER 2. PRELIMINARIES

Proof. We show xyω ⊗ uvω ≡ (x⊗ u)(y|v| ⊗ v|y|)
ω
, where x⊗ u is the string

obtained by creating pairs of x[n] and u[n]. By Fact 2.11 yω ≡ (y|v|)
ω

and
vω ≡ (v|y|)

ω
. Hence (y|v| ⊗ v|y|)

ω
≡ yω ⊗ vω and the claim follows.

Lemma 2.25. The sequence xyω ⊗ uvω is UP.

Proof. By Fact 2.23 we can assume that |x| = |u| (if |x| ≤ |u| apply Fact 2.23
with n := |u| or vice versa). Then the claim follows by Fact 2.24.

Fact 2.26. The sequence a@nb is UP.

Proof. As a@nb ≡ anbaω.

Chapter 3

Ramseyan Properties

We introduce two propositions from Ramsey theory: the existence of Ramsey
factorizations and Additive Ramsey. Both are provable classically, but not
constructively. We will show that they are equivalent and independent in
this chapter.

A pair (Γ,+) is a finite semigroup if Γ is a finite type and + is a binary
and associative function on Γ. Let (Γ,+) be a fixed but arbitrary finite
semigroup. Symbols of Γ are called colors. A color a is called idempotent

if a+ a = a. For x ∈ Γ+ we write
∑

x for the sum of all colors in x.
∑

x := x[0] + · · · + x[|x| − 1]

Let σ ∈ Γω. A strictly monotone function g from N to N is called a
Ramseyan factorization for σ if g partitions σ into pieces of equal sum
(cf. Figure 3.1), where it may ignore a prefix of σ. That is

∀i.
∑

σ[g(0)..g(1)) =
∑

σ[g(i)..g(i+ 1)).

g is called an idempotent Ramseyan factorization, if the color
∑

σ[g(0)..g(1)) is idempotent.

Definition 3.1 (RF, Ramseyan Factorizations). RF is the following propo-
sition: Every sequence over Γ admits a Ramseyan factorization. Formally

RF := ∀σ. ∃ strictly montone g. ∀i.
∑

σ[g0..g1) =
∑

σ[gi..g(i+ 1)).

It is crucial that Ramseyan factorizations can ignore a finite prefix. For
example the sequence abω in the semigroup ({a, b},+) with a + a = a,
a+ b = a, b+ a = b, and b+ b = b admits no Ramseyan factorization g with
g0 = 0 because

∑

abn = a but
∑

bn+1 = b.
For the sequence anbω the prefix an may be arbitrarily long but must be

ignored by any Ramseyan factorization for the same reason as for abω. So
clearly a Ramseyan factorization cannot be computed (and RF not proven
constructively). For special sequences the existence of Ramseyan factoriza-
tions can be proven, e.g. for UP sequences:

23

24 CHAPTER 3. RAMSEYAN PROPERTIES

σ
g0 g1

=

g2

=

g3

=
∑

σ[g0..g1)
∑

σ[g1..g2)
∑

σ[g2..g3) . . .

Figure 3.1: A Ramseyan factorization g for σ.

N

g0 g1 g2 g3

f(g0)(g3)

f(g1)(g3)

Figure 3.2: The strictly monotone and monochrome g given by AR. The
colors f(gi)(gj) with i < j are always the same (for readability only two are
marked in the figure).

Fact 3.2. Any UP sequence xyω admits a Ramseyan factorization.

Proof. The sequence gn := |x| + n · |y| is a Ramseyan factorization for
xyω. Then for all i

∑

xyω[gi..g(i+ 1)) =
∑

y and hence
∑

xyω[g0..g1)) =
∑

xyω[gi..g(i+ 1)).

Before introducing Additive Ramsey, we state Ramsey’s Theorem: For
any coloring f of unordered pairs of numbers with finitely many colors there
are infinitely many numbers ki such that f is constant on all pairs of distinct
kis.

Additive Ramsey restricts Ramsey’s Theorem to special colorings f : the
coloring f is restricted to use a finite semigroup as colors and to be additive.
A function f of type N → N → Γ is called additive if (fij) + (fjk) = fik
for i < j < k. The infinitely many numbers ki are formalized by a strictly
monotone function g yielding the ki and the unordered pairs by only looking
at pairs (i, j) with i < j. We say that g is monochrome if f(gi)(gj) is
constant for all i < j.

Definition 3.3 (AR, Additive Ramsey). AR is the following proposition:
For every additive coloring f using colors Γ there is a strictly monotone and
monochrome g (cf. Figure 3.2), meaning that f(gi)(gj) is constant for all
i < j. Formally

AR := ∀ additive f. ∃ strictly monotone g. ∀i < j. f(g0)(g1) = f(gi)(gj).

3.1. EQUIVALENCE OF RF AND AR 25

3.1 Equivalence of RF and AR

We show that RF is equivalent to AR. RF involves only unary functions while
AR uses a binary function. AR is easier to use for proving things later. But
when one needs to show that something implies AR, showing RF instead is
simpler.

RF and AR are equivalent because additivity of a binary function f allows
us to reduce f to a unary function σn = fn(n + 1). Additivity implies
fij =

∑

σ[i..j) = fi(i+ 1) + · · · + f(j − 1)j for i < j.

Lemma 3.4. For any a ∈ Γ one can construct a number k such that k · a
is idempotent.

Proof. For the sequence λn.2n · a one can construct two indices i < i + k
using Lemma 2.8 with 2i · a = 2i+k · a. If k = 1 then 2i · a is idempotent:
2i · a+ 2i · a = 2i+1 · a = 2i · a. If k > 1 then (2i · (2k − 1)) · a is idempotent:

(2i · (2k − 1)) · a+ (2i · (2k − 1)) · a

=(2i+k) · a+ (2i · (2k − 2)) · a

=2i · a+ (2i · (2k − 2)) · a

=(2i · (2k − 1)) · a

Lemma 3.5. A sequence admits a Ramseyan factorization if and only if it
admits an idempotent Ramseyan factorization.

Proof. The direction from idempotent Ramseyan factorizations to Ram-
seyan factorizations is trivial. To show the other direction, let g be a Ram-
seyan factorization of σ. By Lemma 3.4 there is a k such that k ·

∑

σ[g0..g1)
is idempotent. Then the function hn := g(k ·n) is an idempotent Ramseyan
factorization for σ because

∑

σ[hi..h(i+ 1))

=
∑

σ[g(k · i)..g(k · i+ 1)) + · · · +
∑

σ[g(k · i+ k − 1)..g(k · i+ k))

=k ·
∑

σ[g0..g1).

Hence,
∑

σ[hi..h(i+ 1)) =
∑

σ[h0..h1) and
∑

σ[h0..h1) is idempotent.

Lemma 3.6. AR is equivalent to RF.

Proof. AR ⇒ RF: We need to show that any σ admits a Ramseyan factor-
ization. The function fnm :=

∑

σ[n..m) is additive and by AR there is a
strictly monotone and monochrome g. Then g is a Ramseyan factorization
for σ because

∑

σ[gn..g(n+ 1)) = fn(n+ 1) = f01 =
∑

σ[g0..g1).

26 CHAPTER 3. RAMSEYAN PROPERTIES

RF ⇒ AR: Let f be an additive function. By RF and Lemma 3.5 the
sequence σn := fn(n+ 1) admits an idempotent Ramseyan factorization g.
Then g is monochrome because for i < j

f(gi)(gj)
(1)
=
∑

σ[gi..gj)

(1)
=
∑

σ[gi..g(i+ 1)) + · · · +
∑

σ[g(j − 1)..gj)

(2)
=
∑

σ[g0..g1) + · · · +
∑

σ[g0..g1)

(3)
=
∑

σ[g0..g1)
(1)
= f(g0)(g1).

Steps (1) hold because f is additive, (2) holds because g is a Ramseyan
factorization, and (3) holds because

∑

σ[0..1) is idempotent.

3.2 Excluded Middle Implies RF

We show that excluded middle implies RF. We will split the proof into some
carefully designed steps to reuse it for showing that SL implies RF. These
steps make the usage of excluded middle explicit. The classical proof idea
is given by Büchi [4], by Shelah [17], and in more details by Khoussaniov
and Nerode [10]. Büchi and Shelah prove AR but proving RF in our formal
setting is easier because one only needs to deal with unary functions.

Let (Γ,+) be a finite semigroup and σ be a fixed sequence over Γ. We
define the following relations:

i ≃ j (at k) := i < k ∧ j < k ∧
∑

σ[i..k) =
∑

σ[j..k)

i ≃ j := ∃k. i ≃ j (at k)

The later is an equivalence relation with at most |Γ| many equivalence
classes. Before we give the details of the proof, we outline the proof sketch:

By excluded middle there are infinitely many ≃ equivalent positions
(cf. Figure 3.3a). Given these infinitely many positions, there is a strictly
monotone function g using constructive choice on N2 with the property that
g0 ≃ gi (at g(i+ 1)) (see Figure 3.3b). By excluded middle one color needs
to occur infinitely often in the

∑

σ[g0..g(i+ 1))s. The positions of g of
that color are kept, all others are removed (cf. Figure 3.3c), and hence
∑

σ[g0..g1) =
∑

σ[g0..g(i+ 1)). Because g(0) ≃ g(i) (at g(i+ 1)) we have
∑

σ[g(i)..g(i+ 1)) =
∑

σ[g(0)..g(i+ 1)) =
∑

σ[g(0)..g(1))

and the function g is indeed a Ramseyan factorization for σ.
Note that excluded middle was needed twice in this proof. First to show

that there are infinitely many ≃ equivalent positions and second to show
that one color occurs infinitely often in the

∑

σ[g0..g(i+ 1))s. We factor

3.2. EXCLUDED MIDDLE IMPLIES RF 27

σ
≃ ≃ ≃ ≃ ≃ ≃

(a) Infinitely many ≃ equivalent positions (not given by a function).

σ
g0 g1 g2 g3 g4 g5

(b) Positions given by a strictly monotone function g such that g0 ≃ gi (at g(i+1)).
Equal sums

∑

σ[i..j) are indicated by equal line styles.

σ
g0 g1 g2 g3

(c) Positions given by a strictly monotone function g such that g0 ≃ gi (at g(i+1))
and

∑

σ[g0..g1) =
∑

σ[g0..g(i+ 1)). Only the dashed positions from before are
kept. The function g is a Ramseyan factorization for σ because the

∑

σ[gi..g(i+ 1))
are equal.

Figure 3.3: Construction of a Ramseyan factorization from infinitely many
≃ equivalent positions.

28 CHAPTER 3. RAMSEYAN PROPERTIES

these two points out of the proof to allow them to be proven differently and
not by excluded middle. We make use of this to show that SL implies RF in
Section 9.2.

Definition 3.7. Let σ be an arbitrary sequence. The infinite pigeonhole
principle is the proposition stating that there is a color a occurring infinitely
often in σ. Formally:

IPP := ∃a. ∀i. ∃j ≥ i. σj = a.

The proposition INF≃ states that there is an i and for any j there is a
k > j such that i ≃ k. Intuitively this means that there are infinitely many
≃ equivalent positions. Formally:

INF≃ := ∃i. ∀j. ∃k > j. i ≃ k.

We write DM(¬IPP) and DM(¬INF≃) for the proposition derived from ¬IPP

and ¬INF≃ where the negation is pushed through the quantifiers with De
Morgan laws.

We want to show that DM(¬IPP) and DM(¬INF≃) are contradictory,
hence that IPP ∨ DM(¬IPP) implies IPP, that INF≃ ∨ DM(¬INF≃) implies
INF≃, and finally that IPP and INF≃ imply RF. Because IPP∨DM(¬IPP) and
INF≃ ∨ DM(¬INF≃) follow directly from excluded middle, excluded middle
implies RF. We begin with facts of the ≃ equivalence.

Fact 3.8. i ≃ i (at i+ 1).

Fact 3.9. i ≃ j (at k) implies i ≃ j (at n) for all n ≥ k.

Lemma 3.10. The equivalence relation ≃ has at most |Γ| many equivalence
classes.

Proof. Let n > |Γ| and i1 to in be different positions. Then there are
different j and k such that

∑

σ[ij ..in + 1) =
∑

σ[ik..in + 1), hence ij ≃ ik
and ≃ cannot have more than |Γ| many equivalence classes.

Lemma 3.11. INF≃ ∨ DM(¬INF≃) implies INF≃.

Proof. If INF≃ holds we are done. Otherwise we have (after applying De
Morgan laws to ¬INF≃)

∀i. ∃j. ∀k > j. i 6≃ k.

We show that ≃ has infinitely many equivalence classes contradicting
Lemma 3.10. Therefore we show that there are m1, . . . ,mn and a position
j for every n such that mi 6≃ mk for i 6= k and mi 6≃ k for any k > j. The
position j is required to prove the claim by induction on n. For n = 0 the

3.2. EXCLUDED MIDDLE IMPLIES RF 29

claim is vacuously true for an arbitrary j. Assume there are m1, . . . ,mn

and a j satisfying the condition. Then it suffices to give an additional mn+1

and a new j′. Pick mn+1 := j + 1. From above there is a j′ > j + 1 = mn+1

such that mn+1 6≃ k for all k > j′. j′ > j+1 = mn+1 implies mi 6≃ mn+1 for
i ≤ n. Finally, mi 6≃ k for i ≤ n and k > j′ > j by induction hypothesis.

Lemma 3.12. Given INF≃, there is a strictly monotone g such that g0 ≃
gi (at g(i+ 1)) for all i (cf. Figure 3.3b).

Proof. By INF≃ there is an i such that

∀j. ∃k > j. i ≃ k ↔ ∀j. ∃km. m > k > j ∧ i ≃ k (at m).

The equivalence follows by the definition of ≃. Note that m > k > j ∧
i ≃ k (at m) is decidable and that N2 is a countable type. Hence, we
have constructive choice for the existential quantifier on the right and can
construct a k̂(j) and m̂(j) for all j.

We want to show that there is a sequence of pairs (kn,mn) such that
k0 ≃ kn (at mn) and kn < mn < kn+1 for all n. The sequence is established
recursively as:

k0 := i m0 := i+ 1

kn+1 := k̂(mn) mn+1 := m̂(mn)

The condition kn < mn < kn+1 is easy to see because j < k̂(j) < m̂(j) for
all j. The other condition that k0 ≃ kn (at mn) is easy, too, because k0 = i
and i ≃ k̂(j) (at m̂(j)) for all j.

From mn < kn+1 follows k0 ≃ kn (at kn+1) by Fact 3.9. Hence, the
function gn := kn is the desired one.

Lemma 3.13. IPP ∨ DM(¬IPP) implies IPP.

Proof. If IPP holds we are done. Otherwise

∀a. ∃i. ∀j ≥ i. σj = a.

So there is a ja for every a where a does not occur in σ after ja. Then after
maxa ja no color of Γ occurs in σ which is a contradiction.

Lemma 3.14. Given INF≃ and IPP, there is a strictly monotone g such
that

g0 ≃ gi (at g(i+ 1)) and
∑

σ[g0..g1) =
∑

σ[g0..g(i+ 1))

for all i (cf. Figure 3.3c).

30 CHAPTER 3. RAMSEYAN PROPERTIES

Proof. By Lemma 3.12 there is an f satisfying the first condition. By
IPP there is a color a occurring infinitely often in the sequence τ :=
λn.

