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Abstract

We study syntactic theories with variable binders in the Lean Theorem Prover. In a
general-purpose interactive prover such as Lean, formalizing binders and substitu-
tion is technical and highly repetitive.

Autosubst is an existing automation tool that reduces boilerplate around binders
in the Coq proof assistant. It relies on the use of parallel de Bruijn substitutions
and their equational theory, the σ-calculus. Autosubst derives the substitution op-
erations of an extension of the σ-calculus for custom language specifications in
second-order abstract syntax. It implements a decision procedure for equations
with substitution applications.

Our goal is to adapt Autosubst to Lean to simplify normalization proofs in Lean. We
implement the key features of Autosubst in Lean: the ability to derive generalized
substitution lemmas as well as automation tactics for equational reasoning. In the
process, we take a closer look at Lean’s metaprogramming capabilities and we study
how its extensions can be used to optimize the decision procedure in terms of proof
term size and efficiency. As an application of the Autosubst adaptation, we formalize
proofs of weak and strong normalization of the simply typed λ-calculus in Lean.
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Chapter 1

Introduction

Formalizations of languages and logical systems are interesting for many purposes.
During the design of a programming language, proving that certain correctness
specifications are met is important to ensure reliable behavior and avoid flawed
definitions. As one aspect, we might want to make statements about termination.
For logical systems, correctness properties include decidability or expressiveness.

Both programming languages and logical calculi often have binding structures such
as functions or let-expressions. Consequently, formalizing metatheory about them
requires the treatment of variable binders.

Consider for example the λ-calculus, a term language with binders and application.
Using binders, we can represent local functions such as λx.λy.x. Note that occur-
rences of bound variables are potentially substituted during function application,
e.g. (λx.λy.x) (λz.z) reduces to λy.λz.z. Reduction behavior as in the example can
be modeled with a reduction relation on terms. If we are interested in formalizing
termination properties of a language, a reduction relation with the right semantics
can be analyzed. The proofs of weak and strong normalization for the λ-calculus
reviewed in this thesis work in this way.

Working out all the details of such proofs by hand is lengthy and error-prone. Thus,
it is convenient to use a proof assistant for proof management. In addition, we
can benefit from the system’s type checker to ensure fully verified results. The
framework we will be using is the Lean Theorem Prover [11]. Lean is a recently
developed interactive prover with an axiomatic foundation based on constructive
type theory and a meta language for tactic programming.

Aiming at proofs of weak and strong normalization in Lean, we first need adequate
ways to handle binders, reduction and substitution. As it turns out, binders produce
a lot of technical overhead in proof environments without built-in support for them
like Lean. For instance, we need to treat terms that are equal under α-equivalence
the same and make precise what happens if variables are substituted, taking care
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that no free variables are captured. Such details can be often abstracted from in a
paper proof, but we have to be precise about them in a machine-verified formaliza-
tion.

There has been research towards automating the work associated with binders in
general-purpose proof assistants, with the goal of mechanizing repetitive details.
A benchmark for automation tools in this field is the POPLMark challenge [5]. It
proposes a set of challenge problems that require reasoning with binders. Normal-
ization proofs for the simply-typed λ-calculus also appear among the problems of a
recent extension, POPLMarkReloaded [2].

Among the tools that provide solutions to the POPLMark challenge is Coq’s Au-
tosubst [25, 26]. Autosubst is designed to reduce the boilerplate in proofs with
binders, shifting the focus of proofs to the actual properties that are proven.

We are interested in examining how the approach of Autosubst adapts to other
proof assistants. Conveniently, Autosubst is implemented as an external tool that
generates Coq code and can be extended to print code for other provers, mainly
Lean. Thus, it is a good candidate for a tool for binder support in Lean.

1.1 Contribution

In this thesis, we will describe an implementation of Autosubst for Lean along
with case studies of weak and strong normalization of the λ-calculus. As of yet,
Lean has no support for variable binders and to our knowledge, there are no Lean-
formalizations of weak or strong normalization of the λ-calculus in Lean.

Because Lean is designed to make tactic programming easier, the focus will be on
how Lean’s automation can be used in Autosubst. In particular, we target the short-
coming that Autosubst relies on inefficient rewriting and produces long proof terms,
and look at how Lean’s extensions can be used to approach these problems.

We will conclude with normalization proofs, considering both weak and strong nor-
malization of the simply typed λ-calculus. The proofs have been implemented in
Coq and Lean using Autosubst. All proofs can be found online.

http://www.ps.uni-saarland.de/~mameche/bachelor.php

http://www.ps.uni-saarland.de/~mameche/bachelor.php
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1.2 Related Work

The Lean Theorem Prover Lean [11] is a new theorem prover under develop-
ment at Microsoft Research and Carnegie Mellon University. It is an open source
project started in 2013, and the current version Lean 3, as well as the reference
manual and documentation, are available open-source at

https://leanprover.github.io/

Lean provides an interactive environment to write axiomatic proofs. It has a stan-
dard library containing definitions of common mathematical objects, and another
library specific to Homotopy Type Theory. Its type theory is a version of the Calculus
of Inductive Constructions [7, 8] with support for classical reasoning. The prover
has a type-checker and a tactic interface. A new version Lean 4 is currently under
development.

Metaprogramming in Lean A design goal of Lean is to also allow the user to
write more flexible and hands-on automation. For this purpose, it offers another
layer besides the pure object language, the so-called meta language. Meta defi-
nitions can access or construct expressions of the object language or inspect and
modify the proof goal and context. They are mostly used to implement tactics, i.e.,
small pieces of automation. Details on the metaprogramming approach of Lean can
be found in [13]. The paper also presents examples of larger pieces of automation
and includes an evaluation of Lean’s automation against other tactic languages.

The Coq Proof Assistant Besides Lean, we will use the Coq Proof Assistant [27].
Coq is based on the Calculus of (Co)Inductive Constructions [7, 8]. Tactic languages
that can be used for Coq are Ltac or Mtac.

De Bruijn representation There are several common approaches to represent
variables formally, such as a locally nameless [6], using nominal sets[22], or higher-
order abstract syntax [20]. The design choice of Autosubst is to use a nameless
representation of variables due to de Bruijn [10], where variables are just numerical
indices that point to a binder.

The σ-calculus The theoretical basis of Autosubst is the σ-calculus, an equational
theory proposed by Abadi et al [1]. The σ−calculus models variable substitution
with explicit substitution functions from natural numbers to terms. This is in ac-
cordance with the de Bruijn view of variables as natural numbers. Along with the
substitution functions, a set of substitution operations are added to the language.
There is a set of rewriting rules for the calculus which have later shown to be
confluent [9], and complete [24]. As a consequence, each expression containing
substitution primitives can be associated with a unique normal form, thus equality
in the calculus is decidable.

https://leanprover.github.io/
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Autosubst The above theoretical results are used by Coq’s Autosubst. It provides
tactics to simplify substitution expressions according to the rewriting rules and to
decide equality. The first version [25] is implemented in Ltac using type classes.
Autosubst can be used for the synthesis of the substitution operations and rewrit-
ing lemmas, and as a decision procedure on equalities in later proofs. As input
language, Autosubst 1 accepts inductive term types in Coq with annotations of the
binders.

Autosubst 2 The most recent version, Autosubst 2 [26], extends the σ−calculus
to handle syntax with different variable sorts more flexibly, for example languages
with both term and type variables. It additionally supports well-scoped syntax [16].
In brief, in a well-scoped setting the maximal variable indices are bounded by the
number of bound variables in the context. Substitutions become functions from
finite, indexed types to terms, instead of functions from the natural numbers. The
theory of the extended, well-scoped σ−calculus will be looked at in more detail
in Chapter 2. In contrast to the first version, Autosubst 2 generates the relevant
definitions and lemmas with an external tool written in Haskell. As input, it takes a
second-order HOAS specification [20] of the target language.

Weak and Strong Normalization Proofs There are several proofs of the two
reduction properties we study in the literature. One reduction property is weak
normalization which states every term reduces to a normal form. In other words, at
least one reduction sequence of any given term is finite. The result has been proven
for example in [21]. We formalize a proof using logical relations following [12].

The second property is a stronger normalization statement. A system is strongly
normalizing if every possible reduction leads to an irreducible expression. We will
follow Girard’s proof by Kripke-style logical relations [14, 2, 18].

1.3 Outline of the Thesis

Chapters 2 and 3 contain the preliminaries for this thesis. Firstly, we describe Au-
tosubst and the σ-calculus. Secondly, we will give more details on Lean, also on
metaprogramming. The two aspects come together in Chapter 4 which gives details
on the implementation of Autosubst in Lean. We show which components were
added to Coq’s Autosubst and mention implementation issues. In Chapter 5, we
look more closely at the tactics needed for Autosubst and automation approaches
possible in Lean. In chapters 6 and 7 we first give a mathematical proof of weak
and strong normalisation of the simply-typed λ−calculus and then show how they
are realised in Lean and Coq. To conclude, Chapter 8 evaluates the work of this
thesis and points out possible directions for future work.



Chapter 2

The σ-calculus and Autosubst

We start out by describing the theory behind Autosubst. One aspect is the choice of
representation in the current version: de Bruijn and well-scoped syntax. The second
aspect is the equational theory of Autosubst: the calculus of explicit substitutions,
also known as the σ-calculus, and its extension to vector substitutions.

2.1 Parallel De Bruijn Substitutions

Binders introduce local definitions of variables, usually written informally as λx.s,
where x can occur as a bound variable in s. Because variable names are exchange-
able, the named representation makes a syntactic distinction between terms which
are α-equivalent, like λx.x and λy.y.

The de Bruijn representation [10] abstracts from variable names to simplify formal
implementations. In de Bruijn notation, a variable is a numerical index pointing
to the binder that introduced it. Enclosing binders are counted from zero. For
example, the term λf.λx.fx is denoted by λ λ 1 0, where variables greater than 2 are
out of the scope of the term.

In the following, the untyped λ-calculus, short UTLC, is considered, a simple term
language with abstraction and application. With variables seen as de Bruijn refer-
ences, terms have the form

sm, tm ∈ tmm ::= xm | λ sm+1 | sm tm (x ∈ Im,m ∈ N).

