Finite Types Classical properties ~Cardinality ~Vectors Constructions ~ Finite Closure Iteration ~Automata References
O 00 00 00 00000000 O 00000 000
:

A Coq Library for Finite Types

Bachelor Talk

Jan Menz

SAARLAND
UNIVERSITY
I
COMPUTER SCIENCE

Adyvisor: Prof. Dr. Gert Smolka

July 29, 2016



Finite Types Classical properties ~Cardinality ~Vectors Constructions ~ Finite Closure Iteration ~Automata References
® 00 00 00 00000000 O 00000 000

CONTENTS

@ Finite Types

© Classical properties

@ Cardinality

© Vectors

© Constructions

@ Finite Closure Iteration

@ Automata



Finite Types Classical properties ~Cardinality ~Vectors Constructions  Finite Closure Iteration ~Automata References
O @0 00 00 00000000 O 00000 000
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What is a finite type?
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FINITE TYPES

What is a finite type?

e Type
@ Finite number of inhabitants

Representation:
@ Discrete Type X
@ Duplicate free list of all inhabitants (elem X)
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FINITE TYPES

What is a finite type?

e Type
Finite number of inhabitants

Representation:

Discrete Type X

Duplicate free list of all inhabitants (elem X)
Proof that list satisfies the properties
> Vx, count (elem X) x =1
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FINITE TYPES

What is a finite type?

e Type
Finite number of inhabitants

Representation:

Discrete Type X

Duplicate free list of all inhabitants (elem X)
Proof that list satisfies the properties
> Vx, count (elem X) x =1

Cardinality
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FINITE TYPES

What is a finite type?

e Type
Finite number of inhabitants

Representation:

Discrete Type X

Duplicate free list of all inhabitants (elem X)
Proof that list satisfies the properties
> Vx, count (elem X) x =1

Cardinality
@ Number of inhabitants of X
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FINITE TYPES

What is a finite type?

e Type
Finite number of inhabitants

Representation:

Discrete Type X

Duplicate free list of all inhabitants (elem X)
Proof that list satisfies the properties
> Vx, count (elem X) x =1

Cardinality
Number of inhabitants of X
lelem X|
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THREE USABILITY FEATURES

If Y is a finite or discrete type, then
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THREE USABILITY FEATURES

If Y is a finite or discrete type, then

@ Y can be used as a type.
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THREE USABILITY FEATURES

If Y is a finite or discrete type, then

@ Y can be used as a type.
» V(Y : finType)(x : Y), x celemY
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@ Y can be used as a type.

» V(Y : finType)(x : Y), x celemY
» Coercions
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» V(Y : finType)(x : Y), x celemY
» Coercions

@ Y can be automatically inferred.
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THREE USABILITY FEATURES

If Y is a finite or discrete type, then

@ Y can be used as a type.
» V(Y : finType)(x : Y), x celemY
» Coercions

@ Y can be automatically inferred.
> count [true, false] true = 1
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THREE USABILITY FEATURES

If Y is a finite or discrete type, then

@ Y can be used as a type.
» V(Y : finType)(x : Y), x celemY
» Coercions

@ Y can be automatically inferred.

> count [true, false] true = 1
» Canonical structures
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THREE USABILITY FEATURES

If Y is a finite or discrete type, then

@ Y can be used as a type.
» V(Y : finType)(x : Y), x celemY
» Coercions

@ Y can be automatically inferred.

> count [true, false] true = 1
» Canonical structures

@ We can compute Y out of its base type.
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THREE USABILITY FEATURES

If Y is a finite or discrete type, then

@ Y can be used as a type.
» V(Y : finType)(x : Y), x celemY
» Coercions

@ Y can be automatically inferred.

> count [true, false] true = 1
» Canonical structures

@ We can compute Y out of its base type.
» Cardinality(tofinType B) = 2
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THREE USABILITY FEATURES

If Y is a finite or discrete type, then

@ Y can be used as a type.
» V(Y : finType)(x : Y), x celemY
» Coercions

@ Y can be automatically inferred.

