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Abstract
Büchi automata are a well-known automata model for infinitely

long words. We give a formalization of Büchi automata in the con-
structive type theory in Coq. While the word problem becomes unde-
cidable for Büchi automata, we can decide language emptiness. Büchi
automata are known to be closed under boolean operations in classical
mathematics. In contrast to NFAs on finite words, Büchi automata
cannot be made deterministic and thus the complement construction
gets more difficult. In order to prove the closure properties we need
assumptions for combinatorial reasoning on infinite words. These as-
sumptions are weaker then excluded middle. We follow the comple-
mentation proof idea originally given by Büchi and analyze which as-
sumptions are sufficient to prove its correctness.

1 Introduction
Büchi automata are an automata model for infinitely long words introduced
by Büchi. These words are sometimes called infinite words, ω-words or
sequences. We will refer to them as sequences. Büchi automata were mo-
tivated by their usage in the decidability proof of Monadic Second Order
Logic on the successor relation (known as S1S) and have e.g. applications
in model checking.

An NFA accepts a string if there is a run on the NFA ending in a final
state. Essentially, Büchi automata are NFAs with a different acceptance
criterion. Because the run of an NFA on a sequence has no end, we have no
last state of the run. The Büchi acceptance criterion requires a final state to
be visited infinitely often by the NFA. To distinguish the language of strings
recognized by an NFA from the language of sequences, we will speak of the
string language and the Büchi language of an NFA.

Many proofs given in the literature are on an rather informal level. We
will formalize NFAs with Büchi acceptance in the constructive type theory
of Coq. We refine existing proofs:

1. It is decidable whether the Büchi language of an NFA is empty. In the
case it is not empty, we can give a sequence belonging to the Büchi
language. This can be proven completely constructively.
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2. Büchi automata are closed under union and intersection. The union
construction is very similar to the sum construction known for string
languages while the intersection construction is different (and not con-
structively).

3. Büchi automata are closed under complement. This proof is not con-
structively, too.

We were not able to carry out the proofs without assumptions. We need
assumptions to reason about the infiniteness of sequences: while in classical
logic the existence of one final state occurring infinitely often in a sequence
is equivalent to infinitely many final states in the sequence (as long as there
are only finitely many states), in intuitionist logic the second one is weaker
because there is no possibility to compute the required state. But e.g. the
closure under intersection relies on the possibility to go from the second to
the first property. Therefore we need an assumption (called (A1)).

NFAs on strings can be made deterministic using the power set construc-
tion. For the Büchi acceptance this is not possible. The Büchi acceptance on
DFAs is strictly weaker than on NFAs. This makes the complementation of
Büchi languages more difficult. There are many different complement con-
structions for Büchi languages motivated by the number of required states.
Because we do not care about the size of the complement automaton, we
formalized the sometimes called Ramsey-based approach. The proof breaks
in two parts. In the first one we show that some finitely many Büchi lan-
guages are compatible with the language, so they are either part of it or of
the complement. In the second part we show totality of these languages,
so they cover all sequences. While for the first part we need no further as-
sumption then (A1), we were not able to reduce the second part to it. We
present two variants of the totality proof using different assumptions:

1. Using Ramsey’s Theorem (original proof of Büchi): This is a very short
and elegant proof and requires Ramsey’s Theorem as assumption.

2. Without Ramsey’s Theorem: [1] gives a totality proof without using
Ramsey’s Theorem. Ramsey’s Theorem encapsulates infinite combi-
natorics from the totality proof nicely. In this proof more infinite
combinatorics is involved in the proof. We need a different assumption
(A2) similar to (A1), which essentially does not require decidability
but only propositional decidability.

Both assumptions, Ramsey’s Theorem or (A2) are strong enough to derive
(A1). But Ramsey’s Theorem and (A2) themselves do not imply each other:
Ramsey’s Theorem makes a stronger combinatorial statement while it re-
quires the input to be decidable, (A2) is combinatorial weaker and does not
require decidability.
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As consequences of the complementation theorem we can prove decid-
ability of language universality, inclusion and equality for Büchi languages.

The memo is organized as follows: We first develop some basic techniques
for sequences and sequence languages in section 2. Then we introduce, relate
and discuss the assumptions (A1), (A2) and Ramsey’s Theorem in more
detail in section 3. Next we introduce Büchi acceptance of NFAs in section
4. We begin with the proofs of closure under union and intersection in section
5 and of decidability of language emptiness in section 6. Before we can prove
the complementation theorem in section 8 we need some constructions on
NFAs in section 7.

2 Sequences and Strings
Sequences over a type X are functions: Seq X := N → X. Strings over
X are nonempty prefixes of sequences over X: String X := Seq X × N.
The first component gives the sequence and the second one the last index
which belongs to the string. Conceptually, once can still think of strings as
nonempty lists over X.

Sequence g over N is called strictly monotone, if ∀n, g(n) < g(n+ 1).
We obtain the subsequence of w induced by g as w ◦ g. Similar, we
can build substrings of a sequence. A string f over N is called strictly
monotone if ∀n < |f |, f [n] < f [n+ 1]. Then the substring of w induced by
f is the string of length |f | whose n-th character is w(f [n]). For simplicity,
we write w ◦ f , too.

We defined strings as nonempty prefixes of sequences. While this seams
unnecessarily complicated, this definition makes it easy to treat sequences
and strings uniformly. Because strings are defined as nonempty, we cannot
represent the empty string. This removes a lot of trouble in some construc-
tions. Since we are interested in strings only as parts of sequences, this is no
restriction. If we speak of strings in the following, we only allow nonempty
strings.

