
Introduction Architecture Equalities and equivalences Functions Overview

A Coq Library for Finite Types
1st bachelor seminar talk

Jan Menz

computer science

saarland
university

Advisor: Prof. Dr. rer. nat. Gert Smolka

13. Juni 2016

1

Introduction Architecture Equalities and equivalences Functions Overview

CONTENTS

1 Introduction

2 Architecture

3 Equalities and equivalences

4 Functions

5 Overview

2

Introduction Architecture Equalities and equivalences Functions Overview

FINITE TYPES

What is a finite type?

Type
Finite number of inhabitants

What do we need formally?

Type
List of inhabitants
Completeness proof for list
Decidability of equality

I needed for completeness proof

3

Introduction Architecture Equalities and equivalences Functions Overview

FINITE TYPES

What is a finite type?
Type

Finite number of inhabitants

What do we need formally?

Type
List of inhabitants
Completeness proof for list
Decidability of equality

I needed for completeness proof

3

Introduction Architecture Equalities and equivalences Functions Overview

FINITE TYPES

What is a finite type?
Type
Finite number of inhabitants

What do we need formally?

Type
List of inhabitants
Completeness proof for list
Decidability of equality

I needed for completeness proof

3

Introduction Architecture Equalities and equivalences Functions Overview

FINITE TYPES

What is a finite type?
Type
Finite number of inhabitants

What do we need formally?

Type
List of inhabitants
Completeness proof for list
Decidability of equality

I needed for completeness proof

3

Introduction Architecture Equalities and equivalences Functions Overview

FINITE TYPES

What is a finite type?
Type
Finite number of inhabitants

What do we need formally?

Type
List of inhabitants
Completeness proof for list
Decidability of equality

I needed for completeness proof

3

Introduction Architecture Equalities and equivalences Functions Overview

FINITE TYPES

What is a finite type?
Type
Finite number of inhabitants

What do we need formally?
Type

List of inhabitants
Completeness proof for list
Decidability of equality

I needed for completeness proof

3

Introduction Architecture Equalities and equivalences Functions Overview

FINITE TYPES

What is a finite type?
Type
Finite number of inhabitants

What do we need formally?
Type
List of inhabitants

Completeness proof for list
Decidability of equality

I needed for completeness proof

3

Introduction Architecture Equalities and equivalences Functions Overview

FINITE TYPES

What is a finite type?
Type
Finite number of inhabitants

What do we need formally?
Type
List of inhabitants
Completeness proof for list

Decidability of equality

I needed for completeness proof

3

Introduction Architecture Equalities and equivalences Functions Overview

FINITE TYPES

What is a finite type?
Type
Finite number of inhabitants

What do we need formally?
Type
List of inhabitants
Completeness proof for list
Decidability of equality

I needed for completeness proof

3

Introduction Architecture Equalities and equivalences Functions Overview

FINITE TYPES

What is a finite type?
Type
Finite number of inhabitants

What do we need formally?
Type
List of inhabitants
Completeness proof for list
Decidability of equality

I needed for completeness proof

3

Introduction Architecture Equalities and equivalences Functions Overview

MY GOAL

Finite types (sets) are mathematically uninteresting

Well understood
No big surprises
Easy to use
This is their advantage

Challenge: make them uninteresting in type theory

4

Introduction Architecture Equalities and equivalences Functions Overview

MY GOAL

Finite types (sets) are mathematically uninteresting

Well understood

No big surprises
Easy to use
This is their advantage

Challenge: make them uninteresting in type theory

4

Introduction Architecture Equalities and equivalences Functions Overview

MY GOAL

Finite types (sets) are mathematically uninteresting

Well understood
No big surprises

Easy to use
This is their advantage

Challenge: make them uninteresting in type theory

4

Introduction Architecture Equalities and equivalences Functions Overview

MY GOAL

Finite types (sets) are mathematically uninteresting

Well understood
No big surprises
Easy to use

This is their advantage

Challenge: make them uninteresting in type theory

4

Introduction Architecture Equalities and equivalences Functions Overview

MY GOAL

Finite types (sets) are mathematically uninteresting

Well understood
No big surprises
Easy to use
This is their advantage

Challenge: make them uninteresting in type theory

4

Introduction Architecture Equalities and equivalences Functions Overview

MY GOAL

Finite types (sets) are mathematically uninteresting

Well understood
No big surprises
Easy to use
This is their advantage

Challenge: make them uninteresting in type theory

4

Introduction Architecture Equalities and equivalences Functions Overview

MY GOAL

Finite types (sets) are mathematically uninteresting

Well understood
No big surprises
Easy to use
This is their advantage

Challenge: make them uninteresting in type theory

4

Introduction Architecture Equalities and equivalences Functions Overview

FINITE TYPES

What is a finite type?
Type
Finite number of inhabitants

What do we need formally?
Type
List of inhabitants
Completeness proof for list
Decidability of equality

I needed for completeness proof

5

Introduction Architecture Equalities and equivalences Functions Overview

REALISITATION IN COQ

First idea:
Structure finType: Type := FinType {
type : eqType;
elements: list type;
allIn: ∀ x: type, count elements x = 1
}.

Reminder: eqType
Definition dec (P: P) := {P}+ {¬P}
Notation "eq_dec X" :=
(∀ x y: X, dec (x = y))(at level 70)
Structure eqType := EqType {
eqtype :> Type ;
decide_eq : eq_dec eqtype }.