> count [true, false] true = 1
» Canonical structures

@ We can compute Y out of its base type.
» Cardinality(tofinType B) = 2
» Mainly type classes
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(V(x:X),px) <> Vxe (elemX),px
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(V(x:X),px) <> Vxe (elemX),px

F(x:X),px) < Ix € (elem X),px
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CONVERSION TO LISTS

(V(x:X),px) <> Vxe (elem X),px
F(x:X),px) < 3Ix € (elem X),px

Fx:X),px) < 3Ix,x € (elem X) — px
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Finite types often behave classically:

From list conversions:
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Finite types often behave classically:

From list conversions:

For a decidable predicate p over X
@ Vx:X, pxisdecidable.
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Finite types often behave classically:

From list conversions:

For a decidable predicate p over X
@ Vx:X, pxisdecidable.
@ Jx: X, pxisdecidable.

(o)}
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CLASSICAL PROPERTIES

Finite types often behave classically:

From list conversions:

For a decidable predicate p over X
@ Vx: X, pxisdecidable.
@ Jx: X, pxisdecidable.
@ (Fx:X,px)«Vx:X, (-px).

(o)}
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CLASSICAL PROPERTIES

Finite types often behave classically:

From list conversions:

For a decidable predicate p over X
@ Vx: X, pxisdecidable.
@ Jx: X, pxisdecidable.
@ (Fx:X,px)«Vx:X, (-px).
o - (Vx: X,px) < 3Jdx: X, -pux
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CLASSICAL PROPERTIES

Finite types often behave classically:

From list conversions:

For a decidable predicate p over X
@ Vx: X, pxisdecidable.
@ Jx: X, pxisdecidable.
@ (Fx:X,px)«Vx:X, (-px).
o - (Vx: X,px) < 3Jdx: X, -pux

@ There is a constructive choice function 3x : X,px — {x: X | p x}.
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Let A be a list over X. Then
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CARDINALITY

Let A be a list over X. Then
o Cardinality X = card (elem X).
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CARDINALITY

Let A be a list over X. Then
o Cardinality X = card (elem X).
o Cardinality X > card A.
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CARDINALITY

Let A be a list over X. Then

o Cardinality X = card (elem X).
o Cardinality X > card A.
@ Cardinality X > |A|, if A is duplicate free.




Finite Types Classical properties ~Cardinality ~Vectors Constructions ~ Finite Closure Iteration ~Automata References
O 00 00 oe 00000000 O 00000 000

PIGEONHOLE PRINCIPLES

Pigeon hole principle from set theory also hold on finite types:
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PIGEONHOLE PRINCIPLES

Pigeon hole principle from set theory also hold on finite types:

(Finjection f : X1 — Xo) — Cardinality X, < Cardinality X,
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PIGEONHOLE PRINCIPLES

Pigeon hole principle from set theory also hold on finite types:

(Finjection f : X1 — Xo) — Cardinality X, < Cardinality X,
(3 surjection f : X1 — Xp) — Cardinality X, > Cardinality X,
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PIGEONHOLE PRINCIPLES

Pigeon hole principle from set theory also hold on finite types:
(Finjection f : X1 — Xo) — Cardinality X, < Cardinality X,

(3 surjection f : X1 — Xp) — Cardinality X, > Cardinality X,

(3 bijection f : X1 — Xp) — Cardinality Xy = Cardinality X,
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VECTORS

Usually: Collection of objects of some “type” with fixed size.

T 1
R e 2
0 n

indexed by some number n
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VECTORS

Now: Collection of objects of some type Y with fixed size.

X1 n 1

X7 . 2 2
elem X = . X-indexed Y vector :

Xn yn n

indexed by some finite type X

10
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VECTORS

Now: Collection of objects of some type Y with fixed size.

X1 n 1

X7 . 2 2
elem X = . X-indexed Y vector :

Xn Yn n

indexed by some finite type X

In Coq dependent pair: { A | |A| = Cardinality X }

10
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VECTORS

Function interpretation:

X1 — 1
X —
elem X = ,2 . y_2 =f

x;l —> yn

11
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VECTORS

Function interpretation:

X1 — n
X —
elem X = ,2 . y_2 =f

xn —> yn

X—Y := X-indexed Y vector.