∑

σ[f0..fn). Recall that τ#a yields the strictly monotone sequence
selecting all positions where a occurs in τ . We define h0 = 0 and
h(n + 1) = (τ#a)(n + 1). Clearly, h is strictly monotone. The func-
tion g := h ◦ f is the desired function. First, g0 ≃ gi (at g(i + 1)) by
Fact 3.9 because g0 = f0, gi = fj and g(i+ 1) = fk for some j and k with
j < k, and f0 ≃ fj (at f(j+1)). Second,

∑

σ[g0..g1) =
∑

σ[f0..(τ#a)1) =
a =

∑

σ[f0..(τ#a)(i+ 1)) =
∑

σ[g0..g(i+ 1)).

Lemma 3.15. Given INF≃ and IPP, the sequence σ admits a Ramseyan
factorization.

Proof. Let g be the strictly monotone function from Lemma 3.14. Then g
is a Ramseyan factorization for σ. Lemma 3.14 implies

∑

σ[gi..g(i+ 1)) =
∑

σ[g0..g(i+ 1)) and
∑

σ[g0..g(i+ 1)) =
∑

σ[g0..g1).

Note that g is actually an idempotent Ramseyan factorization because
∑

σ[g0..g1) =
∑

σ[g0..g2) =
∑

σ[g0..g1) +
∑

σ[g1..g2) =
∑

σ[g0..g1) +
∑

σ[g0..g2) =
∑

σ[g0..g1) +
∑

σ[g0..g1).

Corollary 3.16. Excluded middle implies RF.

Proof. Follows from Lemmas 3.15, 3.11, 3.13 and excluded middle because
σ was arbitrary.

3.3 Independence of RF

We want to prove that RF is independent in constructive type theory, mean-
ing that it cannot be derived but consistently be assumed. We already know
that excluded middle implies RF and we are going to show that RF implies
Markov’s principle. Excluded middle is independent. Coquand and Man-
naa [7] showed that Markov’s principle in independent in constructive type
theory, too. As excluded middle and Markov’s principle are independent,
RF must be independent as well.

Definition 3.17 (Markov’s principle). Markov’s principle states that if a
sequence σ over B is not constantly true, then there is an n such that σn =
false. Formally

∀σ. ¬(∀n. σn = true) → ∃n. σ = false.

Lemma 3.18. RF implies Markov’s principle.

Proof. Let σ be a sequence over B which is not constantly true. We need
to show that there is an n with σn = false. By RF σ admits a Ramseyan
factorization g in the finite semigroup (B,&) where & is conjunction on B.

3.3. INDEPENDENCE OF RF 31

If &σ[g0..g1) = true and hence &σ[gi..g(i+ 1)) = true for all i, σ is
constantly true after g0. It is decidable whether there is an n < g0 with
σn = false. If such an n exists, the claim is proven. Otherwise σ is constantly
true contradicting the assumption.

If &σ[g0..g1) = false then there must be an n such that g0 ≤ n < g1
and σn = false and the claim is proven.

Theorem 3.19. RF is independent in constructive type theory.

Proof. If RF was derivable, then Markov’s principle would be derivable by
Lemma 3.18. If RF was inconsistent, then excluded middle would be incon-
sistent by Corollary 3.16. Because Markov’s principle and excluded middle
are independent, RF is independent as well.

32 CHAPTER 3. RAMSEYAN PROPERTIES

Chapter 4

NFAs

Nondeterministic finite automata (NFAs) can be used to run on strings and
sequences. Strings and sequences need different acceptance criteria because
sequences do not have a last symbol. We call the acceptance for strings
regular acceptance, which is the usual acceptance on strings yielding regular
languages. For ω-sequences we use Büchi acceptance. We use NFAs instead
of DFAs because Büchi acceptance on DFAs is strictly weaker than on NFAs.
Usually, NFAs with Büchi acceptance are called Büchi automata, but the
underlying automata are the same as for NFAs, there is only a different
acceptance criterion. In this chapter we introduce NFAs, the concept of
runs of NFAs on strings and sequences, and regular and Büchi acceptance.
We give some selected properties for NFAs with regular acceptance, which
are later needed for properties of Büchi acceptance. Last, we show that
emptiness of the sequence language of NFAs is decidable.

Formally, an NFA over a finite alphabet Σ is a structure (Q, I, F,→)
where

– Q is a finite type of states,

– I is a decidable predicate on Q identifying the initial states,

– F is a decidable predicate on Q identifying the final states, and

– → is a decidable transition relation of type Q → Σ → Q → P.

For a state q we write q ∈ I for Iq, q ∈ F for Fq, and q
a

→ p for → qap. A
finite run of an NFA is a string over Q. An infinite run is an ω-sequence
over Q. We denote finite runs with r or s and infinite runs with ̺ or ξ.
If clear from the context whether a run is infinite or finite, we only say
run. Finite and infinite runs are introduced together to make definitions
and lemmas uniform, which simplifies combining finite and infinite runs.

Definition 4.1 (Valid Runs). A finite run r of an NFA A is valid on a

string x if |r| = |x| + 1 and r[n]
x[n]
→ r[n+ 1] for all n < |x|. An infinite run

̺ is valid on a sequence σ if ̺n
σn
→ ̺(n+ 1) for all n.

33

34 CHAPTER 4. NFAS

We establish some facts on manipulating valid runs. Let A be an arbi-
trary NFA.

Fact 4.2. If ̺ ≡ ξ, σ ≡ τ , and ̺ is valid on σ, then ξ is valid on τ .

Fact 4.3. If ̺ is valid on σ, then ̺[n..] is valid on σ[n..] and ̺[n..m+ 1) is
valid on σ[n..m) for m > n.

Fact 4.4. If r is valid on x, ̺ is valid on σ, and r[|x|] = ̺0, then r[0..|x|) ·̺
is valid on xσ.

Lemma 4.5. Let ri ∈ Q+, xi ∈ Σ+ for all i, and both the ris and xis be
computable by a function. If ri(ri+1[0]) is valid on xi for all i, then Πri is
valid on Πxi.

Proof. We need to show (Πri)n
(Πxi)n

→ (Πri)(n+ 1). Note that |xi| = |ri|

for all i. Hence, we have to show ri[j]
xi[j]
→ ri[j + 1] where j + 1 < |ri|

and ri[|ri| − 1]
xi[|ri|−1]

→ ri+1[0]. This is precisely that ri(ri+1[0]) is valid on
xi.

Corollary 4.6. If qrq is valid on x, then (qr)ω is valid on xω.

Fact 4.7. It is decidable whether r is valid on x.

4.1 Reachability in NFAs

We define reachability in NFAs and show that reachability is decidable.

Definition 4.8. A run r and a string x form a path from q to p if r is
valid on x, r[0] = q, and r[|r| − 1] = p.

Definition 4.9. A state p is reachable from a state q if there are an r and
a nonempty x such that r and x form a path from q to p.

Because x is required to be nonempty, a state is not necessarily reachable
from itself but only when there is a loop. This saves us case distinctions later
on. We define reachability using strings and finite runs and not inductively,
because then the strings and finite runs can be used to build sequences and
infinite runs.

Lemma 4.10. The state q is reachable from p if and only if q is reachable
from p on a run of length at most |Q| + 1.

Proof. Assume that r and x form a path from q to p. If |r| ≤ |Q| + 1 we
are done. Otherwise one can construct by Lemma 2.8 two positions i < j <
|r| − 1 such that r[i] = r[j]. Then r[0..i)r[j..|r|) is valid on x[0..i)x[j..|x|).
The new string is nonempty because j < |r| − 1. Because the length of the
run and the string decrease by at least one, we can repeat this argument
until |r| ≤ |Q| + 1 (|r| many times suffices).

4.2. REGULAR AND BÜCHI ACCEPTANCE 35

It is necessary to allow runs of length |Q| + 1 because a state q may be
reachable from itself only when visiting every other state.

Lemma 4.11. Reachability for NFAs is decidable.

Proof. By Lemma 4.10 one needs to look for runs of length at most |Q| + 1
only. Hence, there are only finitely many runs and strings to consider.
Because being valid is decidable by Fact 4.7, reachability is decidable, too.

4.2 Regular and Büchi Acceptance

We define regular and Büchi acceptance for NFAs. Let A = (Q, I, F,→) be
an NFA over Σ.

Definition 4.12 (Regular Acceptance). A finite run r is initial if r[0] ∈ I
and final if r[|r| − 1] ∈ F . A run is accepting on x if it is valid on x,
initial, and final. An NFA accepts x if there is an accepting run on x. The
regular language of an NFA is the language of accepted strings:

LR(A) := {x ∈ Σ∗|A accepts x}

L
+
R (A) := {x ∈ Σ+|x ∈ LR(A)}

The language of nonempty strings will be useful later, e.g. when ω-iter-
ating the regular language of an NFA. Again, we do not use an inductive
definition for string acceptance.

Definition 4.13 (Büchi Acceptance). An infinite run ̺ of an NFA A is
initial if ̺0 ∈ I and final if there are infinitely many final states in ̺.
Formally, this means that ̺ satisfies F infinitely often (recall that F is a
predicate). An infinite run is accepting on σ if it is valid on σ, initial, and
final. The NFA A accepts σ if there is an accepting run of σ. The (Büchi)
language of an NFA is the language of accepted sequences.

LB(A) := {σ ∈ Σω|A accepts σ}

An NFA A accepts an ω-language (a string language) L if LB(A) ≡ L
(LR(A) ≡ L). If the sequence (string) is clear from the context, we say
that a run is accepting. We speak of a Büchi automaton to clearify that we
refer to NFAs and are interested in Büchi acceptance. If not confusing, we
say language of an NFA (or Büchi automaton) to refer to the language of
accepted sequences.

Lemma 4.14 (Constructive Choice for Accepting Finite Runs). For any
x ∈ LR(A) one can construct an accepting run.

Proof. The finite run needs to be of length |x| + 1, hence there are only
finitely many runs to check. There exists one, because x ∈ LR(A).

36 CHAPTER 4. NFAS

qI A qF

Figure 4.1: A normalized NFA.

4.3 Properties of NFAs With Regular Acceptance

An NFA is normalized if it has an unique initial state qI and an unique
final state qF different from qI such that no transition enters qI and no
transition leaves qF (cf. Figure 4.1).

Lemma 4.15 (Normalization). For an NFA A one can construct a normal-
ized NFA A′ with L

+
R (A) ≡ LR(A′).

Proof. Let A = (Q, I, F,→) and A′ := (Q+ {1, 2}, {1}, {2},) where is
defined as follows:

1 a
 p := ∃q ∈ I. q

a
→ p

q
a
 p := q

a
→ p

q
a
 2 := ∃p ∈ F. q

a
→ p

1 a
 2 := ∃q ∈ I, p ∈ F. q

a
→ p

Clearly no transition enters 1 and no transition leaves 2.
To show L

+
R (A) ⊆ LR(A′), let x ∈ L

+
R (A), and r be an accepting run

for x. Then 1 · r[1..|r| − 1) · 2 is an accepting run for A′.
To show LR(A′) ⊆ L

+
R (A), let x ∈ LR(A′) and r be an accepting run.

Then r = 1 · r[1..|r| − 1) · 2. By case analysis on |x| = 1 there are q ∈ I and
p ∈ F such that q · r[1..|r| − 1) · p is an accepting run for A.

Doczkal and Smolka [8] give a characterization of regular languages with
so-called classifers. Classifiers correspond to Myhill-Nerode relations in con-
structive type theory. A function f from Σ∗ to a finite type X is called a
classifier if f is right congruent: f(x) = f(y) implies f(xa) = f(ya) for all
x, y, and a. A classifier f is a classifier for a language L if f refines L:
x ∈ L ↔ y ∈ L whenever fx = fy.

Lemma 4.16 ([8]). If a string language L is decidable and there is a clas-
sifier for L, then one can construct an NFA accepting L.

4.4 Decidability of Emptiness of Büchi Automata

We show that emptiness of languages of Büchi automata is decidable. It
suffices to decide the existence of final loops.

4.4. DECIDABILITY OF EMPTINESS OF BÜCHI AUTOMATA 37

Definition 4.17. An NFA A has a final loop if there is an initial state
q ∈ I and a final state p ∈ F such that p is reachable from q and p is
reachable from p.

Lemma 4.18. If σ ∈ LB(A), then A has a final loop.

Proof. Let ̺ be an accepting run for σ. Then by Lemma 2.8 there are
0 < i < j such that (̺|F)i = (̺|F)j (recall that ̺|F is the subsequence of
̺ of all final states), which means that (̺|F)i is reachable from itself and
from ̺0. Hence, A has a final loop.

Lemma 4.19. If A has a final loop, then there is an xyω ∈ LB(A).

Proof. There are q ∈ I and p ∈ F such that p is reachable both from q and
p. Then there are x, y, r, and s where qrp is valid on x and psp is valid on
y, and hence x and y are nonempty. By Corollary 4.6 and Fact 4.4 qr(ps)ω

is valid on xyω and by Corollary 2.16 and Fact 2.14 qr(ps)ω is final because
p ∈ F . Because q ∈ I, qr(ps)ω is initial and hence xyω ∈ LB(A).

For this lemma it was crucial that reachability requires strings to be
nonempty, because otherwise xyω may not be a sequence.

Lemma 4.20. It is decidable whether A has a final loop.

Proof. By Lemma 4.11 reachability is decidable and because quantifiers over
finite types preserve decidability, it is decidable whether A has a final loop.

Lemma 4.21 (Decidability of Emptiness). It is decide whether LB(A) ≡ ∅
or whether there is a xyω ∈ LB(A).

Proof. By Lemma 4.20 it is decidable whether A has a final loop. If A has
a final loop, there is an xyω ∈ LB(A) by Lemma 4.19. If A has no final
loop, we need to show σ /∈ LB(A) for all σ. Assume σ ∈ LB(A), then by
Lemma 4.18 A has a final loop, which is a contradiction.

Corollary 4.22. If an NFA accepts some sequence, then is accepts an UP
sequence.

38 CHAPTER 4. NFAS

Chapter 5

Basic Operations on Büchi

Automata

In this chapter we study closure operations of Büchi automata. Comple-
mentation is covered in Chapter 6 because it is more complicated. It is
important to have operations for the closure properties, because S1S for-
mulas should be translated into Büchi automata. To decide satisfiability of
formulas, the Büchi automaton must be computable. We follow the clas-
sical constructions. For the correctness proofs we focus on difficulties in
constructive logic, e.g. the use of constructive choice.

Lemma 5.1 (Closure under Preimage). Let f be a function from Σ to Γ
and A an NFA over Γ. Then one can construct an NFA f−1(A) over Σ
which accepts the preimage of LB(A) under f :

LB(f−1(A)) ≡ f−1(LB(A))

Proof. Let A = (Q, I, F,→) and f−1(A) := (Q, I, F,) where q a
 p :=

q
f(a)
→ p. Verification is straight forward.

Lemma 5.2 (Closure under Image). Let f be a function from Σ to Γ and
A an NFA over Σ. Then one can construct an NFA f(A) over Γ accepting
the image of LB(A) under f :

LB(f(A)) ≡ f(LB(A))

Proof. Let A = (Q, I, F,→) and f(A) := (Q, I, F,) where

q
a
 p := ∃b. fb = a ∧ q

b
→ p.

f(LB(A)) ⊆ LB(f(A)): Let σ ∈ f(LB(A)). Then there is a τ ∈ LB(A)
with σ ≡ τ ◦ f . Let ̺ be an accepting run for A on τ . Then ̺ is an accepting
run for f(A) on σ.