2.1 Basic Operations on Sequences

w(i, j) is the string contained in the sequence w starting at index i (inclusive)
to index j (exclusive). If i ≥ j then w(i, j) = [i]. v++ w is the concatenation
of two strings, v+++ w prepends the string v to the sequence w. An element
x occurs infinitely often in a sequence w if ∀n,∃m,m ≥ n ∧ w(n) = x.

2.2 String and Sequence Languages

A string language over a type X is a predicate on strings over X. A
sequence language over a type X is a predicate on sequences over X. We
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define the universal and empty sequence language on X:

Xω := λ_.> and ∅ := λ_.⊥

Union, intersection and complement are defined using conjunction, disjunc-
tion and negation, e.g. the complement is LC = λw.¬L(w). Analogues
subset and equality on languages is defined using implication and equiva-
lence.

A sequence language L is called extensional if given a sequence w ∈ L
it contains all pointwise equal sequences:

extensional L := ∀w,w ∈ L→ ∀w′, (∀n,w(n) = w′(n))→ w′ ∈ L.

Because strings are defined as nonempty prefixes of sequences, we need a
notion of extensionality for string languages too. A string language L is
extensional if ∀v, v ∈ L→ ∀v′, |v| = |v′| → (∀n ≤ |v|, v[n] = v′[n])→ v′ ∈ L.

Extensionality of languages will be useful later. Fortunately all languages
occurring later have this property.

2.3 Infinite Filter

Given a sequence w over a type X, a decidable predicate P on X and a proof
that there are infinitely many positions in w at which P holds (∀n, ∃m ≥
n, P (w(m))), we want a function filter∞(w,P ) : Seq N, such that

• filter∞(w,P ) is strictly monotone,

• P holds for all positions in the induced subsequence of w

∀n, P ((w ◦ filter∞(w,P ))(n))

• and filter∞(w,P ) contains all positions in w at which P holds:

∀m,∀k, filter∞(w,P )(m) < k < filter∞(w,P )(m+ 1)→ ¬P (w(k))

Because P is decidable, filter∞ is unique (up to extensionality).
We establish filter∞ recursively using constructive choice for N and re-

cursion trees. Assume we know filter∞(w,P )(n), we construct an m >
filter∞(w,P )(n) using constructive choice such that P (w(m)). With recur-
sion trees we can go backward towards filter∞(w,P )(n) to find the smallest
m′ > filter∞(w,P )(n), such that P (w(m′)). So we obtain filter∞(w,P )(n+
1) = m′. The same technique applies to the base case filter∞(w,P )(0) with
m ≥ 0.
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2.4 History Filter

This is a slightly different version of the infinite filter. Given a sequence
w over X and a decidable and extensional string language (a predicate)
P : String X → P, we want function filterhistory(w,P ) : Seq N such that

• filterhistory(w,P ) is strictly monotone,

• P holds for all prefixes of the induced subsequence of w

∀n, P ((w ◦ filterhistory(w,P ))(0, n)).

• and filterhistory(w,P )(0) = 0 (which is rather special but required in
the later application).

This function is not unique, because we have no completeness requirement.
It is not clear, what such a requirement should be, because not including
a position of w may allow including another one. Additionally, it is not
obvious what property w needs to fulfill, such that we can find the required
function.

Assume w fulfills the following two properties:

1. P (w(0, 1)) and

2. given any strictly monotone string g such that P (w ◦ g), then there is
a bigger m, such that P holds for the substring induced by appending
m to g:

∀(g : String N), strictly monotone g → P (w ◦ g)→
∃m,m > g[|g| − 1] ∧ P (w ◦ (g++ [m])

Now we can construct filterhistory recursively using constructive choice for N.
The base case is given by the first property: filterhistory(w,P )(0) = 0. If we
know (filterhistory(w,P ))(0, n), we can find the (n+ 1)-th position using the
second property.

2.5 Infinite Concatenation

At some point we need to concat a sequence of strings W by concatenating
all string in W to a flat sequence (the infinite version of flattening a list
of lists). Here it is important that our strings are nonempty, otherwise we
could not be sure that the result is a sequence (if only finitely many strings
were nonempty).

Given W : Seq (String X) we want a function concat∞(W ) : Seq X
such that

• concat∞(W )(0) = (W (0))[0] and
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• if concat∞(W )(n) is the last character ofW (m), then concat∞(W )(n+
1) = (W (m + 1))[0]. Otherwise if it is the k-th character of W (m),
concat∞(W )(n+ 1) = (W (m))[k + 1]

To make the second requirement completely formal, we want to build another
function concatI∞(W ) : Seq (N×N). The intuition is, that concatI∞(W )(n)
locates the position of the string in W and the position of the character in
this string at the n-th position of concat∞(W ):

concat∞(W ) := λn.let (i, k) := concatI∞(W )(n) in (W (i))[k]

concatI∞(W ) can be specified completely formally and uniquely (up to ex-
tensionality):

• concatI∞(W )(0) = (0, 0) and

• Let concatI∞(W )(n) = (i, k). Then

concatI∞(W )(n+ 1) =
{

(i+ 1, 0) if k = |W (i)| − 1
(i, k + 1) otherwise

In the first case the i-th strings ends and we need to switch to the next
string (which we can do safely, because it is nonempty) while in the
second case there is another character in the i-th string.

The implementation is straightforward. Now we can define the ω-iteration
of a string formally

vω := concat∞(λ_.v).