We want to use it like the “real” type

6

Introduction Architecture Equalities and equivalences Functions Overview

REALISITATION IN COQ

First idea:
Structure finType: Type := FinType {
type : eqType;
elements: list type;
allIn: ∀ x: type, count elements x = 1
}.

Reminder: eqType
Definition dec (P: P) := {P}+ {¬P}
Notation "eq_dec X" :=
(∀ x y: X, dec (x = y))(at level 70)
Structure eqType := EqType {
eqtype :> Type ;
decide_eq : eq_dec eqtype }.

We want to use it like the “real” type

6

Introduction Architecture Equalities and equivalences Functions Overview

REALISITATION IN COQ

First idea:
Structure finType: Type := FinType {
type : eqType;
elements: list type;
allIn: ∀ x: type, count elements x = 1
}.

count

count [] x = 0
count (x :: A) x = 1 + count A x
count (y :: A) x = count A x x 6= y

We want to use it like the “real” type

6

Introduction Architecture Equalities and equivalences Functions Overview

REALISITATION IN COQ

First idea:
Structure finType: Type := FinType {
type : eqType;
elements: list type;
allIn: ∀ x: type, count elements x = 1
}.

count

count [] x = 0
count (x :: A) x = 1 + count A x
count (y :: A) x = count A x x 6= y

We want to use it like the “real” type

6

Introduction Architecture Equalities and equivalences Functions Overview

REALISITATION IN COQ

First idea:
Structure finType: Type := FinType {
type :> eqType;
elements: list type;
allIn: ∀ x: type, count elements x = 1
}.

count

count [] x = 0
count (x :: A) x = 1 + count A x
count (y :: A) x = count A x x 6= y

We want to use it like the “real” type

6

Introduction Architecture Equalities and equivalences Functions Overview

TYPE CLASSES

Define class of types as type class

For type in this class: Define an instance
Instance is used, when element of this type need to be inferred

Reminder: Decidability
Existing Class dec.

Instance bool_eq_dec:
eq_dec B.
Definition EqBool := EqType B

Only one Instance for each type

7

Introduction Architecture Equalities and equivalences Functions Overview

TYPE CLASSES

Define class of types as type class
For type in this class: Define an instance

Instance is used, when element of this type need to be inferred

Reminder: Decidability
Existing Class dec.
Instance bool_eq_dec:
eq_dec B.

Definition EqBool := EqType B

Only one Instance for each type

7

Introduction Architecture Equalities and equivalences Functions Overview

TYPE CLASSES

Define class of types as type class
For type in this class: Define an instance
Instance is used, when element of this type need to be inferred

Reminder: Decidability
Existing Class dec.
Instance bool_eq_dec:
eq_dec B.
Definition EqBool := EqType B

Only one Instance for each type

7

Introduction Architecture Equalities and equivalences Functions Overview

TYPE CLASSES

Define class of types as type class
For type in this class: Define an instance
Instance is used, when element of this type need to be inferred

Reminder: Decidability
Existing Class dec.
Instance bool_eq_dec:
eq_dec B.
Definition EqBool := EqType B

Only one Instance for each type

7

Introduction Architecture Equalities and equivalences Functions Overview

TYPE CLASSES

Make finType dependent on types:

Class finTypeC (type: eqType): Type := FinTypeC {
elements: list type;
allIn: ∀ x: type, count elements x = 1

}.

Structure finType: Type := FinType {
type :> eqType;
class : finTypeC type }.

8

Introduction Architecture Equalities and equivalences Functions Overview

TYPE CLASSES

Make finType dependent on types:

Class finTypeC (type: eqType): Type := FinTypeC {
elements: list type;
allIn: ∀ x: type, count elements x = 1

}.

Structure finType: Type := FinType {
type :> eqType;
class : finTypeC type }.

8

Introduction Architecture Equalities and equivalences Functions Overview

TYPE CLASSES

Nice:

finTypes/eqTypes can be automatically generated from types
Definition toeqType (T: Type) {e: eq_dec T}:
eqType := EqType T.

Problematic:
finTypes/eqTypes cannot be inferred from elements of the type:
Compute (count [true;false] true).

9

Introduction Architecture Equalities and equivalences Functions Overview

TYPE CLASSES

Nice:
finTypes/eqTypes can be automatically generated from types

Definition toeqType (T: Type) {e: eq_dec T}:
eqType := EqType T.

Problematic:
finTypes/eqTypes cannot be inferred from elements of the type:
Compute (count [true;false] true).

9

Introduction Architecture Equalities and equivalences Functions Overview

TYPE CLASSES

Nice:
finTypes/eqTypes can be automatically generated from types
Definition toeqType (T: Type) {e: eq_dec T}:
eqType := EqType T.

Problematic:
finTypes/eqTypes cannot be inferred from elements of the type:
Compute (count [true;false] true).

9

Introduction Architecture Equalities and equivalences Functions Overview

TYPE CLASSES

Nice:
finTypes/eqTypes can be automatically generated from types
Definition toeqType (T: Type) {e: eq_dec T}:
eqType := EqType T.

Problematic:

finTypes/eqTypes cannot be inferred from elements of the type:
Compute (count [true;false] true).