39

40 CHAPTER 5. BASIC OPERATIONS ON BÜCHI AUTOMATA

(q1, q2, 1) (q1, q2, 2)

q1 ∈ F1

q2 ∈ F2

q1 /∈ F1 q2 /∈ F2

Figure 5.1: The usage of the additional component in the transition relation
of the intersection Büchi automaton.

LB(f(A)) ⊆ f(LB(A)): Let σ ∈ LB(f(A)) and ̺ be an accepting run.
Then for all n there is a b with fb = σn. By constructive choice one obtains
such a b(n). Then (λn.b(n)) ∈ LB(A) because ̺ is an accepting run and
σ ∈ f(LB(A)) because λn.b(n) ≡ σ ◦ f .

Lemma 5.3 (Closure under Union). For two NFAs A1 and A2 one can
construct A1 ∪ A2 accepting the union of the languages of A1 and A2.

LB(A1 ∪ A2) ≡ LB(A1) ∪ LB(A2)

Proof. Let A1 = (Q1, I1, F1,→1) and A2 = (Q2, I2, F2,→2). Define A1 ∪
A2 := (Q1 + Q2, I1 ∪ I2, F1 ∪ F2,→1 ∪ →2). The constructors of the sum
type are used implicitly. Verification is straightforward.

Lemma 5.4 (Closure under Intersection). For every A1 and A2 one can
construct A1 ∩ A2 accepting the intersection of the languages of A1 and A2.

LB(A1 ∩ A2) ≡ LB(A1) ∩ LB(A2)

Proof. Let A1 = (Q1, I1, F1,→1), A2 = (Q2, I2, F2,→2) and A1 ∩ A2 :=
(Q1 ×Q2 × {1, 2}, I1 × I2 × {1, 2}, Q1 × F2 × {2},) where

(q1, q2, 1) a
 (p1, p2, 1) := q1

a
→1 p1 ∧ q2

a
→2 p2 ∧ q1 /∈ F1

(q1, q2, 1) a
 (p1, p2, 2) := q1

a
→1 p1 ∧ q2

a
→2 p2 ∧ q1 ∈ F1

(q1, q2, 2) a
 (p1, p2, 1) := q1

a
→1 p1 ∧ q2

a
→2 p2 ∧ q2 ∈ F2

(q1, q2, 2) a
 (p1, p2, 2) := q1

a
→1 p1 ∧ q2

a
→2 p2 ∧ q2 /∈ F2.

The automaton runs A1 and A2 in parallel. To assert that both A1 and A2

visit a final state infinitely often, the intersection NFA uses the additional
component in its states to assert that it infinitely often visits first a final
state of A1 and then later one of A2. The NFA stores 1 as last component
of its current state until it visits a final state of A1, then swaps to 2, and
stores 2 until it visits a final state of A2 (cf. Figure 5.1).

LB(A1 ∩ A2) ⊆ LB(A1) ∩ LB(A2): Let ̺ be an accepting run for σ ∈
A1 ∩ A2. We first show σ ∈ LB(A2). The run ̺◦π2 is valid and initial on σ
for A2 by definition of . It is final because whenever ̺ is final ̺◦π2 is final,

41

too. It remains to show σ ∈ LB(A1). The run ̺ ◦ π1 is valid and initial on
σ for A1. It is also final, because between two final states of A1 ∩ A2 there
must be a final state of A1 somewhere. This can be proven by contradiction
because it is decidable whether between two positions there is a final state
of A1.

LB(A1) ∩ LB(A2) ⊆ LB(A1 ∩ A2). Let σ ∈ LB(A1) ∩ LB(A2). Then
there are an accepting run ̺ for A1 and an accepting run ξ for A2. Note
that is deterministic in its third component given ̺ and ξ as first and
second component when choosing 1 for the initial third component. Hence,
a run for A1 ∩A2 can be constructed using a recursive function following the
transition relation. This gives an accepting run for A1 ∩ A2. It is initial and
valid by construction. It is final because the third component must switch
infinitely often between 1 and 2 because both A1 and A2 visit final states
infinitely often.

Lemma 5.5 (Closure under Prepending NFAs). For every A1 and A2 one
can construct an NFA A1 · A2 such that

LB(A1 · A2) ≡ LR(A1) · LB(A2).

Proof. Let A1 = (Q1, I1, F1,→1), A2 = (Q2, I2, F2,→2), and A1 · A2 :=
(Q1 +Q2, I, F2,) where

q
a
 p := q

a
→1 p for q, p ∈ Q1

q
a
 p := q

a
→2 p for q, p ∈ Q2

q
a
 p := p ∈ I2 ∧ ∃p′ ∈ F1. q

a
→1 p

′ for q ∈ Q1, p ∈ Q2

and

I :=

{

I1 ∪ I2 if ∃q ∈ I1 ∩ F1

I1 otherwise

where the constructors for the sum type Q1 + Q2 are used implicity again.
Note that I is computable because the condition is decidable. The NFA first
runs A1 and may switch to A2 when A1 could transition into a final state.
The case distinction in I is necessary to handle ε ∈ LR(A1).

LB(A1 · A2) ⊆ LR(A1) ·LB(A2): Let σ ∈ A1 ·A2 and ̺ be an accepting
run. There is an n such that ̺[0..n) are states of A1 and ̺[n..] are states
of A2. Then, by definition of , there is a q ∈ F1 such that ̺[0..n)q is an
accepting run on σ[0..n) for A1 (if n = 0, then ε ∈ LR(A1) and q exists
by the definition of I). Furthermore, ̺[n..] is an accepting run on σ[n..] for
A2 because requires σn ∈ I2 and A1 · A2 asserts that there are infinitely
many final states of A2 in ̺. Hence, σ[0..n) ∈ LR(A1) and σ[n..] ∈ LB(A2)
and so σ ∈ LR(A1) · LB(A2).

42 CHAPTER 5. BASIC OPERATIONS ON BÜCHI AUTOMATA

qI A qF

Figure 5.2: The ω-iteration a normalized NFA (compare Figure 4.1).

LR(A1) · LB(A2) ⊆ LB(A1 · A2): Let σ ∈ LR(A1) · LB(A2). Then
there are x and τ such that σ ≡ xτ , x ∈ LR(A1), and τ ∈ LB(A2). Let r
be an accepting run on x and ̺ be an accepting run on τ . Then r[0..|r| − 1)τ
is an accepting run for xτ and hence xτ ∈ LB(A1 · A2).

Remark 5.6. In our Coq development we prove Lemma 5.5 differently: we
use Q1 × Q2 as states. While A1 is running the state of A2 is not allowed
to change and vice versa. Hence, one has a state of A1 and A2 available for
all positions. Because one has to use the sum type constructors in Coq, one
has to do less case distinctions. We use a normalized A1.

Lemma 5.7 (ω-Iteration of NFAs). For any A1 one can construct an NFA
Aω accepting the ω-iteration of LR(A):

LB(Aω) ≡ LR(A)ω

Proof. Let A = (Q, I, F,→). By Lemma 4.15 we can assume that A is
normalized because LR(A)ω ≡ L

+
R (A)ω. Then there are unique and distinct

states qI ∈ I and qF ∈ F . Let Aω := (Q, {qI}, {qI},) where

q
a
 p :=

{

q
a

→ qF p = qI

q
a

→ p p 6= qI

Instead of stopping A in qF , A is restarted by transitioning to qI instead
of qF (see Figure 5.2 and compare Figure 4.1). This is safe because A is
normalized.

LB(Aω) ⊆ LR(A)ω: Let σ ∈ Aω and ̺ be an accepting run. To show
σ ∈ LR(A)ω, it suffices to show by Fact 2.21 that there is a strictly monotone
function f , such that f0 = 0 and σ[fn..f(n+ 1)) ∈ LR(A) for all n. This
strictly monotone function is exactly ̺#I. It it the case that (̺#I)0 = 0
because qI is the only initial state and σ[fn..f(n+ 1)) ∈ LR(A) because
no transition enters qI in A and hence can only be entered in Aω when A
would enter qF .

LR(A)ω ⊆ LB(Aω): Let σ ∈ LR(A)ω. There are nonempty xi such
that xi ∈ LR(A) and σ ≡ Πxi. With constructive choice for accepting finite
runs by Lemma 4.14, one can construct ris such that qIriqF is an accepting
run for xi for all i (we know the first and last state of the run because A
is normalized). Constructive choice is important because the ris need to be

43

computable. Then ΠqIri is final by Fact 2.15 because qI is a final state of
Aω, valid on Πxi by Lemma 4.5, and initial because qI is an initial state.
So σ ∈ LB(Aω)

Lemma 5.8 ([2]). xyω ∈ LB(A) is decidable.

Proof. The languages {u|u = x} and {u|u = y} are regular and by Lem-
mas 5.5 and 5.7 we obtains an NFA Axyω with LB(Axyω) ≡ {σ|σ ≡ xyω}.
We then decide emptiness of A ∩ Axyω using Lemma 4.21.

44 CHAPTER 5. BASIC OPERATIONS ON BÜCHI AUTOMATA

Chapter 6

Complementation of Büchi

Automata

Büchi automata cannot be determinized which causes complementation to
be more involved. In this chapter we present the complementation con-
struction given by Büchi [3] and give the essential correctness lemmas for
ω-sequences.

For each Büchi automaton A there are finitely many languages Li cover-
ing Σω such that an Li is either a subset of LB(A) or disjoint from LB(A).
Moreover, each Li is accepted by a Büchi automaton. The complement of
A is the finite union of all Li disjoint from LB(A). The Lis are obtained
as VWω where V and W are equivalence classes of an equivalence rela-
tion on strings of finite index. As the equivalence relation already occurs in
Büchi [3], we will call it Büchi equivalence. The proof separates in two parts:
Compatibility states that a VWω is either a subset of LB(A) or disjoint from
it and totality says that each sequence is in some VWω.

Totality can only be proven assuming AR. If we proved complementation
only for ω-sequences, complementation would rely on AR always. To avoid
this, we will factorize the totality proof in so-called admissible sequence
structures in Chapter 7 and prove the complementation construction correct
for AS structures. Then we can show that AR implies BC:

Definition 6.1 (BC). BC is the following proposition: Büchi automata are
closed under complement and the word problem of Büchi automata is logi-
cally decidable. Formally

BC := ∀A. (∃A. LB(A) ≡ LB(A)) ∧ (∀σ. σ ∈ LB(A) ∨ σ /∈ LB(A)).

Throughout this chapter, let A denote a fixed NFA which should be
complemented. To construct the VWω languages, we need an enumerable
representation of the equivalence classes of Büchi equivalence.

45

46 CHAPTER 6. COMPLEMENTATION OF BÜCHI AUTOMATA

6.1 The Büchi Equivalence Relation

We define the Büchi equivalence relation ∼ using a finite type Σ∗\ ∼ to
represent the equivalence classes of ∼ and a classifier [x]∼ from Σ∗ to Σ∗\ ∼
assigning strings to its equivalence class. To define Büchi equivalence, we
need two other relations:

– We say that x transforms q to p and write q x=⇒ p if there is a run
r such that x and r form a path from q to p and

– say that x transforms q to p final and write q x=⇒
F

p if there is a run
r such that x and r form a path from q to p and there is a final state
in r.

Fact 6.2. q
x=⇒
F

p implies q
x=⇒ p.

Fact 6.3. q
x=⇒ p and q

x=⇒
F

p are decidable.

Proof. Because q
x=⇒ p and q

x=⇒
F

p quantify over a finite run of length

|x| + 1, there are only finitely many runs to check.

We want to define Büchi equivalence such that two equivalent strings
agree on q ·=⇒ p and q ·=⇒

F
p for all states q and p. Because q x=⇒

F
p implies

q
x=⇒ p, a string can either transform q to p final, transform q to p but not

final, or cannot transform q to p at all. We use constants f, t, and n for the
three cases. The equivalence classes are then represented as

Σ∗\ ∼:= {t, f, n}Q×Q.

The letters V , W , and U range over equivalence classes. For each string, its
equivalence class is computed as:

([x]∼)q,p :=























f if q x=⇒
F

p

t if q x=⇒ p ∧ q
x

6=⇒
F

p

n if q
x

6=⇒ p

The string language JV K contains the strings which belong to V .

JV K := {x | [x]∼ = V }

A Büchi equivalence class captures the important information of a string
for the Büchi automaton A: for each pair of states q and p the equivalence
class specifies whether A can enter p when starting in q on x and whether it
can visit a final state in between. If unambiguous we write V for JV K. Two

6.2. COMPATIBILITY OF THE BÜCHI EQUIVALENCE CLASSES 47

strings are Büchi equivalent if they are assigned to the same equivalence
class.

x ∼ y := [x]∼ = [y]∼

By definition ∼ is decidable and has only finitely many equivalence classes.

Fact 6.4. x ∼ y if and only if

∀qp. (q x=⇒ p ↔ q
y

=⇒ p) ∧ (q x=⇒
F

p ↔ q
y

=⇒
F

p).

Lemma 6.5. ∼ is right congruent, i.e. if x ∼ y then xu ∼ yu for all u.

Proof. Fact 6.4 gives ∀qp. (q x=⇒ p ↔ q
y

=⇒ p) ∧ (q x=⇒
F

p ↔ q
y

=⇒
F

p).

Because both strings x and y are continued with u, this implies ∀qp. (q xu=⇒

p ↔ q
yu

=⇒ p) ∧ (q xu=⇒
F

p ↔ q
yu

=⇒
F

p). Then xu ∼ yu by Fact 6.4.

Lemma 6.6. For each V an NFA AV accepting JV K can be constructed.

Proof. By 4.16 it suffices to show that JV K is decidable and that [x]∼ is a
classifier for JV K. Decidability of JV K follows from decidability of equality
on finite types.

Let [x]∼ = [y]∼. Then [xu]∼ = [yu]∼ by Lemma 6.5 and hence [x]∼ is
right congruent.

Let x ∈ JV K. Then V = [x]∼ = [y]∼ and hence y ∈ JV K. The reverse
direction is symmetric and so [x]∼ refines JV K.

Because [x]∼ is right congruent and refines JV K, it is a classifier for
JV K.

Remark 6.7. Unfortunately, we do not have the translation from classifiers
to NFAs available in our development for technical reasons. We formalized
the proof of Lemma 6.6 assuming the translation. Additionally we construct
AV from A to obtain a closed formal development. This construction is not
as elegant as the proof using classifiers in Lemma 6.6.

6.2 Compatibility of the Büchi Equivalence Classes

We are going to prove that the languages VWω are compatible with LB(A):
either VWω is a subset of LB(A) or disjoint from it. Proving compatibility
requires the three following facts for constructing finite runs.

Fact 6.8. If x ∼ y and q · r · p is valid on x, then we can construct s such
that q · s · p is valid on y.

Proof. Such a run exists because x ∼ y. It can be constructed because the
length of s must be |y| − 1.

48 CHAPTER 6. COMPLEMENTATION OF BÜCHI AUTOMATA

Fact 6.9. If x ∼ y, q · r · p is valid on x, and q · r · p contains a final state,
then we can construct s such that q · s · p is valid on y and contains a final
state.