2.6 ω-Iteration of a String Language

Given a string language L over X we want to the ω-iteration of L. This
is a sequence language Lω which repeats strings from L infinitely often. We
have two definitions. Given a sequence w, it belongs to the ω-iteration of L
if

1. there is a strictly monotone sequence f which partitions w into in-
finitely many strings belonging to L:

Lω := λw.∃ strictly monotone f, f(0) = 0 ∧ ∀n,L (w(f(n), f(n+ 1)))

2. there is a sequence W of strings belonging to L such that the infinite
concatenation of W is pointwise equal to w:

Lω2 :=λw,∃(W : Seq (String X)),
(∀n,L(W (n))) ∧ (∀n,w(n) = concat∞(W )(n))
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In general, the second definition is weaker than the first one: Lω2 ⊆ Lω. If
L is extensional, we can prove both definition to be equivalent:

extensional L→ Lω2 = Lω.

It will be useful to switch to the second definition later.

3 Necessary Assumptions
We need the following assumption: given a finite coloring of N then there
is a monochromatic strictly monotone sequence over N. Technically, this
assumption is needed in two variations:

Sequences over Finite Types (A1) Given a sequence w over a finite
type X, there is an x such that x occurs infinitely often in w.

∀X : finite type, ∀f : Seq X,∃x, x infinitely often in f.

Equivalence Relations on N with Finite Index (A2) Let ∼ be an
equivalence relation over a type X such that

1. ∼ is propositionally decidable: ∀xy, x ∼ y ∨ x 6∼ y

2. ∼ is of finite index. That is, there is a number n, such that all strings
over X longer than n contain two equivalent elements:

∃n,∀l : String X, |l| > n→ ∃i < j < |l|, l[i] ∼ l[j]

Given a sequence w over N, there is a strictly monotone sequence f such
that the induced subsequence of w contains only members of one equivalence
class:

∃f, f strictly monotone ∧ ∀n, (w ◦ f)(0) ∼ (w ◦ f)(n)

3.1 (A2) implies (A1)

From (A2) one can derive (A1). Let X be a finite type and w a sequence
over X. Take equality as equivalence relation. Equality on finite types
is decidable and so propositionally decidable. It is of finite index, because
every string overX longer than the cardinality ofX has at least two positions
with the same element of X. So we can apply (A2) and obtain the strictly
monotone sequence f . Then (w ◦ f)(0) occurs infinitely often in w.

Nevertheless it is useful to have (A1) as an assumption on its own, since
many results only depend on (A1) and not on (A2).
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3.2 For some ∼, (A1) implies (A2)

Let ∼ be an equivalence relation which can be written as R : X → F for a
finite type F . For ∼:= λxy,R(x) = R(y) one can derive (A2) from (A1).

Let w be a sequence over X. From (A1) one gets an element a of type
F which occurs infinitely often in R ◦w. Then we get the strictly monotone
sequence required for (A2) as filter∞(w, λx.R(x) = a). We can apply filter∞,
because equality on F is decidable and we have a proof (from (A1)) that
there are infinitely many positions at which the filter predicate holds.

3.3 (A1) for Predicates (A1P)

Let X be a finite type, P a decidable predicate on X and w a sequence over
X. If there are infinitely many positions of w at which P holds, then there
is an element x occurring infinitely often in w for which P holds:

(∀n, ∃m ≥ n, P (w(m)))→ ∃x, x infinitely often in w ∧ P (x).

This formulation is equivalent to (A1): (A1)↔ (A1P ). → can be obtained
by applying (A1) on filter∞(f, P ). ← is simple using the predicate True.

3.4 Ramsey’s Theorem

We will see that Ramsey’s Theorem is used in classical proofs later while it
is more effort to prove the same thing using (A2).

Ramsey’s Theorem: Let U be an infinite set, C a finite set of colors and
q a coloring (using colors of C) of all subsets of U containing exactly two
elements. Then there is an infinite subsetM ⊆ U colored in one color: there
is a c ∈ C such that q({x, y}) = c for all x, y ∈M such that x 6= y.

Constructive Formulation of Ramsey’s Theorem for N: Because we
do not have sets in the type theory of Coq, we use the following formulation
of Ramsey’s Theorem for U = N. Given a finite type C and a coloring
q : N→ N→ C such that

∀nm, q(n,m) = q(m,n)

then

∃(c : C),∃(M : Seq N),M strictly monotone∧∀nm, n 6= m→ q(M(n),M(m)) = c.

The function q can be transformed to a coloring of sets with two elements,
because q(n,m) = q(m,n). The infinite subset of N is represented by a
strictly monotone sequence M and the property that the color of sets with
two (and not the only one) element is equal is asserted by the restriction
n 6= m.
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3.4.1 Relationship of Ramsey’s Theorem to (A2)

We claim none of Ramsey’s Theorem and (A2) implies the other one con-
structively.

• (A2) 9 Ramsey’s Theorem: The important point in Ramsey’s Theo-
rem is that it gives the closure property that all pairs in the selected
subset are colored equally while the coloring is arbitrary. If one would
like to derive Ramsey’s Theorem from (A2), one needs to transform
the coloring into an equivalence relation. But because the coloring is
arbitrarily, we have no chance to build a transitive relation.

• Ramsey’s Theorem 9 (A2): It would be nice if (A2) was weaker than
Ramsey. But to apply Ramsey in the setting of (A2) we need to
construct a coloring for the equivalence relation (e.g. by constructing
quotients). But since the equivalence relation is only propositionally
decidable, we cannot do this.