11



Finite Types Classical properties ~Cardinality ~Vectors Constructions ~ Finite Closure Iteration ~Automata References
O 00 00 00 00®00000 O 00000 000

VECTORS

Function interpretation:

X1 — n
X —
elem X = ,2 . y_2 =f

xn —> yn
X—Y := X-indexed Y vector.

image f := [y1,Y2, ..., Yn)

11
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DISCRETENESS OF VECTORS

We want to decide equality

In Coq dependent pair: {A | |A| = Cardinality X }

12
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DISCRETENESS OF VECTORS

We want to decide equality

In Coq dependent pair: {A | |A| = Cardinality X }

Definition (Pure predicates[15])

A predicate p : X — P is called pure if for every x:X there is only one
proof of p x.

12



Finite Types Classical properties ~Cardinality ~Vectors Constructions ~ Finite Closure Iteration ~Automata References
O 00 00 00 00080000 O 00000 000

DISCRETENESS OF VECTORS

We want to decide equality

In Coq dependent pair: {A | |A| = Cardinality X }

Definition (Pure predicates[15])

A predicate p : X — P is called pure if for every x:X there is only one
proof of p x. Decidable predicates can be converted to pure predicates.

12
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DISCRETENESS OF VECTORS

We want to decide equality

In Coq dependent pair: {A | pure (|A| = Cardinality X) }

Definition (Pure predicates[15])

A predicate p : X — P is called pure if for every x:X there is only one
proof of p x. Decidable predicates can be converted to pure predicates.

12
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DISCRETENESS OF VECTORS

We want to decide equality

In Coq dependent pair: {A | pure (|A| = Cardinality X) }

Definition (Pure predicates[15])

A predicate p : X — P is called pure if for every x:X there is only one
proof of p x. Decidable predicates can be converted to pure predicates.

= Vectors are discrete and extensional:

12
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DISCRETENESS OF VECTORS

We want to decide equality

In Coq dependent pair: {A | pure (|A| = Cardinality X) }

Definition (Pure predicates[15])

A predicate p : X — P is called pure if for every x:X there is only one
proof of p x. Decidable predicates can be converted to pure predicates.

= Vectors are discrete and extensional:

Let f and g be two vectors. Then image f = image g — f = g. l
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A FINITE VECTOR TYPE

There is a finite type X§ ! such that X§ = X1—Xo.

13
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A FINITE VECTOR TYPE

There is a finite type X§1 such that Xé(l = X1—Xo.

Cardinality Xfl = (Cardinality X,)Codinality X,

13
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VECTORS VS. FUNCTIONS

Function interpretation:
fvector X—Y

X1 — 1
X2 — Y2

Xn —> yn

14
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VECTORS VS. FUNCTIONS

Function interpretation:
fvector X—Y

X1 — n
X —
elem X = ,2 . y.z =f

Xn —> yn

Function applyVect: X—Y — X = Y.

14
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VECTORS VS. FUNCTIONS

Function interpretation:
fvector X—Y

X1 — n
X —
elem X = ,2 . y.z =f

Xn —> yn

Function applyVect: X—Y — X = Y.

Defined as coercion. We can write f x instead of applyVect f x.

14
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VECTORS VS. FUNCTIONS

Vector interpretation:
ffunction X — Y

X1
X2
elem X =

Xn

15
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VECTORS VS. FUNCTIONS

Vector interpretation:
ffunction X — Y

X1 f X1

X2 X2
elem X .= | . vectorise f 1= f .

Xy f xn

15
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VECTORS VS. FUNCTIONS

Vector interpretation:
ffunction X — Y

X1 f X1

X2 X2
elem X .= | . vectorise f 1= f .

Xy f xn

Function vectorise: (X — Y) — (X—Y).

15
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VECTORS VS. FUNCTIONS

applyVect and vectorise are inverse functions:

16
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VECTORS VS. FUNCTIONS

applyVect and vectorise are inverse functions:

Let fbe a vector X—Y. Then vectorise f = f. I

16
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VECTORS VS. FUNCTIONS

applyVect and vectorise are inverse functions:

Let fbe a vector X—Y. Then vectorise f = f. l

Let fbe a function X — Y. Then (vectorise f) x = f x.