9

Introduction Architecture Equalities and equivalences Functions Overview

TYPE CLASSES

Nice:
finTypes/eqTypes can be automatically generated from types
Definition toeqType (T: Type) {e: eq_dec T}:
eqType := EqType T.

Problematic:
finTypes/eqTypes cannot be inferred from elements of the type:

Compute (count [true;false] true).

9

Introduction Architecture Equalities and equivalences Functions Overview

TYPE CLASSES

Nice:
finTypes/eqTypes can be automatically generated from types
Definition toeqType (T: Type) {e: eq_dec T}:
eqType := EqType T.

Problematic:
finTypes/eqTypes cannot be inferred from elements of the type:
Compute (count [true;false] true).

9

Introduction Architecture Equalities and equivalences Functions Overview

TYPE CLASSES

Nice:
finTypes/eqTypes can be automatically generated from types
Definition toeqType (T: Type) {e: eq_dec T}:
eqType := EqType T.

Problematic:
finTypes/eqTypes cannot be inferred from elements of the type:
Compute (count [true;false] true).

9

Introduction Architecture Equalities and equivalences Functions Overview

CANONICAL STRUCTURES

Extend Coqs unification algoritm

Arbitrary values can be declared as canonical structures
Every time they syntactically “fit” they are inserted
Can be combined to powerful telescopes

Canonical Structure EqBool := EqType B.
Canonical Structure finType_bool := FinType EqBool.
Compute (count [true;false] true).
= if bool_eq_dec true true
then S (if bool_eq_dec true false then 1 else 0)
else if bool_eq_dec true false then 1 else 0 : N

10

Introduction Architecture Equalities and equivalences Functions Overview

CANONICAL STRUCTURES

Extend Coqs unification algoritm
Arbitrary values can be declared as canonical structures

Every time they syntactically “fit” they are inserted
Can be combined to powerful telescopes

Canonical Structure EqBool := EqType B.
Canonical Structure finType_bool := FinType EqBool.
Compute (count [true;false] true).
= if bool_eq_dec true true
then S (if bool_eq_dec true false then 1 else 0)
else if bool_eq_dec true false then 1 else 0 : N

10

Introduction Architecture Equalities and equivalences Functions Overview

CANONICAL STRUCTURES

Extend Coqs unification algoritm
Arbitrary values can be declared as canonical structures
Every time they syntactically “fit” they are inserted

Can be combined to powerful telescopes

Canonical Structure EqBool := EqType B.
Canonical Structure finType_bool := FinType EqBool.
Compute (count [true;false] true).
= if bool_eq_dec true true
then S (if bool_eq_dec true false then 1 else 0)
else if bool_eq_dec true false then 1 else 0 : N

10

Introduction Architecture Equalities and equivalences Functions Overview

CANONICAL STRUCTURES

Extend Coqs unification algoritm
Arbitrary values can be declared as canonical structures
Every time they syntactically “fit” they are inserted
Can be combined to powerful telescopes

Canonical Structure EqBool := EqType B.
Canonical Structure finType_bool := FinType EqBool.
Compute (count [true;false] true).
= if bool_eq_dec true true
then S (if bool_eq_dec true false then 1 else 0)
else if bool_eq_dec true false then 1 else 0 : N

10

Introduction Architecture Equalities and equivalences Functions Overview

CANONICAL STRUCTURES

Extend Coqs unification algoritm
Arbitrary values can be declared as canonical structures
Every time they syntactically “fit” they are inserted
Can be combined to powerful telescopes

Canonical Structure EqBool := EqType B.
Canonical Structure finType_bool := FinType EqBool.
Compute (count [true;false] true).
= if bool_eq_dec true true
then S (if bool_eq_dec true false then 1 else 0)
else if bool_eq_dec true false then 1 else 0 : N

10

Introduction Architecture Equalities and equivalences Functions Overview

CANONICAL STRUCTURES

Extend Coqs unification algoritm
Arbitrary values can be declared as canonical structures
Every time they syntactically “fit” they are inserted
Can be combined to powerful telescopes

Canonical Structure EqBool := EqType B.

Canonical Structure finType_bool := FinType EqBool.
Compute (count [true;false] true).
= if bool_eq_dec true true
then S (if bool_eq_dec true false then 1 else 0)
else if bool_eq_dec true false then 1 else 0 : N

10

Introduction Architecture Equalities and equivalences Functions Overview

CANONICAL STRUCTURES

Extend Coqs unification algoritm
Arbitrary values can be declared as canonical structures
Every time they syntactically “fit” they are inserted
Can be combined to powerful telescopes

Canonical Structure EqBool := EqType B.
Canonical Structure finType_bool := FinType EqBool.

Compute (count [true;false] true).
= if bool_eq_dec true true
then S (if bool_eq_dec true false then 1 else 0)
else if bool_eq_dec true false then 1 else 0 : N

10

Introduction Architecture Equalities and equivalences Functions Overview

CANONICAL STRUCTURES

Extend Coqs unification algoritm
Arbitrary values can be declared as canonical structures
Every time they syntactically “fit” they are inserted
Can be combined to powerful telescopes

Canonical Structure EqBool := EqType B.
Canonical Structure finType_bool := FinType EqBool.
Compute (count [true;false] true).

