Decidability of S1S in Constructive Type Theory Master's Thesis Talk

Moritz Lichter

Advisor: Prof. Dr. Gert Smolka

August 23, 2017

Ramseyan Factorizations

ω-Sequence over Γ : function $\mathbb{N} \to \Gamma$

Finite Semigroup $(\Gamma, +)$: Γ finite type, + associative

RF

A sequence over a finite semigroup $(\Gamma,+)$ admits a Ramseyan factorization.

$$\begin{aligned} \mathsf{RF} := \forall \sigma. \ \exists \ \mathsf{strictly} \ \mathsf{montone} \ g. \\ \forall i. \ \sum \sigma[g0..g1) = \sum \sigma[gi..g(i+1)) \end{aligned}$$

Additive Ramsey

Coloring $f : \mathbb{N} \to \mathbb{N} \to \Gamma$ additive := (fij) + (fjk) = fik for i < j < k

AR

For an additive coloring there is a strictly monotone and monochromatic function.

 $AR := \forall$ additive $f. \exists$ strictly monotone g.

$$\forall i < j. \ f(g0)(g1) = f(gi)(gj)$$

Independence of RF

Necessity of RF

Büchi Automata

Büchi Acceptance

An infinite run ρ is final if

Büchi automaton: NFA $\mathcal{A} = (Q, I, F, \rightarrow)$ over finite Γ with Büchi acceptance

$$\forall n. \exists m > n. \ \rho m \in F.$$

$$\mathscr{L}_B(\mathcal{A}) := \{ \sigma | \exists \varrho. \ \varrho \text{ is accepting for } \sigma \}$$

Facts

- Closure operations implementing closure under
 - image
 - preimage
 - union
 - intersection
- Decidability of language emptiness: $\mathscr{L}_B(\mathcal{A}) \equiv \emptyset$ or $\exists xy^\omega \in \mathscr{L}_B(\mathcal{A})$

Complementation of Büchi Automata

BC

Ramseyan Properties

Büchi automata are closed under complement and the word problem is logically decidable.

$$\mathsf{BC} := \forall \mathcal{A}. \ (\exists \overline{\mathcal{A}}. \ \mathscr{L}_B(\overline{\mathcal{A}}) \equiv \overline{\mathscr{L}_B(\mathcal{A})}) \land \\ (\forall \sigma. \ \sigma \in \mathscr{L}_B(\mathcal{A}) \lor \sigma \notin \mathscr{L}_B(\mathcal{A}))$$

Complementation by Büchi

For Büchi automaton A, there are finitely many languages L_i :

 $oldsymbol{1}$ L_i are accepted by Büchi automata:

$$\mathscr{L}_B(\mathcal{A}_i) \equiv L_i$$

2 Compatibility:

Ramseyan Properties

$$\sigma \in (L_i \cap \mathscr{L}_B(\mathcal{A})) \to L_i \subseteq \mathscr{L}_B(\mathcal{A})$$

Totality (only under AR):

$$\forall \sigma. \exists L_i. \ \sigma \in L_i$$

Necessity of RF

$$\mathcal{A}^C := \bigcup_{\{L_i \mid L_i \cap \mathscr{L}_B(\mathcal{A}) \equiv \emptyset\}} \mathcal{A}_i$$

Corollary: AR implies BC.

Sequence Structures

Abstraction from Representation of Sequences

- $\mathsf{C}_{\mathscr{A}} : \forall \Gamma. \mathscr{A}(\Gamma) \to \Gamma^{\omega}$
- $\circ_{\mathscr{A}} : \forall \Gamma \Sigma. \mathscr{A}(\Gamma) \to (\Gamma \to \Sigma) \to \mathscr{A}(\Sigma)$
- $\otimes_{\mathscr{A}} : \forall \Gamma \Sigma. \mathscr{A}(\Gamma) \to \mathscr{A}(\Sigma) \to \mathscr{A}(\Gamma \times \Sigma)$
- $@_{\mathscr{A}} : \forall \Gamma. \ \Gamma \to \mathbb{N} \to \Gamma \to \mathscr{A}(\Gamma)$

Compatibility with ω -Sequences

$$\begin{split} \mathsf{C}_{\mathscr{A}}(\sigma \circ_{\mathscr{A}} f) &\equiv \mathsf{C}_{\mathscr{A}} \sigma \circ f & \sigma \circ f := \lambda n. f(\sigma n) \\ \mathsf{C}_{\mathscr{A}}(\sigma \otimes_{\mathscr{A}} \tau) &\equiv \mathsf{C}_{\mathscr{A}} \sigma \otimes \mathsf{C}_{\mathscr{A}} \tau & \sigma \otimes \tau := \lambda n. (\sigma n, \tau n) \\ \mathsf{C}_{\mathscr{A}}(a@_{\mathscr{A}}^m b) &\equiv a@^m b & a@^m b := \lambda n. \text{if } (m=n) \text{ then } b \text{ else } a \end{split}$$

