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FINITE TYPES

What is a finite type?

Type
Finite number of inhabitants

Representation:

Discrete Type X
Duplicate free list of all inhabitants (elem X)
Proof that list satisfies the properties

I ∀x, count (elem X) x = 1

Cardinality

Number of inhabitants of X
|elem X|
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THREE USABILITY FEATURES

If Y is a finite or discrete type, then

Y can be used as a type.

I ∀(Y : finType)(x : Y), x ∈ elem Y
I Coercions

Y can be automatically inferred.

I count [true, false] true = 1
I Canonical structures

We can compute Y out of its base type.

I Cardinality(tofinType B) = 2
I Mainly type classes

4
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CONVERSION TO LISTS

(∀ (x : X), p x)↔ ∀ x ∈ (elem X), p x
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CLASSICAL PROPERTIES

Finite types often behave classically:

From list conversions:

Fact
For a decidable predicate p over X

∀ x : X, p x is decidable.
∃ x : X, p x is decidable.
(∃ x : X, p x)↔ ¬ ∀ x : X, (¬ p x).
¬ (∀ x : X, p x)↔ ∃ x : X,¬ p x.
There is a constructive choice function ∃ x : X, p x→ {x : X | p x}.
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CARDINALITY

Fact
Let A be a list over X. Then

Cardinality X = card (elem X).
Cardinality X ≥ card A.
Cardinality X ≥ |A|, if A is duplicate free.
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PIGEONHOLE PRINCIPLES

Pigeon hole principle from set theory also hold on finite types:

(∃ injection f : X1 → X2)→ Cardinality X1 ≤ Cardinality X2

(∃ surjection f : X1 → X2)→ Cardinality X1 ≥ Cardinality X2

(∃ bijection f : X1 → X2)→ Cardinality X1 = Cardinality X2
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VECTORS

Usually: Collection of objects of some “type” with fixed size.

Rn :


π
e
...
0


1
2
...
n

indexed by some number n

9
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VECTORS

Now: Collection of objects of some type Y with fixed size.

elem X :=


x1
x2
...

xn

 X-indexed Y vector :


y1
y2
...

yn


1
2
...
n

indexed by some finite type X

In Coq dependent pair: { A | |A| = Cardinality X }
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VECTORS

Function interpretation:

elem X :=


x1
x2
...

xn


−→
−→

...
−→


y1
y2
...

yn

 =: f

X−→Y := X-indexed Y vector.

image f := [y1, y2, . . . , yn]
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DISCRETENESS OF VECTORS

We want to decide equality

In Coq dependent pair: {A | |A| = Cardinality X }

Definition (Pure predicates[15])
A predicate p : X→ P is called pure if for every x:X there is only one
proof of p x. Decidable predicates can be converted to pure predicates.

Fact
Let f and g be two vectors. Then image f = image g→ f = g.
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A FINITE VECTOR TYPE

Theorem

There is a finite type XX1
2 such that XX1

2 = X1−→X2.

Theorem

Cardinality XX1
2 = (Cardinality X2)Cardinality X1 .
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VECTORS VS. FUNCTIONS

Function interpretation:
f vector X−→Y

elem X :=


x1
x2
...

xn


−→
−→

...
−→


y1
y2
...

yn

 =: f

Function applyVect: X−→Y→ X→ Y.

Defined as coercion. We can write f x instead of applyVect f x.
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VECTORS VS. FUNCTIONS

Vector interpretation:
f function X→ Y

elem X :=


x1
x2
...

xn



Function vectorise: (X→ Y)→ (X−→Y).

15



Finite Types Classical properties Cardinality Vectors Constructions Finite Closure Iteration Automata References

VECTORS VS. FUNCTIONS

Vector interpretation:
f function X→ Y

elem X :=


x1
x2
...

xn

 vectorise f :=


f x1
f x2

...
f xn



Function vectorise: (X→ Y)→ (X−→Y).

15



Finite Types Classical properties Cardinality Vectors Constructions Finite Closure Iteration Automata References

VECTORS VS. FUNCTIONS

Vector interpretation:
f function X→ Y

elem X :=


x1
x2
...

xn

 vectorise f :=


f x1
f x2

...
f xn



Function vectorise: (X→ Y)→ (X−→Y).