= if bool_eq_dec true true
then S (if bool_eq_dec true false then 1 else 0)
else if bool_eq_dec true false then 1 else 0 : N

10

Introduction Architecture Equalities and equivalences Functions Overview

CANONICAL STRUCTURES

Extend Coqs unification algoritm
Arbitrary values can be declared as canonical structures
Every time they syntactically “fit” they are inserted
Can be combined to powerful telescopes

Canonical Structure EqBool := EqType B.
Canonical Structure finType_bool := FinType EqBool.
Compute (count [true;false] true).
= if bool_eq_dec true true
then S (if bool_eq_dec true false then 1 else 0)
else if bool_eq_dec true false then 1 else 0 : N

10

Introduction Architecture Equalities and equivalences Functions Overview

TOGETHER: POWERFUL INFERENCE

Definition finType_BoolUnit := tofinType(B × unit).
finType_BoolUnit is defined

What does this actually look like?

finType_BoolUnit = @tofinType (B × unit)
(@decide_eq (EqCross EqBool EqUnit))
(finTypeC_Cross finType_bool finType_unit)
: finType

inferred with canonical structures
inferred with type classes

11

Introduction Architecture Equalities and equivalences Functions Overview

TOGETHER: POWERFUL INFERENCE

Definition finType_BoolUnit := tofinType(B × unit).
finType_BoolUnit is defined

What does this actually look like?

finType_BoolUnit = @tofinType (B × unit)
(@decide_eq (EqCross EqBool EqUnit))
(finTypeC_Cross finType_bool finType_unit)
: finType

inferred with canonical structures
inferred with type classes

11

Introduction Architecture Equalities and equivalences Functions Overview

TOGETHER: POWERFUL INFERENCE

Definition finType_BoolUnit := tofinType(B × unit).
finType_BoolUnit is defined

What does this actually look like?

finType_BoolUnit = @tofinType (B × unit)
(@decide_eq (EqCross EqBool EqUnit))
(finTypeC_Cross finType_bool finType_unit)
: finType

inferred with canonical structures

inferred with type classes

11

Introduction Architecture Equalities and equivalences Functions Overview

TOGETHER: POWERFUL INFERENCE

Definition finType_BoolUnit := tofinType(B × unit).
finType_BoolUnit is defined

What does this actually look like?

finType_BoolUnit = @tofinType (B × unit)
(@decide_eq (EqCross EqBool EqUnit))
(finTypeC_Cross finType_bool finType_unit)
: finType

inferred with canonical structures
inferred with type classes

11

Introduction Architecture Equalities and equivalences Functions Overview

EQUIVALENCE PRINCIPLES

Finite Types satisfy important equivalences:

About: elem
elem is a projection from a finType to its list of elements

12

Introduction Architecture Equalities and equivalences Functions Overview

EQUIVALENCE PRINCIPLES

Finite Types satisfy important equivalences:

(∀ (x : F), p x)↔ ∀ x ∈ (elem F), p x

About: elem
elem is a projection from a finType to its list of elements

12

Introduction Architecture Equalities and equivalences Functions Overview

EQUIVALENCE PRINCIPLES

Finite Types satisfy important equivalences:

(∀ (x : F), p x)↔ ∀ x ∈ (elem F), p x
(∃ (x : F), p x)↔ ∃ x ∈ (elem F), p x

About: elem
elem is a projection from a finType to its list of elements

12

Introduction Architecture Equalities and equivalences Functions Overview

EQUIVALENCE PRINCIPLES

Finite Types satisfy important equivalences:

(∀ (x : F), p x)↔ ∀ x ∈ (elem F), p x
(∃ (x : F), p x)↔ ∃ x ∈ (elem F), p x
(∃ (x : F), p x)↔ ∃ x, x ∈ (elem F)→ p x

About: elem
elem is a projection from a finType to its list of elements

12

Introduction Architecture Equalities and equivalences Functions Overview

EQUIVALENCE PRINCIPLES

Finite Types satisfy important equivalences:

(∀ (x : F), p x)↔ ∀ x ∈ (elem F), p x
(∃ (x : F), p x)↔ ∃ x ∈ (elem F), p x
(∃ (x : F), p x)↔ ∃ x, x ∈ (elem F)→ p x

About: elem
elem is a projection from a finType to its list of elements

First one allows to use induction

12

Introduction Architecture Equalities and equivalences Functions Overview

INTERESTING EQUALITIES

finTypes are equal to "ordinary" types due to coercion

About: (x) and ?
(x) and ? are my operators for the finType of a cartesian product
of finTypes and an option type of a finType, respectively.

13

Introduction Architecture Equalities and equivalences Functions Overview

INTERESTING EQUALITIES

finTypes are equal to "ordinary" types due to coercion

tofinType X = X

About: (x) and ?
(x) and ? are my operators for the finType of a cartesian product
of finTypes and an option type of a finType, respectively.

13

Introduction Architecture Equalities and equivalences Functions Overview

INTERESTING EQUALITIES

finTypes are equal to "ordinary" types due to coercion

tofinType X = X
B = finType_bool

About: (x) and ?
(x) and ? are my operators for the finType of a cartesian product
of finTypes and an option type of a finType, respectively.

13

Introduction Architecture Equalities and equivalences Functions Overview

INTERESTING EQUALITIES

finTypes are equal to "ordinary" types due to coercion

tofinType X = X
B = finType_bool

F1 × F2 = F1 (x) F2

About: (x) and ?
(x) and ? are my operators for the finType of a cartesian product
of finTypes and an option type of a finType, respectively.