16
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MORE COMPOUNT TYPES

@ Cartesian product

17
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MORE COMPOUNT TYPES

@ Cartesian product
@ Sum

17
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MORE COMPOUNT TYPES

@ Cartesian product
@ Sum

@ Option

17
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MORE COMPOUNT TYPES

@ Cartesian product

@ Sum

@ Option

@ Dependent pairs to P (subtypes)

17
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MORE COMPOUNT TYPES

@ Cartesian product

@ Sum

@ Option

@ Dependent pairs to P (subtypes)

» Uses pure predicates

17
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MORE COMPOUNT TYPES

@ Cartesian product

@ Sum

@ Option

@ Dependent pairs to P (subtypes)

» Uses pure predicates
» No equation for cardinality

17
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MORE COMPOUNT TYPES

@ Cartesian product

@ Sum

@ Option

@ Dependent pairs to P (subtypes)

» Uses pure predicates
» No equation for cardinality

@ General dependent pairs

17
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MORE COMPOUNT TYPES

@ Cartesian product

@ Sum

@ Option

@ Dependent pairs to P (subtypes)

» Uses pure predicates
» No equation for cardinality

@ General dependent pairs
» Uses Hedberg’s theorem

17
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MORE COMPOUNT TYPES

@ Cartesian product

@ Sum

@ Option

@ Dependent pairs to P (subtypes)

» Uses pure predicates
» No equation for cardinality

@ General dependent pairs

» Uses Hedberg’s theorem
» No equation for equality

17
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MORE COMPOUNT TYPES

@ Cartesian product

@ Sum

@ Option

@ Dependent pairs to P (subtypes)

» Uses pure predicates
» No equation for cardinality

General dependent pairs

» Uses Hedberg’s theorem
» No equation for equality

From a list

17



Finite Types Classical properties ~Cardinality ~Vectors Constructions  Finite Closure Iteration ~Automata References
O 00 00 00 00000000 @ 00000 000

MORE COMPOUNT TYPES

@ Cartesian product

@ Sum

@ Option

@ Dependent pairs to P (subtypes)

» Uses pure predicates
» No equation for cardinality

General dependent pairs

» Uses Hedberg’s theorem
» No equation for equality

From a list
» Uses subtypes

17
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MORE COMPOUNT TYPES

@ Cartesian product

@ Sum

@ Option

@ Dependent pairs to P (subtypes)

» Uses pure predicates
» No equation for cardinality

General dependent pairs

» Uses Hedberg’s theorem
» No equation for equality

From a list
» Uses subtypes
Vectors

17
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MORE COMPOUNT TYPES

@ Cartesian product

@ Sum

@ Option

@ Dependent pairs to P (subtypes)

» Uses pure predicates
» No equation for cardinality

General dependent pairs

» Uses Hedberg’s theorem
» No equation for equality

From a list

» Uses subtypes
Vectors

» Uses subtypes

17
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FINITE CLOSURE ITERATION[14, 13]

Compute subset of finite type F:

18



Finite Types Classical properties ~Cardinality ~Vectors Constructions  Finite Closure Iteration ~Automata References
O 00 00 00 00000000 O 90000 000

FINITE CLOSURE ITERATION[14, 13]

Compute subset of finite type F:

@ predicate step: list X - X — P

18
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FINITE CLOSURE ITERATION[14, 13]

Compute subset of finite type F:

@ predicate step: list X - X — P
e function pick: VA, {x|step AxN—(x € A)} +V x,step Ax — x € A.

18



Finite Types Classical properties ~Cardinality ~Vectors Constructions  Finite Closure Iteration ~Automata References
0 00 00 00 00000000 O ©0000 000

FINITE CLOSURE ITERATION|[14, 13]

Compute subset of finite type F:

@ predicate step: list X - X — P
e function pick: VA, {x|step AxN—(x € A)} +V x,step Ax — x € A.

Definition FCStep A :=
match (pick A) with
|inl L = match L with
lexists _ x _ = x::A end

|inr _ = A end.

18
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FINITE CLOSURE ITERATION|[14, 13]: IDEA

Iterate FCStep until it reaches a fixed point
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FINITE CLOSURE ITERATION|[14, 13]: IDEA

Iterate FCStep until it reaches a fixed point

How many times?