3.4.2 Ramsey’s Theorem implies (A1)

Using Ramsey’s Theorem we can prove (A1). Given a finite type X and
a sequence w over X. We apply Ramsey’s Theorem with colors 2 and the
coloring

q := λn m. if (w(n) = w(m)) then 1 else 2

We can decide the if condition, because X is finite. It is easy to see that
∀nm, q(n,m) = q(m,n). From Ramsey we get that a strictly monotone
sequence U over N and a color x which colors all two distinct positions in
M equally.

• If x = 2, there are infinitely may different elements in f which contra-
dicts finiteness of X.

• If x = 1, this implies that all positions in M are equal, so the element
(w ◦M)(0) occurs infinitely often in w.

3.4.3 For some ∼, Ramsey’s Theorem implies (A2)

For equivalence relations as in 3.2 Ramsey’s Theorem implies (A2). Because
Ramsey implies (A1) and for this special class of equivalence relations (A1)
implies (A2), Ramsey’s Theorem implies (A2) for such relations.

3.5 Summary

The relationship between the assumptions can be visualized as follows. Each
← is an implication, where the opposite direction does not hold:
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(A2)Ramsey

(A1) (A1P)

4 NFAs
A nondeterministic finite automaton (NFA) A over a finite type X is
a structure consisting of
• a finite type state(A)

• a decidable transition relation T : state(A)→ X → state(A)→ P

• a list of final states

• a list of initial states
A run of A is a sequence over state(A).

4.1 Büchi Acceptance

We call a run r
• valid on a sequence w over X if it agrees with the transition relation:
∀n, T (r(n))(w(n))(r(n+ 1)),

• initial if r(0) is an initial state, and

• final if there is a final state s which occurs infinitely often in r.
The NFA A accepts w if there is a run r such that r is valid on w, initial
and final. The Büchi language recognized by A is the sequence language

LB(A) := λ(w : Seq X).A accepts w.

Classically it makes no difference whether a run r is defined to be final
1. if there is a final state occurring infinitely often in r or

2. if there are infinitely many final states in r.
Intuitionistically it makes a difference because we need (A1P) to switch
from (2) to (1). The definition we used is the one used commonly(e.g. [6],
[1] or [3]). If we defined it using (2), we would be able to show some facts
constructively which we cannot using (1) (e.g. the intersection construction).
But unfortunately, there are facts which cannot be proven constructively
using (2) which we can prove now using (1) (e.g. decidability of language
emptiness). So we follow the common definition.
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4.2 String Acceptance

We call a run r

• string-valid on a string v over X if it agrees with the transition rela-
tion up to the length of the input string ∀n < |v|, T (r(n))(v(n))(r(n+
1)) and

• string-final if r(|v|) is a final state.

The NFA A string-accepts v if there is a run r such that r is string-
valid on v, initial and string-final. The string language recognized by A
is

LS(A) := λ(v : String X).A string-accepts v.

It is technically easier to use sequences as runs on strings. Because
strings are prefixes of sequences, the sequence containing the run is there
anyway and the length of the run string is determined by the length of v (to
|v|+ 1). So the length of the run string is redundant and we can just work
with sequences (filled with garbage from position |v|+ 2).

5 Union and Intersection of Büchi Languages
Let A1 and A2 be NFAs.

5.1 Closure under Union

There is a function uniteB : NFA→ NFA→ NFA such that

LB(uniteB(A1, A2)) = LB(A1) ∪ LB(A2).

The union construction is straightforward using the sum construction and
completely constructive.

5.2 Closure under Intersection

There is another function intersectB : NFA→ NFA→ NFA such that

LB(intersectB(A1, A2)) = LB(A1) ∩ LB(A2).

This construction is more difficult and different from the construction for
string languages. The NFA intersectB(A1, A2) needs to run both automata
in parallel. So all states of intersectB(A1, A2) need to contain a state of A1
and A2. But when is a state final? Because A1 and A2 not necessarily ever
reach a final state at the same position even if both automata accept the
input sequence, one cannot define the states of intersectB(A1, A2) to be final
if the contained states of A1 and A2 are final.
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The idea is that intersectB(A1, A2) waits for a final state of A1 and
A2 alternatingly. Because intersectB(A1, A2) needs to remember on which
automaton to wait, this piece of information needs to be stored in the states
of, too:

state(intersectB(A1, A2)) := state(A1)× state(A2)× 3

If the last component of the current state of intersectB(A1, A2) is 1, it waits
for A1 to get final and the same for A2 if the last component is 2. The state
3 is directly passed.

1start

2

3

A1 gets final

A1 not final

A2 gets final

A2 not final

If intersectB(A1, A2) sees infinitely many final states of A1 and A2 it visits
infinitely often a state with 3 as last component. So all states with a 3 as
last component are final states of intersectB(A1, A2).

If we want to prove that LB(intersectB(A1, A2)) = LB(A1) ∩ LB(A2)
there is a certain difficulty. In both directions we can not find the infinitely
occurring final state constructively:

Given accepting runs of A1 and A2 on a sequence w, we can prove that
intersectB(A1, A2) loops infinitely often through the last component of its
states which implies that there are infinitely many final states. Given an
accepting run of intersectB(A1, A2) on w we only know that that both A1
and A2 visit final states infinitely often, because intersectB(A1, A2) loops
infinitely often through the last component of its states.

In both cases, concluding that A1 and A2 resp. intersectB(A1, A2) accept
w, depends on (A1P).