15



Finite Types Classical properties Cardinality Vectors Constructions Finite Closure Iteration Automata References

VECTORS VS. FUNCTIONS

applyVect and vectorise are inverse functions:

Theorem
Let f be a vector X−→Y. Then vectorise f = f .

Theorem
Let f be a function X→ Y. Then (vectorise f ) x = f x.
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MORE COMPOUNT TYPES

Cartesian product

Sum
Option
Dependent pairs to P (subtypes)

I Uses pure predicates
I No equation for cardinality

General dependent pairs

I Uses Hedberg’s theorem
I No equation for equality

From a list

I Uses subtypes

Vectors

I Uses subtypes

17
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FINITE CLOSURE ITERATION[14, 13]

Compute subset of finite type F:

predicate step: list X→ X→ P
function pick: ∀ A, {x | step A x ∧ ¬ (x ∈ A)} + ∀ x, step A x→ x ∈ A.

FCStep
Definition FCStep A :=
match (pick A) with
|inl L ⇒ match L with

|exists _ x _ ⇒ x::A end

|inr _ ⇒ A end.

18
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FINITE CLOSURE ITERATION[14, 13]: IDEA

Iterate FCStep until it reaches a fixed point

How many times?

Fact
Let A be a list over X and FCIter := FCStepCardinality X. Then
FCIter A is a fixed point of FCStep.

19
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FCITER INDUCTION [14, 13]

Induction principle for predicates preserved by FCStep:

A ⊆ p := ∀ x ∈ A, p x

Theorem
Let p be a predicate over X and A a list over X. Then
A ⊆ p→ (∀ A x,A ⊆ p→ step A x→ p x)→ FCIter A ⊆ p.

20



Finite Types Classical properties Cardinality Vectors Constructions Finite Closure Iteration Automata References

FCITER INDUCTION [14, 13]

Induction principle for predicates preserved by FCStep:
A ⊆ p := ∀ x ∈ A, p x

Theorem
Let p be a predicate over X and A a list over X. Then
A ⊆ p→ (∀ A x,A ⊆ p→ step A x→ p x)→ FCIter A ⊆ p.

20



Finite Types Classical properties Cardinality Vectors Constructions Finite Closure Iteration Automata References

FCITER INDUCTION [14, 13]

Induction principle for predicates preserved by FCStep:
A ⊆ p := ∀ x ∈ A, p x

Theorem
Let p be a predicate over X and A a list over X. Then
A ⊆ p→ (∀ A x,A ⊆ p→ step A x→ p x)→ FCIter A ⊆ p.

20



Finite Types Classical properties Cardinality Vectors Constructions Finite Closure Iteration Automata References

LEAST FIXED POINTS

Corollary
Let A be a list over X. Then FCIter A is a fixed point of FCStep.

Is it a least fixed point?

No! But ...

21
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LEAST FIXED POINTS CONTAINING A

Definition (Least fixed points containing A)
Let A: list Y and f: list Y→ list Y. A fixed point B of f is called the least
fixed point containing A if A ⊆ B and for any other fixed point B′ of f:
A ⊆ B′ → B ⊆ B′.

Definition (Consistency)
A step predicate is called consistent if
∀ A x, step A x→ ∀ A′,A ⊆ A′ → step A′ x.

Theorem
If step is consistent then for any A the list FCIter A is the least fixed
point containing A.

22



Finite Types Classical properties Cardinality Vectors Constructions Finite Closure Iteration Automata References

LEAST FIXED POINTS CONTAINING A

Definition (Least fixed points containing A)
Let A: list Y and f: list Y→ list Y. A fixed point B of f is called the least
fixed point containing A if A ⊆ B and for any other fixed point B′ of f:
A ⊆ B′ → B ⊆ B′.

Definition (Consistency)
A step predicate is called consistent if
∀ A x, step A x→ ∀ A′,A ⊆ A′ → step A′ x.

Theorem
If step is consistent then for any A the list FCIter A is the least fixed
point containing A.