13

Introduction Architecture Equalities and equivalences Functions Overview

INTERESTING EQUALITIES

finTypes are equal to "ordinary" types due to coercion

tofinType X = X
B = finType_bool

F1 × F2 = F1 (x) F2

option F = ? F

About: (x) and ?
(x) and ? are my operators for the finType of a cartesian product
of finTypes and an option type of a finType, respectively.

13

Introduction Architecture Equalities and equivalences Functions Overview

INTERESTING EQUALITIES

finTypes are equal to "ordinary" types due to coercion

tofinType X = X
B = finType_bool

F1 × F2 = F1 (x) F2

option F = ? F
tofinType B = finType_bool

About: (x) and ?
(x) and ? are my operators for the finType of a cartesian product
of finTypes and an option type of a finType, respectively.

13

Introduction Architecture Equalities and equivalences Functions Overview

INTERESTING EQUALITIES

finTypes are equal to "ordinary" types due to coercion

tofinType X = X
B = finType_bool

F1 × F2 = F1 (x) F2

option F = ? F
tofinType B = finType_bool

tofinType(F1 × F2) = F1 (x) F2

About: (x) and ?
(x) and ? are my operators for the finType of a cartesian product
of finTypes and an option type of a finType, respectively.

13

Introduction Architecture Equalities and equivalences Functions Overview

EXTENSIONAL POWER (SET THEORETIC FUNCTIONS)

Set theoretic functions (STF): sets of pairs

I neg := {(true, false), (false, true)}
(x:F) is uniquely identified by position in elem

I elem finType_bool := [true; false]

STF is uniquely identified by its image as a list

I [false; true]

We can model the type of all STF (F1 −→ F2) as a finite type

I bundle image and proof for correct length
I Definition STF (F:finType) (X:Type) :=
{image: list X | if |image| = |X| then > else ⊥}

extensionalPower function computes list of all STF

I used in finType definition

14

Introduction Architecture Equalities and equivalences Functions Overview

EXTENSIONAL POWER (SET THEORETIC FUNCTIONS)

Set theoretic functions (STF): sets of pairs
I neg := {(true, false), (false, true)}

(x:F) is uniquely identified by position in elem

I elem finType_bool := [true; false]

STF is uniquely identified by its image as a list

I [false; true]

We can model the type of all STF (F1 −→ F2) as a finite type

I bundle image and proof for correct length
I Definition STF (F:finType) (X:Type) :=
{image: list X | if |image| = |X| then > else ⊥}

extensionalPower function computes list of all STF

I used in finType definition

14

Introduction Architecture Equalities and equivalences Functions Overview

EXTENSIONAL POWER (SET THEORETIC FUNCTIONS)

Set theoretic functions (STF): sets of pairs
I neg := {(true, false), (false, true)}

(x:F) is uniquely identified by position in elem

I elem finType_bool := [true; false]
STF is uniquely identified by its image as a list

I [false; true]

We can model the type of all STF (F1 −→ F2) as a finite type

I bundle image and proof for correct length
I Definition STF (F:finType) (X:Type) :=
{image: list X | if |image| = |X| then > else ⊥}

extensionalPower function computes list of all STF

I used in finType definition

14

Introduction Architecture Equalities and equivalences Functions Overview

EXTENSIONAL POWER (SET THEORETIC FUNCTIONS)

Set theoretic functions (STF): sets of pairs
I neg := {(true, false), (false, true)}

(x:F) is uniquely identified by position in elem
I elem finType_bool := [true; false]

STF is uniquely identified by its image as a list

I [false; true]

We can model the type of all STF (F1 −→ F2) as a finite type

I bundle image and proof for correct length
I Definition STF (F:finType) (X:Type) :=
{image: list X | if |image| = |X| then > else ⊥}

extensionalPower function computes list of all STF

I used in finType definition

14

Introduction Architecture Equalities and equivalences Functions Overview

EXTENSIONAL POWER (SET THEORETIC FUNCTIONS)

Set theoretic functions (STF): sets of pairs
I neg := {(true, false), (false, true)}

(x:F) is uniquely identified by position in elem
I elem finType_bool := [true; false]

STF is uniquely identified by its image as a list

I [false; true]
We can model the type of all STF (F1 −→ F2) as a finite type

I bundle image and proof for correct length
I Definition STF (F:finType) (X:Type) :=
{image: list X | if |image| = |X| then > else ⊥}

extensionalPower function computes list of all STF

I used in finType definition

14

Introduction Architecture Equalities and equivalences Functions Overview

EXTENSIONAL POWER (SET THEORETIC FUNCTIONS)

Set theoretic functions (STF): sets of pairs
I neg := {(true, false), (false, true)}

(x:F) is uniquely identified by position in elem
I elem finType_bool := [true; false]

STF is uniquely identified by its image as a list
I [false; true]

We can model the type of all STF (F1 −→ F2) as a finite type

I bundle image and proof for correct length
I Definition STF (F:finType) (X:Type) :=
{image: list X | if |image| = |X| then > else ⊥}

extensionalPower function computes list of all STF

I used in finType definition

14

Introduction Architecture Equalities and equivalences Functions Overview

EXTENSIONAL POWER (SET THEORETIC FUNCTIONS)