Admissible Sequence Structures

A sequence structure is admissible if

1 $\mathscr{L}_{\mathscr{A}}(\mathcal{A}) \equiv \emptyset$ or $\exists \sigma. \sigma \in \mathscr{L}_{\mathscr{A}}(\mathcal{A})$ is decidable, where

$$\mathscr{L}_{\mathscr{A}}(\mathcal{A}) := \{ \sigma : \mathscr{A}(\Gamma) | \mathsf{C}_{\mathscr{A}} \sigma \in \mathscr{L}_{B}(\mathcal{A}) \},$$

- 2 Image construction for Büchi automata is correct, and
- **3** Totality holds: $\forall A. \ \forall \sigma : \mathscr{A}(\Gamma). \ \exists L_i(A). \ \sigma \in L_i(A).$

Theorem: For all admissible sequence structures

- · All closure operations on Büchi Automata are correct and
- The word problem is logically decidable.

Instantiations

- **1** Given AR: ω -sequences $\mathbb{N} \to \Gamma$
- **2** Constructively: Ultimately periodic sequences $\Gamma^* \times \Gamma^+$

Monadic Second Order Logic of $(\mathbb{N}, <)$ (S1S)

Full and Minimal System

$$\mathsf{MSO}\ \varphi, \psi ::= x < y \mid x \in X \mid X \subseteq Y \mid \varphi \wedge \psi \mid \neg \varphi \mid \exists x.\ \varphi \mid \exists X.\ \psi$$

$$\mathsf{MSO}_0 \ \varphi, \psi ::= X \lessdot Y \mid X \subseteq Y \mid \varphi \land \psi \mid \neg \varphi \mid \exists X. \ \varphi$$

Satisfaction is defined with admissible sequence structures: $\mathscr{A}(\mathbb{B})$ for second order variables

$$J \vDash_0 X \lessdot Y := \exists n \in JX. \ \exists m \in JY. \ n < m$$

Reduction of MSO to MSO₀

MSO can be reduced to MSO₀ using singleton sets for first order variables: $\{n\} := \text{false} @_{\mathcal{A}}^n \text{true}$

Ramseyan Properties

Theorem: An MSO $_0$ formula φ can be translated to a Büchi automaton \mathcal{A}_{φ} such that:

$$J \vDash_0 \varphi \to fJ \in \mathscr{L}_{\mathscr{A}}(\mathcal{A}_{\varphi})$$
$$\sigma \in \mathscr{L}_{\mathscr{A}}(\mathcal{A}_{\varphi}) \to f'\sigma \vDash_0 \varphi$$

Corollary: For all admissible sequence structures

- Satisfiability is decidable and
- 2 Satisfaction is logically decidable.

Corollary: For MSO₀ and MSO

- Satisfiability for UP sequences is decidable
- 2 Satisfaction for UP sequences is decidable
- Given AR:

Ramseyan Properties

- Satisfiability for ω -sequences is decidable
- Satisfaction for ω -sequences is logically decidable
- A formula is UP satisfiable if and only if it is ω -satisfiable

Admissible Sequences

Corollary: AR implies SL.

$$\mathsf{SL} := \forall \varphi IJ. \ I, J \vDash \varphi \lor I, J \nvDash \varphi$$

Satisfaction in MSO for ω -sequences is logically decidable.

BC implies RF

Ramseyan Properties

Let $(\Gamma, +)$ be a finite semigroup and σ a sequence over Γ .

There is an A with

$$\mathscr{L}_B(\mathcal{A}) \equiv \{\sigma | \sigma \text{ admits a Ramseyan factorization} \}.$$

By BC
$$\sigma \in \mathscr{L}_B(\mathcal{A}) \vee \sigma \notin \mathscr{L}_B(\mathcal{A})$$
.

If $\sigma \notin \mathcal{L}_B(A)$ then $\sigma \in \mathcal{L}_B(\overline{A})$ and there is a $xy^\omega \in \mathcal{L}_B(\overline{A})$. Every xy^{ω} admits a Ramseyan factorization: $xy^{\omega} \in \mathcal{L}_B(A)$.

SL implies RF

Ramseyan Properties

Let $(\Gamma, +)$ be a finite semigroup and σ a sequence over Γ .

Recall: $P_1 \vee \mathsf{DM}(\neg P_1)$ and $P_2 \vee \mathsf{DM}(\neg P_2)$ imply RF.

Infinite Pigeonhole Principle:

$$P_1 := \exists a. \ \forall i. \ \exists j \geq i. \ \sigma j = a$$

Encoding into MSO:

$$P_1 \leftrightarrow I, J_{\sigma} \vDash \bigvee_{a \in \Gamma} \forall x. \; \exists y. \; x < y \land y \in X_a$$

SL implies $P_1 \vee \mathsf{DM}(\neg P_1)$.

 P_2 : more specific proposition and more complicated encoding

Coq Development

	Specification	Proof
Preliminaries	520	1160
Ramseyan Properties	150	430
NFAs	240	490
Basic Operation on Büchi Automata	230	460
Büchi Complementation	180	550
Admissible Sequence Structures	160	450
S1S	490	940
Necessity of AR	170	470
Total	2120	4950