Finite Types Classical properties ~Cardinality ~Vectors Constructions ~ Finite Closure Iteration ~Automata References
O 00 00 00 00000000 O 00000 000
:

A Coq Library for Finite Types

Bachelor Talk

Jan Menz

SAARLAND
UNIVERSITY
I
COMPUTER SCIENCE

Adyvisor: Prof. Dr. Gert Smolka

July 29, 2016

Finite Types Classical properties ~Cardinality ~Vectors Constructions ~ Finite Closure Iteration ~Automata References
® 00 00 00 00000000 O 00000 000

CONTENTS

@ Finite Types

© Classical properties

@ Cardinality

© Vectors

© Constructions

@ Finite Closure Iteration

@ Automata

Finite Types Classical properties ~Cardinality ~Vectors Constructions Finite Closure Iteration ~Automata References
O @0 00 00 00000000 O 00000 000

FINITE TYPES

What is a finite type?

Finite Types Classical properties ~Cardinality ~Vectors Constructions Finite Closure Iteration ~Automata References
O @0 00 00 00000000 O 00000 000

FINITE TYPES

What is a finite type?
e Type

Finite Types Classical properties ~Cardinality ~Vectors Constructions Finite Closure Iteration ~Automata References
O @0 00 00 00000000 O 00000 000

FINITE TYPES

What is a finite type?

e Type
@ Finite number of inhabitants

Finite Types Classical properties ~Cardinality ~Vectors Constructions Finite Closure Iteration ~Automata References
O @0 00 00 00000000 O 00000 000

FINITE TYPES

What is a finite type?

e Type
@ Finite number of inhabitants

Finite Types Classical properties ~Cardinality ~Vectors Constructions Finite Closure Iteration ~Automata References
O @0 00 00 00000000 O 00000 000

FINITE TYPES

What is a finite type?

e Type
@ Finite number of inhabitants

Representation:

Finite Types Classical properties ~Cardinality ~Vectors Constructions Finite Closure Iteration ~Automata References
O @0 00 00 00000000 O 00000 000

FINITE TYPES

What is a finite type?

e Type
@ Finite number of inhabitants

Representation:
@ Discrete Type X

Finite Types Classical properties ~Cardinality ~Vectors Constructions Finite Closure Iteration ~Automata References
O @0 00 00 00000000 O 00000 000

FINITE TYPES

What is a finite type?

e Type
@ Finite number of inhabitants

Representation:
@ Discrete Type X
@ Duplicate free list of all inhabitants (elem X)

Finite Types Classical properties ~Cardinality ~Vectors Constructions Finite Closure Iteration ~Automata References
O @0 00 00 00000000 O 00000 000

FINITE TYPES

What is a finite type?

e Type
Finite number of inhabitants

Representation:

Discrete Type X

Duplicate free list of all inhabitants (elem X)
Proof that list satisfies the properties

Finite Types Classical properties ~Cardinality ~Vectors Constructions Finite Closure Iteration ~Automata References
O @0 00 00 00000000 O 00000 000

FINITE TYPES

What is a finite type?

e Type
Finite number of inhabitants

Representation:

Discrete Type X

Duplicate free list of all inhabitants (elem X)
Proof that list satisfies the properties
> Vx, count (elem X) x =1

Finite Types Classical properties ~Cardinality ~Vectors Constructions Finite Closure Iteration ~Automata References
O @0 00 00 00000000 O 00000 000

FINITE TYPES

What is a finite type?

e Type
Finite number of inhabitants

Representation:

Discrete Type X

Duplicate free list of all inhabitants (elem X)
Proof that list satisfies the properties
> Vx, count (elem X) x =1

Finite Types Classical properties ~Cardinality ~Vectors Constructions Finite Closure Iteration ~Automata References
O @0 00 00 00000000 O 00000 000

FINITE TYPES

What is a finite type?

e Type
Finite number of inhabitants

Representation:

Discrete Type X

Duplicate free list of all inhabitants (elem X)
Proof that list satisfies the properties
> Vx, count (elem X) x =1

Cardinality

Finite Types Classical properties ~Cardinality ~Vectors Constructions Finite Closure Iteration ~Automata References
O @0 00 00 00000000 O 00000 000

FINITE TYPES

What is a finite type?

e Type
Finite number of inhabitants

Representation:

Discrete Type X

Duplicate free list of all inhabitants (elem X)
Proof that list satisfies the properties
> Vx, count (elem X) x =1

Cardinality
@ Number of inhabitants of X

Finite Types Classical properties ~Cardinality ~Vectors Constructions Finite Closure Iteration ~Automata References
O @0 00 00 00000000 O 00000 000

FINITE TYPES

What is a finite type?

e Type
Finite number of inhabitants

Representation:

Discrete Type X

Duplicate free list of all inhabitants (elem X)
Proof that list satisfies the properties
> Vx, count (elem X) x =1

Cardinality
Number of inhabitants of X
lelem X|

Finite Types Classical properties ~Cardinality ~Vectors Constructions
00 O

Finite Closure Iteration ~Automata References
O 0@

O 00000000 O 00000 000

THREE USABILITY FEATURES

If Y is a finite or discrete type, then

Finite Closure Iteration ~Automata References

Finite Types Classical properties ~Cardinality ~Vectors Constructions
00 00 00000000 O 00000 000

O Oe

THREE USABILITY FEATURES

If Y is a finite or discrete type, then

@ Y can be used as a type.

Finite Types Classical properties ~Cardinality ~Vectors Constructions Finite Closure Iteration ~Automata References
O 0@ 00 00 00000000 O 00000 000

THREE USABILITY FEATURES

If Y is a finite or discrete type, then

@ Y can be used as a type.
» V(Y : finType)(x : Y), x celemY

Finite Closure Iteration ~Automata References

Finite Types Classical properties ~Cardinality ~Vectors Constructions
00 00 00000000 O 00000 000

O Oe

THREE USABILITY FEATURES

If Y is a finite or discrete type, then

@ Y can be used as a type.

» V(Y : finType)(x : Y), x celemY
» Coercions

Finite Types Classical properties ~Cardinality ~Vectors Constructions Finite Closure Iteration ~Automata References
o 0® 00 00 00000000 O 00000 000

THREE USABILITY FEATURES

If Y is a finite or discrete type, then

@ Y can be used as a type.
» V(Y : finType)(x : Y), x celemY
» Coercions

@ Y can be automatically inferred.

Finite Types Classical properties ~Cardinality ~Vectors Constructions Finite Closure Iteration ~Automata References
o 0® 00 00 00000000 O 00000 000

THREE USABILITY FEATURES

If Y is a finite or discrete type, then

@ Y can be used as a type.
» V(Y : finType)(x : Y), x celemY
» Coercions

@ Y can be automatically inferred.
> count [true, false] true = 1

Finite Types Classical properties ~Cardinality ~Vectors Constructions Finite Closure Iteration ~Automata References
o 0® 00 00 00000000 O 00000 000

THREE USABILITY FEATURES

If Y is a finite or discrete type, then

@ Y can be used as a type.
» V(Y : finType)(x : Y), x celemY
» Coercions

@ Y can be automatically inferred.

> count [true, false] true = 1
» Canonical structures

Finite Types Classical properties ~Cardinality ~Vectors Constructions Finite Closure Iteration ~Automata References
o 0® 00 00 00000000 O 00000 000

THREE USABILITY FEATURES

If Y is a finite or discrete type, then

@ Y can be used as a type.
» V(Y : finType)(x : Y), x celemY
» Coercions

@ Y can be automatically inferred.

