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FINITE TYPES

What is a finite type?

Type
Finite number of inhabitants

What do we need formally?

Type
List of inhabitants
Completeness proof for list
Decidability of equality

I needed for completeness proof
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MY GOAL

Finite types (sets) are mathematically uninteresting

Well understood
No big surprises
Easy to use
This is their advantage

Challenge: make them uninteresting in type theory
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Introduction Architecture Equalities and equivalences Functions Overview

REALISITATION IN COQ

First idea:
Structure finType: Type := FinType {
type : eqType;
elements: list type;
allIn: ∀ x: type, count elements x = 1
}.

Reminder: eqType
Definition dec (P: P) := {P}+ {¬P}
Notation "eq_dec X" :=
(∀ x y: X, dec (x = y))(at level 70)
Structure eqType := EqType {
eqtype :> Type ;
decide_eq : eq_dec eqtype }.

We want to use it like the “real” type
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TYPE CLASSES

Define class of types as type class

For type in this class: Define an instance
Instance is used, when element of this type need to be inferred

Reminder: Decidability
Existing Class dec.

Instance bool_eq_dec:
eq_dec B.
Definition EqBool := EqType B

Only one Instance for each type
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TYPE CLASSES

Make finType dependent on types:

Class finTypeC (type: eqType): Type := FinTypeC {
elements: list type;
allIn: ∀ x: type, count elements x = 1

}.

Structure finType: Type := FinType {
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TYPE CLASSES

Nice:

finTypes/eqTypes can be automatically generated from types
Definition toeqType (T: Type ) {e: eq_dec T}:
eqType := EqType T.

Problematic:
finTypes/eqTypes cannot be inferred from elements of the type:
Compute (count [true;false] true).
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CANONICAL STRUCTURES

Extend Coqs unification algoritm

Arbitrary values can be declared as canonical structures
Every time they syntactically “fit” they are inserted
Can be combined to powerful telescopes

Canonical Structure EqBool := EqType B.
Canonical Structure finType_bool := FinType EqBool.
Compute (count [true;false] true).
= if bool_eq_dec true true
then S (if bool_eq_dec true false then 1 else 0)
else if bool_eq_dec true false then 1 else 0 : N
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Introduction Architecture Equalities and equivalences Functions Overview

TOGETHER: POWERFUL INFERENCE

Definition finType_BoolUnit := tofinType(B × unit).
finType_BoolUnit is defined

What does this actually look like?

finType_BoolUnit = @tofinType (B × unit)
(@decide_eq (EqCross EqBool EqUnit))
(finTypeC_Cross finType_bool finType_unit)
: finType

inferred with canonical structures
inferred with type classes

11



Introduction Architecture Equalities and equivalences Functions Overview

TOGETHER: POWERFUL INFERENCE

Definition finType_BoolUnit := tofinType(B × unit).
finType_BoolUnit is defined

What does this actually look like?

finType_BoolUnit = @tofinType (B × unit)
(@decide_eq (EqCross EqBool EqUnit))
(finTypeC_Cross finType_bool finType_unit)
: finType

inferred with canonical structures
inferred with type classes

11



Introduction Architecture Equalities and equivalences Functions Overview

TOGETHER: POWERFUL INFERENCE

Definition finType_BoolUnit := tofinType(B × unit).
finType_BoolUnit is defined

What does this actually look like?

finType_BoolUnit = @tofinType (B × unit)
(@decide_eq (EqCross EqBool EqUnit))
(finTypeC_Cross finType_bool finType_unit)
: finType

inferred with canonical structures

inferred with type classes

11



Introduction Architecture Equalities and equivalences Functions Overview

TOGETHER: POWERFUL INFERENCE

Definition finType_BoolUnit := tofinType(B × unit).
finType_BoolUnit is defined

What does this actually look like?

finType_BoolUnit = @tofinType (B × unit)
(@decide_eq (EqCross EqBool EqUnit))
(finTypeC_Cross finType_bool finType_unit)
: finType

inferred with canonical structures
inferred with type classes

11



Introduction Architecture Equalities and equivalences Functions Overview

EQUIVALENCE PRINCIPLES

Finite Types satisfy important equivalences:

About: elem
elem is a projection from a finType to its list of elements
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INTERESTING EQUALITIES

finTypes are equal to "ordinary" types due to coercion

About: (x) and ?
(x) and ? are my operators for the finType of a cartesian product
of finTypes and an option type of a finType, respectively.