6 Decidability of Büchi Language Emptiness
In this section we show that it is decidable whether the Büchi language of an
NFA is empty or not. We even show a stronger informative decision which
gives in the case that the language is nonempty a concrete sequence of the
language. Conceptually this section follows [3].
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6.1 Trimming of Büchi Automata

A state s of an NFA A is called accessible, if s is reachable from an initial
state1. The state s is called final coaccessible if there is a final and valid
run of A for some sequence w starting at s.

The state s is called trim if it is accessible and final coaccessible. The
trim automaton AT of A is the NFA derived from A when only keeping
all trim states of A. It is easy to see, that LB(A) = LB(AT ) and that
LB(AT ) = ∅ ↔ state(AT ) = ∅. So if we want to decide LB(A) = ∅, we can
decide state(AT ) = ∅.

6.2 Decision of a State being Trim

Because the definition of final coaccessible quantifies over a sequence, it is
not obvious how to decide whether a state is final coaccessible or not. Here
we use some ideas given in [1]. We call a state s of A final cyclic if there
is a nonempty loop from s to s visiting a final state. Then we want to show
the following lemma:

s is final coaccessible ↔ ∃s′, s′ is reachable from s ∧ s′ is final cyclic

Showing ← is clear. To show → one can see that if there is a valid and final
run r and the infinitely often occurring state is s′, that s′ is reachable from
s and that r contains a loop from s′ to s′.

Now we reduce the existence of a loop visiting a final state to reachability:

s is final cyclic↔ ∃s′, s′ is final ∧ s′ is reachable from s ∧ s is reachable from s′

(Note that the loop is not restricted to visiting a state only once.) Then

s is trim ↔∃i s′, i is initial ∧ s reachable from i ∧ s′ is final ∧
s′ is reachable from s ∧ s is reachable from s′

istart s s′

Now It is easy to see that the rewritten condition is decidable, because
existential quantifiers over finite types (the states of A) and reachability in
NFAs are decidable. So we can decide whether s is trim or not, so we can
decide whether there is a trim state and finally whether LB(A) = ∅.

1Strictly speaking with non empty strings, reachable implies a nonempty path, then s
is accessible if it is reachable from an initial state or is initial itself.
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6.3 Informative Decision of Language Emptiness

We show
{∃w,w ∈ LB(A)}+ {LB(A) = ∅}

If LB(A) 6= ∅ there is a trim state s. By the equivalences already shown,
s is reachable from an initial state on a string v and has a nonempty loop
from s to s visiting a final state on a string w. Then v+++ wω ∈ LB(A).

7 Constructions on NFAs
The following constructions are for example described in [1] and raise no
conceptional difficulties in constructive logic. While [1] does the last two
constructions in one step, we split them for simplicity.

Let A,A1 and A2 be NFAs.

7.1 Normalizing an NFA

An NFA A is normalized if A has only one initial state si without any
entering transition and A has only one final state sf without any leaving
transition.

There is a function normalize : NFA→ NFA such that

LS(normalize(A)) = LS(A) ∧ normalized normalize(A).

The function normalize introduces two now states si and sf . Whenever there
is a transition s a−→ s′ for an initial state s, we allow the transition si

a−→ s′.
Vice versa, if there is a transition s a−→ s′ for a final s′, we allow the transition
s

a−→ sf . The only new initial state is si, the only final sf .

sistart A sf

By construction there is no transition to si and from sf . It is easy to see that
this transformation does not change the string language LS(normalize(A)) =
LS(A), because only the first and the last transition needs to be adjusted.

7.2 NFA recognizing LS(A)ω

There is a function nfa-ω-iter : NFA→ NFA such that

LB(nfa-ω-iter(A)) = LS(A)ω

and nfa-ω-iter(A) has a state sif which is the only final and initial one.
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The NFA normalize(A) has two states si and sf . The function nfa-ω-iter
merges the states si and sf to a new state sif . sif is the only final and
initial state of AB.

sifstart A

LB(nfa-ω-iter(A)) ⊆ LS(A)ω: An accepting run on nfa-ω-iter(A) for a
sequence w visits sif infinitely often, because sif is the only final state.
Then the run needs to pass through A infinitely often. Each pass from
sif through A to sif corresponds exactly to one string of LS(A). In the
formal proof the partition w into the infinitely many strings of LS(A) can
be obtained using filter∞ very elegantly. The accepting run is filtered for
the positions at which it reaches sif .

LS(A)ω ⊆ LB(nfa-ω-iter(A)): Assume we have infinitely many string
of LS(A) together with their runs on normalize(A), then the accepting run
for nfa-ω-iter(A) is the infinite concatenation of these runs without the last
state. The last state of any of these runs is sf , which is merged into si in
nfa-ω-iter(A) and si is the first state of the run on the next string.

7.3 NFA recognizing LS(A1) · LB(A2)
There is a function nfa-prepend : NFA→ NFA→ NFA such that

LB(nfa-prepend(A1, A2)) = LS(A1) · LB(A2)

if A2 has a state sif , which is the only initial and final state in A2.
The NFA normalize(A1) has the two states si and sf . The function

nfa-prepend merges sf into the state sif of A2. si is the only initial and sif

the only final state of nfa-prepend(A1, A2).

sistart A1 sif A2

It is easy to see that we need to prepend for each accepted sequence of
nfa-prepend(A1, A2) an accepted string from A1 to come from si to sif . Vice
versa, if we have an accepting run of nfa-prepend(A1, A2), we can split it at
the first occurrence of sif in an accepting run of A1 and of A2.