> count [true, false] true = 1
» Canonical structures

@ We can compute Y out of its base type.

Finite Types Classical properties ~Cardinality ~Vectors Constructions Finite Closure Iteration ~Automata References
o 0® 00 00 00000000 O 00000 000

THREE USABILITY FEATURES

If Y is a finite or discrete type, then

@ Y can be used as a type.
» V(Y : finType)(x : Y), x celemY
» Coercions

@ Y can be automatically inferred.

> count [true, false] true = 1
» Canonical structures

@ We can compute Y out of its base type.
» Cardinality(tofinType B) = 2

Finite Types Classical properties ~Cardinality ~Vectors Constructions Finite Closure Iteration ~Automata References
o 0® 00 00 00000000 O 00000 000

THREE USABILITY FEATURES

If Y is a finite or discrete type, then

@ Y can be used as a type.
» V(Y : finType)(x : Y), x celemY
» Coercions

@ Y can be automatically inferred.

> count [true, false] true = 1
» Canonical structures

@ We can compute Y out of its base type.
» Cardinality(tofinType B) = 2
» Mainly type classes

Finite Types Classical properties Cardinality ~Vectors Constructions ~ Finite Closure Iteration ~Automata References
O 00 0 00 00000000 O 00000 000

CONVERSION TO LISTS

(V(x:X),px) <> Vxe (elemX),px

Finite Types Classical properties Cardinality ~Vectors Constructions ~ Finite Closure Iteration ~Automata References
O 00 0 00 00000000 O 00000 000

CONVERSION TO LISTS

(V(x:X),px) <> Vxe (elemX),px

F(x:X),px) < Ix € (elem X),px

Finite Types Classical properties Cardinality ~Vectors Constructions ~ Finite Closure Iteration ~Automata References
O 00 0 00 00000000 O 00000 000

CONVERSION TO LISTS

(V(x:X),px) <> Vxe (elem X),px
F(x:X),px) < 3Ix € (elem X),px

Fx:X),px) < 3Ix,x € (elem X) — px

Finite Types Classical properties Cardinality ~Vectors Constructions ~ Finite Closure Iteration ~Automata References
O 00 (o] 00 00000000 O 00000 000

CLASSICAL PROPERTIES

Finite types often behave classically:

From list conversions:

Finite Types Classical properties Cardinality ~Vectors Constructions ~ Finite Closure Iteration ~Automata References
O 00 oe 00 00000000 O 00000 000

CLASSICAL PROPERTIES

Finite types often behave classically:

From list conversions:

For a decidable predicate p over X
@ Vx:X, pxisdecidable.

(o)}

Finite Types Classical properties Cardinality ~Vectors Constructions ~ Finite Closure Iteration ~Automata References
O 00 oe 00 00000000 O 00000 000

CLASSICAL PROPERTIES

Finite types often behave classically:

From list conversions:

For a decidable predicate p over X
@ Vx:X, pxisdecidable.
@ Jx: X, pxisdecidable.

(o)}

Finite Types Classical properties Cardinality ~Vectors Constructions ~ Finite Closure Iteration ~Automata References
O 00 oe 00 00000000 O 00000 000

CLASSICAL PROPERTIES

Finite types often behave classically:

From list conversions:

For a decidable predicate p over X
@ Vx: X, pxisdecidable.
@ Jx: X, pxisdecidable.
@ (Fx:X,px)«Vx:X, (-px).

(o)}

Finite Types Classical properties Cardinality ~Vectors Constructions ~ Finite Closure Iteration ~Automata References
O 00 oe 00 00000000 O 00000 000

CLASSICAL PROPERTIES

Finite types often behave classically:

From list conversions:

For a decidable predicate p over X
@ Vx: X, pxisdecidable.
@ Jx: X, pxisdecidable.
@ (Fx:X,px)«Vx:X, (-px).
o - (Vx: X,px) < 3Jdx: X, -pux

Finite Types Classical properties Cardinality ~Vectors Constructions ~ Finite Closure Iteration ~Automata References
O 00 oe 00 00000000 O 00000 000

CLASSICAL PROPERTIES

Finite types often behave classically:

From list conversions:

For a decidable predicate p over X
@ Vx: X, pxisdecidable.
@ Jx: X, pxisdecidable.
@ (Fx:X,px)«Vx:X, (-px).
o - (Vx: X,px) < 3Jdx: X, -pux

@ There is a constructive choice function 3x : X,px — {x: X | p x}.

Finite Types Classical properties ~Cardinality ~Vectors Constructions ~ Finite Closure Iteration ~Automata References
O 00 00 [2] 00000000 O 00000 000

CARDINALITY

Let A be a list over X. Then

Finite Types Classical properties ~Cardinality ~Vectors Constructions ~ Finite Closure Iteration ~Automata References
O 00 00 [2] 00000000 O 00000 000

CARDINALITY

Let A be a list over X. Then
o Cardinality X = card (elem X).

Finite Types Classical properties ~Cardinality ~Vectors Constructions ~ Finite Closure Iteration ~Automata References
O 00 00 [2] 00000000 O 00000 000

CARDINALITY

Let A be a list over X. Then
o Cardinality X = card (elem X).
o Cardinality X > card A.

Finite Types Classical properties ~Cardinality ~Vectors Constructions ~ Finite Closure Iteration ~Automata References
O 00 00 [2] 00000000 O 00000 000

CARDINALITY

Let A be a list over X. Then

o Cardinality X = card (elem X).
o Cardinality X > card A.
@ Cardinality X > |A|, if A is duplicate free.

Finite Types Classical properties ~Cardinality ~Vectors Constructions ~ Finite Closure Iteration ~Automata References
O 00 00 oe 00000000 O 00000 000

PIGEONHOLE PRINCIPLES

Pigeon hole principle from set theory also hold on finite types:

Finite Types Classmal properties Cardinality Vectors Constructions ~ Finite Closure Iteration ~Automata References
O 00 oe 00000000 O 00000 000

PIGEONHOLE PRINCIPLES

Pigeon hole principle from set theory also hold on finite types:

(Finjection f : X1 — Xo) — Cardinality X, < Cardinality X,

Finite Types Classmal properties Cardinality Vectors Constructions ~ Finite Closure Iteration ~Automata References
O 00 oe 00000000 O 00000 000

PIGEONHOLE PRINCIPLES

Pigeon hole principle from set theory also hold on finite types:

(Finjection f : X1 — Xo) — Cardinality X, < Cardinality X,
(3 surjection f : X1 — Xp) — Cardinality X, > Cardinality X,

Finite Types Classmal properties Cardinality Vectors Constructions ~ Finite Closure Iteration ~Automata References
O 00 oe 00000000 O 00000 000

PIGEONHOLE PRINCIPLES

Pigeon hole principle from set theory also hold on finite types:
(Finjection f : X1 — Xo) — Cardinality X, < Cardinality X,

(3 surjection f : X1 — Xp) — Cardinality X, > Cardinality X,

(3 bijection f : X1 — Xp) — Cardinality Xy = Cardinality X,

Finite Types Classical properties ~Cardinality ~Vectors Constructions ~ Finite Closure Iteration ~Automata References
O 00 00 00 ©0000000 O 00000 000

VECTORS

Usually: Collection of objects of some “type” with fixed size.

