
Finite Types Classical properties Cardinality Vectors Constructions Finite Closure Iteration Automata References

A Coq Library for Finite Types
Bachelor Talk

Jan Menz

computer science

saarland
university

Advisor: Prof. Dr. Gert Smolka

July 29, 2016

1

Finite Types Classical properties Cardinality Vectors Constructions Finite Closure Iteration Automata References

CONTENTS

1 Finite Types

2 Classical properties

3 Cardinality

4 Vectors

5 Constructions

6 Finite Closure Iteration

7 Automata

2

Finite Types Classical properties Cardinality Vectors Constructions Finite Closure Iteration Automata References

FINITE TYPES

What is a finite type?

Type
Finite number of inhabitants

Representation:

Discrete Type X
Duplicate free list of all inhabitants (elem X)
Proof that list satisfies the properties

I ∀x, count (elem X) x = 1

Cardinality

Number of inhabitants of X
|elem X|

3

Finite Types Classical properties Cardinality Vectors Constructions Finite Closure Iteration Automata References

FINITE TYPES

What is a finite type?
Type

Finite number of inhabitants

Representation:

Discrete Type X
Duplicate free list of all inhabitants (elem X)
Proof that list satisfies the properties

I ∀x, count (elem X) x = 1

Cardinality

Number of inhabitants of X
|elem X|

3

Finite Types Classical properties Cardinality Vectors Constructions Finite Closure Iteration Automata References

FINITE TYPES

What is a finite type?
Type
Finite number of inhabitants

Representation:

Discrete Type X
Duplicate free list of all inhabitants (elem X)
Proof that list satisfies the properties

I ∀x, count (elem X) x = 1

Cardinality

Number of inhabitants of X
|elem X|

3

Finite Types Classical properties Cardinality Vectors Constructions Finite Closure Iteration Automata References

FINITE TYPES

What is a finite type?
Type
Finite number of inhabitants

Representation:

Discrete Type X
Duplicate free list of all inhabitants (elem X)
Proof that list satisfies the properties

I ∀x, count (elem X) x = 1

Cardinality

Number of inhabitants of X
|elem X|

3

Finite Types Classical properties Cardinality Vectors Constructions Finite Closure Iteration Automata References

FINITE TYPES

What is a finite type?
Type
Finite number of inhabitants

Representation:

Discrete Type X
Duplicate free list of all inhabitants (elem X)
Proof that list satisfies the properties

I ∀x, count (elem X) x = 1

Cardinality

Number of inhabitants of X
|elem X|

3

Finite Types Classical properties Cardinality Vectors Constructions Finite Closure Iteration Automata References

FINITE TYPES

What is a finite type?
Type
Finite number of inhabitants

Representation:
Discrete Type X

Duplicate free list of all inhabitants (elem X)
Proof that list satisfies the properties

I ∀x, count (elem X) x = 1

Cardinality

Number of inhabitants of X
|elem X|

3

Finite Types Classical properties Cardinality Vectors Constructions Finite Closure Iteration Automata References

FINITE TYPES

What is a finite type?
Type
Finite number of inhabitants

Representation:
Discrete Type X
Duplicate free list of all inhabitants (elem X)

Proof that list satisfies the properties

I ∀x, count (elem X) x = 1

Cardinality

Number of inhabitants of X
|elem X|

3

Finite Types Classical properties Cardinality Vectors Constructions Finite Closure Iteration Automata References

FINITE TYPES

What is a finite type?
Type
Finite number of inhabitants

Representation:
Discrete Type X
Duplicate free list of all inhabitants (elem X)
Proof that list satisfies the properties

I ∀x, count (elem X) x = 1

Cardinality

Number of inhabitants of X
|elem X|

3

Finite Types Classical properties Cardinality Vectors Constructions Finite Closure Iteration Automata References

FINITE TYPES

What is a finite type?
Type
Finite number of inhabitants

Representation:
Discrete Type X
Duplicate free list of all inhabitants (elem X)
Proof that list satisfies the properties

I ∀x, count (elem X) x = 1

Cardinality

Number of inhabitants of X
|elem X|

3

Finite Types Classical properties Cardinality Vectors Constructions Finite Closure Iteration Automata References

FINITE TYPES

What is a finite type?
Type
Finite number of inhabitants

Representation:
Discrete Type X
Duplicate free list of all inhabitants (elem X)
Proof that list satisfies the properties