Proof. Analogous as for Fact 6.8.

Fact 6.10. If ε ∼ y, then for all p we can construct s such that if y 6= ε,
then p · s · p is valid on y. Otherwise p is valid on y trivially.

Proof. Note that p ε=⇒ p for all p. The proof is analogous as for Fact 6.8
with a case distinction whether y = ε.

Lemma 6.11 (Compatibility). If σ ∈ VWω ∩ LB(A) for some σ, then
VWω ⊆ LB(A).

Proof. Let τ ∈ VWω. We need to show τ ∈ LB(A). Because σ and τ are
in VWω there are x ∈ V , u ∈ V , and nonempty yi ∈ W and vi ∈ W for all
i with σ ≡ x · Πyi and τ ≡ u · Πvi. Let ̺ be an accepting run for x · Πyi.
Then we can cut ̺ according to x · Πyi: ̺ ≡ r · Πqisi. Because the yi are
nonempty, the part of ̺ on yi is nonempty as well and qi always exists. The
following is true:

a) rq0 is valid on x,

b) qisiqi+1 is valid on yi for all i (note that we need to take qi+1 because
the run needs to be of length |xi| + 1),

c) (rq0)[0] ∈ I because ̺ is initial, and

d) because ̺ is final, a qisi contains a final state infinitely often by
Fact 2.15.

We want to give an accepting run r′ · Πqis′
i for u · Πvi. If x = ε, then r′ is

obtained from r by Fact 6.10 and otherwise by Fact 6.8. This guarantees
that (r′q0)[0] = (rq0)[0] and that r′q0 is valid on u.

If qisi contains a final state, s′
i is obtained from si by Fact 6.9 and

otherwise by Fact 6.8. This guarantees that qis′
iqi+1 is valid on vi and that

qis
′
i contains a final state if qisi does. Figure 6.1 illustrates the construction.
The run r′ · Πqis′

i is valid on u · Πvi by Fact 4.2 and Lemma 4.5. It is
initial because (r′q0)[0] = (rq0)[0] ∈ I. Lastly, the run is final by Fact 2.15
because there are infinitely many qis′

i containing final states.

6.3. TOTALITY OF THE BÜCHI EQUIVALENCE CLASSES 49

σ ≡ x · y0 · y1 · y2 · y3 · . . .

r[0] q0 q1 q2 q3 q4 . . .

r s0 s1 s2 s3 s4

τ ≡ u · v0 · v1 · v2 · v3 · . . .

r′ s′
0 s′

1 s′
2 s′

3 s′
4

Figure 6.1: The accepting run of τ constructed from the accepting run of
σ in the proof of Lemma 6.11. Bold arrows indicate runs that contain final
states. This figure assumes that u 6= ε.

6.3 Totality of the Büchi Equivalence Classes

We want to show that for any σ there are V and W such that σ ∈ VWω,
which means that the VWω cover Σω. We call this property totality. To-
tality cannot be proven constructively1. One usually proves totality using
Ramsey’s Theorem but AR suffices. In Chapter 9, we will see that AR is a
necessary assumption to show BC.

To prove totality, we want to color strings with their Büchi equivalence
class. To use AR, an operation V +W yielding a finite semigroup (Σ∗\ ∼,+)
is required. The operation V +W should fulfill the equation [x]∼ + [y]∼ =
[xy]∼.

(V +W)q,p :=















f if ∃q′.
(

Vq,q′ = f ∧Wq′,p 6= n
)

∨
(

Vq,q′ 6= n ∧Wq′,p = f
)

t otherwise if ∃q′. Vq,q′ = Wq′,p = t

n otherwise

In the first case, a string xy ∈ V + W transforms q to p final if there is an
indermediate state q′ such that x transforms q to q′, y transforms q′ to p,
and one of x and y does it final. Then there is a final state between q and
p. The second case requires that there is an intermediate state q′ to which
both strings only transform but not final. In the last case no intermediate
state can be found.

Proving the following two lemmas formally is tedious, because of packing
and unpacking of vectors and quantifiers in the definitions of V + W . We
only give the proof ideas and refer to our formal development for full details.

Lemma 6.12. [xy]∼ = [x]∼ + [y]∼.

Proof. By the definition of V +W (where we ensure the desired behavior as
described before).

1Totality is equivalent to AR. We show that AR implies totality and see later that
totality implies BC and that BC implies RF (equivalent to AR), which is independent.

50 CHAPTER 6. COMPLEMENTATION OF BÜCHI AUTOMATA

Lemma 6.13. (Σ∗\ ∼,+) is a finite semigroup.

Proof. We need to show that + is associative: V +(W +U) = (V +W)+U .
This holds because the order in which one searches for the intermediate
states does not matter. There is a state q′ between V and W + U and a
state p′ between W and U if and only if p′ is between V +W and U and q′

is between V and W .

Lemma 6.14 (Totality). Given AR, for every σ there are V and W such
that σ ∈ VWω.

Proof. By Lemma 6.12, the coloring fnm := [σ[n..m)]∼ is additive in the
finite semigroup (Σ∗\ ∼,+). By AR, there is a strictly monotone and
monochrome g: W := [σ[g0..g1)]∼ and [σ[gn..gm)]∼ = W for all n < m.

Let V := [σ[0..g0)]∼. We need to show σ ∈ VWω. By construction
σ[0..g0) ∈ V . To show σ[g0..] ∈ Wω, with Fact 2.21 it suffices to give a
strictly monotone function h such that h0 = 0 and σ[g0..][hn..h(n+ 1)) ∈
W . Let hn := gn − g0 and h0 = 0 follows. Hence, σ[g0..][hn..h(n+ 1)) =
σ[gn..g(n+ 1)) ∈ W .

We define the NFA accepting the complement of LB(A) and argue
shortly that it is correct for given AR. The correctness proof is given in
the next chapter.

Definition 6.15 (Complement NFA).

AC :=
⋃

{V,W |VWω∩LB(A)=∅}

AV AW
ω

By totality
⋃

V,W VWω ≡ Σω and by compatibility a VWω is either
contained in LB(A) or in LB(A). As there are only finitely many VWω, it
suffices to decide VWω ⊆ LB(A) to construct the NFA for the union. This
follows from decidability of language emptiness of AV AW

ω ∩ A.

Chapter 7

Admissible Sequence

Structures

The previous chapter contains the crucial proofs for closure under comple-
ment of Büchi automata using AR. Because translating S1S formulas to
Büchi automata requires complementation, all results would depend on AR.
To develop a completely constructive view, we need to restrict the infinity
of ω-sequences. We use UP sequences for that purpose. We abstract from
the two kinds of sequences, ω-sequences and UP sequences, to admissible
sequence structures, or short AS structures. Then we do most of the follow-
ing proofs for AS structures and can use the results for UP sequences and
under AR for ω-sequences.

A sequence structure is a structure containing a type constructor A

and operations CA ,⊗A , ◦A , and @A of the following types:

– A : finite Type → Type

– CA : ∀Σ. A (Σ) → Σω

– ◦A : ∀ΣΓ. A (Σ) → (Σ → Γ) → A (Γ)

– ⊗A : ∀ΣΓ. A (Σ) → A (Γ) → A (Σ × Γ)

– @A : ∀Σ. Σ → N → Σ → A (Σ)

These operations must be compatible with the operations ⊗, ◦, and @ for
ω-sequences given in Chapter 2:

– CA (σ ◦A f) ≡ CA σ ◦ f

– CA (σ ⊗A τ) ≡ CA σ ⊗ CA τ

– CA (a@n
A
b) ≡ a@nb

51

52 CHAPTER 7. ADMISSIBLE SEQUENCE STRUCTURES

We call such a sequence structure A -structure. Elements σ ∈ A (Σ) are
called A -sequences or only sequences if it is clear from the context that
we refer to A -sequences and not to ω-sequences. The prior compatibilities
are needed to lift results from ω-sequences to A -sequences. We use the
operation CA converting A -sequences to ω-sequences implicitly and hence
for σ, τ ∈ A (Σ) we can write σn, σ ≡ τ , or σ ∈ LB(A). We will leave
out the subscripts of the operations if it is clear that and to which sequence
structure we refer. When working with sequence structures, we need to
convert ω-languages to A -languages. For L ⊆ Σω we write A (L) for the
A -language obtained from L:

A (L) := {σ ∈ A (Σ) | CA σ ∈ L}

We need to generalize the definition of the image and preimage from ω-se-
quences to A -sequences. Given a language L ⊆ A (Σ), a function f from Σ
to Γ, and a function g from Γ to Σ, we define the image and preimage of L
analogous to ω-languages in Chapter 2:

f(L) := {σ ∈ A (Γ)|∃τ ∈ L. σ ≡ τ ◦A f}

g−1(L) := {σ ∈ A (Γ)|σ ◦A g ∈ L}

Languages of Büchi automata get restricted to the sequence structure:

LA (A) := A (LB(A))

An admissible sequence structure A , or short AS structure, is a
sequence structure satisfying the following additional properties regarding
NFAs: For any NFA A

a) it is decidable whether LA (A) ≡ ∅ or ∃σ. σ ∈ LA (A),

b) the image construction is correct, meaning that LA (f(A)) ≡ f(LA (A)),
and

c) totality holds: for all σ ∈ A (Σ) there are V and W such that σ ∈
VWω.

Condition a) is needed to show decidability of satisfiability of S1S. As the
image construction for Büchi automata will be needed later and cannot be
proven correct for sequence structures in general, b) is required. Last, c) is
needed to prove the complement construction correct for AS structures.

AS structures are needed to prove correctness, not to build operations.
They only provide proofs. All following constructions will result in the same
Büchi automata independent of the AS structure.

7.1. CORRECTNESS OF COMPLEMENTATION 53

7.1 Correctness of Complementation

Correctness of operations on Büchi automata apart of image and comple-
mentation with respect to an AS structure follows from correctness on ω-se-
quences. Complementation can be proven correct because AS structures
provide a proof of totality. Let A be an AS structure and A, A1, and A2

be NFAs over Σ.

Lemma 7.1. The union, intersection, and preimage construction for Büchi
automata are correct for A -sequences:

LA (A1 ∪ A2) ≡ LA (A1) ∪ LA (A2)

LA (A1 ∩ A2) ≡ LA (A1) ∩ LA (A2)

LA (f−1(A)) ≡ f−1(LA (A)) for f from Σ to Γ

Proof. Follows immediately from Lemmas 5.3, 5.4, and 5.1.

We prove correctness of the complement construction with respect to
A -sequences.

Lemma 7.2. LA (A) ∩ LA (AC) ≡ ∅.

Proof. Assume that there is a σ ∈ LA (A) ∩ LA (AC). By definition of AC

there are V and W such that σ ∈ VWω and VWω ∩ LB(A) ≡ ∅. This is a
contradiction since σ ∈ VWω and σ ∈ LA (A) implying σ ∈ LB(A).

Lemma 7.3. If VWω ∩ LB(A) ≡ ∅, then A (VWω) ⊆ LA (AC).

Proof. By definition of AC .

Lemma 7.4. If VWω ∩ LB(A) 6≡ ∅, then A (VWω) ⊆ LA (A).

Proof. Let σ ∈ A (VWω). By Lemma 4.21 there is a τ ∈ VWω ∩ LB(A)
because VWω ∩ LB(A) 6≡ ∅. Since σ ∈ A (Σ) it suffices to show that
σ ∈ LB(A). This follows by compatibility (Lemma 6.11).

Lemma 7.5. LA (A) ∪ LA (AC) ≡ A (Σ)

Proof. LA (A) ∪ LA (AC) ⊆ A (Σ) follows directly. Let σ ∈ A (Σ). By
the totality proof of A there are V and W such that σ ∈ VWω. If
VWω ∩ LB(A) ≡ ∅ (which is decidable) σ ∈ LA (AC) by Lemma 7.3. Oth-
erwise σ ∈ LA (A) by Lemma 7.4.

Theorem 7.6 (Closure under Complement). LA (AC) ≡ LA (A).

Proof. By Lemmas 7.2 and 7.5.

Another consequence of totality and the complement construction is log-
ical decidability of the word problem for A -sequences.

54 CHAPTER 7. ADMISSIBLE SEQUENCE STRUCTURES

Corollary 7.7. For any σ ∈ A (Σ), σ ∈ LA (A) is logically decidable.

Proof. By Lemma 7.5.

The full logical strength of closure under complementation is captured
only in Theorem 7.6 and Corollary 7.7 together as we need both to show
that AR implies BC.

We present two AS structures, the ω-structure and the UP-structure.

7.2 The ω-Structure

The structure of all ω-sequences is called the ω-structure: ω(Σ) := Σω with
Cω as the identity. The ω-structure is only admissible given AR because
then by Lemma 6.14 there is a proof of totality.

Corollary 7.8. AR implies BC.

Proof. Let A be an NFA. Given AR the ω-structure is admissible and AC

accepts the complement language of A by Theorem 7.6. The word problem
is logically decidable by Corollary 7.7.

Note that BC is weaker than the complement construction. BC only re-
quires NFAs accepting the complement to exists, but not their construction.

7.3 The UP-Structure

We call the structure representing UP sequences the UP-structure. UP
sequences are represented by pairs of strings: UP(Σ) := Σ∗ × Σ+ and
CUP(x, y) := xyω. We already proved that UP sequences are closed un-
der ◦ in Fact 2.22, under ⊗ in Lemma 2.25, and under @ in Fact 2.26. The
construction in these proofs can directly be used to define operations ◦UP,
⊗UP, and @UP. Language emptiness is decidable by Lemma 4.21. Totality
for UP sequences becomes trivial.

Fact 7.9. For every xyω there are V and W such that xyω ∈ VWω.

Proof. Choose V := [x]∼ and W := [y]∼.

To show that the UP-structure is admissible, it remains to show that the
image construction for Büchi automata from Lemma 5.2 is correct. This is
more effort for UP sequences as for ω-sequences, because the strings repre-
senting the UP sequences may be of different length.

Lemma 7.10. If xyω ∈ LB(A), then there are r and s such that rsω is an
accepting run for xyω.

7.4. BC IS EQUIVALENT TO BU 55

x y y y y y

̺ n m

Figure 7.1: The UP run constructed in Lemma 7.10. Dots indicate final
states in ̺ and vertical lines potentially loop positions.

Proof. Let ̺ be an accepting run. We say that i is a potentially loop

position if there is a final state in the part of ̺ on the i-th repetition of
y, or formally ∃n. |x| + i · |y| < n ≤ |x| + (i + 1) · |y| ∧ ̺n ∈ F . Clearly,
being a potentially loop position is decidable and there are infinitely many
potentially loop positions because there are infinitely many final states in
̺. Thus, there are two potentially loop positions i < j with ̺n = ̺m where
n = |x| + (i+ 1) · |y| and m = |x| + (j+ 1) · |y|. Because n and m are aligned
with the repetitions of y, ̺[0..n)̺[n..m)ω is a valid and initial run on xyω.
The run is final because n ≤ |x| + j · |y| and there is a final state between
|x|+j · |y| and m (because j is a potentially loop position). Figure 7.1 shows
the UP run.

Lemma 7.11. If xyω ∈ LB(A), then there are x′, y′, r′ and s′ such that
x′y′ω ≡ xyω, |x′| = |r′|, |y′| = |s′|, and r′s′ω is an accepting run for x′y′ω.