T 1
R e 2
0 n

indexed by some number n

Finite Types Classical properties ~Cardinality ~Vectors Constructions ~ Finite Closure Iteration ~Automata References
O 00 00 00 0@000000 O 00000 000

VECTORS

Now: Collection of objects of some type Y with fixed size.

X1 n 1

X7 . 2 2
elem X = . X-indexed Y vector :

Xn yn n

indexed by some finite type X

10

Finite Types Classical properties ~Cardinality ~Vectors Constructions ~ Finite Closure Iteration ~Automata References
O 00 00 00 0@000000 O 00000 000

VECTORS

Now: Collection of objects of some type Y with fixed size.

X1 n 1

X7 . 2 2
elem X = . X-indexed Y vector :

Xn Yn n

indexed by some finite type X

In Coq dependent pair: { A | |A| = Cardinality X }

10

Finite Types Classical properties ~Cardinality ~Vectors Constructions ~ Finite Closure Iteration ~Automata References
O 00 00 00 O0®00000 O 00000 000

VECTORS

Function interpretation:

X1 — 1
X —
elem X = ,2 . y_2 =f

x;l —> yn

11

Finite Types Classical properties ~Cardinality ~Vectors Constructions ~ Finite Closure Iteration ~Automata References
O 00 00 00 00®00000 O 00000 000

VECTORS

Function interpretation:

X1 — n
X —
elem X = ,2 . y_2 =f

xn —> yn

X—Y := X-indexed Y vector.

11

Finite Types Classical properties ~Cardinality ~Vectors Constructions ~ Finite Closure Iteration ~Automata References
O 00 00 00 00®00000 O 00000 000

VECTORS

Function interpretation:

X1 — n
X —
elem X = ,2 . y_2 =f

xn —> yn
X—Y := X-indexed Y vector.

image f := [y1,Y2, ..., Yn)

11

Finite Types Classical properties ~Cardinality ~Vectors Constructions ~ Finite Closure Iteration ~Automata References
O 00 00 00 00000000 O 00000 000

DISCRETENESS OF VECTORS

We want to decide equality

In Coq dependent pair: {A | |A| = Cardinality X }

12

Finite Types Classical properties ~Cardinality ~Vectors Constructions ~ Finite Closure Iteration ~Automata References
O 00 00 00 00080000 O 00000 000

DISCRETENESS OF VECTORS

We want to decide equality

In Coq dependent pair: {A | |A| = Cardinality X }

Definition (Pure predicates[15])

A predicate p : X — P is called pure if for every x:X there is only one
proof of p x.

12

Finite Types Classical properties ~Cardinality ~Vectors Constructions ~ Finite Closure Iteration ~Automata References
O 00 00 00 00080000 O 00000 000

DISCRETENESS OF VECTORS

We want to decide equality

In Coq dependent pair: {A | |A| = Cardinality X }

Definition (Pure predicates[15])

A predicate p : X — P is called pure if for every x:X there is only one
proof of p x. Decidable predicates can be converted to pure predicates.

12

Finite Types Classical properties ~Cardinality ~Vectors Constructions ~ Finite Closure Iteration ~Automata References
O 00 00 00 00080000 O 00000 000

DISCRETENESS OF VECTORS

We want to decide equality

In Coq dependent pair: {A | pure (|A| = Cardinality X) }

Definition (Pure predicates[15])

A predicate p : X — P is called pure if for every x:X there is only one
proof of p x. Decidable predicates can be converted to pure predicates.

12

Finite Types Classical properties ~Cardinality ~Vectors Constructions ~ Finite Closure Iteration ~Automata References
O 00 00 00 00080000 O 00000 000

DISCRETENESS OF VECTORS

We want to decide equality

In Coq dependent pair: {A | pure (|A| = Cardinality X) }

Definition (Pure predicates[15])

A predicate p : X — P is called pure if for every x:X there is only one
proof of p x. Decidable predicates can be converted to pure predicates.

= Vectors are discrete and extensional:

12

Finite Types Classical properties ~Cardinality ~Vectors Constructions ~ Finite Closure Iteration ~Automata References
O 00 00 00 00080000 O 00000 000

DISCRETENESS OF VECTORS

We want to decide equality

In Coq dependent pair: {A | pure (|A| = Cardinality X) }

Definition (Pure predicates[15])

A predicate p : X — P is called pure if for every x:X there is only one
proof of p x. Decidable predicates can be converted to pure predicates.

= Vectors are discrete and extensional:

Let f and g be two vectors. Then image f = image g — f = g. l

Finite Types Classical properties ~Cardinality ~Vectors Constructions ~ Finite Closure Iteration ~Automata References
O 00 00 00 00008000 O 00000 000

A FINITE VECTOR TYPE

There is a finite type X§ ! such that X§ = X1—Xo.

13

Finite Types Classical properties ~Cardinality ~Vectors Constructions ~ Finite Closure Iteration ~Automata References
O 00 00 00 0000@000 O 00000 000

A FINITE VECTOR TYPE

There is a finite type X§1 such that Xé(l = X1—Xo.

Cardinality Xfl = (Cardinality X,)Codinality X,

13

Finite Types Classical properties ~Cardinality ~Vectors Constructions ~ Finite Closure Iteration ~Automata References
O 00 00 00 00000800 O 00000 000

VECTORS VS. FUNCTIONS

Function interpretation:
fvector X—Y

X1 — 1
X2 — Y2

Xn —> yn

14

Finite Types Classical properties ~Cardinality ~Vectors Constructions ~ Finite Closure Iteration ~Automata References
O 00 00 00 00000800 O 00000 000

VECTORS VS. FUNCTIONS

Function interpretation:
fvector X—Y

X1 — n
X —
elem X = ,2 . y.z =f

Xn —> yn

Function applyVect: X—Y — X = Y.

14

Finite Types Classical properties ~Cardinality ~Vectors Constructions ~ Finite Closure Iteration ~Automata References
O 00 00 00 00000800 O 00000 000

VECTORS VS. FUNCTIONS

Function interpretation:
fvector X—Y

X1 — n
X —
elem X = ,2 . y.z =f

Xn —> yn

Function applyVect: X—Y — X = Y.

Defined as coercion. We can write f x instead of applyVect f x.

14

Finite Types Classical properties ~Cardinality ~Vectors Constructions ~ Finite Closure Iteration ~Automata References
O 00 00 00 00000080 O 00000 000

VECTORS VS. FUNCTIONS

Vector interpretation:
ffunction X — Y

X1
X2
elem X =

Xn

15

Finite Types Classical properties ~Cardinality ~Vectors Constructions ~ Finite Closure Iteration ~Automata References
O 00 00 00 00000080 O 00000 000

VECTORS VS. FUNCTIONS

Vector interpretation:
ffunction X — Y

X1 f X1

X2 X2
elem X .= | . vectorise f 1= f .

Xy f xn

15

Finite Types Classical properties ~Cardinality ~Vectors Constructions ~ Finite Closure Iteration ~Automata References
O 00 00 00 00000080 O 00000 000

VECTORS VS. FUNCTIONS

Vector interpretation:
ffunction X — Y

X1 f X1

X2 X2
elem X .= | . vectorise f 1= f .

Xy f xn

Function vectorise: (X — Y) — (X—Y).