As a corollary we obtain that there is a function f : NFA→ NFA→ NFA
such that

LB(f(A1, A2)) = LS(A1) · LS(A2)ω.

We define f(A1, A2) := nfa-prepend(A1, nfa-ω-iter(A2)).
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8 Complementation Theorem
Fix an NFA A. We want to show that there is a function complementB :
NFA→ NFA such that

LB(complementB(A)) = LB(A)C

, so we can construct the NFA recognizing the complement Büchi language
of A.

There are different classical ways to construct complementB(A) in liter-
ature. An overview is given e.g. [10] or [11]. We follow the sometimes called
Ramsey-based complementation as e.g. found in [6]. Our translation to con-
structive type theory follows the same layout. At some points we will need
to carry out more details or to work hard on something that is classically
easy.

We will define an equivalence relation ∼ of finite index on strings, such
that each equivalent class can be recognized by an NFA. Moreover, the
Büchi languages VWω, where V and W are equivalence classes of ∼, are
total: together they cover all sequences. We will see that the VWω are
compatible with LB(A): a VWω is either included in LB(A) or in LB(A)C

and we will be able to decide this. Using these VWω languages, we will
construct the complement NFA.

This proof is similar to the original one given by Büchi [4] (but in an log-
ical notation) and gives some insights into the structure of Büchi languages.

8.1 ∼ Equivalence Relation on Strings

We say that a string v transforms state s1 to state s2 if A can run from
s1 to s2 on v. We write s1 =⇒v s2. If there is a run on which A visits
a final state, we say that v final transforms s1 to s2 and denote this by
s1 =⇒F

w s2. Because state(A) is finite, we can construct the path through A
on v given s1 =⇒v s2 or s1 =⇒F

v s2.
We define two strings v and w to be ∼ equivalent:

v ∼ w := ∀ss′,
(
s =⇒v s

′ ↔ s =⇒w s′
)
∧
(
s =⇒F

v s′ ↔ s =⇒F
w s′

)
Intuitively this means that A cannot distinguish between v and w if v ∼ w.
(Note that ∼ is a stronger version than ∼ in the Myhill-Nerode Theorem). It
is easy to see that ∼ is a congruence relation: v ∼ w → ∀u, v++ u ∼ w++ u.
Because ∼ talks about strings, it is decidable.

The equivalence classes of ∼ can be indexed by the finite type

EI := 3state(A)×state(A)
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as follows. Let i be of this type. Then the equivalence class denoted by JiK
is:

JiK := λw.∀ss′,


s 6=⇒ ws

′ i(s, s′) = 1
s =⇒w s′ ∧ s 6=⇒ F

ws
′ i(s, s′) = 2

s =⇒F
w s′ i(s, s′) = 3

There is a function class∼ : String X → EI computing the ∼-equivalence
class for all strings:

∀(v : String X), Jclass∼vK

We denote all equivalence classes of ∼ as

E∼ := {JiK|i : EI}.

8.1.1 NFAs for Equivalence Classes of ∼

We need that JiK is NFA recognizable later. There are two possibilities:

• Use A to recognize string languages: λv.s =⇒v s
′ is recognizable when

setting s to the only initial and s′ to the only final state. λv.s =⇒F
v s′

can be recognized similarly by carrying a boolean flag in the states
of A which remembers whether a final state of A was seen. With the
closure properties of string languages on NFAs we get that we can
construct an NFA recognizing JiK.

• Myhill-Nerode using ∼ as classifier: In [2] Doczkal and Smolka show
that a decidable string language given a classifier (a right congruent
function in a finite type which refines the language) for it is NFA
recognizable. Certainly, we can decide whether v ∈ JiK or not because
v is finite. As a classifier we take the function which assigns to each
string its ∼ equivalence class.

8.2 Compatibility of V W ω

Lets fix some V,W ∈ E∼. The next goal is to show that VWω is compatible
with LB(A):

(∃w,w ∈ (VWω ∩ LB(A)))→ VWω ⊆ LB(A)

We do not require the VWω languages to be a partition of Xω and in
fact they are not necessarily. The constructive proof depends on the given
witness w, while (VWω ∩ LB(A)) 6= ∅ suffices in the classical setting.

While compatibility is rather easy to see informally, one needs to work a
lot harder to make it completely formal, but the basic idea stays the same:
If w ∈ VWω it is w = v+++ (w1++ w2++ . . . ) for some v ∈ V and wi ∈ W .
We can switch to this representation according to our second definitionWω2
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in section 2.6, because the equivalence classes of ∼ are extensional. Because
w ∈ VWω, there is a valid, initial and final run r of A on w.

Take any other w′ = v′+++ (w′1++ w′2++ . . . ) ∈ VWω. Because v ∼ v′ and
wi ∼ w′i we can stitch the constructed partial runs of A on v′ and w′i together
to get a valid run r′ on w′. r′ is initial because it starts with the same state
because v ∼ v′. Showing that r′ is final is not constructive completely: there
is a final state s in r which occurs infinitely often. From the the definition
of ∼ we know that A visits a final state on w′ at some w′i if A visits s on
the corresponding wi in w. But we do not know which final state A visits
on w′i. So we can show that there are infinitely many final states in r′ only
and need (A1P) to conclude that w′ ∈ LB(A).

Together with the informative decision of language emptiness and NFA
recognizability of V and W , we could obtain the corollary

{VWω ⊆ LB(A)}+ {VWω ⊆ LB(A)C}

but we do not need it for the remaining proof.