Terms are well-scoped [23], which means their type carries as additional infor-
mation how many bound variables the term contains. This is achieved by taking
variables from an m-element finite type Im instead of N. The finite type is obtained
by iterating the option type O on the empty type, i.e, I0 ::= ∅ and In+1 ::= O(In).
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x[σ] = σ(x)

s t[σ] = s[σ] t[σ] (σ ◦ τ) x ::= σ(x)[τ]
λs[σ] = λ(s[⇑ σ]) ⇑ σ ::= 0 · (σ ◦ ↑)

Figure 2.1: Operations of the σ-calculus.

An example for a variable instantiation is β-reduction in UTLC. A β-reduction takes
place if a λ-abstraction is applied to another term, as in (λx.s) t. This results in a
redex sxt where the variable x is substituted by t in s.

A way to represent instantiation is the use of explicit substitutions [1]. Substitu-
tions map the variables that occur in a term to a term they should be substituted
with. In our de Bruijn model where variables are natural numbers, substitutions
are represented as functions σ, τ : Im → tmn.

If a substitution only exchanges indices, it is called a renaming ξ, ρ : Im → In.
Examples for renamings are the identity id x ::= x and the shift renaming that
increases all indices by one, ↑ x ::= x+ 1.

Because only the order of the de Bruijn indices matters, substitutions can be thought
of as finite sequences of terms [σ0, σ1, ...]. They can be extended to the front using
the cons operation:

t · σ = [t, σ0, σ1, ...] ::= λ n. if n = 0 then t else σn−1.

More syntactic operations for substitutions are given in Figure 2.1. Their goal is
to represent instantiation of variables in a term with a substitution. To this end,
an instantiation operation s[σ] describes how a substitution σ acts on term s. The
substitution descends a term in parallel and replaces all de Bruijn indices at once.

When a binder is traversed, the interpretation of the indices in the substitution has
to be adapted to a context with a new binder. The lifting operation ⇑ performs this
index change by preserving index zero and incrementing the indices in the other
terms in the sequence. We also have forward composition ◦ for substitutions.

Using instantiation and cons, β-reduction of (λs) t can be expressed as s[t · id].

The λ-calculus with substitutions and the syntactic operations given above forms a
model of the σ-calculus. Originally [1], substitutions were introduced as functions
σ : N → tm. In the well-scoped setting, their domain is restricted to a finite type.
This way, substitutions only instantiate variables in the scope of a term [26]. This
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(st) [σ] = s[σ]t[σ]

(λs) [σ] = λ (s[⇑ σ])
0[s · σ] = s
↑ ◦(s · σ) = σ

s[id] = s

0[σ] · (↑ ·σ) = σ

id ◦ σ = σ

σ ◦ id = σ

(σ ◦ τ) ◦ θ = σ ◦ (τ ◦ θ)
(s · σ) ◦ τ = s[σ] · (σ ◦ τ)
s[σ][τ] = s[σ ◦ τ]
0· ↑ = id

Figure 2.2: Rewriting system of the σ-calculus.

is reflected in the type of the instantiation operation:

[·]· : ∀n m, (In → tmm)→ tmn → tmm.

2.1.1 The σ-calculus as a Rewriting System

Besides the fact that the σ-calculus can express substitution operations needed for
reductions, it induces a terminating rewriting system. The rules of the system are
confluent[9] and complete [24]. Thus, every expression that only consists of substi-
tution operations and the syntactic operations in UTLC has a unique normal form.
The rewriting rules needed for deciding equality in the calculus are given above.

2.1.2 Vector Substitutions

More complex languages than the UTLC have multiple sorts of binders, for example
term and type binders as present in System F. System F has the following syntax:

Am, Bm ∈ tym ::= xmty | A→ B | ∀ Am+1(x ∈ Im,m ∈ N)(..)

Here we have substitutions σtm : Im → tmn and σty : Im → tyn for both term and
type instantiation. We might be tempted to just apply them to a term one by one in
some order, e.g. s[σtm][σty]. Say that a variable k is instantiated with a term t in σtm

and t contains type variables. Now, if we instantiate with σty, the type variables in
t change under σty. However, if we permute the substitutions s[σty][σtm], the type
variables in t are unchanged. To avoid such interference problems, the substitutions
are combined into a vector [σtm;σty]. This way, term and type variables can be
instantiated simultaneously.

The operations of the σ-calculus can be adapted to vector substitutions. The rewrit-
ing rules from the previous section also scale to vector substitutions. Furthermore,
the extension of the σ-calculus is generic enough to match not only System F but
any term language that can be specified in second-order abstract syntax, which is
used by Autosubst.
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Input Specification
HOAS

Dependecy Graph
internal

Proof Terms
internal

Unscoped
Code
Coq

Well-scoped
Code
Coq

Parser

Code Generator

Pretty Printing

Figure 2.3: Components of Autosubst 2.

2.2 Autosubst: An Implementation for Coq

Autosubst implements a model of the σ-calculus in Coq. It defines a suitable in-
stantiation operation for a given language specification. Instantiation definitions
typically have to be set up for renamings first before they can be generalized to
substitutions, otherwise, the definition is not structurally recursive in Coq.

Besides definitions of the substitution operations, Autosubst also derives and proves
lemmas that correspond to the rules of the rewriting system. It provides a tactic
asimpl that rewrites with them.

We focus on Autosubst 2 [26] which we want to extend to Lean. Autosubst 2 takes a
second-order HOAS specification θ as input, with type and constructor declarations:

θ ::= T1 : type, ...C1 : U1
U ::= T | (T1 → ...→ Tn)→ U

The tool thus supports mutual inductive types with different variable sorts. It is
based on the extended σ-calculus with vector substitutions. Instead of relying on
Ltac, which does not allow mutual definitions, the library is written in Haskell.

Figure 2.3 shows how Autosubst is set up. The Haskell tool parses a given syntax
description in HOAS into a graphical representation of syntax dependencies. This
way, different binder sorts can be handled. From the dependency graph, Autosubst
generates the definition for instantiation, substitution lemmas with corresponding
proof terms, and the Ltac tactic asimpl. The output is a file of Coq definitions,
either in unscoped or in well-scoped de Bruijn syntax.



Chapter 3

The Lean Theorem Prover

Most proof assistants are designed for the interactive construction of proofs and
provide type checkers that guarantee the correctness of the results. Because pro-
viding all proof steps by hand is detailed and tedious work, it is desirable to let
the prover perform generic steps automatically. This brings formal theorem prov-
ing closer to automated theorem proving, where the entire proof is found by the
system.

Lean is a theorem prover designed for this purpose. It has the same framework
for fully verified proofs as conventional proof assistants, and can also be used as
a programming language for automation. Tutorials on both theorem proving and
tactic programming in Lean are available online [4, 3].

In the following, we will look Lean more closely with the goal of supporting substi-
tution in the prover. Lean’s proof environment is described because it is used in the
normalization proofs. Also, we look at Leans meta language as we will need it for
implementing the rewriting tactics of Autosubst.

3.1 Axiomatic Foundation and Syntax

Lean is a functional language with dependent types. It is based on a version of
dependent type theory known as the Calculus of Constructions [7] with inductive
types [8], in short CIC. Dependent type theory is expressive enough to define com-
mon mathematical structures or functions and formulate assertions about them or
to formalize parts of programs and state correctness claims. What sets it apart from
other similarly expressive logical frameworks like set theory is the fact that every
definable expression has a computable type. In particular, propositions have a type
which is empty if a proposition is false and inhabited if it holds. Thus, to verify a
claim it suffices to construct an expression in dependent type theory for it and to
make sure that it type-checks. The expression itself can be seen as the proof. The
propositions-as-types paradigm is used by most proof assistants, including Lean.
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3.1.1 Object Language

Lean has a hierarchy of type universes, indexed with universe levels u ∈ N. Every
type is of type Sort u for a universe u, where Sort u itself has type Sort u+1.
Type u is also used for Sort u+1. The bottom universe level Sort 0 or Type can be
used for the type of propositions, Prop, which is impredicative and can be marked
as proof-irrelevant. Without Prop, Lean implements Martin-Löf type theory [17].

Lean provides syntax for inductive datatypes, structures, records, and type classes.
It also has dependent function types, implicit arguments and type polymorphism.
The following example shows how well-scoped terms of the λ-calculus can be de-
fined in Lean. An indexed inductive type is used, where the index is a scope vari-
able. Note that there is a binder Π for dependent function types, which can also be
written using ∀.

inductive tm : N→ Type
| var : Π {n : N}, Fin n→ tm n
| app : Π {n : N}, tm n→ tm n→ tm n
| lam : Π {n : N}, tm (nat.succ n)→ tm n

Above, Fin n is the finite type In. As in Coq, definitions can be grouped into names-
paces or sections with local constants or variables. If they are not opened, objects
in them have to be prefixed with their name. Note that this is also the case for
inductive types like nat and the successor constructor succ.

Technically, Lean has a small kernel and a C++ code base. Definitions are compiled
to bytecode and can be fully evaluated via a virtual machine, where missing or
implicit type information is inferred. As opposed to Coq, the kernel only supports
primitive recursion, more complicated forms are compiled to eliminators. Lean
supports well-founded structural recursion, though not yet for mutually recursive
definitions. This is of relevance for our development because it restricts the input
syntax to non-mutual syntax types.

3.1.2 Classical Reasoning

Because substitutions are represented as functions, we often need to reason about
equality of functions. Coq’s Autosubst assumes the principle that two functions are
equal if they agree on all arguments, known as functional extensionality. In Coq,
this is a classical axiom, but can be safely assumed in dependent type theory [15].

Lean, in contrast, has a fews axiomatic extensions built-in, namely propositional ex-
tensionality, quotients and the axiom of choice. To an extent, these classical axioms
are compatible with the computational interpretation of Lean [4]. The principle
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of functional extensionality follows from the quotient construction and is thus also
built-in. Here is its definition.