15

Finite Types Classical properties ~Cardinality ~Vectors Constructions ~ Finite Closure Iteration ~Automata References
O 00 00 00 00000008 O 00000 000

VECTORS VS. FUNCTIONS

applyVect and vectorise are inverse functions:

16

Finite Types Classical properties ~Cardinality ~Vectors Constructions ~ Finite Closure Iteration ~Automata References
O 00 00 00 00000008 O 00000 000

VECTORS VS. FUNCTIONS

applyVect and vectorise are inverse functions:

Let fbe a vector X—Y. Then vectorise f = f. I

16

Finite Types Classical properties ~Cardinality ~Vectors Constructions ~ Finite Closure Iteration ~Automata References
O 00 00 00 00000008 O 00000 000

VECTORS VS. FUNCTIONS

applyVect and vectorise are inverse functions:

Let fbe a vector X—Y. Then vectorise f = f. l

Let fbe a function X — Y. Then (vectorise f) x = f x.

16

Finite Types Classical properties ~Cardinality ~Vectors Constructions Finite Closure Iteration ~Automata References
O 00 00 00 00000000 @ 00000 000

MORE COMPOUNT TYPES

@ Cartesian product

17

Finite Types Classical properties ~Cardinality ~Vectors Constructions Finite Closure Iteration ~Automata References
O 00 00 00 00000000 @ 00000 000

MORE COMPOUNT TYPES

@ Cartesian product
@ Sum

17

Finite Types Classical properties ~Cardinality ~Vectors Constructions Finite Closure Iteration ~Automata References
O 00 00 00 00000000 @ 00000 000

MORE COMPOUNT TYPES

@ Cartesian product
@ Sum

@ Option

17

Finite Types Classical properties ~Cardinality ~Vectors Constructions Finite Closure Iteration ~Automata References
O 00 00 00 00000000 @ 00000 000

MORE COMPOUNT TYPES

@ Cartesian product

@ Sum

@ Option

@ Dependent pairs to P (subtypes)

17

Finite Types Classical properties ~Cardinality ~Vectors Constructions Finite Closure Iteration ~Automata References
O 00 00 00 00000000 @ 00000 000

MORE COMPOUNT TYPES

@ Cartesian product

@ Sum

@ Option

@ Dependent pairs to P (subtypes)

» Uses pure predicates

17

Finite Types Classical properties ~Cardinality ~Vectors Constructions Finite Closure Iteration ~Automata References
O 00 00 00 00000000 @ 00000 000

MORE COMPOUNT TYPES

@ Cartesian product

@ Sum

@ Option

@ Dependent pairs to P (subtypes)

» Uses pure predicates
» No equation for cardinality

17

Finite Types Classical properties ~Cardinality ~Vectors Constructions Finite Closure Iteration ~Automata References
O 00 00 00 00000000 @ 00000 000

MORE COMPOUNT TYPES

@ Cartesian product

@ Sum

@ Option

@ Dependent pairs to P (subtypes)

» Uses pure predicates
» No equation for cardinality

@ General dependent pairs

17

Finite Types Classical properties ~Cardinality ~Vectors Constructions Finite Closure Iteration ~Automata References
O 00 00 00 00000000 @ 00000 000

MORE COMPOUNT TYPES

@ Cartesian product

@ Sum

@ Option

@ Dependent pairs to P (subtypes)

» Uses pure predicates
» No equation for cardinality

@ General dependent pairs
» Uses Hedberg’s theorem

17

Finite Types Classical properties ~Cardinality ~Vectors Constructions Finite Closure Iteration ~Automata References
O 00 00 00 00000000 @ 00000 000

MORE COMPOUNT TYPES

@ Cartesian product

@ Sum

@ Option

@ Dependent pairs to P (subtypes)

» Uses pure predicates
» No equation for cardinality

@ General dependent pairs

» Uses Hedberg’s theorem
» No equation for equality

17

Finite Types Classical properties ~Cardinality ~Vectors Constructions Finite Closure Iteration ~Automata References
O 00 00 00 00000000 @ 00000 000

MORE COMPOUNT TYPES

@ Cartesian product

@ Sum

@ Option

@ Dependent pairs to P (subtypes)

» Uses pure predicates
» No equation for cardinality

General dependent pairs

» Uses Hedberg’s theorem
» No equation for equality

From a list

17

Finite Types Classical properties ~Cardinality ~Vectors Constructions Finite Closure Iteration ~Automata References
O 00 00 00 00000000 @ 00000 000

MORE COMPOUNT TYPES

@ Cartesian product

@ Sum

@ Option

@ Dependent pairs to P (subtypes)

» Uses pure predicates
» No equation for cardinality

General dependent pairs

» Uses Hedberg’s theorem
» No equation for equality

From a list
» Uses subtypes

17

Finite Types Classical properties ~Cardinality ~Vectors Constructions Finite Closure Iteration ~Automata References
O 00 00 00 00000000 @ 00000 000

MORE COMPOUNT TYPES

@ Cartesian product

@ Sum

@ Option

@ Dependent pairs to P (subtypes)

» Uses pure predicates
» No equation for cardinality

General dependent pairs

» Uses Hedberg’s theorem
» No equation for equality

From a list
» Uses subtypes
Vectors

17

Finite Types Classical properties ~Cardinality ~Vectors Constructions Finite Closure Iteration ~Automata References
O 00 00 00 00000000 @ 00000 000

MORE COMPOUNT TYPES

@ Cartesian product

@ Sum

@ Option

@ Dependent pairs to P (subtypes)

» Uses pure predicates
» No equation for cardinality

General dependent pairs

» Uses Hedberg’s theorem
» No equation for equality

From a list

» Uses subtypes
Vectors

» Uses subtypes

17

Finite Types Classical properties ~Cardinality ~Vectors Constructions Finite Closure Iteration ~Automata References
O 00 00 00 00000000 O 90000 000

FINITE CLOSURE ITERATION[14, 13]

Compute subset of finite type F:

18

Finite Types Classical properties ~Cardinality ~Vectors Constructions Finite Closure Iteration ~Automata References
O 00 00 00 00000000 O 90000 000

FINITE CLOSURE ITERATION[14, 13]

Compute subset of finite type F:

@ predicate step: list X - X — P

18

Finite Types Classical properties ~Cardinality ~Vectors Constructions Finite Closure Iteration ~Automata References
0 00 00 00 00000000 O ©0000 000

FINITE CLOSURE ITERATION[14, 13]

Compute subset of finite type F:

@ predicate step: list X - X — P
e function pick: VA, {x|step AxN—(x € A)} +V x,step Ax — x € A.

18

Finite Types Classical properties ~Cardinality ~Vectors Constructions Finite Closure Iteration ~Automata References
0 00 00 00 00000000 O ©0000 000

FINITE CLOSURE ITERATION|[14, 13]

Compute subset of finite type F:

@ predicate step: list X - X — P
e function pick: VA, {x|step AxN—(x € A)} +V x,step Ax — x € A.

Definition FCStep A :=
match (pick A) with
|inl L = match L with
lexists _ x _ = x::A end

|inr _ = A end.

18

Finite Types Classical properties ~Cardinality ~Vectors Constructions Finite Closure Iteration ~Automata References
O 00 00 00 00000000 O 0®000 000

FINITE CLOSURE ITERATION|[14, 13]: IDEA

Iterate FCStep until it reaches a fixed point

19

Finite Types Classical properties ~Cardinality ~Vectors Constructions Finite Closure Iteration ~Automata References
0 00 00 00 00000000 O 0@000 000

FINITE CLOSURE ITERATION|[14, 13]: IDEA

Iterate FCStep until it reaches a fixed point

How many times?