13



Introduction Architecture Equalities and equivalences Functions Overview

INTERESTING EQUALITIES

finTypes are equal to "ordinary" types due to coercion

tofinType X = X

About: (x) and ?
(x) and ? are my operators for the finType of a cartesian product
of finTypes and an option type of a finType, respectively.

13



Introduction Architecture Equalities and equivalences Functions Overview

INTERESTING EQUALITIES

finTypes are equal to "ordinary" types due to coercion

tofinType X = X
B = finType_bool

About: (x) and ?
(x) and ? are my operators for the finType of a cartesian product
of finTypes and an option type of a finType, respectively.

13



Introduction Architecture Equalities and equivalences Functions Overview

INTERESTING EQUALITIES

finTypes are equal to "ordinary" types due to coercion

tofinType X = X
B = finType_bool

F1 × F2 = F1 (x) F2

About: (x) and ?
(x) and ? are my operators for the finType of a cartesian product
of finTypes and an option type of a finType, respectively.

13



Introduction Architecture Equalities and equivalences Functions Overview

INTERESTING EQUALITIES

finTypes are equal to "ordinary" types due to coercion

tofinType X = X
B = finType_bool

F1 × F2 = F1 (x) F2

option F = ? F

About: (x) and ?
(x) and ? are my operators for the finType of a cartesian product
of finTypes and an option type of a finType, respectively.

13



Introduction Architecture Equalities and equivalences Functions Overview

INTERESTING EQUALITIES

finTypes are equal to "ordinary" types due to coercion

tofinType X = X
B = finType_bool

F1 × F2 = F1 (x) F2

option F = ? F
tofinType B = finType_bool

About: (x) and ?
(x) and ? are my operators for the finType of a cartesian product
of finTypes and an option type of a finType, respectively.

13



Introduction Architecture Equalities and equivalences Functions Overview

INTERESTING EQUALITIES

finTypes are equal to "ordinary" types due to coercion

tofinType X = X
B = finType_bool

F1 × F2 = F1 (x) F2

option F = ? F
tofinType B = finType_bool

tofinType(F1 × F2) = F1 (x) F2

About: (x) and ?
(x) and ? are my operators for the finType of a cartesian product
of finTypes and an option type of a finType, respectively.

13



Introduction Architecture Equalities and equivalences Functions Overview

EXTENSIONAL POWER (SET THEORETIC FUNCTIONS)

Set theoretic functions (STF): sets of pairs

I neg := {(true, false), (false, true)}
(x:F) is uniquely identified by position in elem

I elem finType_bool := [true; false]

STF is uniquely identified by its image as a list

I [false; true]

We can model the type of all STF (F1 −→ F2) as a finite type

I bundle image and proof for correct length
I Definition STF (F:finType) (X:Type ) :=
{image: list X | if |image| = |X| then > else ⊥}

extensionalPower function computes list of all STF

I used in finType definition

14



Introduction Architecture Equalities and equivalences Functions Overview

EXTENSIONAL POWER (SET THEORETIC FUNCTIONS)

Set theoretic functions (STF): sets of pairs
I neg := {(true, false), (false, true)}

(x:F) is uniquely identified by position in elem

I elem finType_bool := [true; false]

STF is uniquely identified by its image as a list

I [false; true]

We can model the type of all STF (F1 −→ F2) as a finite type

I bundle image and proof for correct length
I Definition STF (F:finType) (X:Type ) :=
{image: list X | if |image| = |X| then > else ⊥}

extensionalPower function computes list of all STF

I used in finType definition

14



Introduction Architecture Equalities and equivalences Functions Overview

EXTENSIONAL POWER (SET THEORETIC FUNCTIONS)

Set theoretic functions (STF): sets of pairs
I neg := {(true, false), (false, true)}

(x:F) is uniquely identified by position in elem

I elem finType_bool := [true; false]
STF is uniquely identified by its image as a list

I [false; true]

We can model the type of all STF (F1 −→ F2) as a finite type

I bundle image and proof for correct length
I Definition STF (F:finType) (X:Type ) :=
{image: list X | if |image| = |X| then > else ⊥}

extensionalPower function computes list of all STF

I used in finType definition

14



Introduction Architecture Equalities and equivalences Functions Overview

EXTENSIONAL POWER (SET THEORETIC FUNCTIONS)

Set theoretic functions (STF): sets of pairs
I neg := {(true, false), (false, true)}

(x:F) is uniquely identified by position in elem
I elem finType_bool := [true; false]