@funext : ∀ {α : Type u1} {β : α→ Type u2} {f g : Π(x : α), βx},
(∀x, fx = gx)→ f = g

3.1.3 Proof Language

Because we use Lean as a proof environment in the case study, this section de-
scribes how to write proofs in Lean. Proofs can be stated declaratively or with
use of tactics. In declarative proofs, the proof term is given directly similar to
Coq. For better readability, the proof term can be structured using the keywords
assume, have, suffices, and show.

There is also syntax for calculational proofs which allows a step-by-step proof of
equalities or equivalences, where each step is labelled by a term that justifies it.

variables {α β : Type} (f : α→ α→ β)
variable symm : ∀ xy, f x y =f y x
variable fixpoint : ∀ x, f x x =x

example (a b c : α) (h1 : f a b= f c c) : f b a =c :=
calc f b a = f a b : symm b a

... = f c c : h1

... = c : fixpoint c

Alternatively, a proof can be constructed imperatively using tactics, i.e. commands
that say how to construct a term. Statements in tactic mode are enclosed with the
keywords begin and end or by for a single proof step.

Here is a simple example that mixes declarative use and tactics.

example (p q : Prop) : p ∧ q↔ q ∧ p :=
begin

apply iff.intro; intro h,
{ have h1 : p :=h.left,

have h2 : q :=h.right,
show q ∧ p, exact 〈h2,h1〉 },

{ exact 〈h.right,h.left〉 },
end

Note that a subgoal can be focused using curly brackets. The angle brackets 〈.〉 serve
as an anonymous constructor, e.g., 〈h2,h1〉 is resolved as and.intro h1 h2 above.
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3.1.4 Lean’s Simplifier

In the implementation of the rewriting system for Autosubst, we will need to reduce
expressions with a set of directed rewriting lemmas. Lean provides a simplifier that
is convenient for this purpose. The simplifier can be used via the tactic simp and
computes the normal form of expressions, performing similar reductions as Coq’s
tactics cbn and simpl. However, the user can also specify simplification rules that
tell the simplifier which definitions and theorems to use for reducing terms. Such
hints can be given by tagging statements with @[simp] or writing
attribute [simp] −−definition to unfold or statement to rewrite

Similarly, if @[refl] is used, the reflexivity tactic uses hints. These mechanisms will
be convenient for the component of the Autosubst implementation that normalizes
expressions. Other approaches besides the simplifier are possible using Lean’s meta
language.

3.2 Lean as a Meta Language

Lean can be used for meta programming, that is, it provides methods to reason about
the language itself. Meta programs are written in the same language as ordinary
definitions and proofs, except that they are marked with the keyword meta.

Meta definitions can make use of the datatypes of the object language but also
of methods or objects outside the axiomatic foundation that are untrusted. For
example, expressions of the object language can be constructed or manipulated,
and the current proof goal or definitions in the environment can be retrieved and
modified.

3.2.1 Elaborator State and Tactics

The meta type state stores the current state of the elaborator, which contains the
stack of proof goals and declarations in the local context such as datatype defini-
tions or lemmas. The elaborator state can be modified by tactics. Because tactics
are stateful, fallible operations, they are implemented with the tactic monad, de-
scribed in more detail in the Appendix.

The monad can be thought of as an environment where untrusted meta objects
live. Tactics executed in this environment only change the proof state if they are
successful and leave it as is otherwise. The meta constant state is hidden in the
monad, and thus in fact has type tactic state. The same holds for the meta types
environment or expr. Tactics can operate on such objects and usually have return
type tactic α for some type α.
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meta def solve1 (tac : tactic unit) : tactic unit :=
do gs ← get_goals,
match gs with

| [] :=fail
| g:: rs :=do

set_goals [g],
a ← tac,
gs’ ← get_goals,
match gs’ with

| [] :=set_goals rs
| _ :=fail

end
end

Figure 3.1: solve1 Tactic in the Meta Language.

There tactic combinators such as t1 <|> t2, which backtracks and executes t2 in
case t1 fails. Tactics can be sequenced with the operator >>. We also have t1;t2
or t1>> all_goals t2 which execute t2 on every subgoal produced by t1, whereas
any_goals only executes it on subgoals only if possible.

Useful primitives that read or modify the environment or proof goal are defined in
the namespace tactic, such as get_goals and set_goals which read and update
the list of proof goals, respectively. They are used by tactics like solve1 (Figure
3.1).

By similar means, tactics such as focus, assumption, apply or cases can be imple-
mented in Lean itself. They are defined under the namespace tactic.

3.2.2 Expressions and Quotation

The expressions of Lean’s dependently typed object language can be described by
dependent type theory itself. The meta type expr defines expressions inductively
in the way that they are represented internally. There are syntax constructors for
types, constants, applications, term and type abstractions, and let expressions. Fur-
thermore, metavariables are used for the representation of placeholders and im-
plicit arguments. Objects of type expr also live in the tactic monad and are al-
ways type-checked before being added to the context. Meta tactics that construct
expressions that are not well-typed thus fail.

Lean provides a quotation mechanism to translate expressions as we write them into
the corresponding objects of type expr.
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For example, ′theorem1 is an object of type expr if theorem1 is a defined name. The
parser infers the full name of an object if double backticks are used, adding prefixes
of open namespaces in the environment if necessary. Similarly, a compound ex-
pression e can be mapped to expr with ′(e). The expression can optionally contain
placeholders that have to be resolved by the parser or elaborator. In that case,
the expression is called pre-expression because it is only partially constructed. Pre-
expressions have type pexpr and are created using double or triple backticks. The
placeholders they contain are called antiquotations and are of the form %%t, where
t is a variable for an expression.

example (p q : Prop) : p → q→ q ∧ p :=
by do e1 ← intro ′h1, e2 ← intro ′h2,

e3 ← to_expr ′′(and.intro %%e2 %%e1), exact e3

If double backticks are used as in the above example, the names in the expression
are resolved at parse time. For triple backticks, names are parsed at elaboration
time, which is needed if local names occur:

example (p q : Prop) : p → q→ q ∧ p :=
by do e1 ← intro ′h1, e2 ← intro ′h2,

refine ′′′(and.intro h2 h1)

3.3 Comparison to Coq

As Autosubst was developed for Coq, we use Coq for comparison in the case study.
This section points out some differences between the provers.

Both provers are based on versions of the CIC. There are a few differences like
Lean’s built-in classical constructions mentioned previously. Lean also has explicit
universe levels for types with universe polymorphism which is only an experimental
extension in Coq at present.

The prover provide mostly the same basic tactics, in some cases under different
names. For example, inversion and remember are named cases and generalize
in Lean. The assumption and apply tactics in Lean can infer implicit arguments,
so they correspond to assumption and eapply. Similarly, Leans rewriting tactic
rewrite or rw performs Coq’s setoid-rewriting.

The tactics auto, eauto and similar ones are not provided in Lean. Using metapro-
gramming, though, we can easily inspect the context and look for hypotheses that
can be applied, as done by eauto.

Worth noting for proofs is that Lean only supports tidy matches, whereas Coq tol-
erates them. If inductions would lead to an untidy match, they are not possible in
Lean and generalizations have to be done first.
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Finally, Lean’s unfolding mechanism is a little different from Coq. Lean’s definitions
are not unfolded eagerly by default, which can be changed by marking it with one
of the attributes [reducible], [semireducible], or [irreducible]. As pointed out
before, we can also mark definitions in Lean with a simplification attribute to if it
should be unfolded by simp.



Chapter 4

Autosubst in Lean

In the following, the adaptation of Autosubst 2 to Lean is explained in more detail.
We have modified code generation and printing to produce well-scoped Lean code
with the substitution definitions needed to support binders. Also, abstract syntax
for Lean’s meta language is used to generate tactics for rewriting and automation.
An overview is shown in Figure 4.1, where dotted arrows show the extensions to
Lean.

Input Specification
HOAS

Dependecy Graph
internal

Tactics
internal

Proof Terms
internal

Unscoped
Code
Coq

Well-scoped
Code
Coq

Well-scoped
Code
Lean

Code for
Rewriting

Lean (meta)

Parser

Code Generator

Pretty Printing

Figure 4.1: Components of Autosubst 2.

4.1 Components

As explained in Chapter 2, the existing Coq implementation translates a HOAS
language specification to internal representations of the substitution primitives we
need and prints Coq definitions from these.
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The first step is to input parsing to identify syntax dependencies. This includes
determining which syntax types can have variables and, in case there are multiple
sorts, which substitution vectors are needed. The parsing step fits the Lean imple-
mentation as well.

4.1.1 Code Generator

In the next step, intermediate abstract syntax objects are generated. There are dif-
ferent Haskell data types for common Coq syntax objects. For instance, there are
sentence types for recursive or inductive definitions and lemmas, and term types
for terms and their components.

The Lean implementation needs similar abstract syntax entities. Some more syntax
types are added to represent its meta language. Here is an example sentence type:

data MetaDefinition = MetaDefinition (String) (Binders) (Term) (Term)

Note that uses more syntax components that represent the name, arguments, return
type and body of the meta definition. Meta objects like expressions and quotations
are also added which can occur in terms.

The Coq implementation already generates the sentence types for substitution def-
initions and their proof terms. They can be mostly reused for Lean, with slight
modifications (4.2).

Besides the usual substitution definitions, the Lean code generator generates tac-
tics that normalize substitution expressions. As a simple rewriting approach, we
generate a tactic that implements ordered rewriting with the substitution lemmas.
For a second approach, we need tactics that perform expression matching on the
goal and create a proof term for rewriting. How both approaches work in detail is
described Chapter 5.

4.1.2 Pretty Printing

Printing code from abstract syntax objects is implemented using type classes in
Haskell. A backend to Lean can be added via a new type class that translates the
internal objects to Lean instead of Coq. For definitions and lemma declarations,
we need straightforward adaptations of the syntax. The same goes for proof terms,
using the simplification steps.