Let Abealist over Xand FCIter := FCSteptardinality X Then
FCIter Aisa fixed point of FCStep.

19

Finite Types Classical properties ~Cardinality ~Vectors Constructions Finite Closure Iteration ~Automata References
O 00 00 00 00000000 O 00®00 000

FCITER INDUCTION [14, 13]

Induction principle for predicates preserved by FCStep:

20

Finite Types Classical properties ~Cardinality ~Vectors Constructions Finite Closure Iteration ~Automata References
O 00 00 00 00000000 O 00®00 000

FCITER INDUCTION [14, 13]

Induction principle for predicates preserved by FCStep:
ACp:=VxecApx

20

Finite Types Classical properties ~Cardinality ~Vectors Constructions Finite Closure Iteration ~Automata References
0 00 00 00 00000000 O 00800 000

FCITER INDUCTION [14, 13]

Induction principle for predicates preserved by FCStep:
ACp:=VxecApx

Let p be a predicate over X and A a list over X. Then
ACp— (VAx,ACp—step Ax — px) — FClter A C p.

20

Finite Types Classical properties ~Cardinality ~Vectors Constructions Finite Closure Iteration ~Automata References
0 00 00 00 00000000 O 000®0 000

LEAST FIXED POINTS

Let A be a list over X. Then FCIter Ais a fixed point of FCStep.

Is it a least fixed point?

21

Finite Types Classical properties ~Cardinality ~Vectors Constructions Finite Closure Iteration ~Automata References
0 00 00 00 00000000 O 000®0 000

LEAST FIXED POINTS

Let A be a list over X. Then FCIter Ais a fixed point of FCStep.

Is it a least fixed point?

No! But ...

21

Finite Types C!
0 00 o

LEAST FIXED POINTS CONTAINING A

lassical properties ~ Cardinality =~ Vectors Constructions Finite Closure Iteration ~Automata References
o) 00 00000000 O 00008 000

Definition (Least fixed points containing A)

Let A: list Y and f: list Y — list Y. A fixed point B of f is called the least
fixed point containing A if A C B and for any other fixed point B of f:
ACB —BCHB.

22

Finite Types Classical properties ~Cardinality ~Vectors Constructions Finite Closure Iteration ~Automata References
0 00 00 00 00000000 O 00008 000

LEAST FIXED POINTS CONTAINING A

Definition (Least fixed points containing A)

Let A: list Y and f: list Y — list Y. A fixed point B of f is called the least

fixed point containing A if A C B and for any other fixed point B of f:
ACB - BCB.

Definition (Consistency)

A step predicate is called consistent if
VAx step Ax —VA,ACA — step A x.

22

Finite Types Classical properties ~Cardinality ~Vectors Constructions Finite Closure Iteration ~Automata References
0 00 00 00 00000000 O 00008 000

LEAST FIXED POINTS CONTAINING A

Definition (Least fixed points containing A)

Let A: list Y and f: list Y — list Y. A fixed point B of f is called the least

fixed point containing A if A C B and for any other fixed point B of f:
ACB —BCHB.

Definition (Consistency)

A step predicate is called consistent if
VAx step Ax —VA,ACA — step A x.

If step is consistent then for any A the list FClter A is the least fixed
point containing A.

22

Finite Types Classical properties ~Cardinality ~Vectors Constructions Finite Closure Iteration ~Automata References
O 00 00 00 00000000 O 00000 800

TEST CASE: FINITE AUTOMATA WITH FINITE TYPES

Inspired by [3] (Talk on Monday 3:15 pm)

23

Finite Types Classical properties ~Cardinality =~ Vectors
0 00 00 00

Constructions Finite Closure Iteration ~Automata References
00000000 O 00000 ©00

TEST CASE: FINITE AUTOMATA WITH FINITE TYPES

Inspired by [3] (Talk on Monday 3:15 pm)
Assume a finite type X as the alphabet.

Deterministic finite automata are formalised by:

23

Finite Types Classical properties ~Cardinality =~ Vectors
0 00 00 00

Constructions Finite Closure Iteration ~Automata References
00000000 O 00000 ©00

TEST CASE: FINITE AUTOMATA WITH FINITE TYPES

Inspired by [3] (Talk on Monday 3:15 pm)
Assume a finite type X as the alphabet.

Deterministic finite automata are formalised by:
e A finite type S, the set of states.

23

Finite Types Classical properties ~Cardinality =~ Vectors
0 00 00 00

Constructions Finite Closure Iteration ~Automata References
00000000 O 00000 ©00

TEST CASE: FINITE AUTOMATA WITH FINITE TYPES

Inspired by [3] (Talk on Monday 3:15 pm)
Assume a finite type X as the alphabet.

Deterministic finite automata are formalised by:
e A finite type S, the set of states.
@ Some s of type S, the start state.

23

Finite Types Classical properties ~Cardinality ~Vectors
0 00 00 00

Constructions Finite Closure Iteration ~Automata References
00000000 O 00000 ©00

TEST CASE: FINITE AUTOMATA WITH FINITE TYPES

Inspired by [3] (Talk on Monday 3:15 pm)
Assume a finite type X as the alphabet.

Deterministic finite automata are formalised by:
@ A finite type S, the set of states.
@ Some s of type S, the start state.
@ A decidable predicate F over S to define the accepting states.

23

Finite Types Classical properties ~Cardinality ~Vectors Constructions Finite Closure Iteration ~Automata References
0 00 00 00

00000000 O 00000 @00

TEST CASE: FINITE AUTOMATA WITH FINITE TYPES

Inspired by [3] (Talk on Monday 3:15 pm)
Assume a finite type X as the alphabet.

Deterministic finite automata are formalised by:
@ A finite type S, the set of states.
@ Some s of type S, the start state.

@ A decidable predicate F over S to define the accepting states.
@ A transition function ds : S — ¥ — S.

23

Finite Types Classical properties ~Cardinality ~Vectors Constructions Finite Closure Iteration ~Automata References
0 00 00 00

00000000 O 00000 @00

TEST CASE: FINITE AUTOMATA WITH FINITE TYPES

Inspired by [3] (Talk on Monday 3:15 pm)
Assume a finite type X as the alphabet.

Deterministic finite automata are formalised by:
@ A finite type S, the set of states.
@ Some s of type S, the start state.

@ A decidable predicate F over S to define the accepting states.
@ A transition function ds : S — ¥ — S.

23

Finite Types Classical properties ~Cardinality ~Vectors Constructions Finite Closure Iteration ~Automata References
0 00 00 00

00000000 O 00000 @00

TEST CASE: FINITE AUTOMATA WITH FINITE TYPES

Inspired by [3] (Talk on Monday 3:15 pm)
Assume a finite type X as the alphabet.

Deterministic finite automata are formalised by:
@ A finite type S, the set of states.
@ Some s of type S, the start state.

@ A decidable predicate F over S to define the accepting states.
@ A transition function ds : S — ¥ — S.

We lift 65 as 6§ to words.

23

Finite Types Classical properties ~Cardinality ~Vectors Constructions Finite Closure Iteration ~Automata References
0 00 00 00

00000000 O 00000 @00

TEST CASE: FINITE AUTOMATA WITH FINITE TYPES

Inspired by [3] (Talk on Monday 3:15 pm)
Assume a finite type X as the alphabet.

Deterministic finite automata are formalised by:
@ A finite type S, the set of states.
@ Some s of type S, the start state.

@ A decidable predicate F over S to define the accepting states.
@ A transition function ds : S — ¥ — S.

