Introduction	Definitions	Assumptions	Büchi Acceptance	Complementation	Summary	
Büchi-Automata in Coq						
	Research Immersion Lab Talk					
Moritz Lichter						
		SAAR UNIVI	land 🚆			
		Compu	iter science			
	Advisor: Prof. Dr. Gert Smolka					

October 21, 2016

1

- Büchi Automata are automata model for infinitely long words
- $\bullet\,$ E.g. Used to show decidability of MSO on $\mathbb N$
- NFAs transfer to constructive logic
- Goal
 - Give a formalization of Büchi automata
 - Analyze "constructiveness" of Büchi automata

Introduction	Definitions	Assumptions	Büchi Acceptance	Complementation	Summary
SEOUEN	ICES				

Definition (Sequence)

A **sequence** over a type *X* is a function $\mathbb{N} \to X$.

Definition (Infinitely Often)

A an element *x* occurs **infinitely often** in a sequence *w* if

$$\forall n, \exists m, m \geq n \wedge w(m) = x$$

Definition (Strictly Monotonicity)

A sequence w over \mathbb{N} is strictly monotone if

```
\forall n, w(n) < w(n+1)
```

The **induced subsequence** of a sequence w by a strictly monotone sequence f is $w \circ f$.

- Cannot reason about infinitely many elements constructively
- Assumptions for infinite combinatorics

Assumption (Sequences over Finite Type (A1))

For every finite type F and every sequence w on F there is an element of F occurring infinitely often in w:

 $\forall (F:\textit{finite Type})(w:\texttt{Seq}\ F), \exists x, x \textit{ infinitely often in } w$

 Introduction
 Definitions
 Assumptions
 Büchi Acceptance
 Complementation
 Summary

 EQUIVALENCE
 RELATIONS
 ON NAT OF FINITE INDEX

 Definition (Finite Index)
 Index
 Index

An equivalence relation \sim on type *X* is of **finite index** if

 $\exists n, \forall (v: \texttt{String}\ X), |v| > n \rightarrow \exists i < j < |v|, v[i] \sim v[j]$

Assumption (Equivalence Relation of Finite Index (A2))

Given an propositionally decidable equivalence relation \sim *on* \mathbb{N} *of finite index. All sequences over* \mathbb{N} *have a subsequence in one equivalence class.*

 $\forall (w: \texttt{Seq} \ \mathbb{N}), \exists f, f \textit{ strictly monotone } \land \forall n, (w \circ f)(0) \sim (w \circ f)(n)$

Theorem (Ramsey's Theorem, classical)

Let U be an infinite set and q a finite coloring of all subsets of U with two elements. Then there is an infinite subset $M \subseteq U$ such that all subsets of M of size two are colored equally.

Assumption (Constructive Formulation of Ramsey on \mathbb{N})

Given a finite type *C* and a coloring $q : \mathbb{N} \to \mathbb{N} \to C$ such that

 $\forall nm, q(n,m) = q(m,n)$

then

 $\exists (c:C), \exists (M: \texttt{Seq } \mathbb{N}), M \text{ strictly monotone } \land \\ \forall nm, n \neq m \rightarrow q(M(n), M(m)) = c.$

Introduction Definitions Assumptions Büchi Acceptance Complementation Summary
RAMSEY'S THEOREM

Assumption (Constructive Formulation of Ramsey on \mathbb{N})

Given a finite type C and a coloring $q : \mathbb{N} \to \mathbb{N} \to C$ such that

 $\forall nm, q(n,m) = q(m,n)$

then

$$\exists (c:C), \exists (M: Seq \mathbb{N}), M \text{ strictly monotone} \land \\ \forall nm, n \neq m \rightarrow q(M(n), M(m)) = c.$$

Introduction Definitions Assumptions Büchi Acceptance Complementation Summary
RELATIONSHIP BETWEEN ASSUMPTIONS

Introduction	Definitions	Assumptions	Büchi Acceptance	Complementation	Summary
NFAS					

Definition (NFA)

An NFA *A* over a finite type *X* consists of

- a finite type state(*A*)
- $\bullet\,$ a decidable transition relation $T:\mathsf{state}(A)\to X\to\mathsf{state}(A)\to\mathbb{P}$
- a list of final states
- a list of initial states

Definition (Büchi Acceptance)

A **run** of NFA A is a sequence on state(A). A run r is

- valid on w if $\forall n, T(r(n), w(n), r(n+1))$
- **initial** if r(0) is an initial state
- **final** if $\exists s, s$ final $\land s$ infinitely often in r.