Proof. Let rsω be an accepting run for xyω ∈ LB(A) by Lemma 7.10. By
Lemma 2.25 there are u and v with xyω ⊗ rsω ≡ uvω. Then x′ := π1u,
y′ := π1v, r′ := π2u, and s′ := π2v complete the proof.

Lemma 7.12. LUP(f(A)) ≡ f(LUP(A))

Proof. LUP(f(A)) ⊇ f(LUP(A)) follows by correctness of f(A) for ω-se-
quences (Lemma 5.2).

Let xyω ∈ LUP(f(A)) and rsω be an accepting run with |x| = |r| and
|y| = |s| by Lemma 7.11. By the definition of the transition function, there
is an a ∈ Σ such that (rsω)n a

→A (rsω)(n+ 1) and fa = (xyω)n for all n.
With constructive choice one obtain an a(n). Let u := a(0) . . . a(|x| − 1)
and v := a(|x|) . . . a(|x| + |y| − 1). Because |u| = |r| and |v| = |s|, rsω is an
accepting run for uvω for A and xyω ∈ f(LUP(A)).

7.4 BC is equivalent to BU

The UP-structure is admissible without assumptions and thus the comple-
ment construction from Chapter 6 is correct for UP sequences constructively.
This yields a different and equivalent characterization of BC:

56 CHAPTER 7. ADMISSIBLE SEQUENCE STRUCTURES

Definition 7.13 (BU). BU is the following proposition: If the languages of
two Büchi automata contain the same UP sequences, then the languages are
equivalent. Formally

BU := ∀A1A2. LUP(A1) ≡ LUP(A2) → LB(A1) ≡ LB(A2).

Interestingly, BU does not require logical decidability of the word prob-
lem or something else. It expresses the idea that two Büchi automata, which
are finite transition systems and which accept different ω-languages, accept
different languages of finitely representable UP sequences. We begin to show
that BC implies BU.

Lemma 7.14. BC implies BU.

Proof. Let A1 and A2 be two NFAs with LUP(A1) ≡ LUP(A2). We show
that LB(A1) ⊆ LB(A2). By symmetry this implies LB(A1) ≡ LB(A2).

By BC there is an A2 with LB(A2) ≡ LB(A2). By Lemma 4.21 we
make a case analysis on the emptiness of A1 ∩ A2.

If LB(A1 ∩ A2) is empty, let σ ∈ LB(A1) and we need to show σ ∈
LB(A2). Using BC we have σ ∈ LB(A2) ∨ σ /∈ LB(A2). If σ /∈ LB(A2)
then σ ∈ LB(A2) and σ ∈ LB(A1 ∩ A2) contradicting emptiness.

Otherwise, there is an xyω ∈ LB(A1 ∩ A2) by Corollary 4.22 and we
have xyω ∈ LB(A1) and xyω /∈ LB(A2), which contradicts that A1 and A2

accept the same UP sequences.

To show that BU implies BC we first show that BU and Lemmas 7.2
and 7.5 instantiated for the UP-structure imply the instantiation of the same
lemmas for the ω-structure.

Lemma 7.15. BU implies for any NFA A that LB(A) ∪ LB(AC) ≡ Σω.

Proof. Surely there is an NFA Auniv accepting Σω (e.g. one final and ini-
tial state always transitioning into itself). Then the claim is equivalent to
LB(A ∪ AC) ≡ LB(Auniv). With BU it suffices to show LUP(A ∪ AC) ≡
LUP(Auniv), which follows by Lemma 7.5 instantiated for the UP-structure.

Lemma 7.16. BU implies for any NFA A that LB(A) ∩ LB(AC) ≡ ∅.

Proof. There is an NFA A∅ accepting ∅ (e.g. no states at all). The claim
is equivalent to LB(A ∩ AC) ≡ LB(A∅). With BU it suffices to show
LUP(A ∩ AC) ≡ LUP(A∅) ≡ ∅, which follows from Lemma 7.2 for the UP-
structure.

Lemma 7.17. BU implies BC.

Proof. Given BU, the word problem of Büchi automata is logically decidable
by Lemma 7.15. Büchi automata are closed under complement because for
any A the NFA AC accepts LB(A) by Lemmas 7.15 and 7.16.

7.4. BC IS EQUIVALENT TO BU 57

Theorem 7.18. BU is equivalent to BC.

Proof. By Lemmas 7.14 and 7.17.

58 CHAPTER 7. ADMISSIBLE SEQUENCE STRUCTURES

Chapter 8

Monadic Second Order Logic

S1S

In this chapter, we show that satisfiability in S1S is decidable and that
satisfaction is logically decidable. Following for instance Thomas [22] and
Blumensath [1], we first look at a simplified core logic MSO0 that only uses
second order variables. MSO0 formulas are translated to Büchi automata.

Decidability of language emptiness yields decidability of satisfiability.
Analogously, logical decidability of the word problem yields logical decid-
ability of satisfaction. We reduce the logic with both first and second order
variables, called MSO, to MSO0. Classically, second order variables are in-
terpreted with sets of numbers. Since in type theory there are no sets, we
interpret second order variables as A -sequences over B. This makes sense
as we need to construct Büchi automata accepting them. With this choice
we restrict S1S to decidable sets.

We define S1S for arbitrary AS structures because we can instantiate the
results constructively in the UP-structure or under AR in the ω-structure.
Let A by an arbitrary AS structure throughout this chapter.

8.1 The Core Logic MSO0

MSO0 formulas are given by the grammar

ϕ,ψ ::= X ⋖ Y | X ⊆ Y | ϕ ∧ ψ | ¬ϕ | ∃X. ϕ

where X,Y ∈ N. An interpretation is a function from N to A (B) assigning
an A -sequence over B to each variable. Satisfaction in MSO0 is defined by

59

60 CHAPTER 8. MONADIC SECOND ORDER LOGIC S1S

J �0 X ⋖ Y := ∃n ∈ (JX). ∃m ∈ (JY). m < n

J �0 X ⊆ Y := ∀n. n ∈ (JX) → n ∈ (JY)

J �0 ϕ ∧ ψ := J �0 ϕ ∧ J �0 ψ

J �0 ¬ϕ := J 20 ϕ

J �0 ∃X. ϕ := ∃M. JX:=M �0 ϕ

where n ∈ N := N n = true. JX:=M is the interpretation assigning X to M
and all other variables according to J . Formally:

JX:=M := λY.if X = Y then M else JY

We speak of sequences over B as sets for convenience and use letters M
and N for sets. Note that the satisfaction relation uses sequences only
as sets. Because we use sequences, we need to use sequence equivalence
instead of equality. The empty set ∅ can be obtained by false@0false always
(cf. Chapter 2 for the @ operation).

We define a function Vϕ yielding a list of the free variables of ϕ:

V(X ⋖ Y) := [X;Y]

V(X ⊆ Y) := [X;Y]

V(ϕ ∧ ψ) := Vϕ++Vψ

V(¬ϕ) := Vϕ

V(∃X. ϕ) := Vϕ \X

We say that two interpretations J and J ′ agree on a list of variables l
if JX ≡ J ′X for all variables X contained in l.

Lemma 8.1 (Coincidence). If J and J ′ agree on the free variables of ϕ,
then J �0 ϕ if and only if J ′

�0 ϕ.

Proof. By induction on ϕ.

8.2 Translation of Formulas to Büchi Automata

The coincidence Lemma 8.1 shows that only the sets assigned to free vari-
ables matter. We use this to define the vector language of a formula ϕ.
This language contains the interpretations satisfying ϕ reduced to the free
variables of ϕ. Because there are only finitely many free variables, we only
need to consider finitely many sets. Hence, we can take the product of
them to obtain a sequence over BVϕ. Such a sequence is called a vector

interpretation.
A vector interpretation σ ∈ A

(

BVϕ
)

satisfies ϕ, written σ �0 ϕ, if

λX.if X ∈ Vϕ then πXσ else ∅

satisfies ϕ. The choice of the empty set for non free variables is arbitrary.

8.2. TRANSLATION OF FORMULAS TO BÜCHI AUTOMATA 61

Definition 8.2 (Vector Language). The vector language of a formula ϕ is
the language of vector interpretations satisfying ϕ:

LV (ϕ) :=
{

σ ∈ A

(

B
Vϕ
) ∣

∣

∣σ �0 ϕ
}

Theorem 8.3. For all formulas ϕ, an interpretation J satisfies ϕ if and
only if the vector interpretation

⊗

Vϕ J satisfies ϕ.

Proof. By coincidence (Lemma 8.1).

It suffices to look at vector interpretations by the previous theorem. As
sets are A -sequences by definition,

⊗

Vϕ J is an A -sequence, too. To show
decidability of satisfiability of MSO0 formulas, we translate a formula into
a Büchi automaton accepting the vector language of the formula. Before
constructing the Büchi automaton, we need to introduce some notations for
vectors. Let l, l1 and l2 be lists of variables.

– We write Bl for the finite type BΣX.X∈l (where X ∈ l is assumed to be
proof irrelevant).

– If l2 contains only variables of l1, we write ⇓l1l2 for the function project-
ing vectors Bl1 to Bl2 .

– If X is contained in l, we silently identify Bl\X × B with Bl.

– If l1 contains exactly the same variables as l2, we identify Bl1 with Bl2 .

Let L ⊆ A (Bl). The outprojection of X from L is the following:

L ↓ X :=

{

σ ∈ A

(

B
l\X
)

∣

∣

∣

∣

∣

∃τ ∈ A (B). σ ⊗ τ ∈ L if X is in l
σ ∈ L otherwise

}

If X is not in L, L and L ↓ X are equivalent modulo type identification.
Otherwise L ↓ X is the language of sequences over Bl\X that can be extended
to sequences in L.

Lemma 8.4. If L ⊆ A (Bl) is extensional, then L ↓ X ≡ ⇓ll\X(L).

Proof. If X is not in l, both L ↓ X and ⇓ll\X(L) are equivalent to L using
extensionality of L. If X is in l, L ↓ X projects outs a sequence over B at
once, where ⇓ll\X(L) projects out a boolean at each position (which then
form a sequence). This is equivalent by extensionality of L.

Lemma 8.5. The following equivalences for vector languages hold:

LV (¬ϕ) ≡ LV (ϕ)

LV (ϕ ∧ ψ) ≡
(

⇓
V(ϕ∧ψ)
Vϕ

)−1
(LV (ϕ)) ∩

(

⇓
V(ϕ∧ψ)
Vψ

)−1
(LV (ψ))

LV (∃X. ϕ) ≡ LV (ϕ) ↓ X

62 CHAPTER 8. MONADIC SECOND ORDER LOGIC S1S

Proof. The first equivalence is by definition of negation.
In the second equivalence we need ⇓Vϕ∧ψ

Vϕ to align Vϕ with V(ϕ ∧ ψ).
The preimage of LV (ϕ) allows free variables of ψ but not of ϕ to be as-
signed arbitrarily. The intersection of both preimages precisely implements
conjunction.

For the last equivalence, we make a case distinction whether X is in Vϕ.
If X is not in Vϕ we have ∃X.ϕ ≡ LV (ϕ) ≡ LV (ϕ) ↓ X.

Otherwise X is in Vϕ and let σ ∈ LV (∃X. ϕ). Then there is an M
such that σX:=M �0 ϕ (σ gets implicitly unfolded to an interpretation).
Hence, σ ⊗ M ∈ LV (ϕ) and σ ∈ LV (ϕ) ↓ X. For the other direction, let
σ ∈ LV (ϕ) ↓ X. Then there is an M such that σ ⊗ M ∈ LV (ϕ). Hence,
σX:=M �0 ϕ, σ �0 ∃X. ϕ, and σ ∈ LV (∃X. ϕ).

Lemma 8.6. One can construct NFAs AX⋖Y and AX⊆Y such that

LA (AX⋖Y) ≡ LV (X ⋖ Y) and

LA (AX⊆Y) ≡ LV (X ⊆ Y).

Proof. Let Σ := B[X;Y]. Its easy to see that

LV (X ⋖ Y) ≡ A (Σ∗{a|aX = true}Σ∗{a|aY = true}Σω) and

LV (X ⊆ Y) ≡ A ({a|aX = true → aY = true}ω).

The languages Σ∗, {a|aX = true}, {a|aY = true}, and {a|aX = true →
aY = true} are regular and we can construct NFAs accepting them. By
Lemmas 5.5 and 5.7 and definition of LA (A) we can construct NFAs AX⋖Y

and AX⊆Y precisely accepting the desired languages.

Theorem 8.7. For every formula ϕ one can construct an NFA Aϕ with
LA (Aϕ) ≡ LV (ϕ).

Proof. We construct the NFA inductively on ϕ.

– For X ⋖ Y and X ⊆ Y we use the NFAs of Lemma 8.6.

– Given Aϕ and Aψ, by Lemma 8.5

Aϕ∧ψ :=
(

⇓Vϕ∧ψ
Vϕ

)−1
(Aϕ) ∩

(

⇓Vϕ∧ψ
Vψ

)−1
(Aψ)

suffices.

– Given Aϕ, A¬ϕ := AC
ϕ suffices by Lemma 8.5.

– Given Aϕ, let A∃X. ϕ :=
(

⇓Vϕ
Vϕ\X

)

(Aϕ). This is correct by Lemmas 8.5
and 8.4 because LV (Aϕ) is extensional.

8.3. MSO WITH FIRST ORDER VARIABLES 63

Because A is admissible, we have correctness of all used closure operations
on Büchi automata.

Corollary 8.8. Satisfiability of MSO0 formulas is decidable.

Proof. By Theorem 8.3 we can decide whether there is a satisfying vector
interpretation. Because A is admissible, LA (Aϕ) ≡ ∅ or ∃σ ∈ LA (Aϕ) is
decidable.

Corollary 8.9. Satisfaction in MSO0 is logically decidable.

Proof. Let ϕ be a formula and J and interpretation. We need to show
J �0 ϕ∨J 20 ϕ. This is equivalent to

⊗

Vϕ J ∈ LA (Aϕ)∨
⊗

Vϕ J /∈ LA (Aϕ)
by Theorem 8.3 and Theorem 8.7. Corollary 7.7 completes the proof.

Note that the two prior theorems hold for all AS structures. We look at
the special cases of the UP and the ω-structure.

Corollary 8.10. In the UP-structure, satisfiability of MSO0 formulas is
decidable and satisfaction in MSO0 is logically decidable.

Corollary 8.11. In the ω-structure, satisfiability of MSO0 formulas is de-
cidable and satisfaction in MSO0 is logically decidable given AR.

Lemma 8.12. Given AR, an MSO0 formula is satisfiable in the UP-struc-
ture if and only if it is satisfiable in the ω-structure.

Proof. By Theorem 8.7 we need to prove that there is a σ ∈ LB(Aϕ) if and
only if there is a xyω ∈ LB(Aϕ), which follows from Corollary 4.22.

Lemma 8.13. Satisfaction in MSO0 in the UP-structure is decidable.

Proof. To decide J �0 ϕ it suffices to decide
⊗

Vϕ J ∈ LUP(Aϕ) by Theo-
rem 8.7. Because

⊗

Vϕ J is guaranteed to be UP, the later is decidable by
Lemma 5.8.