We lift 65 as 6§ to words.

Definition (Acceptance)

An automaton accepts a word w if F (0 s w).

23

Finite Types Classical properties ~Cardinality ~Vectors Constructions Finite Closure Iteration ~Automata References
O 00 00 00 00000000 O 00000 000

FCITER IN ACTION

24

Finite Types Classical properties ~Cardinality ~Vectors Constructions Finite Closure Iteration ~Automata References
O 00 00 00 00000000 O 00000 000

FCITER IN ACTION

24

Finite Types Classical properties ~Cardinality ~Vectors Constructions Finite Closure Iteration ~Automata References
O 00 00 00 00000000 O 00000 000

FCITER IN ACTION

24

Finite Types Classical properties ~Cardinality ~Vectors Constructions Finite Closure Iteration ~Automata References
O 00 00 00 00000000 O 00000 000

FCITER IN ACTION

24

O 00 O

Finite Types Classical properties ~Cardinality =~ Vectors
0 O

)

FCITER IN ACTION

00000000 O

00000

000

Constructions Finite Closure Iteration ~Automata References

24

Finite Types Classical properties ~Cardinality ~Vectors Constructions Finite Closure Iteration ~Automata References
0 00 00 00 00000000 O 00000 000

FCITER IN ACTION

24

Finite Types Classical properties ~Cardinality ~Vectors Constructions Finite Closure Iteration ~Automata References
0 00 00 00 00000000 O 00000 000

FCITER IN ACTION

b
N
a c o {2}
O, @\“ (2)- @ 123
Q (2,34}
b b (C) Q {2341}
@ @ {2,34,1} + fixed point

Allows to decide
@ language is X*.

24

Finite Types Classical properties ~Cardinality ~Vectors Constructions Finite Closure Iteration ~Automata References
0 00 00 00 00000000 O 00000 000

FCITER IN ACTION

b
N
a c o {2}
O, @\“ (2)- @ 123
Q (2,34}
b b (C) Q {2341}
@ @ {2,34,1} + fixed point

Allows to decide
@ language is X*.
@ language emptiness.

24

Finite Types Classical properties ~Cardinality ~Vectors Constructions Finite Closure Iteration ~Automata References
0 00 00 00 00000000 O 00000 000

FCITER IN ACTION

b
N
a c o {2}
O, @\“ (2)- @ 123
Q (2,34}
b b (C) Q {2341}
@ @ {2,34,1} + fixed point

Allows to decide
@ language is X*.
@ language emptiness.
@ language inclusion.

24

Finite Types Classical properties ~Cardinality ~Vectors Constructions Finite Closure Iteration ~Automata References
0 00 00 00 00000000 O 00000 000

FCITER IN ACTION

b
N
a c o {2}
O, @\“ (2)- @ 123
Q (2,34}
b b (C) Q {2341}
@ @ {2,34,1} + fixed point

Allows to decide
@ language is X*.
@ language emptiness.
@ language inclusion.
@ language equivalence.

24

Finite Types Classical properties ~Cardinality ~Vectors Constructions Finite Closure Iteration ~Automata References
O 00 00 00 00000000 O 00000 000

MORE ABOUT AUTOMATA

@ Closure properties

25

Finite Types Classical properties ~Cardinality ~Vectors Constructions Finite Closure Iteration ~Automata References
O 00 00 00 00000000 O 00000 000

MORE ABOUT AUTOMATA

@ Closure properties
» Complement

25

Finite Types Classical properties ~Cardinality ~Vectors Constructions Finite Closure Iteration ~Automata References
O 00 00 00 00000000 O 00000 000

MORE ABOUT AUTOMATA

@ Closure properties

» Complement
» Intersection

25

Finite Types Classical properties ~Cardinality ~Vectors Constructions Finite Closure Iteration ~Automata References
O 00 00 00 00000000 O 00000 000

MORE ABOUT AUTOMATA

@ Closure properties

» Complement
» Intersection
» Union

25

Finite Types Classical properties ~Cardinality ~Vectors Constructions Finite Closure Iteration ~Automata References
O 00 00 00 00000000 O 00000 000

MORE ABOUT AUTOMATA

@ Closure properties
» Complement
» Intersection
» Union
» Difference

25

Finite Types Classical properties ~Cardinality ~Vectors Constructions Finite Closure Iteration ~Automata References
O 00 00 00 00000000 O 00000 000

MORE ABOUT AUTOMATA

@ Closure properties
» Complement
Intersection
Union
Difference

>
>
»>
» Concatenation

25

Finite Types Classical properties ~Cardinality ~Vectors Constructions Finite Closure Iteration ~Automata References
O 00 00 00 00000000 O 00000 000

MORE ABOUT AUTOMATA

@ Closure properties
» Complement
» Intersection
» Union

» Difference

» Concatenation

» Kleene Operator

25

Finite Types Classical properties ~Cardinality ~Vectors Constructions Finite Closure Iteration ~Automata References
0 00 00 00 00000000 O 00000 00@

MORE ABOUT AUTOMATA

@ Closure properties
» Complement
» Intersection
» Union

» Difference

» Concatenation

» Kleene Operator

@ Non deterministic finite automata (NFA)

25

Finite Types Classical properties ~Cardinality ~Vectors Constructions Finite Closure Iteration ~Automata References
0 00 00 00 00000000 O 00000 00@

MORE ABOUT AUTOMATA

@ Closure properties
» Complement
» Intersection
Union
Difference
Concatenation
Kleene Operator

@ Non deterministic finite automata (NFA)
» Equivalence of NFA and DFA

v

vYyy

25

Finite Types Classical properties ~Cardinality ~Vectors Constructions Finite Closure Iteration ~Automata References
0 00 00 00 00000000 O 00000 00@

MORE ABOUT AUTOMATA

@ Closure properties
» Complement
» Intersection
Union
Difference
Concatenation
Kleene Operator

@ Non deterministic finite automata (NFA)
» Equivalence of NFA and DFA
* Uses vectors

v

vYyy

25

Finite Types Classical properties ~Cardinality ~Vectors Constructions Finite Closure Iteration ~Automata References
0 00 00 00 00000000 O 00000 00@

MORE ABOUT AUTOMATA

@ Closure properties
» Complement
» Intersection
Union
Difference
Concatenation
Kleene Operator

@ Non deterministic finite automata (NFA)
» Equivalence of NFA and DFA
* Uses vectors

@ Other constructions

v

vYyy

25

Finite Types Classical properties ~Cardinality ~Vectors Constructions Finite Closure Iteration ~Automata References
0 00 00 00 00000000 O 00000 00@

MORE ABOUT AUTOMATA

@ Closure properties
» Complement
» Intersection
Union
Difference
Concatenation
Kleene Operator
@ Non deterministic finite automata (NFA)
» Equivalence of NFA and DFA
* Uses vectors

@ Other constructions
» Automaton only accepting e

v

vYyy

25

Finite Types Classical properties ~Cardinality ~Vectors Constructions Finite Closure Iteration ~Automata References
0 00 00 00 00000000 O 00000 00@

MORE ABOUT AUTOMATA

@ Closure properties
» Complement
» Intersection
Union
Difference
Concatenation
Kleene Operator

@ Non deterministic finite automata (NFA)
» Equivalence of NFA and DFA
* Uses vectors
@ Other constructions

» Automaton only accepting e
» Automaton adding some letter x to every word of a language

v

vYyy

25

Finite Types Classical properties ~Cardinality ~Vectors Constructions Finite Closure Iteration ~Automata References
0 00 00 00 00000000 O 00000 00@

MORE ABOUT AUTOMATA

@ Closure properties
» Complement
» Intersection
Union
Difference
Concatenation
Kleene Operator

@ Non deterministic finite automata (NFA)
» Equivalence of NFA and DFA
* Uses vectors
@ Other constructions

» Automaton only accepting e
» Automaton adding some letter x to every word of a language
» Automaton accepting some only some word w

v

vYyy

25

O 00

BIBLIOGRAPHY I

[1]

2]

3]

Finite Types Classical properties ~Cardinality ~Vectors Constructions Finite Closure Iteration ~Automata References
o) 00

[e] 00000000 O 00000 000

Pierre Castéran and Matthieu Sozeau. A gentle introduction to type
classes and relations in Coq. This document presents the main
features of type classes and user-defined relations in the Coq
proof assistant. May 2014. URL:
http://www.labri.fr/perso/casteran/CogArt/
TypeClassesTut/typeclassestut.pdf.