Set theoretic functions (STF): sets of pairs
I neg := {(true, false), (false, true)}

(x:F) is uniquely identified by position in elem
I elem finType_bool := [true; false]

STF is uniquely identified by its image as a list
I [false; true]

We can model the type of all STF (F1 −→ F2) as a finite type

I bundle image and proof for correct length
I Definition STF (F:finType) (X:Type) :=
{image: list X | if |image| = |X| then > else ⊥}

extensionalPower function computes list of all STF

I used in finType definition

14

Introduction Architecture Equalities and equivalences Functions Overview

EXTENSIONAL POWER (SET THEORETIC FUNCTIONS)

Set theoretic functions (STF): sets of pairs
I neg := {(true, false), (false, true)}

(x:F) is uniquely identified by position in elem
I elem finType_bool := [true; false]

STF is uniquely identified by its image as a list
I [false; true]

We can model the type of all STF (F1 −→ F2) as a finite type
I bundle image and proof for correct length

I Definition STF (F:finType) (X:Type) :=
{image: list X | if |image| = |X| then > else ⊥}

extensionalPower function computes list of all STF

I used in finType definition

14

Introduction Architecture Equalities and equivalences Functions Overview

EXTENSIONAL POWER (SET THEORETIC FUNCTIONS)

Set theoretic functions (STF): sets of pairs
I neg := {(true, false), (false, true)}

(x:F) is uniquely identified by position in elem
I elem finType_bool := [true; false]

STF is uniquely identified by its image as a list
I [false; true]

We can model the type of all STF (F1 −→ F2) as a finite type
I bundle image and proof for correct length
I Definition STF (F:finType) (X:Type) :=
{image: list X | if |image| = |X| then > else ⊥}

extensionalPower function computes list of all STF

I used in finType definition

14

Introduction Architecture Equalities and equivalences Functions Overview

EXTENSIONAL POWER (SET THEORETIC FUNCTIONS)

Set theoretic functions (STF): sets of pairs
I neg := {(true, false), (false, true)}

(x:F) is uniquely identified by position in elem
I elem finType_bool := [true; false]

STF is uniquely identified by its image as a list
I [false; true]

We can model the type of all STF (F1 −→ F2) as a finite type
I bundle image and proof for correct length
I Definition STF (F:finType) (X:Type) :=
{image: list X | if |image| = |X| then > else ⊥}

extensionalPower function computes list of all STF

I used in finType definition

14

Introduction Architecture Equalities and equivalences Functions Overview

EXTENSIONAL POWER (SET THEORETIC FUNCTIONS)

Set theoretic functions (STF): sets of pairs
I neg := {(true, false), (false, true)}

(x:F) is uniquely identified by position in elem
I elem finType_bool := [true; false]

STF is uniquely identified by its image as a list
I [false; true]

We can model the type of all STF (F1 −→ F2) as a finite type
I bundle image and proof for correct length
I Definition STF (F:finType) (X:Type) :=
{image: list X | if |image| = |X| then > else ⊥}

extensionalPower function computes list of all STF
I used in finType definition

14

Introduction Architecture Equalities and equivalences Functions Overview

FUNCTIONS AND STF

F1 → F2 convertible to F1 −→ F2

I toSTF
F1 −→ F2 convertible to F1 → F2

I applySTF
I applySTF coercion to functions
I therefore STF usable as functions

(f: F1 → F2) : ∀x, (toSTF f) x = f x
(f: F1 −→ F2): toSTF f = f

15

Introduction Architecture Equalities and equivalences Functions Overview

FUNCTIONS AND STF

F1 → F2 convertible to F1 −→ F2
I toSTF

F1 −→ F2 convertible to F1 → F2

I applySTF
I applySTF coercion to functions
I therefore STF usable as functions

(f: F1 → F2) : ∀x, (toSTF f) x = f x
(f: F1 −→ F2): toSTF f = f

15

Introduction Architecture Equalities and equivalences Functions Overview

FUNCTIONS AND STF

F1 → F2 convertible to F1 −→ F2
I toSTF

F1 −→ F2 convertible to F1 → F2

I applySTF
I applySTF coercion to functions
I therefore STF usable as functions

(f: F1 → F2) : ∀x, (toSTF f) x = f x
(f: F1 −→ F2): toSTF f = f

15

Introduction Architecture Equalities and equivalences Functions Overview

FUNCTIONS AND STF

F1 → F2 convertible to F1 −→ F2
I toSTF

F1 −→ F2 convertible to F1 → F2
I applySTF

I applySTF coercion to functions
I therefore STF usable as functions

(f: F1 → F2) : ∀x, (toSTF f) x = f x
(f: F1 −→ F2): toSTF f = f

15

Introduction Architecture Equalities and equivalences Functions Overview

FUNCTIONS AND STF

F1 → F2 convertible to F1 −→ F2
I toSTF

F1 −→ F2 convertible to F1 → F2
I applySTF
I applySTF coercion to functions

I therefore STF usable as functions

(f: F1 → F2) : ∀x, (toSTF f) x = f x
(f: F1 −→ F2): toSTF f = f

15

Introduction Architecture Equalities and equivalences Functions Overview

FUNCTIONS AND STF

F1 → F2 convertible to F1 −→ F2
I toSTF

F1 −→ F2 convertible to F1 → F2
I applySTF
I applySTF coercion to functions
I therefore STF usable as functions