STF is uniquely identified by its image as a list

I [false; true]

We can model the type of all STF (F1 −→ F2) as a finite type

I bundle image and proof for correct length
I Definition STF (F:finType) (X:Type ) :=
{image: list X | if |image| = |X| then > else ⊥}

extensionalPower function computes list of all STF

I used in finType definition

14



Introduction Architecture Equalities and equivalences Functions Overview

EXTENSIONAL POWER (SET THEORETIC FUNCTIONS)

Set theoretic functions (STF): sets of pairs
I neg := {(true, false), (false, true)}

(x:F) is uniquely identified by position in elem
I elem finType_bool := [true; false]

STF is uniquely identified by its image as a list

I [false; true]
We can model the type of all STF (F1 −→ F2) as a finite type

I bundle image and proof for correct length
I Definition STF (F:finType) (X:Type ) :=
{image: list X | if |image| = |X| then > else ⊥}

extensionalPower function computes list of all STF

I used in finType definition

14



Introduction Architecture Equalities and equivalences Functions Overview

EXTENSIONAL POWER (SET THEORETIC FUNCTIONS)

Set theoretic functions (STF): sets of pairs
I neg := {(true, false), (false, true)}

(x:F) is uniquely identified by position in elem
I elem finType_bool := [true; false]

STF is uniquely identified by its image as a list
I [false; true]

We can model the type of all STF (F1 −→ F2) as a finite type

I bundle image and proof for correct length
I Definition STF (F:finType) (X:Type ) :=
{image: list X | if |image| = |X| then > else ⊥}

extensionalPower function computes list of all STF

I used in finType definition

14



Introduction Architecture Equalities and equivalences Functions Overview

EXTENSIONAL POWER (SET THEORETIC FUNCTIONS)

Set theoretic functions (STF): sets of pairs
I neg := {(true, false), (false, true)}

(x:F) is uniquely identified by position in elem
I elem finType_bool := [true; false]

STF is uniquely identified by its image as a list
I [false; true]

We can model the type of all STF (F1 −→ F2) as a finite type

I bundle image and proof for correct length
I Definition STF (F:finType) (X:Type ) :=
{image: list X | if |image| = |X| then > else ⊥}

extensionalPower function computes list of all STF

I used in finType definition

14



Introduction Architecture Equalities and equivalences Functions Overview

EXTENSIONAL POWER (SET THEORETIC FUNCTIONS)

Set theoretic functions (STF): sets of pairs
I neg := {(true, false), (false, true)}

(x:F) is uniquely identified by position in elem
I elem finType_bool := [true; false]

STF is uniquely identified by its image as a list
I [false; true]

We can model the type of all STF (F1 −→ F2) as a finite type
I bundle image and proof for correct length

I Definition STF (F:finType) (X:Type ) :=
{image: list X | if |image| = |X| then > else ⊥}

extensionalPower function computes list of all STF

I used in finType definition

14



Introduction Architecture Equalities and equivalences Functions Overview

EXTENSIONAL POWER (SET THEORETIC FUNCTIONS)

Set theoretic functions (STF): sets of pairs
I neg := {(true, false), (false, true)}

(x:F) is uniquely identified by position in elem
I elem finType_bool := [true; false]

STF is uniquely identified by its image as a list
I [false; true]

We can model the type of all STF (F1 −→ F2) as a finite type
I bundle image and proof for correct length
I Definition STF (F:finType) (X:Type ) :=
{image: list X | if |image| = |X| then > else ⊥}

extensionalPower function computes list of all STF
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FUNCTIONS AND STF

F1 → F2 convertible to F1 −→ F2

I toSTF
F1 −→ F2 convertible to F1 → F2

I applySTF
I applySTF coercion to functions
I therefore STF usable as functions

(f: F1 → F2) : ∀x, (toSTF f) x = f x
(f: F1 −→ F2): toSTF f = f
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OVERVIEW: ALREADY DONE

Formalisation of finite types

Basic types

I True
I False
I unit
I empty Set
I bool

Closure properties

I option types
I cartesian product
I sum type
I extensional power (set theoretic functions)

Cardinality

I injective (f : X→ Y)→ |X| ≤ |Y|
I surjective (f : X→ Y)→ |X| ≥ |Y|
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OVERVIEW: STILL TO DO

Order

Choice
Closure properties

I dependent pairs

Subtypes
Fixed points
finType→ countable type
Possibly graphs
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THE END

Thank you for your attention

Any questions? Ask away!
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