Christian Doczkal, Jan-Oliver Kaiser, and Gert Smolka. “A
Constructive Theory of Regular Languages in Coq”. In: Certified
Programs and Proofs, Third International Conference (CPP 2013).
Ed. by Geroges Gonthier and Michael Norrish. Vol. 8307. LNCS.
Springer, Dec. 2013, pp. 82-97.

Christian Doczkal and Gert Smolka. “Two-Way Automata in
Coq”. In: Interative Theorem Proving (ITP 2016). To appear. 2016.

26

http://www.labri.fr/perso/casteran/CoqArt/TypeClassesTut/typeclassestut.pdf
http://www.labri.fr/perso/casteran/CoqArt/TypeClassesTut/typeclassestut.pdf

O 00

BIBLIOGRAPHY II

[4]

[5]

[6]

Finite Types Classical properties ~Cardinality ~Vectors Constructions Finite Closure Iteration ~Automata References
o) 00

[e] 00000000 O 00000 000

Duality principle. Encyclopedia of Mathematics. URL:
https://www.encyclopediaofmath.org/index.php/
Duality_principle.

Denis Firsov and Tarmo Uustalu. “Dependently Typed
Programming with Finite Sets”. In: Proceedings of the 11th ACM
SIGPLAN Workshop on Generic Programming. WGP 2015.
Vancouver, BC, Canada: ACM, 2015, pp. 33—44. ISBN:
978-1-4503-3810-3. DOI: 10.1145/2808098.2808102. URL
http://doi.acm.org/10.1145/2808098.2808102.

Frangois Garillot. “Generic Proof Tools and Finite Group
Theory”. English. Thesis. Logic in Computer Science [cs.LO].
Ecole Polytechnique X, Dec. 2011. URL: https:
//pastel.archives—ouvertes.fr/pastel-00649586.

27

https://www.encyclopediaofmath.org/index.php/Duality_principle
https://www.encyclopediaofmath.org/index.php/Duality_principle
http://dx.doi.org/10.1145/2808098.2808102
http://doi.acm.org/10.1145/2808098.2808102
https://pastel.archives-ouvertes.fr/pastel-00649586
https://pastel.archives-ouvertes.fr/pastel-00649586

O 00

BIBLIOGRAPHY III

[7]

[8]

Finite Types Classical properties ~Cardinality ~Vectors Constructions Finite Closure Iteration ~Automata References
o) 00

[e] 00000000 O 00000 000

Francois Garillot et al. “Packaging Mathematical Structures”. In:
Theorem Proving in Higher Order Logics. Ed. by Tobias Nipkow
and Christian Urban. Vol. 5674. Lecture Notes in Computer
Science. Munich, Germany: Springer, 2009. URL:
https://hal.inria.fr/inria-00368403.

Georges Gonthier, Assia Mahboubi, and Enrico Tassi. A Small
Scale Reflection Extension for the Coq system. Research Report
RR-6455. Inria Saclay Ile de France, 2015. URL:
https://hal.inria.fr/inria-00258384.

28

https://hal.inria.fr/inria-00368403
https://hal.inria.fr/inria-00258384

O 00

BIBLIOGRAPHY IV

[9]

[10]

[11]

Finite Types Classical properties ~Cardinality ~Vectors Constructions Finite Closure Iteration ~Automata References
o) 00

[e] 00000000 O 00000 000

Georges Gonthier et al. “A Modular Formalisation of Finite
Group Theory”. In: Proceedings of the 20th International Conference
on Theorem Proving in Higher Order Logics. TPHOLs’07.
Kaiserslautern, Germany: Springer-Verlag, 2007, pp. 86-101.
ISBN: 3-540-74590-4, 978-3-540-74590-7. URL: http:
//dl.acm.org/citation.cfm?id=1792233.1792241.

Michael Hedberg. “A Coherence Theorem for Martin-Lof’s Type
Theory”. In:J. Funct. Program. 8.4 (July 1998), pp. 413—436. ISSN:
0956-7968. DOI: 10.1017/50956796898003153. URL:
http://dx.doi.org/10.1017/50956796898003153.

Dexter C. Kozen. Automata and Computability. 1st. Ithaca, N,
USA: Springer-Verlag New York, Inc., 1997. 1SBN: 0387949070.

29

http://dl.acm.org/citation.cfm?id=1792233.1792241
http://dl.acm.org/citation.cfm?id=1792233.1792241
http://dx.doi.org/10.1017/S0956796898003153
http://dx.doi.org/10.1017/S0956796898003153

O 00

BIBLIOGRAPHY V

[12]

[13]
[14]

Finite Types Classical properties ~Cardinality ~Vectors Constructions Finite Closure Iteration ~Automata References
o) 00

[e] 00000000 O 00000 000

Assia Mahboubi and Enrico Tassi. “Canonical Structures for the
working Coq user”. In: ITP 2013, 4th Conference on Interactive
Theorem Proving. Ed. by Sandrine Blazy, Christine Paulin, and
David Pichardie. Vol. 7998. LNCS. Rennes, France: Springer, July
2013, pp. 19-34. DOI: 10.1007/978-3-642-39634-2_5.
URL: https://hal.inria.fr/hal-00816703.

Gert Smolka. Base Library for ICL. Saarland University. 2016.

Gert Smolka and Chad E. Brown. “Introduction to
Computational Logic. Lecture Notes SS 2014”. Saarland
University. 2014.

30

http://dx.doi.org/10.1007/978-3-642-39634-2_5
https://hal.inria.fr/hal-00816703

O 00

BIBLIOGRAPHY VI

[15]

[16]

[17]

Finite Types Classical properties ~Cardinality ~Vectors Constructions Finite Closure Iteration ~Automata References
o) 00

[e] 00000000 O 00000 000

Gert Smolka and Kathrin Stark. “Hereditarily Finite Sets in
Constructive Type Theory”. In: Interactive Theorem Proving - 7th
International Conference, ITP 2016, Nancy, France, August 22-27,
2016. Ed. by Jasmin Christian Blanchette and Stephan Merz.
LNCS. To appear. Springer-Verlag, 2016.

Bas Spitters and Eelis van der Weegen. “Type Classes for
Mathematics in Type Theory”. In: MSCS, special issiue on
‘Interactive theorem proving and the formalization of mathematics’ 21
(2011), pp. 1-31. DOI1: 10.1017/50960129511000119. URL:
http://journals.cambridge.org/action/
displayAbstract?aid=8319570.