I ∀x, count (elem X) x = 1

Cardinality

Number of inhabitants of X
|elem X|

3

Finite Types Classical properties Cardinality Vectors Constructions Finite Closure Iteration Automata References

FINITE TYPES

What is a finite type?
Type
Finite number of inhabitants

Representation:
Discrete Type X
Duplicate free list of all inhabitants (elem X)
Proof that list satisfies the properties

I ∀x, count (elem X) x = 1

Cardinality

Number of inhabitants of X
|elem X|

3

Finite Types Classical properties Cardinality Vectors Constructions Finite Closure Iteration Automata References

FINITE TYPES

What is a finite type?
Type
Finite number of inhabitants

Representation:
Discrete Type X
Duplicate free list of all inhabitants (elem X)
Proof that list satisfies the properties

I ∀x, count (elem X) x = 1

Cardinality
Number of inhabitants of X

|elem X|

3

Finite Types Classical properties Cardinality Vectors Constructions Finite Closure Iteration Automata References

FINITE TYPES

What is a finite type?
Type
Finite number of inhabitants

Representation:
Discrete Type X
Duplicate free list of all inhabitants (elem X)
Proof that list satisfies the properties

I ∀x, count (elem X) x = 1

Cardinality
Number of inhabitants of X
|elem X|

3

Finite Types Classical properties Cardinality Vectors Constructions Finite Closure Iteration Automata References

THREE USABILITY FEATURES

If Y is a finite or discrete type, then

Y can be used as a type.

I ∀(Y : finType)(x : Y), x ∈ elem Y
I Coercions

Y can be automatically inferred.

I count [true, false] true = 1
I Canonical structures

We can compute Y out of its base type.

I Cardinality(tofinType B) = 2
I Mainly type classes

4

Finite Types Classical properties Cardinality Vectors Constructions Finite Closure Iteration Automata References

THREE USABILITY FEATURES

If Y is a finite or discrete type, then

Y can be used as a type.

I ∀(Y : finType)(x : Y), x ∈ elem Y
I Coercions

Y can be automatically inferred.

I count [true, false] true = 1
I Canonical structures

We can compute Y out of its base type.

I Cardinality(tofinType B) = 2
I Mainly type classes

4

Finite Types Classical properties Cardinality Vectors Constructions Finite Closure Iteration Automata References

THREE USABILITY FEATURES

If Y is a finite or discrete type, then

Y can be used as a type.
I ∀(Y : finType)(x : Y), x ∈ elem Y

I Coercions
Y can be automatically inferred.

I count [true, false] true = 1
I Canonical structures

We can compute Y out of its base type.

I Cardinality(tofinType B) = 2
I Mainly type classes

4

Finite Types Classical properties Cardinality Vectors Constructions Finite Closure Iteration Automata References

THREE USABILITY FEATURES

If Y is a finite or discrete type, then

Y can be used as a type.
I ∀(Y : finType)(x : Y), x ∈ elem Y
I Coercions

Y can be automatically inferred.

I count [true, false] true = 1
I Canonical structures

We can compute Y out of its base type.

I Cardinality(tofinType B) = 2
I Mainly type classes

4

Finite Types Classical properties Cardinality Vectors Constructions Finite Closure Iteration Automata References

THREE USABILITY FEATURES

If Y is a finite or discrete type, then

Y can be used as a type.
I ∀(Y : finType)(x : Y), x ∈ elem Y
I Coercions

Y can be automatically inferred.

I count [true, false] true = 1
I Canonical structures

We can compute Y out of its base type.

I Cardinality(tofinType B) = 2
I Mainly type classes

4

Finite Types Classical properties Cardinality Vectors Constructions Finite Closure Iteration Automata References

THREE USABILITY FEATURES

If Y is a finite or discrete type, then

Y can be used as a type.
I ∀(Y : finType)(x : Y), x ∈ elem Y
I Coercions

Y can be automatically inferred.
I count [true, false] true = 1

I Canonical structures
We can compute Y out of its base type.

I Cardinality(tofinType B) = 2
I Mainly type classes

4

Finite Types Classical properties Cardinality Vectors Constructions Finite Closure Iteration Automata References

THREE USABILITY FEATURES

If Y is a finite or discrete type, then

Y can be used as a type.
I ∀(Y : finType)(x : Y), x ∈ elem Y
I Coercions

Y can be automatically inferred.
I count [true, false] true = 1
I Canonical structures

We can compute Y out of its base type.