In addition to the substitution definitions and lemmas that are also present in the
Coq version, meta definitions are printed from the syntax objects for meta types
that were generated in the previous step.
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inductive tm : N −> Type
| var_tm : Π {ntm : N}, Fin ntm −> tm ntm
| app : Π {ntm : N}, tm ntm −> tm ntm −> tm ntm
| lam : Π {ntm : N}, tm (nat.succ ntm) −> tm ntm

def subst_tm : Π {mtm ntm : N} (sigmatm : Fin mtm −> tm ntm)
(s : tm mtm), tm ntm

| mtm ntm sigmatm (var_tm s) :=sigmatm s
| mtm ntm sigmatm (app s0 s1) :=app (subst_tm sigmatm s0)

(subst_tm sigmatm s1)
| mtm ntm sigmatm (lam s0) :=lam (subst_tm (up_tm_tm sigmatm) s0)

lemma instId_tm {mtm : N} : subst_tm (@var_tm mtm) =id :=
funext (λ x , idSubst_tm (@var_tm mtm) (λ n , by refl) (id x))

Figure 4.2: Lean code printed by Autosubst for the STLC.

Figure 4.2 shows part of the Lean code printed for the λ-calculus. The generated
syntax for the λ-calculus will be also used in the case studies of weak and strong
normalization.Lean outputs a term type definition tm and an instantiation operation
subst_tm. Note that the instantiation definition corresponds to the one seen in
Chapter 2.

One of the generated lemmas is instId. It implements the rewriting rule s = s[id].
Its proof uses functional extensionality and a previous definition idSubst with the
following type:

idSubst : ∀ {m} (σ : Im → tmm), (∀x, σx = x)→ ∀s, s[σ] = s

4.2 Implementation Details

Some of the proof terms derived for Coq have to be adjusted for Lean. Because
Lean’s definitions are semi-reducible, some additional unfolding steps are neces-
sary to prove lemmas about definitionally equal objects. To do this, definitions can
tagged with an attribute for Leans built-in simplifier such that the necessary unfold-
ing steps can be done automatically by simp with substLemmas.

run_cmd mk_simp_attr ‘substLemmas
@[substLemmas]
−−definition
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def upId {m n : N} {σ : Fin m→ tm n} (Eq : ∀ x, σ x =var x) :
∀ x, (up σ) x =(@var (nat.succ m)) x :=

λ n , match n with
| (Fin.fs n) :=

have h : _, from ap (ren shift) (Eq n), −−proof term
begin simp with substLemmas at *, assumption end

| Fin.fz :=by refl
end

Figure 4.3: Proof term modifications.

An example for the λ-calculus is given in Figure 4.3. Some of the usual substitution
operations occur, that is, up, shift and instantiation with a renaming ren. Also,
fs, fz are the constructors of our finite type. The details are not important here,
this is just to show that the proof term ap (ren shift) (Eq n) has to be reduced with
the simplifier before it can be used.

4.3 Limitations

In principle, the same second-order HOAS specifications are accepted as in the Coq
version. Support for well-founded mutual recursion is limited in the current ver-
sion of Lean, though. If a term sort is defined mutually, most definitions such as
instantiation are mutually recursive with structural recursion on the first argument.
However, Lean does not recognize that the structural recursion is well-founded.

For small definitions, a meta tactic can be used prove that the recursions are well-
founded (see wf_single_arg in the development), but this timeouts as soon as
definitions get larger. Timeout problems already occur for small languages such as
a simply typed λ-calculus with a mutual type for terms and values. Future versions
of Lean will hopefully provide native support for mutual recursion for a more stable
solution.



Chapter 5

Automation for Rewriting

To implement the rewriting system of the extended σ-calculus, we need a procedure
that converts a target expression to its normal form according to the rewriting rules.
In this chapter, different approaches to do this are examined. In examples, expres-
sions of the simple σ-calculus are used, which can be terms of the λ-calculus, substi-
tutions or mixed expressions constructed with the substitution operations (Defini-
tion 5.1). We assume a set of rewriting rules r : e1 = e2 and denote the irreducible
normal form of an expression with e.

Definition 5.1 (Syntax of expressions, λ-calculus)

e, e ′ ∈ exp := n | λ.e | e e ′ | e · e ′ | e[e ′]
| id | ↑ | e ◦ e ′ | ⇑ e

5.1 Rewriting Tactics and the Simplifier

A straightforward way to simplify expressions is to greedily rewrite with applicable
rules until the normal form is reached. In Lean, a meta definition that tries to
rewrite with a given list of lemmas can be implemented as shown below.

meta def rw_pexpr (e : pexpr) : tactic unit :=
do e ← tactic.to_expr e,

t ← target,
(p,h,_) ← tactic.rewrite e t,
replace_target p h

meta def rw_list (default : tactic unit): list pexpr→ tactic unit
| [] :=default
| (e:: es) :=do (rw_pexpr e >> tactic.skip) <|> rw_list es
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The tactic expects a list of pre-expressions which are the names of the rewriting
lemmas. The list of pre-expressions can be created automatically during code gen-
eration.

Alternatively, the built-in simplifier of Lean can be used to reduce expressions. It is
provided with hints which statements to use, so definitions that should be unfolded
and lemmas for rewriting have to be tagged with a simplifying attribute.

5.2 Proof Term Construction

Rewriting with the rewriting tactic or the simplifier has the drawback of producing
very large proof terms because rewriting can happen at an arbitrary subposition of
the expression. Additionally, repeatedly invoking the rewrite-tactic can slow down
the simplification process.

We adress these issues by choosing the rewriting lemmas and the order of rewriting
manually before starting to rewrite. This can be done with Lean’s reflection mecha-
nism on expressions. With pattern matching on the target expression, the rewriting
rules that match it syntactically can be selected and combined into a minimal proof
term. Rewriting can be done in a single step using this proof term.

Proof Terms and Inferences

The goal is to find a proof term with type e = e for a goal expression e. The term
is created bottom-up. To build it, the rules r : e1 = e2 of the rewriting system are
replaced by lemmas with equality assumptions, called transitivity lemmas, of shape

λa1, . . . , an. e = e (e, e ∈ exp)

Their assumptions ai : ei = ei contain subexpressions ei, ei ∈ exp of e and e. The
idea is that subexpressions ei are already in normal form ei and each assumption is
a proof ei = ei. The transitivity lemma then returns a proof e = e for the compound
expression.

Proof terms of irreducible terms such as id or n are created with an reflexivity
principle refl : ∀(e : exp). e = e.

Compound proof terms are created with the transitivity lemmas. Each proof term
can be seen as the root of an inference tree because we can identify a transitivity
lemma L : λa1, ...an. e = e with an inference

a1 : e1 = e1 ... an : en = en
L

e = e

In the inference tree, the right-hand sides are always irreducible subexpressions and
the leaves are reflexity proofs.
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refl
↑= ↑

e1 = e1 e2 = e2
congrInst

e1[e2] = e1[e2]

e = e
congrLam

λ.e = λ.e

e1 = e1 e2 = e2
congrApp

e1 e1 = e2 e2

Figure 5.1: Examples of Reflexivity and Congruence Rules.

Deriving Proof Terms

When a compound term is normalized, subexpressions can be normalized in any
order due to confluency of our rewriting system. As a consequence, we can start
with atomic subexpressions of an expression e and normalize compound expres-
sions bottom-up until we have an an inference tree for e = e.

Leaves of an expression’s syntax tree are irreducible expressions, thus the associated
proof is reflexivity.

A compound expression decomposes into one or more subexpressions and either a
type constructor or substitution operation. We can hereby assume proof terms for
all subexpressions, because the inference tree is constructed bottom-up.

In the case of constructors, additional rules are necessary to prove that normaliza-
tion agrees with the application of a constructor. We extend the set of transitivity
lemmas with straightforward congruence rules, e.g. for a unary constructor C,

∀ e, e ′ ∈ exp, e = e→ C e = C e.

Some basic rules for the expressions in Definition 5.1 are shown in Figure 5.1.

More importantly, for a compound expression with a constructor or substitution
operation at top level, we need a means to decide whether a rewriting rule applies.
Before making this formal, we consider two examples.

The normalization rule s[id] = s for instance is only applicable to expressions of the
shape e1[e2]. Due to our invariant that subexpressions are normalized, we assume
proofs of e1 = e1 and e2 = e2. The rule applies in case e2 is id and we need
to construct a proof term for e1[e2] = e1. This suggests that a suitable inference
lemma is

idInst : λ(e1 = e1)(e2 = id). e1[e2] = e1

In the inference tree, this lemma is an inference as shown in Figure 5.2 from nodes
e1 = e1 and e2 = id that were constructed before.
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e1 = e1 e2 = id
idInst

e1[e2] = e1

e1 = e1 e2 = e2
e2 ◦ e3 = e4

e3 = e3
e1[e4] = e5

instComp
e1[e2][e3] = e5

Figure 5.2: Example Inferences.

The rule in the previous example is simple in the sense that it only contains a single
operator on the left-hand-side and normalizes to an atomic term. The rewriting sys-
tem also contains more complex rules like s[σ][τ] = s[σ ◦ τ]. Recall that equations in
our tree have irreducible right-hand-sides, thus we aim at an inference lemma with
return type e1[e2][e3] = e ′3. In turn, all assumptions should also have an irreducible
expression on the right. Evidently, we need assumptions covering the normaliza-
tion of all subexpressions of e1[e2][e3], i.e. e1 = e1, e2 = e2, e3 = e3. Additional
assumptions capture how the normal expressions e1, e2, e3 reduce when plugged
into s[σ ◦ τ].

instComp : λ(e1 = e1)(e2 = e2)(e3 = e3)

(e2 ◦ e3 = e4)(e1[e4] = e5). e1[e2][e3] = e5

Finding Lemmas

The inference lemmas can be derived generically for rewriting rules r : e1 = e2.
Note that the left-hand-side e must be a compound expression because elementary
expressions cannot be normalized further. Let e1, ...en be the subexpressions of e.

Firstly, we add assumptions ei = e ′i (∀i) to the transitivity lemma.