8.3 Totality of V W ω

We want to prove that every sequence is contained in one VWω:

∀(w : Seq X), ∃V,W ∈ E∼, w ∈ VWω

The classical proof uses Ramsey’s Theorem. Unfortunately, Ramsey’s The-
orem does not hold in constructive logic. In order to prove totality, we can
either assume Ramsey’s Theorem and follow the proof first given by Büchi
[4] (or e.g. in [6]) or do more infinite combinatorics directly. In this case we
follow the proof given by Khoussainov and Nerode in [1]. This argumenta-
tion can be formalized using our assumption (A2).

In Section 3 we argued that (A2) and Ramsey’s Theorem do not imply
each other. So it is interesting to see that we can use both to prove totality.
The proof using Ramsey’s Theorem is elegant and compact, the proof using
(A2) is more complicated. For now fix an arbitrary sequence w over X.

8.3.1 Proof using Ramsey’s Theorem

We sketch the classical proof of totality using Ramsey’s Theorem[6]:
We color the indices of w with the ∼ equivalence classes: Let i < j.

Then q({i, j}) := class∼(w(i, j)) is the equivalence class of w(i, j). Ramsey’s
Theorem gives an equivalence class W and an infinite M ⊆ N such that
w(i, j) ∈ W for i < j ∈ M . W.l.o.g. 0 /∈ M . Let i0 = minM . Then
V is the equivalence class of w(0, i0). Then (up to extensionality) w =
w(0, io)+++ (w(i0, i1)++ w(i1, i2)++ . . . ) ∈ VWω.

Using the formulation of Ramsey’s Theorem for N in 3.4 the proof is
valid constructively (assuming Ramsey for N).
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8.3.2 Equivalence Relation ∼w on Sequence Indices

Let k1, k2,m ∈ N, so they are indicies in w. We define

k1 ∼w k2 (at m) := m > k1 ∧m > k2 ∧ w(k1,m) ∼ w(k2,m)

k1 ∼w k2 := ∃m, k1 ∼w k2 (at m)

From ∼ being a congruence relation we can derive

k1 ∼w k2 (at m)→ ∀n ≥ m, k1 ∼w k2 (at n).

8.3.3 Excluded Middle for ∼w

From decidability of ∼ decidability of k1 ∼w k2 (at m) follows. Because of
the unbounded existential quantifier k1 ∼w k2 is not decidable. But we can
show propositional decidability of k1 ∼w k2 using (A1).

Let

b := λn.if decision(k1 ∼w k2 (at m)) then true else false

be the sequence on B, which is true at index n if k1 ∼w k2 (at n). Now we
make the following obnaservations:

• If b(n) = true then ∀n ≥ m, b(n) = true which follows because k1 ∼w

k2 (at m)→ ∀n ≥ m, k1 ∼w k2 (at n).

• If false occurs infinitely often in b, then b is constant false. If there was
any true in b, b would be constant true from this position by the first
observation. But then false would not occur infinitely often.

Using (A1) we get that true or false occurs infinitely often in b. If false occurs
infinitely often, by the second observation k1 6∼wk2. If true occurs infinitely
often, there is one index m such that b(m) = true and by definition of b
k1 ∼w k2. So

∀k1k2, k1 ∼w k2 ∨ k1 6∼wk2

8.3.4 Finite Index of ∼w

Because ∼ is of finite index, ∼w needs to be of finite index, too. Unfortu-
nately, we were not able to give a type indexing the equivalence classes as
we did for ∼. We are not able to give the equivalence class for a position
in w, because w is arbitrary. But using the already proven excluded middle
for ∼w we can prove

∀k : String N, |k| > |3state(A)×state(A)| → ∃i < j < |k|, k[i] ∼w k[j]

which is exactly the designed requirement to apply (A2) later.

19



8.3.5 Existence of V and W

Once we have these more technical details on ∼w, we now want to show
that there are desired V,W ∈ E∼. The basic proof idea follows closely the
argumentation in [1].

Using (A2) we can prove the existence of a strictly monotone sequence
g such that

g(0) > 0 ∧
∀n, g(0) ∼w g(n)

, because we already proved that there are finitely many equivalence classes
of ∼w. So all indices in g are ∼w equivalent.

Now we will repeat finding subsequences of g which have more proper-
ties. Because we do this carefully, they inherit all properties.

Because ∼ is of finite index, we can apply (A1) on the sequence

f : (N→ EI) := λn.class∼(w(g(0), g(n)))

mapping n to the ∼ equivalence class of w(g(0), g(n)). (A1) gives one equiv-
alence class, which occurs infinitely often in f . Using filter∞ we filter g for
these infinitely many positions and obtain the next subsequence g′ such that

g′(0) > 0 ∧
∀n, g′(0) ∼w g′(n) ∧
∀m > 0, n > 0, w(g′(0), g′(n)) ∼ w(g′(0), g′(m))

So all indices in g′ are ∼w equivalent and all strings w(g′(0), g′(m)) are ∼
equivalent.

In the last step, we need to show the existence of a subsequence g′′ of g′
such that

g′′(0) > 0 ∧
∀n, g′′(0) ∼w g′′(n) ∧
∀m > 0, n > 0, w(g′′(0), g′′(n)) ∼ w(g′′(0), g′′(m)) ∧
∀j ≤ i, g′′(j) ∼w g′′(i) (at g′′(i+ 1))

We construct g′′ using filterhistory on g′ using the predicate

λg′′ : String N, g′′[0] = g′(0) ∧ ∀j ≤ i < |g′′|, g′′(j) ∼w g′′(i) (at g′′(i+ 1))

We need to assert that g′′[0] = g′(0) because otherwise we would lose the
last property of g′ (here it is crucial that filterhistory(w,P )(0) = 0) . We need
to prove:
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1. g′(0) ∼w g′(0) (at g′(1)) and g′(0) = g′(0) which is trivial.