(f: F1 → F2) : ∀x, (toSTF f) x = f x
(f: F1 −→ F2): toSTF f = f

15

Introduction Architecture Equalities and equivalences Functions Overview

FUNCTIONS AND STF

F1 → F2 convertible to F1 −→ F2
I toSTF

F1 −→ F2 convertible to F1 → F2
I applySTF
I applySTF coercion to functions
I therefore STF usable as functions

(f: F1 → F2) : ∀x, (toSTF f) x = f x

(f: F1 −→ F2): toSTF f = f

15

Introduction Architecture Equalities and equivalences Functions Overview

FUNCTIONS AND STF

F1 → F2 convertible to F1 −→ F2
I toSTF

F1 −→ F2 convertible to F1 → F2
I applySTF
I applySTF coercion to functions
I therefore STF usable as functions

(f: F1 → F2) : ∀x, (toSTF f) x = f x
(f: F1 −→ F2): toSTF f = f

15

Introduction Architecture Equalities and equivalences Functions Overview

FUNCTIONS AND STF

F1 → F2 convertible to F1 −→ F2
I toSTF

F1 −→ F2 convertible to F1 → F2
I applySTF
I applySTF coercion to functions
I therefore STF usable as functions

(f: F1 → F2) : ∀x, applySTF (toSTF f) x = f x
(f: F1 −→ F2): toSTF (applySTF f) = f

15

Introduction Architecture Equalities and equivalences Functions Overview

OVERVIEW: ALREADY DONE

Formalisation of finite types

Basic types

I True
I False
I unit
I empty Set
I bool

Closure properties

I option types
I cartesian product
I sum type
I extensional power (set theoretic functions)

Cardinality

I injective (f : X→ Y)→ |X| ≤ |Y|
I surjective (f : X→ Y)→ |X| ≥ |Y|

16

Introduction Architecture Equalities and equivalences Functions Overview

OVERVIEW: ALREADY DONE

Formalisation of finite types
Basic types

I True
I False
I unit
I empty Set
I bool

Closure properties

I option types
I cartesian product
I sum type
I extensional power (set theoretic functions)

Cardinality

I injective (f : X→ Y)→ |X| ≤ |Y|
I surjective (f : X→ Y)→ |X| ≥ |Y|

16

Introduction Architecture Equalities and equivalences Functions Overview

OVERVIEW: ALREADY DONE

Formalisation of finite types
Basic types

I True

I False
I unit
I empty Set
I bool

Closure properties

I option types
I cartesian product
I sum type
I extensional power (set theoretic functions)

Cardinality

I injective (f : X→ Y)→ |X| ≤ |Y|
I surjective (f : X→ Y)→ |X| ≥ |Y|

16

Introduction Architecture Equalities and equivalences Functions Overview

OVERVIEW: ALREADY DONE

Formalisation of finite types
Basic types

I True
I False

I unit
I empty Set
I bool

Closure properties

I option types
I cartesian product
I sum type
I extensional power (set theoretic functions)

Cardinality

I injective (f : X→ Y)→ |X| ≤ |Y|
I surjective (f : X→ Y)→ |X| ≥ |Y|

16

Introduction Architecture Equalities and equivalences Functions Overview

OVERVIEW: ALREADY DONE

Formalisation of finite types
Basic types

I True
I False
I unit

I empty Set
I bool

Closure properties

I option types
I cartesian product
I sum type
I extensional power (set theoretic functions)

Cardinality

I injective (f : X→ Y)→ |X| ≤ |Y|
I surjective (f : X→ Y)→ |X| ≥ |Y|

16

Introduction Architecture Equalities and equivalences Functions Overview

OVERVIEW: ALREADY DONE

Formalisation of finite types
Basic types

I True
I False
I unit
I empty Set

I bool
Closure properties

I option types
I cartesian product
I sum type
I extensional power (set theoretic functions)

Cardinality

I injective (f : X→ Y)→ |X| ≤ |Y|
I surjective (f : X→ Y)→ |X| ≥ |Y|

16

Introduction Architecture Equalities and equivalences Functions Overview

OVERVIEW: ALREADY DONE

Formalisation of finite types
Basic types

I True
I False
I unit
I empty Set
I bool

Closure properties

I option types
I cartesian product
I sum type
I extensional power (set theoretic functions)

Cardinality

I injective (f : X→ Y)→ |X| ≤ |Y|
I surjective (f : X→ Y)→ |X| ≥ |Y|

16

Introduction Architecture Equalities and equivalences Functions Overview

OVERVIEW: ALREADY DONE

Formalisation of finite types
Basic types

I True
I False
I unit
I empty Set
I bool

Closure properties

I option types
I cartesian product
I sum type
I extensional power (set theoretic functions)

Cardinality

I injective (f : X→ Y)→ |X| ≤ |Y|
I surjective (f : X→ Y)→ |X| ≥ |Y|

16

Introduction Architecture Equalities and equivalences Functions Overview

OVERVIEW: ALREADY DONE

Formalisation of finite types
Basic types

I True
I False
I unit
I empty Set
I bool

Closure properties
I option types

I cartesian product
I sum type
I extensional power (set theoretic functions)