Let Abealist over Xand FCIter := FCSteptardinality X Then
FCIter Aisa fixed point of FCStep.
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FCITER INDUCTION [14, 13]

Induction principle for predicates preserved by FCStep:
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FCITER INDUCTION [14, 13]

Induction principle for predicates preserved by FCStep:
ACp:=VxecApx
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FCITER INDUCTION [14, 13]

Induction principle for predicates preserved by FCStep:
ACp:=VxecApx

Let p be a predicate over X and A a list over X. Then
ACp— (VAx,ACp—step Ax — px) — FClter A C p.
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LEAST FIXED POINTS

Let A be a list over X. Then FCIter Ais a fixed point of FCStep.

Is it a least fixed point?

21



Finite Types Classical properties ~Cardinality ~Vectors Constructions  Finite Closure Iteration ~Automata References
0 00 00 00 00000000 O 000®0 000

LEAST FIXED POINTS

Let A be a list over X. Then FCIter Ais a fixed point of FCStep.

Is it a least fixed point?

No! But ...

21
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Definition (Least fixed points containing A)

Let A: list Y and f: list Y — list Y. A fixed point B of f is called the least
fixed point containing A if A C B and for any other fixed point B of f:
ACB —BCHB.
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LEAST FIXED POINTS CONTAINING A

Definition (Least fixed points containing A)

Let A: list Y and f: list Y — list Y. A fixed point B of f is called the least

fixed point containing A if A C B and for any other fixed point B of f:
ACB - BCB.

Definition (Consistency)

A step predicate is called consistent if
VAx step Ax —VA,ACA — step A x.

22
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LEAST FIXED POINTS CONTAINING A

Definition (Least fixed points containing A)

Let A: list Y and f: list Y — list Y. A fixed point B of f is called the least

fixed point containing A if A C B and for any other fixed point B of f:
ACB —BCHB.

Definition (Consistency)

A step predicate is called consistent if
VAx step Ax —VA,ACA — step A x.

If step is consistent then for any A the list FClter A is the least fixed
point containing A.
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TEST CASE: FINITE AUTOMATA WITH FINITE TYPES

Inspired by [3] (Talk on Monday 3:15 pm)

23
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TEST CASE: FINITE AUTOMATA WITH FINITE TYPES

Inspired by [3] (Talk on Monday 3:15 pm)
Assume a finite type X as the alphabet.

Deterministic finite automata are formalised by:
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TEST CASE: FINITE AUTOMATA WITH FINITE TYPES

Inspired by [3] (Talk on Monday 3:15 pm)
Assume a finite type X as the alphabet.

Deterministic finite automata are formalised by:
e A finite type S, the set of states.
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TEST CASE: FINITE AUTOMATA WITH FINITE TYPES

Inspired by [3] (Talk on Monday 3:15 pm)
Assume a finite type X as the alphabet.

Deterministic finite automata are formalised by:
e A finite type S, the set of states.
@ Some s of type S, the start state.
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TEST CASE: FINITE AUTOMATA WITH FINITE TYPES

Inspired by [3] (Talk on Monday 3:15 pm)
Assume a finite type X as the alphabet.

Deterministic finite automata are formalised by:
@ A finite type S, the set of states.
@ Some s of type S, the start state.
@ A decidable predicate F over S to define the accepting states.
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TEST CASE: FINITE AUTOMATA WITH FINITE TYPES

Inspired by [3] (Talk on Monday 3:15 pm)
Assume a finite type X as the alphabet.

Deterministic finite automata are formalised by:
@ A finite type S, the set of states.
@ Some s of type S, the start state.

@ A decidable predicate F over S to define the accepting states.
@ A transition function ds : S — ¥ — S.
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TEST CASE: FINITE AUTOMATA WITH FINITE TYPES

Inspired by [3] (Talk on Monday 3:15 pm)
Assume a finite type X as the alphabet.

Deterministic finite automata are formalised by:
@ A finite type S, the set of states.
@ Some s of type S, the start state.

@ A decidable predicate F over S to define the accepting states.
@ A transition function ds : S — ¥ — S.
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TEST CASE: FINITE AUTOMATA WITH FINITE TYPES

Inspired by [3] (Talk on Monday 3:15 pm)
Assume a finite type X as the alphabet.

Deterministic finite automata are formalised by:
@ A finite type S, the set of states.
@ Some s of type S, the start state.