Secondly, we look for subexpressions ei1 , ...ein which occur under a common oper-
ator O in ↓e (in our case, n 6 2). The subexpression O(ei1 , ...ein) should also not
contain any other operators. An assumption

ai : O(e
′
i1
, ...ein)

′ = e ′′i

is added to the lemma. Also, we replace O(ei1 , ...ein) with e ′′i in ↓e and continue
the process with the resulting term e ′. When all operations in ↓e have been shift-
ed/moved to the assumptions, we obtain the inference lemma

Lr : λa1, ...am, e = e
′
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Application of Inference Lemmas

At every inference node, we have the current expression e, an operator or construc-
tor at its top level, and inference trees ei = ei for all subexpressions ei of e. It
remains to find an applicable lemma and grow the inference tree.

As observed earlier on, a lemma is applicable only if the left-hand-side of its head
has the same shape as e. Also, the lemma’s assumptions have to hold true. By
construction, assumptions make statements about subexpressions of e or about the
right-hand sides of earlier assumptions.

Assumptions about subexpressions of e determine whether the lemma is applicable.
Whether they hold can be simply read off the inference tree constructed at this
point. All assumptions of idInst are of this type.

For the remaining assumptions, we do not have constructed derivations yet. Thus
all right-hand-sides are unknown, including the final normalized expression ↓e. All
left-hand sides contain subexpressions ei, ei that have been normalized earlier on,
therefore we can recurse on them to find an inference tree and the unknown nor-
mal forms. In terms of the example lemma instComp, there is a recursion on the
expression e2 ◦ e3 to find a derivation for e2 ◦ e3 = e4. The result e4 is used to find
the normal form e5, this time by recursing on e1[e4].

To sum up, we have developed a method that constructs an inference tree e = e for
a given expression e. The derivation lemmas associated with the nodes of the tree
can be chained into a proof term with type e = e.

Implementation

The transitivity lemmas can be generated along with the usual substitution lemmas.

To apply the inference lemmas, we need meta tactics for each syntax operation.
They take two proof terms as arguments which prove how the subexpressions
normalize. For example, normalizeInst:expr→ expr→ expr expects arguments
Eqs : =

"
s and Eqσ : σ = σ and returns a proof term s[σ] = s[σ]. It applies rewriting

lemmas if necessary, for instance if s = s and σ = id, it returns idInst Eqs Eqσ, and
if no Lemma is applicable, congrInst Eqs Eqσ

To find out which lemmas match, the function has to match on the proof terms
for the subexpressions. For the idInst lemma from the previous section, it finds
out whether Eqσ normalizes an expression to the identity. For more complicated
lemmas such as instComp, the function has to know which constructor is at top
level of the normalized subexpressions.
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This is taken over by auxiliary functions which look for the relevant syntactic oper-
ators. A minimal example is shown below. The pair of functions take a proofterm
L : e = e as input and check whether e is a λ-abstraction. This is the case if the tran-
sitivity lemma L that was used to construct the proofterm returns an abstraction, for
example if it is a reflexivity of a λ-term or a λ-congruence. If L is some other lemma
that returns an equality on terms, such as idInst, we have to recurse on its second
argument which tells us whether e is an abstraction. Similarly, all other lemmas
that return equalities on terms are matched on.

meta def isLam : expr→ bool
| ‘( refl (lam %%Eqs)) :=tt
| ‘( congrLam %%Eqs) :=tt
| ‘( idInst %%Eqσ %%Eqs) :=isLam Eqs
−− ...
| _ :=ff

meta def destructLam : expr→ tactic expr
| ‘( refl (lam %%Eqs)) :=return Eqs
| ‘( congrLam %%Eqs) :=return Eqs
| ‘( idInst %%Eqσ %%Eqs) :=destructLam Eqs
−− ...
| e :=return e

Functions like the above ones are needed for the other term constructors and for
operations that return terms, such as the instantiation operations. For operations
that return substitutions, such as composition or cons, the lemmas that are recursed
on are different ones, namely those that return equalities on substitutions. An
example is the following lemma:

idCompLeft : λ(σ1 = σ1)(σ2 = id). σ1 ◦ σ2 = σ1

Using auxiliary functions, the parts of normalizeInst that look for idInst and inst-
Comp look as follows.

meta def normalizeInst : expr→ expr→ expr
| s σ :=

if (isId σ) then
to_expr (idInst %%s %%σ)

else if (isInst s) then
do (t, τ)← destructInst s,
θ← normalizeComp τ σ,
s’ ← normalizeInst t θ,
to_expr (instComp %%s %%τ %%σ %%θ %%s’)

else −− ... more lemmas about instantiation
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Note that the destruct function destructInst has type expr→ (expr × expr) be-
cause it returns proof terms for both subexpressions.

To summarize, the functions needed are normalizeInst, normalizeComp, normalizeCons
and normalizeUp. Because they are mutually recursive and Lean does not sup-
port mutual recursion for meta definitions yet, they are implemented in a sin-
gle function using a natural number as indicator, i.e. the normalize function has
type nat→ expr→ expr→ expr. Because the operator ⇑ is unary, the part for
normalizeUp ignores the second expr argument.

After the proof term has been synthesized, a simple meta definition can rewrite
with it in the context. The tactic monad ensures that the constructed proof term is
well-typed.



Chapter 6

Weak Normalization of the λ−Calculus

A reduction system for a language is weakly normalizing if every term has a reduc-
tion sequence to an irreducible term. The property holds for well-typed terms of
the simply typed λ-calculus (STLC) and call-by-value reduction. It can be proved
using a common way of reasoning by logical relations [12].

Logical relations are a versatile proof technique usually used to express a seman-
tic model [2]. In our context, logical relations characterize weakly normalizing
terms semantically. The main part of the weak normalization proof is a soundness
property which shows that well-typed terms are in the logical relation.

The proof [12] is formalized as a first case study for Lean’s Autosubst. We first out-
line the mathematical proof and then connect it to the implementation.

6.1 The Simply Typed λ-Calculus

The STLC with numerical constants and addition is shown in Figure 6.1. The rep-
resentation is de Bruijn, thus variables are taken from finite types Im, m ∈ N.

We define values as terms which are either a constant or a λ-abstraction.

Typing contexts can be elegantly represented in well-scoped syntax as functions

A,B ∈ ty := int | A→ B

Γ ∈ ctx := ∅ | A · Γ
s, t ∈ tm := x | n | λs | s t | s+ t (x ∈ Im, n,m ∈ N)

Figure 6.1: Syntax of STLC.
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from finite types Γm : Im → ty. Analogous to substitutions, they can be extended to
the front using cons which adds a new type for a variable to the context.

Γx = A

Γ ` x : A
A · Γ ` s : B
Γ ` λs : A→ B

Γ ` s : A→ B Γ ` t : A
Γ ` s t : B

Γ ` n1 : N Γ ` n2 : N
Γ ` n1 + n2 : N

Γ ` n : N

Figure 6.2: Typing judgment `.

In order to describe typing in this setting, we use contexts Γ : Im → ty to assign a
type Γx to every bound variable x in the context.

The typing judgment in Figure 6.2 makes precise how typing contexts and terms
interact. Well-typed terms in STLC are those that obey the typing rules under a
given context.

The type for variables can be looked up in the context as we use context functions.
An application types if the left-hand side has an adequate function type. The essen-
tial typing rule for abstraction needs an extension of the typing context to a new
bound variable with the cons operation.

The reduction operation on terms that is analyzed in this section is the small step
semantics � shown in Figure 6.3. Applications and addition reduce left-to-right,
and reduction of abstractions is call-by-value.

Since we want to analyse reduction sequences of more than one step, a big-step
semantics will also be used. A big-step semantics is given by the reflexive-transive
closure �∗ (Figure 6.4).
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s1 � s ′1
s1 s2 � s ′1 s2

value s1 s2 � s ′2
s1 s2 � s1 s ′2

s1 � s ′1
s1 + s2 � s ′1 + s2

value s1 s2 � s ′2
s1 + s2 � s1 + s ′2

value t

λs t � s[t · id]

n1 + n2 = n3

n1 + n2 � n3

Figure 6.3: Small-step reduction � for call-by-value λ−calculus.

s �∗ s

s1 � s2 s2 �∗ s3
s1 �∗ s3

Figure 6.4: Reflexive-transitive closure of �.

6.2 Weak Normalization

In order to prove that reduction via �∗ is weakly normalizing, the purely syntactic
characterization of typing introduced before is not sufficient. It is convenient to use
a semantic model � in place of `.

6.2.1 Logical Relations

A well-typed closed term is weakly normalizing if it reduces under �∗ to a well-
typed value of the same type. This intuition can be made formal using a logical
relation. For each type A, we give a set of terms that behave as intended when
typed as A, so to say semantically well-typed terms. This yields the expression
relation

EJAK := {s | ∃t, s �∗ t∧ t ∈ VJAK}.

To describe a semantically well-typed value, a logical relation on values is intro-
duced. Its argument types are restricted to N and A → B. For N, the relation
simply contains all constants. More interestingly, an abstraction of type A → B

is well-typed if the application to any semantically well-typed value results in a
semantically well-typed term.

VJNK := {n}

VJA→ BK := {λs | ∀v ∈ VJAK. s[v · id] ∈ EJBK}
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To handle free variables in a term, semantical well-typedness is extended to substi-
tutions. The context relation G defines agreement of a type substitution Γ : N→ type
and a substitution on the free variables, σ : N→ tm.

GJΓK := {σ | ∀x. σx ∈ VJΓxK}

Putting it all together, semantic typing can be defined in terms of E and G.

Definition 6.1 (Semantic typing)

Γ � s : A := ∀σ ∈ GJΓK. s[σ] ∈ EJAK

6.2.2 Compatibility and soundness

In order to use the semantic interpretation of typing for the normalization proof, it
first has to be shown that it is sound with respect to syntactic typing, i.e., we have
an inclusion ` ⊆ �.

To this end, we establish the following properties about the logical relations E,V,G

and the relationship of ` and �.

Lemma 6.2 (Value inclusion) If s ∈ VJAK, then also s ∈ EJAK.

Proof By definition using reflexivity of �∗.

For each typing rule of `, a compatibility lemma will be proven which states that the
respective rule also holds for �.