2. If we have a strictly monotone string g′′ such that g′′[0] = g′(0)∧∀j ≤
i < |g′′|, g′′(j) ∼w g′′(i) (at g′′(i + 1)) we can find a new index of
g′ > g′′[|g′′| − 1] which preserves the property when appended to g′′.
We do this proof by induction on |g′′|.

• If |g′′| = 1 (remember, that our strings are nonempty), taking
g′′[0] + 1 sufficies.
• Assume that there is such an index mk for the first k elements of
g′′. From the first property of g′ we know that g′(0) ∼w g′′[k+1],
so there is an m such that w(g′(0), g′(mk)) ∼ w(g′′[k+ 1], g′(m)).
Because g′ is strictly monotone, there is an smallest index mk+1
such that g′(mk+1) ≥ max(mk,m).

So all indices in g are ∼w equivalent, all strings w(g′(0), g′(m)) are ∼ equiv-
alent and two indices i ≤ j in g′′ have the property i ∼w j (at j + 1).

Finally we have to show that V is the equivalence class of w(0, g′′(0))
and W the one of w(g′′(0), g′′(1)). Basically we can use g′′ as the parti-
tion of w into strings. Then we only need to show that w(g′′(0), g′′(1)) ∼
w(g′′(i), g′′(i+ 1)) for all i: By the last property of g′′ we get

w(g′′(0), g(i+ 1)) ∼ w(g′′(i), g′′(i+ 1)).

By the third property we get

w(g′′(0), g′′(1)) ∼ w(g′′(0), g′′(i+ 1)).

Then we get by transitivity that

w(g′′(0), g′′(1)) ∼ w(g′′(i), g′′(i+ 1)).

So w ∈ VWω.

8.4 Complement Construction

We can enumerate the finitely many equivalence classes of ∼ and thus we can
enumerate all pairs of them. For each V,W ∈ E∼ we can decide whether
VWω ∩ LB(A) = ∅: Because we can construct NFAs recognizing V and
W , we can construct an NFA recognizing the Büchi languages VWω and
VWω ∩ LB(A). For the last one we can decide whether its language is
empty or not. Then the complement of LB(A) is given as

LB(A)C =
⋃

V,W∈E∼ s.t. V W ω∩LB(A)=∅
VWω =: complementB(A).

We can construct the NFA complementB(A) because we can construct the
Büchi NFA for a union of finitely many Büchi NFAs. For the correctness,
we establish the following four lemmata:
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• LB(A) ∩ LB(complementB(A)) = ∅

• LB(A) ∪ LB(complementB(A)) = Xω

• LB(A)C = LB(complementB(A))

• LB(A) = LB(complementB(A))C

For the proofs the informative decision of language emptiness is important,
because we need a sequence w to apply the compatibility theorem. As corol-
laries we obtain for arbitrary NFAs A,A1 and A2 the following decidability
statements for Büchi languages:

• Language universality: dec(LB(A) = Xω)

• Language inclusion: dec(LB(A1) ⊆ LB(A2))

• Language equality: dec(LB(A1) = LB(A2))

9 Formalization
Our formalization depends on the implementation of finite types given in
[5]. This implementation contains [7], from which we used basic lemmata
for decidability and lists directly. Additionally [5] contains the notion of
pure predicates originally from [9]. Constructive choice for natural numbers
is taken from [8].

Our Coq formalization consists about 5000 lines of code with roughly one
fourth specifications and three fourths proofs. About 3000 lines deal with
Büchi languages directly. Because we use functions N → X to implement
sequences over X, there are a lot of calculations on indices and they appear
rather everywhere. These indices make many proofs more complicated than
we wish. This is one reason why our formalization got so big. We would
like to find a more elegant way for dealing with indices or to use a different
representation of sequences without indices.

Defining strings as non empty prefixes of sequences turned out be really
useful in general. But this comes at the price of loosing a useful equality on
strings (which one would e.g. get when using lists). At the end this did not
harm because we could prove everything using pointwise equality only.

The formalization is divided into the following important parts:

• Seqs.v: This module contains the definition of sequences and strings
as basic operations on them (first part of section 2).

• SeqOperations.v: Contains the implementation of filter∞, filterhistory,
and concat∞ (last part of section 2).

• StrictlyMonotoneSeqs.v: Facts about strictly monotone sequences.
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• NFAs.v: Definition of NFAs, string acceptance, facts about strings and
sequences on NFAs, decidability of reachability in NFAs (section 4).

• Buechi.v: Necessary assumptions (section 3), Büchi Acceptance (sec-
tion 4.1), closure constructions of union and intersection (section 5).

• DecLanguageEmpty.v: Decision of Büchi language emptiness as in sec-
tion 6.

• NFAConstructions.v: NFA constructions given in section 7.

• Complement.v: Complementation Theorem (section 8).

Moreover, we have some utility code. This code shows some not so inter-
esting facts (e.g. basic properties of the finite type {n ≤ k|n ∈ N}) or
addresses technical difficulties (e.g. conversion between the sequence based
string definition and lists to apply external theorems).
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