@ A decidable predicate F over S to define the accepting states.
@ A transition function ds : S — ¥ — S.

We lift 65 as 6§ to words.
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TEST CASE: FINITE AUTOMATA WITH FINITE TYPES

Inspired by [3] (Talk on Monday 3:15 pm)
Assume a finite type X as the alphabet.

Deterministic finite automata are formalised by:
@ A finite type S, the set of states.
@ Some s of type S, the start state.

@ A decidable predicate F over S to define the accepting states.
@ A transition function ds : S — ¥ — S.

We lift 65 as 6§ to words.

Definition (Acceptance)

An automaton accepts a word w if F (0 s w).
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FCITER IN ACTION
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FCITER IN ACTION
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FCITER IN ACTION

b
N
a c o {2}
O, @\“ (2)- @ 123
Q (2,34}
b b (C ) Q {2341}
@ @ {2,34,1} + fixed point

Allows to decide
@ language is X*.
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FCITER IN ACTION

b
N
a c o {2}
O, @\“ (2)- @ 123
Q (2,34}
b b (C ) Q {2341}
@ @ {2,34,1} + fixed point

Allows to decide
@ language is X*.
@ language emptiness.
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FCITER IN ACTION

b
N
a c o {2}
O, @\“ (2)- @ 123
Q (2,34}
b b (C ) Q {2341}
@ @ {2,34,1} + fixed point

Allows to decide
@ language is X*.
@ language emptiness.
@ language inclusion.
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FCITER IN ACTION

b
N
a c o {2}
O, @\“ (2)- @ 123
Q (2,34}
b b (C ) Q {2341}
@ @ {2,34,1} + fixed point

Allows to decide
@ language is X*.
@ language emptiness.
@ language inclusion.
@ language equivalence.

24
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MORE ABOUT AUTOMATA

@ Closure properties
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MORE ABOUT AUTOMATA

@ Closure properties
» Complement
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MORE ABOUT AUTOMATA

@ Closure properties

» Complement
» Intersection
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MORE ABOUT AUTOMATA

@ Closure properties

» Complement
» Intersection
» Union
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MORE ABOUT AUTOMATA

@ Closure properties
» Complement
» Intersection
» Union
» Difference
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MORE ABOUT AUTOMATA

@ Closure properties
» Complement
Intersection
Union
Difference

>
>
»>
» Concatenation
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MORE ABOUT AUTOMATA

@ Closure properties
» Complement
» Intersection
» Union

» Difference

» Concatenation

» Kleene Operator

25



Finite Types Classical properties ~Cardinality ~Vectors Constructions  Finite Closure Iteration ~Automata References
0 00 00 00 00000000 O 00000 00@

MORE ABOUT AUTOMATA

@ Closure properties
» Complement
» Intersection
» Union

» Difference

» Concatenation

» Kleene Operator

@ Non deterministic finite automata (NFA)

25



Finite Types Classical properties ~Cardinality ~Vectors Constructions  Finite Closure Iteration ~Automata References
0 00 00 00 00000000 O 00000 00@

MORE ABOUT AUTOMATA

@ Closure properties
» Complement
» Intersection
Union
Difference
Concatenation
Kleene Operator

@ Non deterministic finite automata (NFA)
» Equivalence of NFA and DFA

v
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MORE ABOUT AUTOMATA

@ Closure properties
» Complement
» Intersection
Union
Difference
Concatenation
Kleene Operator

@ Non deterministic finite automata (NFA)
» Equivalence of NFA and DFA
* Uses vectors

v

vYyy
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MORE ABOUT AUTOMATA

@ Closure properties
» Complement
» Intersection
Union
Difference
Concatenation
Kleene Operator

@ Non deterministic finite automata (NFA)
» Equivalence of NFA and DFA
* Uses vectors

@ Other constructions
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MORE ABOUT AUTOMATA

@ Closure properties
» Complement
» Intersection
Union
Difference
Concatenation
Kleene Operator
@ Non deterministic finite automata (NFA)
» Equivalence of NFA and DFA
* Uses vectors

@ Other constructions
» Automaton only accepting e
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MORE ABOUT AUTOMATA

@ Closure properties
» Complement
» Intersection
Union
Difference
Concatenation
Kleene Operator