8.3 MSO With First Order Variables

We enrich MSO0 with first order variables and obtain MSO, to which one
usually refers with S1S. MSO formulas are given by

ϕ,ψ ::= x < y | x ∈ X | X ⊆ Y | ¬ϕ | ϕ ∧ ψ | ∃x. ϕ | ∃X. ψ

The variables x, y ∈ N are first order variables ranging over numbers and
X,Y ∈ N are second order variables ranging over sets of number. Sets
are A -sequences over B as before. A first order interpretation is a
function from N to N and a second order interpretation is a function

64 CHAPTER 8. MONADIC SECOND ORDER LOGIC S1S

from N to A (B). We use the letter I for first order and the letter J for second
order interpretations. The satisfaction relation is defined as expected:

I, J � x < y := Ix < Iy

I, J � x ∈ X := (Ix) ∈ (JX)

I, J � X ⊆ Y := ∀n. n ∈ (IX) → n ∈ (JY)

I, J � ¬ϕ := I, J 2 ϕ

I, J � ϕ ∧ ψ := I, J � ϕ ∧ I, J � ψ

I, J � ∃x. ϕ := ∃n. Ix:=n, J � ϕ

I, J � ∃X. ϕ := ∃M. I, JX:=M � ϕ

For a reduction from MSO to MSO0 we need to eliminate first order vari-
ables. First order variables will be represented by second order variables,
for which we ensure that they are interpreted with singleton sets. We write
{n} := false@ntrue for the singleton set containing n. Being a singleton can
be expressed in MSO0 as

sing X := ¬X ⋖X ∧ ∃Y. X ⋖ Y

where Y is different from X e.g. Y := X + 1.

Fact 8.14. If J �0 sing X, then one can construct an n such that JX ≡ {n}.

Proof. By the right conjunct of sing X there is an n ∈ JX. Because ∈ is
decidable, one obtains an n ∈ JX with constructive choice. By the left
conjunct, n is the only number contained in JX.

We will give four functions:

1. ⌊·⌋ translates an MSO formula into an MSO0 formula.

2. ⌊·, ·⌋ translates a first order and a second order interpretation to an
interpretation for MSO0.

3. ⌈·⌉1 translates an MSO0 interpretation into a first order interpretation.

4. ⌈·⌉2 translates an MSO0 interpretation into a second order interpreta-
tion.

The functions should satisfy the follwing: if I, J � ϕ then ⌊I, J⌋ �0 ⌊ϕ⌋ and
if J �0 ⌊ϕ⌋ then ⌈J⌉1, ⌈J⌉2 � ϕ. Satisfaction and satisfiability of MSO can
be translated to MSO0 with these functions. We start with the translation
functions for interpretations. The function ⌊·, ·⌋ merges two interpretations

8.3. MSO WITH FIRST ORDER VARIABLES 65

into one. We use even variables in MSO0 for first order variables in MSO

and odd variables in MSO0 for second order variables in MSO.

⌊x⌋ := x+ x

⌊X⌋ := X +X + 1

⌊I, J⌋X :=

{

{I(X%2)} if X is even

J(X%2) if X is odd

where % stands for down-rounding division on N.

Fact 8.15. ⌊I, J⌋⌊x⌋ ≡ {Ix} and ⌊I, J⌋⌊X⌋ ≡ JX for any first order vari-
able x and second order variable X.

When translating MSO formulas to MSO0 formulas one needs to ensure
that the variables used for free first order variables must be interpreted as
singleton sets:

⌊x < y⌋ := ⌊x⌋ ⋖ ⌊y⌋ ∧ sing ⌊x⌋ ∧ sing ⌊y⌋

⌊x ∈ X⌋ := ⌊x⌋ ⊆ ⌊X⌋ ∧ sing ⌊x⌋

⌊X ⊆ Y ⌋ := ⌊X⌋ ⊆ ⌊Y ⌋

⌊¬ϕ⌋ := ¬⌊ϕ⌋

⌊ϕ ∧ ψ⌋ := ⌊ϕ⌋ ∧ ⌊ψ⌋

⌊∃x. ϕ⌋ := ∃⌊x⌋. sing ⌊x⌋ ∧ ⌊ϕ⌋

⌊∃X. ϕ⌋ := ∃⌊X⌋. ⌊ϕ⌋

Lemma 8.16. I, J � ϕ if and only if ⌊I, J⌋ �0 ⌊ϕ⌋.

Proof. By induction on ϕ using Fact 8.15, the fact that {n}⋖ {m} is equiv-
alent to n < m, and {n} ⊆ M is equivalent to n ∈ M .

Fact 8.17. If J �0 ⌊ϕ⌋, then J �0 sing ⌊x⌋ for all free first order variables
x in ϕ.

Proof. By induction on ϕ.

To give the function translating an MSO0 interpretation to a first and
a second order interpretation for MSO, fix a formula ϕ and assume that
J �0 ⌊ϕ⌋. The conversion to second order is easy. But only first order
variables free in ϕ are guaranteed to be singleton sets.

⌈J⌉1x :=

{

n if x is free in ϕ and J⌊x⌋ ≡ {n}

0 otherwise

⌈J⌉2X := J⌊X⌋

Facts 8.14 and 8.17 justify the first case of ⌈J⌉1, because n can be con-
structed.

66 CHAPTER 8. MONADIC SECOND ORDER LOGIC S1S

Lemma 8.18. J �0 ⌊ϕ⌋ if and only if ⌈J⌉1, ⌈J⌉2 � ϕ.

Proof. By induction on ϕ using Facts 8.14 and 8.17.

Lemma 8.19. Satisfaction in MSO is logically decidable.

Proof. By Lemma 8.16 it suffices to show ⌊I, J⌋ �0 ⌊ϕ⌋ ∨ ⌊I, J⌋ 20 ⌊ϕ⌋,
which follows from Corollary 8.9.

Lemma 8.20. Satisfiability of MSO formulas is decidable.

Proof. By Corollary 8.8 satisfiability of ⌊ϕ⌋ is decidable. Assume there is a
J satisfying ⌊ϕ⌋. Then ⌈J⌉1 and ⌈J⌉2 satisfy ϕ by Lemma 8.18. Assume
⌊ϕ⌋ is unsatisfiable. To show that ϕ is unsatisfiable, assume there are I and
J satisfying ϕ. This contradicts that ⌊ϕ⌋ is unsatisfiable using Lemma 8.16.

The two prior theorems hold for all AS structures. Is easy to translate
the relationship between the UP-structure and the ω-structure from MSO0

to MSO. Then AR implies SL:

Definition 8.21 (SL). SL is the following proposition: Satisfaction in MSO

in the ω-structure is logically decidable. Formally

SL := ∀ϕIJ. I, J � ϕ ∨ I, J 2 ϕ,

where ϕ is an MSO formula, I a first order interpretation, and J a second
order interpretation of the ω-structure.

Corollary 8.22. AR implies SL.

Proof. Follows by Lemma 8.19 because under AR the ω-structure is admis-
sible.

Corollary 8.23. For the UP-structure, satisfaction in MSO is decidable.
Given AR, an MSO formula is UP-satisfiable if and only if it is ω-satisfiable.

Proof. By Lemmas 8.12 and 8.13 using the translation from MSO to MSO0.

Chapter 9

Necessity of Additive

Ramsey

By now, we have shown that AR is equivalent to RF, that BC is equivalent
to BU, that AR implies BC, and that AR implies SL. We want to show that
AR (or equivalently RF) is necessary to show BC and SL. We are going to
show that BC implies RF, that SL implies RF, and hence that AR, RF, BC,
BU, and SL are equivalent. A collection of the formal definitions of the five
propositions can be found in the appendix.

9.1 BC Implies RF

Let (Γ,+) be a finite semigroup. We give a Büchi automaton accepting the
ω-sequences admitting a Ramseyan factorization and prove that this Büchi
automaton accepts all ω-sequences.

Lemma 9.1. There is an NFA Aa accepting σ if and only if σ admits a
Ramseyan factorization g and

∑

σ[g0..g1) = a.

Proof. We build an NFA A′
a which accepts the language {x|x 6= ε∧

∑

x = a}.
Let A′

a := (Γ + {1, 2}, {1}, {2},→) where

1 b
→ d := b = d

c
b

→ d := c+ b = d

c
b

→ 2 := c+ b = a

1 b
→ 2 := b = a.

The NFA stores the current sum of the already processed part of the string in
its state and is allowed to enter 2 if this sum is a. Choose Aa := Auniv ·A′

a
ω,

where Auniv is an NFA accepting Γ∗.

67

68 CHAPTER 9. NECESSITY OF ADDITIVE RAMSEY

Let σ ∈ LB(Aa). Then σ ≡ x · Πyi and
∑

yi = a for all i by construction
of Aa. Now the recursive function g with g0 = |x| and g(i+ 1) = gi+ |yi| is
a Ramseyan factorization for σ because

∑

σ[gi..g(i+ 1)) =
∑

yi = a.
Let σ admit a Ramseyan factorization g with

∑

σ[g0..g1) = a. Then
σ ≡ σ[0..g0) · Πλi.σ[gi..g(i+ 1)) and

∑

σ[gi..g(i+ 1)) = a. Hence σ ∈
LB(Aa).

Lemma 9.2. There is an NFA A accepting σ if and only if σ admits a
Ramseyan factorization.

Proof. By Lemma 9.1 the NFA
⋃

a∈Γ Aa suffices.

Lemma 9.3. BC implies RF.

Proof. Let A be the NFA from Lemma 9.2. Using BC we have σ ∈ LB(A)
or σ /∈ LB(A). If σ ∈ LB(A) then σ admits a Ramseyan factorization.
If σ /∈ LB(A) then σ ∈ LB(A) by BC and there is an xyω ∈ LB(A) by
Corollary 4.22. But by Fact 3.2 xyω admits a Ramseyan factorization, hence
xyω ∈ LB(A) contradicting xyω ∈ LB(A).

Thus AR, RF, BC, and BU are equivalent and AR implies SL. It remains
to show that SL implies RF.

9.2 SL Implies RF

Let (Γ,+) be a finite semigroup and σ be a fixed but arbitrary ω-sequence
over Γ. Recall the proof that excluded middle implies RF in Section 3.2. It
suffices to show IPP ∨ DM(¬IPP) and INF≃ ∨ DM(¬INF≃) to show RF (recall
the definitions of IPP and INF≃ in Definition 3.7). These two propositions
can be proven using SL. Because we assume SL, we are allowed to make
use of all logical connectives, have De Morgan laws for quantifiers in MSO

formulas and hence can use all-quantifiers both for first and second order
variables in MSO.

We want to encode the proposition
∑

σ[i..j) = c into an MSO satis-
faction problem. It is important that the bounds of the sum are not fixed
numbers, which would allow building a formula recursively, but should be
MSO variables. To encode σ we use distinct variables Xa for each a ∈ Γ.
The sequence σ is encoded into a second order interpretation Jσ assigning
the set of all positions where a occurs in σ to Xa:

Jσ := λX.

{

λn.if σn = a then true else false if X = Xa

∅ otherwise

We quantify over all intermediate sums
∑

σ[i..i+ 1) to
∑

σ[i..j) and ensure
that they are correct. We use distinct variables Ya for all a ∈ Γ different
from all Xa to encode the the intermediate sums.

9.2. SL IMPLIES RF 69

We need formulas expressing ≤ and the successor relation:

x ≤ y := ¬(y < x)

y succof x := x < y ∧ ¬∃z. x < z < y

We use MSO variables x for i and y for j and want to give a formula
ϕcx,y such that I, Jσ � ϕcx,y if and only if

∑

σ[Ix..Iy) = c for Ix < Iy.
We split the definition into four parts: ϕunique states that a number cannot
be in more than one Ya, ϕinit states that

∑

σ[i..i+ 1) = σi, ϕstep that
∑

σ[i..k + 1) =
∑

σ[i..k) + σk for i < k < j, and ϕend that
∑

σ[i..j) = c.
The formulas force the number k to be in Ya if

∑

σ[i..k + 1) = a. Note that
there is one intermediate sum less than colors to add and hence we need to
use the predecessor of y in ϕend.

ϕunique := ∀z.
∧

a∈Γ



z ∈ Ya →
∧

b 6=a

z /∈ Yb





ϕinit :=
∧

a∈Γ

(x ∈ Xa → x ∈ Ya)

ϕstep := ∀z. x ≤ z < y →

(

∧

a∈Γ

z ∈ Ya →

(

∀z′. z′ succof z →
∧

b∈Γ

(

z′ ∈ Xb → z′ ∈ Ya+b

)

)

)

ϕend := ∀z. y succof z → z ∈ Yc

ϕcx,y := ∃
a∈Γ

Ya. ϕunique ∧ ϕinit ∧ ϕstep ∧ ϕend

Lemma 9.4. For any first order interpretation I with Ix < Iy, I, Jσ � ϕ
c
x,y

if and only if
∑

σ[Ix..Iy) = c.

Proof. The formula ϕunique ensures that a number is in at most one of the
Ya. We prove that n ∈ Ya if and only if

∑

σ[Ix..n+ 1) = a for Ix ≤ n < Iy
by induction.

If Ix = n, then ϕinit and ϕunique ensure the claim. If Ix < n+1 < Iy, we
need to show that n+1 ∈ Ya if and only if

∑

σ[Ix..n+ 2) = a. By induction
hypothesis n ∈ Yb if and only if

∑

σ[Ix..n+ 1) = b. When choosing z as n
in ϕstep, ϕstep and ϕunique require that n+1 ∈ Xd if and only if n+1 ∈ Yb+d.
Because a =

∑

σ[Ix..n+ 2) =
∑

σ[Ix..n+ 1) + σ(n + 1) = b + d we have
n+ 1 ∈ Ya if and only if

∑

σ[Ix..n+ 2) = a.
Choosing n as Iy−1 yields that Iy−1 ∈ Ya if and only if

∑

σ[Ix..Iy) = a.
The formula ϕend ensures that Iy − 1 ∈ Yc and the lemma is proven.

Using ϕcx,y we prove the propositions required to derive RF.

70 CHAPTER 9. NECESSITY OF ADDITIVE RAMSEY

Lemma 9.5. SL implies INF≃ ∨ DM(¬INF≃).

Proof. By the definition of ≃ (cf. Section 3.2) and Lemma 9.4, INF≃ is
equivalent to the satisfaction problem

I, Jσ � ∃x. ∀y. ∃z. y < z ∧ ∃z′. z < z′ ∧
∨

a∈Γ

ϕax,z′ ∧ ϕaz,z′

for any I (because the formula has no free first order variables). By SL the
formula is satisfied or not. If it is, then INF≃ holds. Otherwise DM(¬INF≃)
holds by applying De Morgan laws to the formula (justified by SL).

Lemma 9.6. SL implies IPP ∨ DM(¬IPP).

Proof. The proof is analogous to Lemma 9.5. We encode IPP as an equiva-
lent satisfaction problem:

I, Jσ �
∨

a∈Γ

∀x. ∃y. x < y ∧ y ∈ Xa

for any I. By SL the formula is satisfied. If it is, IPP holds. Otherwise
DM(¬IPP) holds by applying De Morgan laws.

Theorem 9.7. SL implies RF.

Proof. By Lemma 3.15 it suffices to show IPP and INF≃. By Lemmas 3.11
and 3.13, IPP∨DM(¬IPP) and INF≃ ∨DM(¬INF≃) suffice, which follow from
Lemmas 9.5 and 9.6.