Cardinality

I injective (f : X→ Y)→ |X| ≤ |Y|
I surjective (f : X→ Y)→ |X| ≥ |Y|

16

Introduction Architecture Equalities and equivalences Functions Overview

OVERVIEW: ALREADY DONE

Formalisation of finite types
Basic types

I True
I False
I unit
I empty Set
I bool

Closure properties
I option types
I cartesian product

I sum type
I extensional power (set theoretic functions)

Cardinality

I injective (f : X→ Y)→ |X| ≤ |Y|
I surjective (f : X→ Y)→ |X| ≥ |Y|

16

Introduction Architecture Equalities and equivalences Functions Overview

OVERVIEW: ALREADY DONE

Formalisation of finite types
Basic types

I True
I False
I unit
I empty Set
I bool

Closure properties
I option types
I cartesian product
I sum type

I extensional power (set theoretic functions)
Cardinality

I injective (f : X→ Y)→ |X| ≤ |Y|
I surjective (f : X→ Y)→ |X| ≥ |Y|

16

Introduction Architecture Equalities and equivalences Functions Overview

OVERVIEW: ALREADY DONE

Formalisation of finite types
Basic types

I True
I False
I unit
I empty Set
I bool

Closure properties
I option types
I cartesian product
I sum type
I extensional power (set theoretic functions)

Cardinality

I injective (f : X→ Y)→ |X| ≤ |Y|
I surjective (f : X→ Y)→ |X| ≥ |Y|

16

Introduction Architecture Equalities and equivalences Functions Overview

OVERVIEW: ALREADY DONE

Formalisation of finite types
Basic types

I True
I False
I unit
I empty Set
I bool

Closure properties
I option types
I cartesian product
I sum type
I extensional power (set theoretic functions)

Cardinality

I injective (f : X→ Y)→ |X| ≤ |Y|
I surjective (f : X→ Y)→ |X| ≥ |Y|

16

Introduction Architecture Equalities and equivalences Functions Overview

OVERVIEW: ALREADY DONE

Formalisation of finite types
Basic types

I True
I False
I unit
I empty Set
I bool

Closure properties
I option types
I cartesian product
I sum type
I extensional power (set theoretic functions)

Cardinality
I injective (f : X→ Y)→ |X| ≤ |Y|

I surjective (f : X→ Y)→ |X| ≥ |Y|

16

Introduction Architecture Equalities and equivalences Functions Overview

OVERVIEW: ALREADY DONE

Formalisation of finite types
Basic types

I True
I False
I unit
I empty Set
I bool

Closure properties
I option types
I cartesian product
I sum type
I extensional power (set theoretic functions)

Cardinality
I injective (f : X→ Y)→ |X| ≤ |Y|
I surjective (f : X→ Y)→ |X| ≥ |Y|

16

Introduction Architecture Equalities and equivalences Functions Overview

OVERVIEW: STILL TO DO

Order

Choice
Closure properties

I dependent pairs

Subtypes
Fixed points
finType→ countable type
Possibly graphs

17

Introduction Architecture Equalities and equivalences Functions Overview

OVERVIEW: STILL TO DO

Order
Choice

Closure properties

I dependent pairs

Subtypes
Fixed points
finType→ countable type
Possibly graphs

17

Introduction Architecture Equalities and equivalences Functions Overview

OVERVIEW: STILL TO DO

Order
Choice
Closure properties

I dependent pairs

Subtypes
Fixed points
finType→ countable type
Possibly graphs

17

Introduction Architecture Equalities and equivalences Functions Overview

OVERVIEW: STILL TO DO

Order
Choice
Closure properties

I dependent pairs

Subtypes
Fixed points
finType→ countable type
Possibly graphs

17

Introduction Architecture Equalities and equivalences Functions Overview

OVERVIEW: STILL TO DO

Order
Choice
Closure properties

I dependent pairs

Subtypes

Fixed points
finType→ countable type
Possibly graphs

17

Introduction Architecture Equalities and equivalences Functions Overview

OVERVIEW: STILL TO DO

Order
Choice
Closure properties

I dependent pairs

Subtypes
Fixed points

finType→ countable type
Possibly graphs

17

Introduction Architecture Equalities and equivalences Functions Overview

OVERVIEW: STILL TO DO

Order
Choice
Closure properties

I dependent pairs

Subtypes
Fixed points
finType→ countable type

Possibly graphs

17

Introduction Architecture Equalities and equivalences Functions Overview

OVERVIEW: STILL TO DO

Order
Choice
Closure properties

I dependent pairs

Subtypes
Fixed points
finType→ countable type
Possibly graphs

17

Introduction Architecture Equalities and equivalences Functions Overview

SOURCES AND INSPIRATION

Mahboubi, Assia and Tassi, Enrico
Canonical Structures for the working Coq user
ITP 2013, 4th Conference on Interactive Theorem Proving

Gonthier, Georges
ssreflect coqdoc documentation
http://math-comp.github.io/math-comp/htmldoc/index.html

Castéran, Pierre and Sozeau,Matthieu
A Gentle Introduction to Type Classes and Relations in Coq
http://www.labri.fr/perso/casteran/CoqArt/TypeClassesTut/typeclassestut.pdf

18

Introduction Architecture Equalities and equivalences Functions Overview

THE END

Thank you for your attention

Any questions? Ask away!

19

	Introduction
	Architecture
	Equalities and equivalences
	Functions
	Overview