@ Non deterministic finite automata (NFA)
» Equivalence of NFA and DFA
* Uses vectors
@ Other constructions

» Automaton only accepting e
» Automaton adding some letter x to every word of a language
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MORE ABOUT AUTOMATA

@ Closure properties
» Complement
» Intersection
Union
Difference
Concatenation
Kleene Operator

@ Non deterministic finite automata (NFA)
» Equivalence of NFA and DFA
* Uses vectors
@ Other constructions

» Automaton only accepting e
» Automaton adding some letter x to every word of a language
» Automaton accepting some only some word w

v
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THE END

Thank you for your attention

Any questions? Ask away!
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EXTRAS

Definition (pure)

For a decidable predicate p with
pure p x:= if p x then T else L
pure p is a pure predicate.
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REACHABLE STATES IN DFAS

Let A be a DFA with set of states S

We use finite closure iteration to compute reachable states.
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REACHABLE STATES IN DFAS

Let A be a DFA with set of states S

We use finite closure iteration to compute reachable states.

Definition (step predicate)

step_reach (set: 1list (S A)) (g : S A):=
3¢ x, g €set — dsq x=4q.
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REACHABLE STATES IN DFAS

Let A be a DFA with set of states S

We use finite closure iteration to compute reachable states.

Definition (step predicate)

step_reach (set: 1list (S A)) (g : S A):=
3¢ x, g €set — dsq x=4q.

Definition

reach reach (g:S) := FCIter step_reach [q].
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EQTYPES

dec (P:P) := {P} + {— P}.

eq_dec (X:Type ) :=V x vy, dec (x=1y).

Structure eqType
eqtype > Type ;
decide_eqg : eq_dec eqtype }.

EqType {
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FINTYPES

Class finTypeC (type: eqglype): Type := FinTypeC {
enum: list type;
enum_ok: V x: type, count enum x = 1 }.

Structure finType: Type := FinType {

type > eqlype;
class : finTypeC type }.
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ADMISSIBLE FUNCTIONS

Definition (Admissibility)

A function (f: list Y — list Y) is called admissible if a given list A is
either a fixed-point of f or card (f A) > card A.
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ADMISSIBLE FUNCTIONS

Definition (Admissibility)

A function (f: list Y — list Y) is called admissible if a given list A is
either a fixed-point of f or card (f A) > card A.

Let f be an admissible function list X — list X. Then

fCurdinulity X A

is a fixed point of f for any list A over elements of X.
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FCITER

FCStep is an admissible function.
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FCITER

FCStep is an admissible function.

FCIter := FCStepCardinality X
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FCITER

FCStep is an admissible function.

FCIter := FCStepCardinality X

Let A be a list over X. Then FCIter Aisa fixed point of FCStep.
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A FINITE VECTOR TYPE

Goal: Construct finite type for X;—X>.
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A FINITE VECTOR TYPE

Goal: Construct finite type for X;—X>.

Needed: List containing all vectors of type X1 —X>.

40
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A FINITE VECTOR TYPE

Goal: Construct finite type for X1 —X>.

Needed: List containing all vectors of type X1 —X>.
Construct all possible images first:
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A FINITE VECTOR TYPE

Goal: Construct finite type for X1 —X>.

Needed: List containing all vectors of type X1 —X>.
Construct all possible images first:

Fixpoint images (Y: Type ) (A: list Y) (n: N) : list (list Y)

match n with

| 0= [[1]

| S n’ = concat (map (A x = map (cons x) (images A n’)) A)
end.
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A FINITE VECTOR TYPE

Goal: Construct finite type for X;—X.

Needed: List containing all vectors of type X;—X>.

V A, A € images (elem Xp) (Cardinality X;) — |A| = Cardinality X;.

= We can build vectors

Let A: list X, and |A| = Cardinality X. Then
count (images (elem X,) (Cardinality X;)) A = 1.
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A FINITE VECTOR TYPE

Goal: Construct finite type for X;—X.

Needed: List containing all vectors of type X;—X>.

V A, A € images (elem Xp) (Cardinality X;) — |A| = Cardinality X;.

= We can build vectors

Let A: list X, and |A| = Cardinality X. Then
count (images (elem X,) (Cardinality X;)) A = 1.

This is enough to construct finite type Xf L
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