Theorem 9.8. AR, RF, BC, BU, and SL are equivalent.

Proof. By Lemma 3.6 AR is equivalent to RF, by Theorem 7.18 BC is equiva-
lent to BU, by Corollary 7.8 AR implies BC, by Corollary 8.22 AR implies SL,
by Lemma 9.3 BC implies RF, and by Theorem 9.7 SL implies RF. Figure 9.1
illustrates the implications together with the proof ideas.

Remark 9.9. The implication from AR to SL could be split into an im-
plication from AR to BC and from BC to SL. But then one has to modify
Theorem 8.7 not to construct the NFA Aϕ but only to show its existence.
Hence, there must be another lemma constructing Aϕ to show decidability
of satisfiability.

Corollary 9.10. AR, RF, BC, BU, and SL are independent.

Proof. RF is independent by Theorem 3.19 and thus are the others.

9.2. SL IMPLIES RF 71

BU

AR RF

BC

SL
Exluded
middle

Markov’s
principle

C
om

plem
entation

by
B

üchi

Tr
an

sl
at

io
n

of

fo
rm

ul
as

to
N

FA
s

E
ncoding

into
M

S
O

N
FA

fo
r

R
am

se
ya

n

fa
ct

or
iz

at
io

ns

Additivity

Additivity and
idempotent elements

Nonempty NFAs
accept an UP sequence

Complementation
for UP sequences

C
on

st
ru

ct
iv

e
ch

oi
ce

on
N

2

Sem
igroup

(B
,&

)

Figure 9.1: The implications between AR, RF, BC, BU, SL, excluded middle,
and Markov’s principle together with the major proof ideas.

72 CHAPTER 9. NECESSITY OF ADDITIVE RAMSEY

Chapter 10

Related Work

We separate related work in two parts: Work related to our results and
work related to the formalization of the results, where we make additional
distinctions in the first group.

Complementation Complementation of Büchi automata was essential to
translate formulas to Büchi automata. Out of the many different comple-
mentation approaches, we decided to follow the Ramsey-based complemen-
tation approach given by Büchi [3], Khoussainov and Nerode [10], Hofmann
and Lange [9], and many others. All follow the same structure: they define
the equivalence relation ∼, prove compatibility and totality, and show that
the complement Büchi automaton exists. While Hofmann and Lange [9]
build NFAs to show that the ∼ equivalence classes are regular and use
Ramsey’s Theorem to prove totality, Khoussainov and Nerode [10] use the
Myhill-Nerode theorem for showing regularity of the ∼ equivalence classes
and give a proof of totality without Ramsey’s Theorem. We will come back
to Khoussainov and Nerode’s proof of totality later when discussing AR. It
is not clear that other complementation constructions can be proven cor-
rect using AR only. For example, Safra [15] uses König’s Lemma for his
translation from (nondeterministic) Büchi automata to (deterministic) Ra-
bin automata, which can be complemented easily.

UP Sequences Büchi automata accept exactly the ω-regular languages.
ω-regular languages are usually defined using ω-regular expressions. As
we have not formalized ω-regular expressions, we did not use this term in
our work. Using (Additive) Ramsey to show that the vector languages of
S1S formulas are ω-regular is uncritical classically because there Ramsey’s
Theorem holds. Hence, it is clear that is suffices to look for UP sequences
when deciding satisfiability.

Calbrix et al. [5] show that an ω-regular language is fully determined by
the UP sequences it contains. Additionally, Calbrix et al. [6] give a decision

73

74 CHAPTER 10. RELATED WORK

procedure for satisfiability of S1S based on UP sequences and NFAs on
strings. An UP sequence xyω can be encoded as the string x$y where $ is
a fresh symbol. Formulas are translated to NFAs accepting these strings.
This translation differs from ours because we use Büchi acceptance even for
UP sequences. We conjecture that the construction by Calbrix et al. can
be verified constructively for UP sequences. To show that two ω-regular
languages containing the same UP sequences are equivalent (BU), Calbrix et
al. use complementation. We showed that this is constructively equivalent to
BC and thus using NFAs on strings for UP sequences cannot give a stronger
result than decidability of S1S in the UP-structure.

Bresolin et al. [2] study Büchi automata that only accept UP sequences.
Their approach is different from ours. We only care about UP sequence
when studying Büchi automata in the UP-structure and are not interested
in the behavior of a Büchi automaton on other sequences. Bresolin et al. re-
strict the underlying NFAs such that they can only accept UP sequences
but no others. These restricted NFAs are not closed under complementa-
tion because the complement of a language only containing UP sequences
contains all sequences which are not UP.

Additive Ramsey In the paper on decidability of S1S, Büchi [3] uses the
unrestricted version of Ramsey’s Theorem. The restriction to additive col-
orings seems necessary when Büchi [4] generalizes from N to ω1, even Büchi
did not use the term “additive”. He already uses the equivalence relation
≃ we used to derive AR from excluded middle. The name “additive” and a
clear encapsulation of Additive Ramsey’s Theorem is given by Shelah [17],
where Shelah generalizes to ω2 without using automata. He also uses the ≃
relation.

Ramseyan factorizations occur for example in Perrin and Pin [14] as in
Blumensath [1]. Blumensath uses Ramseyan factorizations to translate S1S
formulas to finite Wilke algebras. To our knowledge the equivalence of RF

and AR was not acknowledged by now, even if they are closely related. Perrin
and Pin as Blumensath show RF using the unrestricted version of Ramsey’s
Theorem or prove it in the same way the unrestricted Ramsey’s Theorem
is proven. Classically, the proof of Ramsey’s Theorem is very elegant, but
from a constructive point of view unnecessarily strong. The proof of AR by
Shelah and the one of totality by Khoussaniov and Nerode are comparable,
because both are using the ≃ equivalence. The later proof is more detailed
and derives totality directly, where the extension to AR is easy. We started
with this proof for showing that SL implies RF and ended up with a simplified
version, which has parallels to a proof by Kołodziejczyk et al. [11] (see next
paragraph for details).

75

Equivalence of AR, BC, and SL Kołodziejczyk et al. [11] show a rem-
iniscent result to ours in the logic RCA0. They show that in RCA0 com-
plementation of Büchi automata, decidability of S1S1, AR, and induction
on Σ0

2 formulas are equivalent. The logic RCA0 is very different from con-
structive type theory and plays an important role in reverse mathematics.
RCA0 is a classical logic with the law of excluded middle but with a limited
strength of induction. RCA0 admits only Σ0

1 induction, which restricts the
induction hypothesis to be of the form ∃x1. . . .∃xn. ϕ, where ϕ contains only
bounded quantifiers (∃x < m. ψ or ∀x < m. ψ). The Σ0

2 induction principle
allows induction hypotheses of the form ∃x1. . . .∃xn. ∀y1. . . .∀ym. ϕ, where
ϕ contains only bounded quantifiers again. Constructive type theory allows
induction hypotheses with arbitrarily many quantifier alternations but has
no excluded middle. This makes Σ0

2 induction trivial in type theory. On the
other hand, we show equivalence of AR to complementation and logically
decidability of the word problem for Büchi automata (so to BC). In RCA0,
logical decidability follows directly from excluded middle. Another remark-
able point is that Kołodziejczyk et al. show equivalence to decidability of
S1S and not to logical decidability of satisfaction in S1S (SL), which in RCA0

is again trivial by excluded middle.
Although our proof that SL implies RF originated from Khoussainov

and Nerode [10], we end up with a proof with parallels to the proof that
Σ0

2 induction implies AR. Kołodziejczyk et al. first prove Ordered Ramsey’s
Theorem (without an ≃ equivalence). Ordered Ramsey’s Theorem does not
require a finite semigroup of colors, but a partial ordering on the colors
and that the coloring is compatible with the order. Then they derive AR

using semigroup theory from Ordered Ramsey’s Theorem. To prove Ordered
Ramsey’s Theorem, Kołodziejczyk et al. build a similar sequence of pairs
(ni, ki) as we do in Lemma 3.12.

Formalization Dozkal and Smolka [8] give a formalization of regular lan-
guage representations in Coq including NFAs and WS1S. WS1S is the weak
monadic second order logic, which restricts sets to be finite and hence they
can are representanble by strings. Similar to us, they use dependently typed
structures to represent NFAs. The translation from WS1S to NFAs corre-
sponds to the translation from S1S to Büchi automata. The translation to
Büchi automata is easier, because one has not to deal with strings of differ-
ent length. Dozkal and Smolka use a less than relation N ⋖M on sets, too.
Where we require an n ∈ N and m ∈ M with n < m to exist, they require
all n ∈ N to be less than all m ∈ M . The existential quantifier is critical for
singleton sets on sequences because only then one can obtain the number

1They show equivalence to the depth-n fragment of S1S for any n ≥ 5, because satis-
faction cannot be expressed in RCA0 for an arbitrary formula without known quantifier
rank.

76 CHAPTER 10. RELATED WORK

in the singleton using constructive choice. The formalization of NFAs on
strings is more compact than on sequences. Because strings are lists defined
inductively, acceptance can be defined inductively as well, which results in
an elegant Coq formalization. Because we represent sequences by functions,
our formalization lacks this elegance. The formalization by Dozkal and
Smolka uses Ssreflect and hence another implementation of e.g. finite types,
which makes it difficult for us to use their results for regular languages in
our formalization.

ω-languages do not to play an important role in formalization in proof as-
sistants. Schimpf et al. [16] give a verified decision procedure for LTL model
checking in Isabelle/HOL. LTL formulas are translated to generalized Büchi
automata. This translation is not structurally recursive on the LTL formu-
las and no closure properties of (generalized) Büchi automata are required.
Merz [13] gives a formalization of weak alternating automata. The formal-
ization is provided in Isabelle/HOL. He proves closure under complement
of weak alternating automata following Thomas [21] using infinite games.
Sequences are formalized as function as in our development. The formal-
ization contains no proof that Büchi and weak alternating automata accept
the same class of languages.

Chapter 11

Remarks on Coq

Development

All results presented here are fully formalized following the organization of
this thesis. We discuss some problem in formalizing this work and argue
why some aspects are formalized differently as presented here.

The formalization depends heavily on the use of finite types, since they
occur almost everywhere. We use the implementation of finite types by
Menz [12], which was usable nicely in general but which has some technical
extensions needed for vector types. In Chapter 8 we identified vector types
Bl1 and Bl2 for lists l1 and l2 to obtain compact definitions, e.g. for the
outprojection of a variable in Section 8.2. This type identification is not
possible in Coq. Hence, we need to use converter functions and definitions
as proofs get more technical.

Defining sequences as functions N → Σ involves a lot of arithmetic on
natural numbers as the definition of infinitely often as ∀n. ∃m ≤ n. pm does.
Arithmetic is not elegant in Coq and hence some proofs get much longer
than one would hope for. The tactic omega for solving arithmetical goals
is essential for doing these proofs. Still, one has to solve several equations
manually. Especially when proving correctness of closure operations of Büchi
automata, showing that a given Büchi automaton accepts a given language
can be tedious and far away from intuition. Setoid rewriting with sequence
and language equivalence is crucial to be able to work with sequences in
Coq.

Alternatively, sequences could be defined as streams. Inductive defini-
tions of lists and acceptance yield more elegant proofs regarding regular
languages than for Büchi automata in our development. We are not sure
whether streams would make things more elegant and representing decidable
sets by streams over B could be more complicated.

Formalizing S1S and the translation to Büchi automata is easier than
formalizing closure operations of Büchi automata because formulas are de-

77

78 CHAPTER 11. REMARKS ON COQ DEVELOPMENT

Specification Proof
Preliminaries 522 1156
Ramseyan Properties 147 432
NFAs 238 491
Basic Operation on Büchi Automata 225 459
Büchi Complementation 182 551
AS Structures 156 453
S1S 487 934
Necessity of AR 167 473
Total 2123 4949

Figure 11.1: Size (lines of code) of our Coq Development divided according
to the Chapters of this work.

fined inductively. Using the closure operations is simple. This hides the
complexity of dealing with sequences in the closure operations of Büchi au-
tomata. We used named variables for our definition of S1S (where Dozkal
and Smolka [8] used De Bruijn indices). Using names was not a problem in
the formalization.

Our formal development differs from the paper version in some points.
Strings are not represented by lists but by nonempty prefixes of sequences.
A string is defined as a pair of a sequence and the last index of the sequence
still belonging to the string. Hence, we cannot represent the empty string
and do not have a usable equality on strings. On the other hand, index based
access of symbols is simplified. Because strings actually consist of sequences,
strings and sequences behave uniformly and proofs get simpler. Instead of
equality on strings we use an equivalence as we already do for sequences.
In the definition of the ω-concatenation and ω-iteration of languages it was
crucial to use nonempty strings. Because we cannot represent the empty
string, this becomes trivial and made definitions of these functions much
easier. We do not have to give proofs to the functions, that strings are
actually nonempty. On the other hand, the lack of the empty string requires
more case distinctions when the empty string would be usable.

AS structures are represented as dependently typed structures similar
to our definition in Chapter 7. For UP sequences, it is important that the
representation as pairs of strings can be chosen. Then these strings become
available for computation to decide whether an UP sequence is contained in
the language of a Büchi automaton (Lemma 5.8) or to decide satisfaction
in the UP-structure (Lemma 8.13). The necessity to define operations C,
◦, ⊗, and @ for each AS structure may seem unnecessarily complicated.
It encapsulates that the ω-sequences, that can be represented by an AS
structure, are closed under these operations when one sees an AS structure
as a subset of Σω.

79

The technicality of proofs regarding sequences becomes apparent in the
comparison of lines of code for specification and proofs. Our development
consists of about 7100 lines of code, where only 2100 are specification and
the remaining 5000 are proofs. Note that Doczkal and Smolka [8] have a
proportion of 1300 to 1700 lines of code. For more details see Figure 11.1.
Apart from the library for finite types, we make use of Smolka [18] for an
implementation of lists and basic decidability facts. The library for finite
types by Menz [12] contains some code of Smolka and Stark [19] for turning
decidable predicates into proof irrelevant predicates. The development can
be found at http://www.ps.uni-saarland.de/~lichter/master/.

http://www.ps.uni-saarland.de/~lichter/master/

80 CHAPTER 11. REMARKS ON COQ DEVELOPMENT

Chapter 12

Conclusion and Future Work

We have seen that the methods and constructions for proving decidability of
S1S can be transferred from from classical logic to constructive type theory.
We need to assume AR to show correctness, but not excluded middle. AR

suffices to show decidability of MSO formulas and SL. As ω-sequences are
infinite, we cannot reason completely constructively about sequences and
need to use AR. But for the restricted UP-structure we prove the same
constructions to be correct without assumptions.

Totality is the crucial property for complementing Büchi automata.
Defining the complementation operation on Büchi automata is not a prob-
lem, but proving its correctness is not possible for ω-sequences construc-
tively, because totality cannot be proven. Totality as in Lemma 6.14 cannot
be proven constructively because for an arbitrary sequence σ we need to
show that a language VWω containing σ exists. But this VWω depends on
the behavior of σ towards infinity. With AS structures we separate totality
from the rest of the proofs. This makes it easy to instantiate the results for
ω-sequences under AR and for UP sequences constructively.