Lemma 6.3 (Compatibility of � with variables) If Γ x = A, then Γ � x : A.

Proof Let σ ∈ GJΓK.
Then (σ x) ∈ VJAK by definition. By value inclusion also EJAK(σ x).

Lemma 6.4 (Compatibility of � with abstraction) If A · Γ � s : B then Γ � λs :

A→ B.

Proof Let σ ∈ GJΓK, then we need (λs)[σ] = λs[σ] ∈ EJA→ BK.
By value inclusion, λs[σ] ∈ EJA→ BK suffices. Thus, let v ∈ VJAK.

To prove s[v · σ] ∈ EJAK, the assumption A · Γ � e : B can be used.
Its premise v · σ ∈ GJA · ΓK follows from pointwise agreement of v · σ and A · Γ given
v ∈ VJAK and σ ∈ GJΓK.
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Lemma 6.5 (Compatibility of � with application) If Γ � s : A → B and Γ � t : A
then Γ � s t : B.

Proof Again let σ ∈ GJΓK. We need st[σ] = s[σ] t[σ] ∈ EJBK.

From Γ � s : A→ B follows that there exists a v such that s[σ] �∗ v, v ∈ VJA→ BK.

Similarly, from Γ � t : A, there exists a v ′ such that t[σ] �∗ v ′, v ′ ∈ VJAK. Because
of v = λs ′ ∈ VJA → BK, (λs ′) v ′ = s ′[v ′ · id] ∈ EJBK. Unfolding the definition of E

provides a v ′′ ∈ VJBK such that s[σ] t[σ] �∗ v ′′ which concludes the proof.

Lemma 6.6 (Compatibility of � with addition) If Γ � s : N and Γ � t : N then
Γ � s t : B.

Proof Given σ ∈ GJΓK, the goal is (s+ t)[σ] = s[σ] + t[σ] ∈ EJBK.

From our assumptions for �, we get that there exist v, v ′ ∈ VJNK that s[σ] and s[σ]
reduce to, respectively. By definition of VJKN, they must be constants v = n, v ′ = n ′.

We have s[σ] + t[σ] �∗ n+m from the reduction rules and transitive closure. Addi-
tionally, n+m ∈ VJNK, thus n+m ∈ EJNK as needed.

As the compatibility lemmas suggest, every inference rule of ` can be simulated
with �. As a consequence, the inclusion ` ⊆ � holds, called semantic soundness.

Theorem 6.7 (Semantic soundness) If Γ ` s : A then Γ � s : A.

Proof By induction on Γ ` s : A. For each rule of `, the resulting inductive hypothe-
ses state that the assumptions hold for �. Thus the application of the matching
compatibility lemma proves the claim.

6.2.3 Weak Normalization

By passing from ` to � with soundness, we can prove weak normalization.

Theorem 6.8 (Weak normalization of �∗) If ∅ ` s : A then ∃v, s �∗ v ∧ value v

Proof By semantic soundness, ∅ � s : A. Specialized to the identity substitution
id ∈ GJ∅K, this implies EJAKs which proves the claim. �
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Fixpoint fin (n : nat) : Type :=
match n with

| 0 => False
| S m => option (fin m)

end.

inductive Fin : N→ Type
| fz {n} : Fin (succ n)
| fs {n} : Fin n→ Fin (succ n)

Figure 6.5: Definition of finite types in Coq (left) and Lean (right).

6.3 Realization Lean and Coq

In the following, more details on the formalization in Lean and Coq are given. As
one aspect, we focus on syntax representations and proof steps that are different in
the provers. Secondly, we emphasize issues related to binders and substitution to
evaluate the performance of Autosubst.

The term type needed to represent the syntax of STLC is an indexed inductive family
in Lean as shown in Chapter 3 with a straightforward extension to constants and
addition. The Coq definition is similar.

We are in the single-sorted setting, that is, the only binders are term binders and
there is an instantiation operation for a single substitution. Recall that substitutions
are represented as functions from our finite type to terms.

Worth noting is that we use a slightly different definition of finite types in the
provers. Coq defines them with a match on natural numbers whereas an inductive
version is used in Lean (Figure 6.5). The inductive version has a similar induction
principle as the fixpoint definition in Coq. It has been chosen over an equational
definition because the definitions made with the equation compiler are less easy to
work with. For example, matching on hypotheses of type Fin reduces the term into
long complicated expression if an equational definition is used.

As another example, recall the cons operation

t · σ = [t, σ0, σ1, ...] ::= λ n. if n = 0 then t else σn−1

Using finite types, the defintion of cons in Lean is given as follows:

def scons {X : Type} {n : N} (x : X) (f : Fin n→ X) (m : Fin (succ n)) : X :=
match m with
| fz :=x
| (fs x) :=(f x)
end
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As a side note, we can reason about finite types, the cons operation and func-
tion composition independently from the binder sorts present in the input lan-
guage. Their equational theory is therefore pre-defined separately and Autosubst
only needs to generate lifting and instantiation specific to the input syntax.

Example: Unfolding

Next, we consider part of a proof where support for substitution is needed. Recall
the compatibility lemma for binders (6.4):

A · Γ � s : B→ Γ � λs : A→ B

Value inclusion can be used to reduce the goal to ([λ]s)σ ∈ EJA → BK. In Lean, our
proof goal at this state looks as follows.

` V (A→ B) (lam s) [σ]

Simplifying with Autosubst tactics leads to

` V (A→ B) lam s [var_tm fz .: σ� ren_tm ↑]

Above, � is notation for composition and ·[·] for instantiation. Both operations are
provided by Autosubst. Furthermore, var_tm fz is lowest de Bruijn index in our
finite type, previously denoted as 0 for readability.

Observe that the modification of σ is the index change we have seen in the definition
of instantiation (Chapter 2):

λs[σ] = λ(s[⇑ σ]) = s[0 · (σ ◦ ↑)]

Thus, Autosubst has carried out an unfolding step of the instantiation definition for
terms and the up operation.

Technically, Coq’s Autosubst incorporates unfolding in the tactic asimpl. In Lean,
there are two options. If the respective definitions have been tagged with an at-
tribute for the simplifier, simp can be used.

We can alternatively use the rewriting tactic arw which rewrites with suitable equa-
tion lemmas. For example, the equation lemma for the abstraction case of instanti-
ation has the type

subst_tm.equations._eqn_3 :
∀ (m n : N) (σ : Fin m→ tm n) (s : tm (nat.succ m)),

lam s[σ] =lam s[up_tm_tm σ]
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Example: Rewriting

If we continue the proof and assume v ∈ VJAK, the following proof goal remains.

` ∃ (v2 : tm m), s [var_tm fz .: σ� ren_tm ↑][v.: var_tm] �∗ v2 ∧ V B v2

More involved equational reasoning than in the previous step is needed here. Au-
tosubst has to use the rewriting lemmas. Among others, the following rule of our
rewriting system is used:

s[σ][τ] = s[σ ◦ τ]

Lean’s Autosubst tactic arw rewrites with the necessary lemmas, as does asimpl in
Coq. The resulting proof goal looks as follows:

` ∃ (v2 : tm m), e[(v.:σ)] �∗ v2 ∧ V B v2

The target expression is similar to the paper proof again at this point, where we
have the goal s[v · σ] ∈ EJAK.



Chapter 7

Strong Normalization of the λ−Calculus

So far we considered weak normalization which states that for any well-typed term,
there is at least one reduction sequence that leads to a value and is thus finite.
Subsequently, it can be asked whether all possible reduction sequences for a term
are finite. This problem is called strong normalization. Strong normalization of
STLC has also been chosen in the POPLMark challenge [5] to compare how binder
handling can be dealt with in different proof assistants.

For call-by-value lambda calculus, the stronger formulation follows as a straight-
forward consequence from the weak normalization result because the reduction
system is formulated deterministically. However, if the reduction of terms is non-
deterministic as in full lambda calculus, proving strong normalization is more in-
volved.

We follow a well-known proof by Girard [14] that has also been referred to in [2].
The proof again builds on the use of logical relations. In more detail, we will use a
single Kripke-style logical relation [18] that includes a quantification over possible
words, here contexts.

7.1 Reduction Relation and Substitutivity

In full lambda-calculus, the conditions on reduction behavior are relaxed in the
sense that reductions below a binder are allowed, and applications and addition
can reduce on either side, irrespective of whether the left sub-term is a value. Terms
and syntactic typing are defined as in the previous section.

The reduction relation is closed under substitution and preserves typing. This prop-
erty is called substitutivity and will be of relevace for later proofs.

Lemma 7.1 If s � t then s[σ] � t[σ].

Proof By induction on �. �
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s1 � s ′1
s1 s2 � s ′1 s2

s2 � s ′2
s1 s2 � s1 s ′2

s � s ′

λs � λs ′

s1 � s ′1
s1 + s2 � s ′1 + s2

s1 � s ′1
s1 + s2 � s ′1 + s2

λs t � s[t · id]
n1 + n2 = n3

n1 + n2 � n3

Figure 7.1: Small-step reduction for full λ-calculus.

Lemma 7.2 (Substitutivity) If s �∗ t then s[σ] �∗ t[σ].

Proof By induction on s �∗ t using substitutivity of �. �

Substitutivity for renamings ξ can be stated as s �∗ t→ s〈ξ〉 �∗ t〈ξ〉 and follows as
a special case of the previous lemmas.

To prove preservation of typing, reordering and extension of the context have to be
allowed. Such a weakening of the context which can be concisely formulated using
renamings. We speak of agreement under renaming:

Γ 4ξ ∆ := ∀x. ∆(ξ x) = Γ x

The important statement about typing under agreeing contexts is the following.

Lemma 7.3 (context morphism for renamings) If Γ ` s : A and Γ 4ξ ∆ then
∆ ` s〈ξ〉 : A.

Proof By induction on Γ ` s : A. �

Context morphism is needed in the preservation proof because our typing system
has rules that extends contexts, i.e., the abstraction rule.

Lemma 7.4 (Preservation) If s �∗ t and Γ ` s : A then Γ ` t : A.