22



Finite Types Classical properties Cardinality Vectors Constructions Finite Closure Iteration Automata References

LEAST FIXED POINTS CONTAINING A

Definition (Least fixed points containing A)
Let A: list Y and f: list Y→ list Y. A fixed point B of f is called the least
fixed point containing A if A ⊆ B and for any other fixed point B′ of f:
A ⊆ B′ → B ⊆ B′.

Definition (Consistency)
A step predicate is called consistent if
∀ A x, step A x→ ∀ A′,A ⊆ A′ → step A′ x.

Theorem
If step is consistent then for any A the list FCIter A is the least fixed
point containing A.

22



Finite Types Classical properties Cardinality Vectors Constructions Finite Closure Iteration Automata References

TEST CASE: FINITE AUTOMATA WITH FINITE TYPES

Inspired by [3] (Talk on Monday 3:15 pm)

Assume a finite type Σ as the alphabet.

Deterministic finite automata are formalised by:

A finite type S, the set of states.
Some s of type S, the start state.
A decidable predicate F over S to define the accepting states.
A transition function δS : S→ Σ→ S.

We lift δS as δ∗S to words.

Definition (Acceptance)
An automaton accepts a word w if F (δ∗S s w).
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FCITER IN ACTION

0 1

b

2

4

3

a c
a

a

ab cb c

1 {2}
2 {2,3}
3 {2,3,4}
4 {2,3,4,1}
5 {2,3,4,1}← fixed point
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language inclusion.
language equivalence.
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MORE ABOUT AUTOMATA

Closure properties

I Complement
I Intersection
I Union
I Difference
I Concatenation
I Kleene Operator

Non deterministic finite automata (NFA)

I Equivalence of NFA and DFA

F Uses vectors

Other constructions

I Automaton only accepting ε
I Automaton adding some letter x to every word of a language
I Automaton accepting some only some word w

25
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THE END

Thank you for your attention

Any questions? Ask away!
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EXTRAS

Definition (pure)
For a decidable predicate p with
pure p x:= if p x then > else ⊥
pure p is a pure predicate.
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REACHABLE STATES IN DFAS

Let A be a DFA with set of states S

We use finite closure iteration to compute reachable states.

Definition (step predicate)
step_reach (set: list (S A)) (q : S A) :=
∃ q′ x, q′ ∈ set→ δS q′ x = q.

Definition
reach reach (q:S) := FCIter step_reach [q].
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EQTYPES

dec (P:P) := {P} + {¬ P}.

eq_dec (X:Type ) := ∀ x y, dec (x = y).

Structure eqType := EqType {
eqtype :> Type ;
decide_eq : eq_dec eqtype }.
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FINTYPES

Class finTypeC (type: eqType): Type := FinTypeC {
enum: list type;
enum_ok: ∀ x: type, count enum x = 1 }.

Structure finType: Type := FinType {
type :> eqType;
class : finTypeC type }.
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ADMISSIBLE FUNCTIONS

Definition (Admissibility)
A function (f: list Y→ list Y) is called admissible if a given list A is
either a fixed-point of f or card (f A) > card A.

Theorem
Let f be an admissible function list X→ list X. Then

f Cardinality X A

is a fixed point of f for any list A over elements of X.
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FCITER

Lemma
FCStep is an admissible function.

FCIter
FCIter := FCStepCardinality X.

Corollary
Let A be a list over X. Then FCIter A is a fixed point of FCStep.
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A FINITE VECTOR TYPE

Goal: Construct finite type for X1−→X2.

Needed: List containing all vectors of type X1−→X2.
Construct all possible images first:

Fixpoint images (Y: Type ) (A: list Y) (n: N) : list (list Y)
:=
match n with
| 0 ⇒ [[]]
| S n’ ⇒ concat (map (λ x ⇒ map (cons x) (images A n′)) A)
end.
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A FINITE VECTOR TYPE

Goal: Construct finite type for X1−→X2.

Needed: List containing all vectors of type X1−→X2.

Fact
∀ A,A ∈ images (elem X2) (Cardinality X1)→ |A| = Cardinality X1.

⇒We can build vectors

Fact
Let A: list X2 and |A| = Cardinality X. Then
count (images (elem X2) (Cardinality X1)) A = 1.

This is enough to construct finite type XX1
2 .
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