The NFA *A* **accepts** w is there is a run r which is valid on w, initial and final.

Definition (Languages of NFAs)

The **Büchi language** of an NFA A is

$$\mathcal{L}_B(A) := \lambda(w : \text{Seq } X), A \text{ accepts } w.$$

The **string language** of *A* is

 $L_S(A) := \lambda(w : \operatorname{String} X), A \text{ string-accepts } w.$

 Introduction
 Definitions
 Assumptions
 Büchi Acceptance
 Complementation
 Summary

 FACTS (ALL PROVABLE CONSTRUCTIVELY)

 Theorem (Decidability of Language Emptiness)

 Given an NFA A, we can decide

 $\{\exists w, w \in L_B(A)\} + \{L_B(A) = \emptyset\}$

Theorem (Closure under Union)

There is a function unite *B* such that for all NFAs A_1 and A_2

$$L_B(\mathsf{unite}_B(A_1, A_2)) = L_B(A_1) \cup L_B(A_2)$$

Lemma (Constructions on NFAs)

There is a function f *such that for all NFAs* A_1 *and* A_2

$$L_B(f(A_1, A_2)) = L_S(A_1) \cdot L_S(A_2)^{\omega}$$

$$L_B(\mathsf{intersect}_B(A_1, A_2)) = L_B(A_1) \cap L_B(A_2)$$

 $\mathsf{state}(\mathsf{intersect}_B(A_1, A_2)) := \mathsf{state}(A_1) \times \mathsf{state}(A_2) \times \mathbf{3}$

- NFAs with Büchi Acceptance cannot be made deterministic
- Many different complementation constructions in literature
- Ramsey-based approach:

Introduction Definitions Assumptions Büchi Acceptance Complementation Summary $\sim EOUIVALENCE RELATION$

Definition (~ Equivalence)

- $s \Longrightarrow_v s' := v$ is a path from s to s'
- $s \Longrightarrow_v^F s' := v$ is a path from s to s' visiting a final state

$$v \sim w := \forall ss', (s \Longrightarrow_v s' \leftrightarrow s \Longrightarrow_w s') \land \left(s \Longrightarrow_v^F s' \leftrightarrow s \Longrightarrow_w^F s'\right)$$

Lemma (Properties of \sim)

- All finitely many \sim equivalence classes E_{\sim} can be enumerated.
- All ~ equivalence classes are NFA recognizable.

Introduction	Definitions	Assumptions	Büchi Acceptance	Complementation	Summary
Сомра	TIBILITY				
Let V, W	$\in E_{\sim}.$				
Lemma (Compatib	oility)			

 $w \in L_B(A) \cap VW^\omega \to VW^\omega \subseteq L_B(A)$

Let $w' \in VW^{\omega}$.

 $w = v + w_1 + w_2 + w_3 + w_4 + w_5 + \cdots$ $s_0 \longrightarrow s_1 \longrightarrow s_2 \longrightarrow s_3 \longrightarrow s_4 \longrightarrow s_5 \longrightarrow s_6 \longrightarrow \cdots$ $w' = v' + w'_1 + w'_2 + w'_3 + w'_4 + w'_5 + \cdots$

Need (A1) to show $w' \in L_B(A)$.

Corollary

 $VW^{\omega} \subseteq L_B(A) \vee VW^{\omega} \subseteq L_B(A)^C$

Introduction	Definitions	Assumptions	Büchi Acceptance	Complementation	Summary
Totali	ТҮ				

Lemma (Totality)

 $\forall w, \exists V \; W \in E_{\sim}, w \in VW^{\omega}$

Proof Sketch (using Ramsey)

- Color indices i < j with equivalence class of w(i, j)
- Ramsey gives equivalence class W and strictly monotone sequence f , such that $\forall n, w(f(n), f(n+1)) \in W$
- V is equivalence class of w(0, f(0))
- $w = w(0, f(0)) + w(f(0), f(1)) + w(f(1), f(2)) + \dots \in VW^{\omega}$

More evolved alternative using (A2).

The complement is given as

 $L_B(A)^C = \bigcup_{V,W \in E_{\sim} \text{ s.t. } VW^{\omega} \cap L_B(A) = \emptyset} VW^{\omega} =: L_B(\mathsf{complement}_B(A))$

and the NFA for the right side can be constructed.

- Totality and Compatibility of VW^{ω}
- *V*, *W* are NFA recognizable
- VW^{ω} are NFA recognizable
- Finitely many *V*, *W*
- $VW^{\omega} \cap L_B(A) = \emptyset$ is decidable