Proof By induction on s �∗ t and inversion on Γ ` s : A, using the morphism lemma
for renaming. �
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7.2 Strong Normalization Predicate

The strong normalization property can be expressed inductively using an accessibil-
ity predicate SN which holds for a term whenever it holds for all of its �-successors.
As SN holds trivially for terms with no successors, it can access a term if all its suc-
cessors have a finite reduction path to an irreducible term.
Strong normalization is defined with the following inference rule:

∀ t. s � t→ SN t

SN s

With the goal of proving that SN holds for all well-typed terms in STLC, we first look
at some properties of the predicate. The strong normalization property straightfor-
wardly extends to all successors of a term.

Fact 7.5 If SN s and s �∗ t then SN t.

Proof By induction on s �∗ t. �

The following properties describe how SN behaves under the syntax constructs of
the STLC.

Fact 7.6 SN (s+ t) is equivalent to SN s ∧ SN t.

Proof (→) By induction on SN s+ t.
(←) By induction on SN s and SN t. �

A similar equivalence does not hold for application, because even for strongly nor-
malizing terms s, t, an application can make new reductions possible and potentially
lead to infinite branches in the reduction trees. An example is given by ω := λx.xx.
ω itself is irreducible but ω ω �∗ ω ω in more than zero steps which results in an
infinite reduction sequence.

However, it can be shown that SN is always backwards closed with respect to appli-
cation.

Fact 7.7 If SN (s t) then SN s∧ SN t.

Proof Both SN s and SN t is shown by induction on SN (s t). �

The other direction holds only in some cases. We only need to consider applications
(λs)t with an abstraction on the left, because well-typed abstractions will reduce to
this form. If s, t, and the redex s[t · id] are strongly normalizing, then so is (s t).

Fact 7.8 If SN s, SN t and SN s[t · id], then SN (λs)t.
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RΓ JNK := {s | Γ ` s : N ∧ SN s}

RΓ JA→ BK := {s | Γ ` s : A→ B ∧

∀ ξ ∆ t, Γ 4ξ ∆→ t ∈ RΓ JAK→ (s〈ξ〉 t) ∈ R∆JBK}

Figure 7.2: Reducibility Relation R.

Proof By nested induction on SN s and SN t using substitutivity of �∗. �

The situation for instantiation is similar to application because substituting terms
such as ωω in for variables can violate strong normalization. Thus only backward
closure can be shown.

Fact 7.9 If SN s[σ] then SN s.

Proof By induction on SN s[σ] using substitutivity of �∗. �

For renamings ξ, we can even show equivalence since changing variable names
does not affect the reduction behavior of terms. A lemma is needed first.

Fact 7.10 If s〈ξ〉 � t then there exists a t ′ such that t = t ′〈ξ〉 and s �∗ t ′.

Proof By induction on s and inversion on s〈ξ〉 � t. �

Fact 7.11 SN s〈ξ〉 is equivalent to SN s.

Proof (→) By induction on SN s〈ξ〉.
(←) By induction on SN s using fact 7.10. �

7.3 Typing Relation

Rather than proving the strong normalization property for all well-typed terms di-
rectly, a relational model is used. The logical relation R characterizes well-typed
terms under a typing context by recursion on types. Intuitively, this resembles the
design of the weak normalization proof, but the distinction between value and ex-
pression is no longer made. In particular, R takes the typing context Γ as an addi-
tional argument such that an explicit relation on contexts is no longer needed.

We call terms in the relation reducible. All reducible terms have to type syntactically
under the given context. For the base type N, we additionally require that SN holds.
For a function type A → B we need that applications of a term s to terms t in
R∆JAK will be in R∆JBK. Note that ∆ could possibly bind more type variables than
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Γ , or index the type variables in s differently than Γ . To keep the formalization of R
general, Both context extension and reordering of variables are allowed.

Using R, the idea of context agreement can be extended to substitutions.

Definition 7.12 (context agreement) Γ 4σ ∆ := ∀x. x ∈ R∆JΓxK(σx).

In contrast to renamings, we relate a term σx and its type Γx to the context ∆ using
semantic well-typedness. Now it has to be proved that syntactic typing is preserved
under instantiation for agreeing contexts. This can be first proved for contexts that
argee on all variables, and then for contexts that agree semantically as in 7.12.

Lemma 7.13 Γ ` s : A→ ∀x. Γ ` (σ x) : (∆ x)→ ∆ ` s[σ] : A.

Proof By induction on Γ ` s : A.

In the binder case, we have to show A · ∆ ` e[0 · σ ◦ ↑] : B. By induction hypothesis,
this is implied by ∀x. A · ∆ ` (0 · σ) x : (A · Γ) x. �

Lemma 7.14 (context morphism under substitution)

Γ ` s : A→ Γ 4σ ∆→ ∆ ` s[σ] : A.

Proof By Lemma 7.13 and the fact that syntactic typing follows from R. �

7.4 Strong Normalization

Following Girards proof, we establish three essential properties of the reducibility
relation. First, reducible terms are strongly normalizing. Second, the relation is
forward closed. Lastly, the relation is backwards closed in case of a term which is
not an abstraction. Such terms are called neutral, with neutral s = ⊥ ⇔ s = (λs ′).

Theorem 7.15 (CR1) s ∈ RΓ JAK→ SN s.

CR1 will be shown simultaneously with CR3.

Lemma 7.16 (CR2 for �) s ∈ RΓ JAK→ s � t→ t ∈ RΓ JAK.

Proof By induction on A.

t ∈ RΓ JAK follows in each case with preservation of typing.

For N, SN t follows from the induction hypothesis as SN is forward closed.
For function types, we can apply the induction hypothesis modulo context renam-
ing. �

https://www. ... .de/coq/chapter6SN.html#ctxagr
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Theorem 7.17 (CR2) s ∈ RΓ JAK→ s �∗ t→ t ∈ RΓ JAK.

Proof Follows from 7.16 with induction on s �∗ t. �

Theorem 7.18 (CR3)

Γ ` s : A→ neutral s→ (∀t. s � t→ t ∈ RΓ JAK)→ s ∈ RΓ JAK.

Lemma 7.19 CR1 ∧ CR3.

Proof By induction on the argument type.

1. Case (A = int) :

CR1 holds because SN is true by definition.
CR3 assumes that any successor t is in R, thus SN t holds which proves SN s.

2. Case (A = A→ B) :

For CR1, RΓ JA → BK gives us an assumption for applications, namely that
s〈ξ〉 t ∈ R∆JA→ BK for an agreeing context ∆ and t ∈ R∆JAK.
To make use of this, we need to go from SN s to SN (s〈ξ〉 0). Note that
SN (s〈ξ〉 0) is a stronger statement because of Facts 7.7 and 7.11. The claim
now follows with IHB,CR1 and IHA,CR3.

For CR3, we need to show s〈ξ〉 t ∈ R∆JBK, where Γ 4ξ ∆ and t ∈ R∆JAK.

As a first step, we first deduce from IHA,CR1 that SN t holds such that by
induction, for all successors t ′ of t that are in R∆JAK, s〈ξ〉 t ′ ∈ R∆JBK (IH∗).

IHB,CR3 leaves us with the following subcases.

(a) ∆ ` s〈ξ〉 t : B.

∆ ` t : A follows straightforwardly from t ∈ R∆JAK.
Because Γ ` s : A → B, s is either a variable or an application. In the
former case Γ 4ξ ∆ can be used. In the application case preservation of
typing under renaming is needed.

(b) neutral (s〈ξ〉 t) by definition.

(c) t ′ ∈ R∆JBK for a successor t ′ of s〈ξ〉 t. From our reduction rules, we
know that t ′ must be of shape s ′ t, s〈ξ〉 t ′ or s ′[t · id].

If s ′ t where s〈ξ〉 � s ′, lemma 7.10 can be used.

If t ′ = s〈ξ〉 t ′ where t �∗ t ′, we use IH∗. The resulting claim t ′ ∈ R∆JAK
is a consequence of CR2.

If s ′[t · id] where s〈ξ〉 = λs ′,we know that s〈ξ〉 cannot be neutral, thus s
is not neutral either, and exfalso can be used.
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CR1 allows us to easily pass from membership in R to strong normalization. What
is still missing is the connection between syntactic typing and reducibility, i.e., a
soundness theorem for ` ⊆ R. Some more properties of R are needed first.

Lemma 7.20 x ∈ RA·Γ JAK.

Proof Because variables are neutral and without successors, CR3 proves the claim.
�

Lemma 7.21 s ∈ RΓ JAK→ Γ 4ξ ∆→ s〈ξ〉 ∈ R∆JAK.

Proof By induction on A.

The fact ∆ ` s[ξ] : A can be shown for both the base type and function types with
preservation of typing under renaming and ` ⊆ R.

For A = int, SN s〈ξ〉 by statement 7.11.

For A = A→ B, we have to show s〈ξ〉〈ρ〉 ∈ R∆ ′JBK, where Γ 4ξ ∆ and ∆ 4ρ ∆ ′.
This follows from s ∈ RΓ JA→ BK because Γ 4ξ◦ρ ∆ ′ holds. �

The previous two facts can be used to prove that context agreement is preserved
under context extension.

Lemma 7.22 ∆ 4σ Γ → A · ∆ 4σ ◦ ↑ A · Γ

Proof With lemma 7.20 for x ∈ Fin0, and lemma 7.21 otherwise. �

Lemma 7.8 can be lifted to R.

Lemma 7.23

t ∈ RΓ JAK→ SN s→ (A · Γ) ` s : B→ s[t · id] ∈ RΓ JBK→ (λs) t ∈ RΓ JBK.

Proof With RΓ JAK and CR1, SN t. The proof is by induction on SN s and SN t. With
CR3, we have left to show:

1. Γ ` (λs) t : B which is clear from s[t · id] ∈ RΓ JBK.

2. neutral (s〈ξ〉 t).

3. t ′ ∈ RΓ JBK for any t ′ such that (λs) t � t ′.

