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INTRODUCTION

Büchi Automata are automata model for infinitely long words
E.g. Used to show decidability of MSO on N
NFAs transfer to constructive logic
Goal

1 Give a formalization of Büchi automata
2 Analyze "constructiveness" of Büchi automata
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SEQUENCES

Definition (Sequence)
A sequence over a type X is a function N→ X .

Definition (Infinitely Often)
A an element x occurs infinitely often in a sequence w if

∀n, ∃m,m ≥ n ∧ w(m) = x

Definition (Strictly Monotonicity)
A sequence w over N is strictly monotone if

∀n,w(n) < w(n+ 1)

The induced subsequence of a sequence w by a strictly monotone
sequence f is w ◦ f .
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ASSUMPTIONS

Cannot reason about infinitely many elements constructively
Assumptions for infinite combinatorics
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SEQUENCES OVER A FINITE TYPE

Assumption (Sequences over Finite Type (A1))
For every finite type F and every sequence w on F there is an element of F
occurring infinitely often in w:

∀(F : finite Type)(w : Seq F ),∃x, x infinitely often in w

...

5



Introduction Definitions Assumptions Büchi Acceptance Complementation Summary

EQUIVALENCE RELATIONS ON NAT OF FINITE INDEX

Definition (Finite Index)
An equivalence relation ∼ on type X is of finite index if

∃n, ∀(v : String X), |v| > n→ ∃i < j < |v|, v[i] ∼ v[j]

Assumption (Equivalence Relation of Finite Index (A2))
Given an propositionally decidable equivalence relation ∼ on N of finite
index. All sequences over N have a subsequence in one equivalence class.

∀(w : Seq N),∃f, f strictly monotone ∧ ∀n, (w ◦ f)(0) ∼ (w ◦ f)(n)

...
∼ ∼ ∼

∼

∼
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RAMSEY’S THEOREM

Theorem (Ramsey’s Theorem, classical)
Let U be an infinite set and q a finite coloring of all subsets of U with two
elements. Then there is an infinite subset M ⊆ U such that all subsets of M
of size two are colored equally.

Assumption (Constructive Formulation of Ramsey on N)
Given a finite type C and a coloring q : N→ N→ C such that

∀nm, q(n,m) = q(m,n)

then

∃(c : C), ∃(M : Seq N),M strictly monotone ∧
∀nm, n 6= m→ q(M(n),M(m)) = c.
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RAMSEY’S THEOREM
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∀nm, q(n,m) = q(m,n)

then

∃(c : C),∃(M : Seq N),M strictly monotone ∧
∀nm, n 6= m→ q(M(n),M(m)) = c.

...

8



Introduction Definitions Assumptions Büchi Acceptance Complementation Summary

RELATIONSHIP BETWEEN ASSUMPTIONS

XM

(A2)Ramsey

(A1)
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NFAS

Definition (NFA)
An NFA A over a finite type X consists of

a finite type state(A)
a decidable transition relation T : state(A)→ X → state(A)→ P
a list of final states
a list of initial states

1start

2start

3

4

a

a
b

c
a,b

c

a
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BÜCHI ACCEPTANCE

Definition (Büchi Acceptance)
A run of NFA A is a sequence on state(A). A run r is

valid on w if ∀n, T (r(n), w(n), r(n+ 1))
initial if r(0) is an initial state
final if ∃s, s final ∧ s infinitely often in r.

The NFA A accepts w is there is a run r which is valid on w, initial and
final.

Definition (Languages of NFAs)
The Büchi language of an NFA A is

LB(A) := λ(w : Seq X), A accepts w.
The string language of A is

LS(A) := λ(w : String X), A string-accepts w.
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FACTS (ALL PROVABLE CONSTRUCTIVELY)

Theorem (Decidability of Language Emptiness)
Given an NFA A, we can decide

{∃w,w ∈ LB(A)}+ {LB(A) = ∅}

Theorem (Closure under Union)
There is a function uniteB such that for all NFAs A1 and A2

LB(uniteB(A1, A2)) = LB(A1) ∪ LB(A2)

Lemma (Constructions on NFAs)
There is a function f such that for all NFAs A1 and A2

LB(f(A1, A2)) = LS(A1) · LS(A2)ω
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INTERSECTION CONSTRUCTION

Theorem (Closure under Intersection)
There is a function intersectB such that

LB(intersectB(A1, A2)) = LB(A1) ∩ LB(A2)

state(intersectB(A1, A2)) := state(A1)× state(A2)× 3

3

12

start

A1 gets final

A1 not final

A2 gets final

A2 not final
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COMPLEMENTATION THEOREM

NFAs with Büchi Acceptance cannot be made deterministic
Many different complementation constructions in literature
Ramsey-based approach:

Xω

LB(A)
LB(A)C
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∼ EQUIVALENCE RELATION

Definition (∼ Equivalence)

s =⇒v s
′ := v is a path from s to s′

s =⇒F
v s′ := v is a path from s to s′ visiting a final state

v ∼ w := ∀ss′,
(
s =⇒v s

′ ↔ s =⇒w s′
)
∧
(
s =⇒F

v s′ ↔ s =⇒F
w s′

)
Lemma (Properties of ∼)

All finitely many ∼ equivalence classes E∼ can be enumerated.
All ∼ equivalence classes are NFA recognizable.
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COMPATIBILITY

Let V,W ∈ E∼.

Lemma (Compatibility)
w ∈ LB(A) ∩ VWω → VWω ⊆ LB(A)

Let w′ ∈ VWω.

w = v ++ w1 ++ w2 ++ w3 ++ w4 ++ w5 ++ . . .

s0 s1 s2 s3 s4 s5 s6 . . .

w′ = v′ ++ w′1 ++ w′2 ++ w′3 ++ w′4 ++ w′5 ++ . . .

Need (A1) to show w′ ∈ LB(A).

Corollary

VWω ⊆ LB(A) ∨ VWω ⊆ LB(A)C
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TOTALITY

Lemma (Totality)
∀w,∃V W ∈ E∼, w ∈ VWω

Proof Sketch (using Ramsey)
Color indices i < j with equivalence class of w(i, j)
Ramsey gives equivalence class W and strictly monotone
sequence f , such that ∀n,w(f(n), f(n+ 1)) ∈W
V is equivalence class of w(0, f(0))
w = w(0, f(0))++ w(f(0), f(1))++ w(f(1), f(2))++ · · · ∈ VWω

More evolved alternative using (A2).
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COMPLEMENT CONSTRUCTION

Theorem (Büchi Complementation)
The complement is given as

LB(A)C =
⋃

V,W∈E∼ s.t. V W ω∩LB(A)=∅
VWω =: LB(complementB(A))

and the NFA for the right side can be constructed.

Totality and Compatibility of VWω

V,W are NFA recognizable
VWω are NFA recognizable
Finitely many V,W
VWω ∩ LB(A) = ∅ is decidable
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SUMMARY

Sequences NFAs

Büchi Acceptance

Union IntersectionDec Emptiness

Complement Totality

Compatibility

using Ramsey

using (A2)

(A1)
(A2)

Ramsey
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