Enrico Tassi and Georges Gonthier et al. Ssreflect. URL:
http://math-comp.github.io/math-comp/.

31

http://dx.doi.org/10.1017/S0960129511000119
http://journals.cambridge.org/action/displayAbstract?aid=8319570
http://journals.cambridge.org/action/displayAbstract?aid=8319570
http://math-comp.github.io/math-comp/

Finite Types Classical properties ~Cardinality ~Vectors Constructions Finite Closure Iteration ~Automata References
O 00 00 00 00000000 O 00000 000

BIBLIOGRAPHY VII

[18] The Coq development Team. The Coq Proof Assistant The standard
library. 2016. URL: https://cog.inria.fr/stdlib/.

32

https://coq.inria.fr/stdlib/

Finite Types Classical properties ~Cardinality ~Vectors Constructions Finite Closure Iteration ~Automata References
0 00 00 00 00000000 O 00000 000

THE END

Thank you for your attention

Any questions? Ask away!

33

Finite Types Classical properties ~Cardinality ~Vectors Constructions Finite Closure Iteration ~Automata References
0 00 00 00 00000000 O 00000 000

EXTRAS

Definition (pure)

For a decidable predicate p with
pure p x:= if p x then T else L
pure p is a pure predicate.

34

Finite Types Classical properties ~Cardinality ~Vectors Constructions Finite Closure Iteration ~Automata References
O 00 00 00 00000000 O 00000 000

REACHABLE STATES IN DFAS

Let A be a DFA with set of states S

We use finite closure iteration to compute reachable states.

35

Finite Types Classical properties ~Cardinality ~Vectors Constructions Finite Closure Iteration ~Automata References
0 00 00 00 00000000 O 00000 000

REACHABLE STATES IN DFAS

Let A be a DFA with set of states S

We use finite closure iteration to compute reachable states.

Definition (step predicate)

step_reach (set: 1list (S A)) (g : S A):=
3¢ x, g €set — dsq x=4q.

35

O 00 [e]

Finite Types Classical properties ~Cardinality ~Vectors Constructions Finite Closure Iteration ~Automata References
o) 00 00000000 O 00000 000

REACHABLE STATES IN DFAS

Let A be a DFA with set of states S

We use finite closure iteration to compute reachable states.

Definition (step predicate)

step_reach (set: 1list (S A)) (g : S A):=
3¢ x, g €set — dsq x=4q.

Definition

reach reach (g:S) := FCIter step_reach [q].

Finite Types Classical properties ~Cardinality ~Vectors Constructions Finite Closure Iteration ~Automata References
O 00 00 00 00000000 O 00000 000

EQTYPES

dec (P:P) := {P} + {— P}.

eq_dec (X:Type) :=V x vy, dec (x=1y).

Structure eqType
eqtype > Type ;
decide_eqg : eq_dec eqtype }.

EqType {

36

Finite Types Classical properties ~Cardinality ~Vectors Constructions Finite Closure Iteration ~Automata References
O 00 00 00 00000000 O 00000 000

FINTYPES

Class finTypeC (type: eqglype): Type := FinTypeC {
enum: list type;
enum_ok: V x: type, count enum x = 1 }.

Structure finType: Type := FinType {

type > eqlype;
class : finTypeC type }.

37

Finite Types Classical properties ~Cardinality ~Vectors Constructions Finite Closure Iteration ~Automata References
0 00 00 00 00000000 O 00000 000

ADMISSIBLE FUNCTIONS

Definition (Admissibility)

A function (f: list Y — list Y) is called admissible if a given list A is
either a fixed-point of f or card (f A) > card A.

38

Finite Types Classical properties ~Cardinality ~Vectors Constructions Finite Closure Iteration ~Automata References
O 00 00 00 00000000 O 00000 000

ADMISSIBLE FUNCTIONS

Definition (Admissibility)

A function (f: list Y — list Y) is called admissible if a given list A is
either a fixed-point of f or card (f A) > card A.

Let f be an admissible function list X — list X. Then

fCurdinulity X A

is a fixed point of f for any list A over elements of X.

38

Finite Types Classical properties ~Cardinality ~Vectors Constructions Finite Closure Iteration ~Automata References
0 00 00 00 00000000 O 00000 000

FCITER

FCStep is an admissible function.

39

Finite Types Classical properties ~Cardinality ~Vectors Constructions Finite Closure Iteration ~Automata References
0 00 00 00 00000000 O 00000 000

FCITER

FCStep is an admissible function.

FCIter := FCStepCardinality X

39

Finite Types Classical properties ~Cardinality ~Vectors Constructions Finite Closure Iteration ~Automata References
O 00 00 00 00000000 O 00000 000

FCITER

FCStep is an admissible function.

FCIter := FCStepCardinality X

Let A be a list over X. Then FCIter Aisa fixed point of FCStep.

39

Finite Types Classical properties ~Cardinality ~Vectors Constructions Finite Closure Iteration ~Automata References
O 00 00 00 00000000 O 00000 000

A FINITE VECTOR TYPE

Goal: Construct finite type for X;—X>.

40

Finite Types Classical properties ~Cardinality ~Vectors Constructions Finite Closure Iteration ~Automata References
O 00 00 00 00000000 O 00000 000

A FINITE VECTOR TYPE

Goal: Construct finite type for X;—X>.

Needed: List containing all vectors of type X1 —X>.

40

Finite Types Classical properties ~Cardinality ~Vectors Constructions Finite Closure Iteration ~Automata References
0 00 00 00 00000000 O 00000 000

A FINITE VECTOR TYPE

Goal: Construct finite type for X1 —X>.

Needed: List containing all vectors of type X1 —X>.
Construct all possible images first:

40

O 00

Finite Types Classical properties ~Cardinality ~Vectors Constructions Finite Closure Iteration ~Automata References
00 00 00000000 O 00000 000

A FINITE VECTOR TYPE

Goal: Construct finite type for X1 —X>.

Needed: List containing all vectors of type X1 —X>.
Construct all possible images first:

Fixpoint images (Y: Type) (A: list Y) (n: N) : list (list Y)

match n with

| 0= [[1]

| S n’ = concat (map (A x = map (cons x) (images A n’)) A)
end.

40

Finite Types Classical properties ~Cardinality =~ Vectors Constructions Finite Closure Iteration ~Automata References
O 00 [e]e] [e]e)

00000000 O 00000 000

A FINITE VECTOR TYPE

Goal: Construct finite type for X;—X.

Needed: List containing all vectors of type X;—X>.

V A, A € images (elem Xp) (Cardinality X;) — |A| = Cardinality X;.

= We can build vectors

Let A: list X, and |A| = Cardinality X. Then
count (images (elem X,) (Cardinality X;)) A = 1.

41

Finite Types Classical properties ~Cardinality =~ Vectors Constructions Finite Closure Iteration ~Automata References
O 00 [e]e] [e]e)

00000000 O 00000 000

A FINITE VECTOR TYPE

Goal: Construct finite type for X;—X.

Needed: List containing all vectors of type X;—X>.

V A, A € images (elem Xp) (Cardinality X;) — |A| = Cardinality X;.

= We can build vectors

Let A: list X, and |A| = Cardinality X. Then
count (images (elem X,) (Cardinality X;)) A = 1.

This is enough to construct finite type Xf L

41

	Finite Types
	Classical properties
	Cardinality
	Vectors
	Constructions
	Finite Closure Iteration
	Automata