If t ′ = (λs ′) t, use IHs. Here, (A · Γ) ` t ′ : A and λt ′[t · id] ∈ RΓ JBK follow from
preservation and CR2, respectively.

If t ′ = (λs) t ′′, use IHt. We get t ′ ∈ RΓ JAK from t ∈ RΓ JAK by CR2.
As for s[t ′′ · id] ∈ RΓ JBK, we can use CR2 because s[t ′ · id] �∗ s[t ′′ · id].

If t ′ = s[t · id], we are done. �
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We conclude by giving a proof of the soundness theorem and the strong normaliza-
tion result.

Theorem 7.24 (Soundness of R) Γ ` s : A→ Γ 4σ ∆→ s[σ] ∈ R∆JAK.

Proof By induction over the typing judgment.

Case s[0 · σ ◦ ↑] ∈ R∆JA→ BK :

To show ∆ ` λs[0 · σ ◦ ↑] : A→ B, we need A · ∆ ` s[0 · σ ◦ ↑] : B.
Context morphism reduces this to A · Γ ` s : B, which is an assumption, and A ·
∆ 4σ ◦ ↑ A · Γ which has been shown in lemma 7.22.

To show λs[0 · σ ◦ ↑]〈ξ〉t ∈ R∆JBK, where ∆ 4ξ ∆ ′, lemma 7.23 is applied.

The remaining cases follow with the hypotheses. �

Corollary 7.25 (Strong normalization) ∅ ` s : A→ SNs.

Proof From fact 7.9, CR2 and soundness of R.

7.5 Realization Lean and Coq

Regarding definitions, similar primitives as in the weak normalization proofs are
needed: the term type and substitution primitives Autosubst generates, and induc-
tive types for reduction and typing.

The predicate SN is defined in Lean as follows:

inductive SN {n} (R : tm n→ tm n→ Prop ) : tm n→ Prop
| sn_step (e1 : tm n) : (forall e2, R e1 e2 → SN e2)→ SN e1.

In the proofs, we are faced with more substitution-related subgoals than in weak
normalization, in particular for substitutivity and morphism. To illustrate, here is
how the substitutivity can be proven using Autosubst’s simplifications.

lemma substitutivity {n m} (s t σ) : s � t→ s[σ] � @subst_tm n m σ t :=
begin

intro h, revert m σ , induction h; intros m σ,
any_goals { arw, constructor; aauto },
{ arw,
apply substitutivity_h,
now_arw, }

end}
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Lean Coq
Components Def. Proof Def. Proof
Autosubst 167 160 194 57
Reduction and Typing 60 135 51 119
Weak Normalization 10 97 17 73
Strong Normalization 19 350 28 392
Meta, Ltac ∼160 – ∼ 90 –
Sum (without tactics)
256

742 290 641

Table 7.1: Comparison of the lines of code in the Lean and Coq Formalizations.

In the substitutivity proof, the aauto tactic is just a custom automation tactic that
tries to apply hypotheses in the context. The tactics of Autosubst that occur are
arw for rewriting and now_arw which proves equations. Optionally, tracing can be
enabled, that is, arw can print a list of lemmas that were used for rewriting.

In summary, the Coq and Lean proofs can be defined similarly if suitable automation
tactics are available that take over the substitution-related work.

Table 7.1 shows a comparison of the implementations in Lean and Coq in terms of
code lines 1. The first row shows the code provided by Autosubst. In the overview,
the Code is split into defined statements (Def.) and Lemmas or Theorems (Proof).

1Lines of code were counted with loc (https://github.com/cgag/loc) which supports both Coq
and Lean.

https://github.com/cgag/loc
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Conclusion

In this thesis, we have provided support for variable binding in Lean. Binders are
one of the most tedious parts in language formalizations because they add a lot of
technical and distracting details. Therefore, we wish to rely on automation tools to
reduce the overhead. Lean with its promise for good automation fits this goal well.

We adapted Autosubst 2 which is based on an elegant equational theory. Addi-
tionally, its infrastructure is designed to allow adding a backend to another prover.
Adapting Autosubst included deciding how to implement automation, for which we
analysed Lean’s metaprogramming approach.

Finally, the Autosubst implementation was put to use for the goal of proving weak
and strong normalization of the λ-calculus in Lean. The substitution related tech-
nicalities were taken over by the tool. The case study also allowed a test and com-
parison of the different rewriting approaches.

8.1 Evaluation

Extending Autosubst 2 to generate Lean code was straightforward due to the fact
that Autosubst layers an internal syntax representation between parsing and print-
ing. As another point, the proofs are represented declaratively and built with Coq
tactics. Thus, the intermediate syntax objects are mostly independent of Coq syntax
and can be easily used to print Lean definitions and proof terms.

We compared different approaches regarding the automation of the rewriting sys-
tem. Automation as in the Ltac version can be implemented with Lean’s tactic
language and its quotation mechanism for names.

It was also of convenience that Lean has a simplifier built in, especially because
using the simplifier can be refined by declaring custom simplifying attributes for a
more controlled way of rewriting.
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Both approaches have the downside of constructing huge proof terms. So we also
looked at a more elaborate form of automation in Lean. Constructing proof terms
with meta tactics can make them smaller and more readable.

At the moment, Autosubst 2 for Lean does not support mutually inductive types
because it needs some mutual recursions that are not recognized as well-founded by
Lean. However, this restriction only holds until the language supports the recursion
because the plain syntax definitions are provided also for mutual types.

Weak and strong normalization are fundamental, well-studied properties. As such,
we want to be able to prove them in Lean which was facilitated by Autosubst’s
support for binders.

Strong normalization of STLC has also recently been proposed as a challenge prob-
lem for POPLMarkReloaded [2] to compare menchanization of metatheory across
proof assistants.

For a small system like the simply typed λ-calculus, the normalization proofs have
been a good starting point compare the prover to Coq and to test the support for
binding of Autosubst in Lean.

To conclude, the benchmark also showcases the use of logical relations which is
important proof technique.

8.2 Future Work

There are several directions for future work. The weak and strong normalization
proofs could be extended to larger syntactic systems and more complex typing sys-
tems. One candidate is System F with subtyping as considered in the POPLmark
challenge. Besides weak and strong normalization, other results of interest can be
formalized, for example confluence properties.

As soon as support for well-founded recursion of mutual inductive types in Lean is
added, we can also use specification languages with mutual inductive sorts.

As we have seen, the set-up of Coq’s Autosubst 2 allowed for an extension to Lean
without a full re-implementation of the tool. Thus it might be interesting to add a
backend for another proof assistant such as Agda [19].

Another direction for future work would be to extend the expressivity of the orig-
inal Autosubst tool with respect to the input languages that can be handled. Tar-
gets could be languages with more complex binding structures. Because adapting
the syntax generation is mostly straightforward, such changes to the original tool
should also carry over to Lean.
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Last, the focus of future work could also be on additional automation approaches.
The syntactic simplification on meta expressions explained before could be done on
the object level for more efficiency by using reflection. This method is a verified
decision procedure, as opposed to the tactic approaches that potentially fail. Ad-
ditionally, matching on expressions in Lean is inefficient at present, which is why
switching to the object language and working with reified terms would be prefer-
able. A final advantage to this approach is that it can be also realized Coq.
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Appendix

A.1 Monadic Programming in Lean

A monad is a type constructor m : Type→ Type that can be used to simulate state-
ful operations in a functional programming language. It always comes with two
operations: return produces an object m α for every type α, and bind allows to
carry out operations in the monad. These are their types in Lean:

return : Π {m : Type→ Type} [monad m] {α}, α→ mα

bind : Π {m : Type→ Type} [monad m] {α}, mα→ (α→ mβ)→ mβ

For example, if we have partial functions f : α → Oβ, where O is the option type,
they can be applied to objects in the option monad O : Type→ Type [3]. The return
function is the constructor some, and bind applies partial functions as follows:

bind {α β : Type} (a : Oα) (f : α→ Oβ) :=
match a with

| some a :=f a
| none :=none end

Lean provides the following notation.

mα >>= f bind m α f

mα >> mβ bind mα (λa,mβ)

do α← mα, s bind mα (λa, s)
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meta def rw_expr (p : pexpr) : tactic unit :=
do
e ← tactic.to_expr e,
t ← target,
(p,h,_) ← rewrite e t,
replace_target p h

meta def rw_exprs (default : tactic unit) (trc :=tt): list pexpr ? tactic unit
| [] :=default
| (e:: es) :=do

rw_pexpr e <|> rw_exprs es

Figure A.1: A Lean Tactic for Rewriting.

A.2 Autosubst Tactic Examples

In this section, it is shown how Autosubst’s rewriting system can be implemented
using tactic programming. First, we define a tactic that tries to rewrite the goal
with a given expression if possible, see Figure A.1. We also have a tactic that tries a
list of expressions, rw_exprs.

Next, rewriting lemmas have to be specified. We use a list of pre-expressions that
contains quoted lemma names (Lemmas). Those are used by arw.

The unfolding of definitions can be done similarly. Definitions such as instantia-
tion (subst_tm) are generated with Lean’s equation compiler and the names of the
equations can be used for rewriting. Definitions that contain a match, like scons,
have similar equations for rewriting.

meta def Lemmas :=[‘‘(instId_tm), −−...
meta def Eqns :=[‘‘(subst_tm.equations._eqn_1), ‘‘( scons._match_1) −−...

Lists like in this example can be generated by Autosubst. The tactic arw can then be
defined as in Figure A.2. Some possible customizations are also shown.
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−− unfolding and rewritings
meta def arw : tactic unit :=tactic.repeat arw’
do (rw_exprs tactic.failed Lemmas) <|>

(rw_exprs tactic.failed Eqns)

−− rewrite until failure
meta def arw : tactic unit :=tactic.repeat arw’

−− solve equations
meta def now_arw : tactic unit :=do arw, tactic.reflexivity

−− arw in hypothesis
meta def arw_at (h) : tactic unit :=
do
hyp← tactic.get_local h,
tactic.revert hyp,
arw,
tactic.intro h,
tactic.skip

Figure A.2: Possible Autosubst Tactics for Rewriting.
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