The remaining closure operations on Büchi automata can be proven cor-
rect following the classical proofs. Constructively, there are some critical
points, for instance the Büchi acceptance condition. It is not equivalent
constructively, whether there is a single final state occurring infinitely often
in a sequence, or whether some final states occur infinitely often in the se-
quence. Classically, both conditions are equivalent and appear for instance
in Thomas [21] and Vardi [24].

To show decidability of satisfiability and logical decidability of satisfac-
tion, S1S formulas are translated to Büchi automata using closure opera-
tions. To obtain an easier translation, we first translate MSO0 formulas
without first order variables to Büchi automata and then MSO formulas
with first order variables to MSO0 formulas. This separation makes formal
proofs a lot simpler. The AS structures transfer to the logic and we can
have a constructive view on S1S using UP sequences or a more classical one

81

82 CHAPTER 12. CONCLUSION AND FUTURE WORK

with ω-sequences under AR. Because AS structures are only needed for cor-
rectness proofs and not for constructions, showing equisatisfiability of both
structures under AR is easy.

We restrict S1S to use decidable sets represented by sequences over B.
Allowing sets to be undecidable by using sequences over P would make it
impossible to run Büchi automata on these sequences. The constructions for
Büchi automata rely e.g. on the decidability of the transition relation. But
this requires to know which symbol at some positions of a sequence occurs.
Additionally the translation form MSO to MSO0 would not be possible be-
cause we need constructive choice to obtain the member in a singleton set
and constructive choice requires sets to be decidable. Using sequences over
B for sets in S1S is justified becuase the same translation to Büchi automata
as for S1S in classical logic with sets can be used and we are able to show
similar results.

In retrospect, it becomes understandable that S1S with ω-sequences can-
not be treated constructively but that we need something, in our case AR,
which reduces the infinity of ω-sequences to something finite. It is not sur-
prising that the restriction to UP sequences, which still have an infinite
meaning but are represented finitely, allows constructive correctness proofs.

Last, AR is necessary for both, BC and SL. AR, RF, BC, BU and SL

are equivalent. To show that SL implies RF, SL is strong enough to reuse
the proof that excluded middle implies RF because the usages of excluded
middle can be replaced by encodings into S1S and SL. The proof that BC

implies RF is much more elegant and reveals benefits of nondeterminism.
Showing the equivalence between BC and BU requires complementation for
the UP-structure and gives an additional justification for using AS struc-
tures, even if one is only interested in results for the ω-structure. As RF is
independent, all of the other propositions are independent as well.

When formalizing these results, we recognized that using ω-sequences as
functions is much less pleasant in Coq than using inductive definitions for
strings, but still this should not be a problem for experienced Coq users. In
most cases one can follow the classical proofs. The increased effort may be
grounded in sequences being not defined inductively, that number arithmetic
is elaborate in Coq, that some problems on sequences get harder than on
strings, and our design decisions.

Future Work

We gave two AS structures, the UP-structure and the ω-structure. Are
there other AS structures? Are there fully constructive AS structures more
expressive than UP sequences? By now, we were not able to find one. Is
there an AS structure between the UP-structure and the ω-structure in the
sense that is uses strictly weaker assumptions than AR, e.g. only the infinite

83

pigeonhole principle (see Definition 3.7)?
McNaugthon’s theorem states that for every (nondeterministic) Büchi

automaton there is a (deterministic) Muller automaton accepting the same
language. It can be used to show that S1S is as expressive as weak S1S where
quantification is only allowed over finite sets, but free set variables may still
be infinite1. We do not expect that McNaugthon’s theorem can be shown
constructively, but it would be pleasant if one can show it using AR or even
more, that it equivalent to it. This relates to the question whether different
acceptance conditions for sequences, e.g. Büchi, Muller, Rabin, or Street
acceptance, which are equivalent classically, are equivalent constructively as
well.

Complementation is essential for the translation from formulas to Büchi
automata and for showing SL. We used the Ramsey-based approach only
depending on AR. Because AR and BC are equivalent, Ramsey-based com-
plementation requires minimal assumptions. But there are different com-
plementation constructions and which of them can be proven only using AR

and which require more?
In this work we covered two representations of ω-regular languages, Büchi

automata and S1S. Beside other acceptance conditions for NFAs, one could
take a look at ω-semigroups and infinite games.

To show that S1S is decidable we needed AR but not full excluded mid-
dle. What happens when moving from S1S to S2S (monadic second order
logic with two successors) or on the automata view from automata on se-
quences to automata on infinite trees? S2S was proven to be decidable by
Rabin. Formulas can be translated to automata on infinite trees, for which
emptiness is decidable. Under which assumptions can this be proven con-
structively?

1The usage of “weak” or WS1S sometimes refers to the monadic second order logic
where all sets variables are finite or the monadic second order logic where only quantified
variables needs to be finite. The first one is as expressive as regular languages, the second
one, at least classically, as expressive as ω-regular languages.

84 CHAPTER 12. CONCLUSION AND FUTURE WORK

Bibliography

[1] Achim Blumensath. Monadic Second-Order Logic. Tech. rep. Lecture
Notes. Jan. 2015.

[2] Davide Bresolin, Angelo Montanari, and Gabriele Puppis. “A theory
of ultimately periodic languages and automata with an application to
time granularity”. In: Acta Inf. 46.5 (2009), pp. 331–360.

[3] Julius Richard Büchi. “On a Decision Method in Restricted Second-
Order Arithmetic”. In: International Congress on Logic, Methodology,
and Philosophy of Science. Stanford University Press, 1962, pp. 1–11.

[4] Julius Richard Büchi and Dirk Siefkes. Decidable Theories: Vol. 2:
The Monadic Second Order Theory of All Countable Ordinals. Ed. by
G.H. Müller and Dirk Siefkes. Lecture Notes in Mathematics. Springer
Berlin Heidelberg, 1973.

[5] Hugues Calbrix, Maurice Nivat, and Andreas Podelski. “Ultimately
Periodic Words of Rational w-Languages”. In: Mathematical Founda-
tions of Programming Semantics, 9th International Conference, New
Orleans, LA, USA, April 7-10, 1993, Proceedings. 1993, pp. 554–566.

[6] Hugues Calbrix, Maurice Nivat, and Andreas Podelski. “Une méthode
de décision de la logique mandique du second ordre d’une fonction
successor”. In: Comptes rendus de l’académie des sciences, Serié I.
318 (1994), pp. 847–850.

[7] Thierry Coquand and Bassel Mannaa. “The Independence of Markov’s
Principle in Type Theory”. In: 1st International Conference on Formal
Structures for Computation and Deduction (FSCD 2016). Ed. by Delia
Kesner and Brigitte Pientka. Vol. 52. Leibniz International Proceed-
ings in Informatics (LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl–
Leibniz-Zentrum fuer Informatik, 2016, 17:1–17:18.

[8] Christian Doczkal and Gert Smolka. Regular Language Representa-
tions in the Constructive Type Theory of Coq. Tech. rep. submitted
for review. Saarland University, Apr. 2017.

[9] Martin Hofmann and Martin Lange. Automatentheorie und Logik.
Springer-Verlag Berlin Heidelberg, 2011.

85

86 BIBLIOGRAPHY

[10] Bakhadyr Khoussainov and Anil Nerode. Automata Theory and its
Applications. Birkhäuser, Boston, 2011.

[11] Leszek Aleksander Kolodziejczyk et al. “The Logical Strength of
Büchi’s Decidability Theorem”. In: 25th EACSL Annual Conference
on Computer Science Logic, CSL 2016, August 29 - September 1,
2016, Marseille, France. 2016, 36:1–36:16.

[12] Jan Christian Menz. A Coq Library for Finite Types. Bachelor Thesis,
Saarland University. July 2016.

[13] Stephan Merz. “Weak Alternating Automata in Isabelle/HOL”. In:
Theorem Proving in Higher Order Logics, 13th International Confer-
ence, TPHOLs 2000, Portland, Oregon, USA, August 14-18, 2000,
Proceedings. 2000, pp. 424–441.

[14] Dominique Perrin and Jean-Éric Pin. Infinite Words - Automata,
Semigroups, Logic and Games. Elsevier, 2004.

[15] Shmuel Safra. “On the Complexity of omega-Automata”. In: 29th An-
nual Symposium on Foundations of Computer Science, White Plains,
New York, USA, 24-26 October 1988. 1988, pp. 319–327.

[16] Alexander Schimpf, Stephan Merz, and Jan-Georg Smaus. “Con-
struction of Büchi Automata for LTL Model Checking Verified in
Isabelle/HOL”. In: Theorem Proving in Higher Order Logics, 22nd
International Conference, TPHOLs 2009, Munich, Germany, August
17-20, 2009. Proceedings. 2009, pp. 424–439.

[17] Saharon Shelah. “The Monadic Theory of Order”. In: Annals of Math-
ematics 102.3 (1975), pp. 379–419.

[18] Gert Smolka. Base Library for ICL. Saarland University. 2016.

[19] Gert Smolka and Kathrin Stark. “Hereditarily Finite Sets in Con-
structive Type Theory”. In: Interactive Theorem Proving - 7th Inter-
national Conference, ITP 2016, Nancy, France, August 22-27, 2016.
Ed. by Jasmin Christian Blanchette and Stephan Merz. Vol. 9807.
LNCS. Springer, 2016, pp. 374–390.

[20] The Coq Proof Assistant. url: https://coq.inria.fr/.

[21] Wolfgang Thomas. “Complementation of Büchi Automata Revised”.
In: Jewels are Forever, Contributions on Theoretical Computer Science
in Honor of Arto Salomaa. 1999, pp. 109–120.

[22] Wolfgang Thomas. “Languages, Automata, and Logic”. In: Handbook
of Formal Languages, Vol. 3. Ed. by Grzegorz Rozenberg and Arto
Salomaa. Springer-Verlag Berlin Heidelberg, 1997, pp. 389–455.

[23] Ming-Hsien Tsai et al. “State of Büchi Complementation”. In: Logical
Methods in Computer Science 10.4 (2014).

https://coq.inria.fr/

BIBLIOGRAPHY 87

[24] Moshe Y. Vardi. “The Büchi Complementation Saga”. In: STACS
2007, 24th Annual Symposium on Theoretical Aspects of Computer
Science, Aachen, Germany, February 22-24, 2007, Proceedings. 2007,
pp. 12–22.

88 BIBLIOGRAPHY

Appendix

Important Propositions

The following propositions are equivalent:

Every sequence admits a Ramseyan factorization: (p. 23)

RF := ∀σ. ∃ strictly montone g. ∀i.
∑

σ[g0..g1) =
∑

σ[gi..g(i+ 1))

Additive Ramsey: (p. 24)

AR := ∀ additive f. ∃ strictly monotone g. ∀i < j. f(g0)(g1) = f(gi)(gj)

Büchi automata are closed under complement and the word problem is log-
ically decidable: (p. 45)

BC := ∀A. (∃A. LB(A) ≡ LB(A)) ∧ (∀σ. σ ∈ LB(A) ∨ σ /∈ LB(A))

The languages of Büchi automata accepting the same UP sequences are
equivalent: (p. 56)

BU := ∀A1A2. LUP(A1) ≡ LUP(A2) → LB(A1) ≡ LB(A2)

Satisfaction in S1S is logically decidable: (p. 66)

SL := ∀ϕIJ. I, J � ϕ ∨ I, J 2 ϕ

Where σ is a sequence over Γ, f a function of type N → N → Γ, (Γ,+)
an arbitrary finite semigroup, A, A1, and A2 are NFAs over some finite
alphabet (without a semigroup operation), ϕ an MSO formula, I a first
order interpretation, and J a second order interpretation of the ω-structure.
Figure 9.1 on page 71 shows the implications between the prior propositions.

To show that the prior propositions are independent, we used the fol-
lowing propositions:

Excluded middle := ∀p. p ∨ ¬p

Markov’s principle := ∀σ ∈ Bω.¬(∀n. σn = true) → ∃n. σn = false (p. 30)

89

90 APPENDIX

Variables

We use the following letters for the following objects:
i, j, k,m, n N

Σ,Γ alphabets
a, b, c, d symbols
x, y, u, v strings
σ, τ sequences
A NFAs
q, p states
r, s finite runs
̺, ξ infinite runs
x, y first order variables
X,Y second order variables
M,N N-sets
ϕ,ψ formulas
I first order interpretations
J second order interpretations

Note that letters for strings and first order variables overlap, which is com-
mon.

List of Notations

Sequences

x · σ or xσ prepending x to σ
σ[n..] dropping the first n symbols of σ
σ[n..m) substring of σ from n (inclusively) to m (exclusively)
σ ≡ τ sequence equivalence
σ ◦ f functional composition
σ ⊗ τ product operation on sequences
a@nb sequence with b at position n and otherwise a
Πf or Πxi ω-concatenation of f or xi
xω ω-iteration of x
σ#p strictly monotone sequence of all positions of σ satisfying p
σ|p ω-filter of σ with p

Languages

L1 ≡ L2 language equivalence
f(L) image of L under f
f−1(L) preimage of L under f
L · Lω or LLω L prepended to Lω
Lω ω-iteration of L

91

Finite Semigroups

(Γ,+) finite semigroup over type Γ with operation +
∑

x sum of all elements in x

NFAs and Büchi Automata

LR(A) regular language accepted by A
L

+
R (A) language of nonempty strings accepted by A

LB(A) (Büchi) language accepted by an A
f−1(A) Büchi automaton accepting the preimage
f(A) Büchi automaton accepting the image
A1 ∪ A2 Büchi automaton accepting the union
A1 ∩ A2 Büchi automaton accepting the intersection
A1 · A2 Büchi automaton obtained by prepending the

NFA A1 to the Büchi automaton A2

Aω ω-iteration of an NFA
AC complement Büchi automaton

Admissible Sequence Structures

A AS structure
LA (A) language of accepted A -sequences by a Büchi automaton
LUP(A) language of accepted UP sequences by a Büchi automaton

S1S

J �0 ϕ satisfaction in MSO0

Vϕ free variables of an MSO0 formula
JX:=M interpretation assigning X to M and all other variables

according to J
LV (ϕ) vector language of an MSO0 formula
⇓l1l2 projection of vectors of type Bl1 to vectors of type Bl2

L ↓ X outprojection of X from L
I, J � ϕ satisfaction in MSO

	Introduction
	Preliminaries
	Type Theory
	Strings
	Sequences
	-Concatenation and -Iteration
	Sequences Satisfying a Predicate Infinitely Often
	-Filter

	Languages
	Ultimately Periodic Sequences

	Ramseyan Properties
	Equivalence of RF and AR
	Excluded Middle Implies RF
	Independence of RF

	NFAs
	Reachability in NFAs
	Regular and Büchi Acceptance
	Properties of NFAs With Regular Acceptance
	Decidability of Emptiness of Büchi Automata

	Basic Operations on Büchi Automata
	Complementation of Büchi Automata
	The Büchi Equivalence Relation
	Compatibility of the Büchi Equivalence Classes
	Totality of the Büchi Equivalence Classes

	Admissible Sequence Structures
	Correctness of Complementation
	The -Structure
	The UP-Structure
	BC is equivalent to BU

	Monadic Second Order Logic S1S
	The Core Logic [0]
	Translation of Formulas to Büchi Automata
	 With First Order Variables

	Necessity of Additive Ramsey
	BC Implies RF
	SL Implies RF

	Related Work
	Remarks on Coq Development
	Conclusion and Future Work