I Cardinality(tofinType B) = 2
I Mainly type classes

4

Finite Types Classical properties Cardinality Vectors Constructions Finite Closure Iteration Automata References

THREE USABILITY FEATURES

If Y is a finite or discrete type, then

Y can be used as a type.
I ∀(Y : finType)(x : Y), x ∈ elem Y
I Coercions

Y can be automatically inferred.
I count [true, false] true = 1
I Canonical structures

We can compute Y out of its base type.

I Cardinality(tofinType B) = 2
I Mainly type classes

4

Finite Types Classical properties Cardinality Vectors Constructions Finite Closure Iteration Automata References

THREE USABILITY FEATURES

If Y is a finite or discrete type, then

Y can be used as a type.
I ∀(Y : finType)(x : Y), x ∈ elem Y
I Coercions

Y can be automatically inferred.
I count [true, false] true = 1
I Canonical structures

We can compute Y out of its base type.
I Cardinality(tofinType B) = 2

I Mainly type classes

4

Finite Types Classical properties Cardinality Vectors Constructions Finite Closure Iteration Automata References

THREE USABILITY FEATURES

If Y is a finite or discrete type, then

Y can be used as a type.
I ∀(Y : finType)(x : Y), x ∈ elem Y
I Coercions

Y can be automatically inferred.
I count [true, false] true = 1
I Canonical structures

We can compute Y out of its base type.
I Cardinality(tofinType B) = 2
I Mainly type classes

4

Finite Types Classical properties Cardinality Vectors Constructions Finite Closure Iteration Automata References

CONVERSION TO LISTS

(∀ (x : X), p x)↔ ∀ x ∈ (elem X), p x

5

Finite Types Classical properties Cardinality Vectors Constructions Finite Closure Iteration Automata References

CONVERSION TO LISTS

(∀ (x : X), p x)↔ ∀ x ∈ (elem X), p x

(∃ (x : X), p x)↔ ∃ x ∈ (elem X), p x

5

Finite Types Classical properties Cardinality Vectors Constructions Finite Closure Iteration Automata References

CONVERSION TO LISTS

(∀ (x : X), p x)↔ ∀ x ∈ (elem X), p x

(∃ (x : X), p x)↔ ∃ x ∈ (elem X), p x

(∃ (x : X), p x)↔ ∃ x, x ∈ (elem X)→ p x

5

Finite Types Classical properties Cardinality Vectors Constructions Finite Closure Iteration Automata References

CLASSICAL PROPERTIES

Finite types often behave classically:

From list conversions:

Fact
For a decidable predicate p over X

∀ x : X, p x is decidable.
∃ x : X, p x is decidable.
(∃ x : X, p x)↔ ¬ ∀ x : X, (¬ p x).
¬ (∀ x : X, p x)↔ ∃ x : X,¬ p x.
There is a constructive choice function ∃ x : X, p x→ {x : X | p x}.

6

Finite Types Classical properties Cardinality Vectors Constructions Finite Closure Iteration Automata References

CLASSICAL PROPERTIES

Finite types often behave classically:

From list conversions:

Fact
For a decidable predicate p over X

∀ x : X, p x is decidable.

∃ x : X, p x is decidable.
(∃ x : X, p x)↔ ¬ ∀ x : X, (¬ p x).
¬ (∀ x : X, p x)↔ ∃ x : X,¬ p x.
There is a constructive choice function ∃ x : X, p x→ {x : X | p x}.

6

Finite Types Classical properties Cardinality Vectors Constructions Finite Closure Iteration Automata References

CLASSICAL PROPERTIES

Finite types often behave classically:

From list conversions:

Fact
For a decidable predicate p over X

∀ x : X, p x is decidable.
∃ x : X, p x is decidable.

(∃ x : X, p x)↔ ¬ ∀ x : X, (¬ p x).
¬ (∀ x : X, p x)↔ ∃ x : X,¬ p x.
There is a constructive choice function ∃ x : X, p x→ {x : X | p x}.

6

Finite Types Classical properties Cardinality Vectors Constructions Finite Closure Iteration Automata References

CLASSICAL PROPERTIES

Finite types often behave classically:

From list conversions:

Fact
For a decidable predicate p over X

∀ x : X, p x is decidable.
∃ x : X, p x is decidable.
(∃ x : X, p x)↔ ¬ ∀ x : X, (¬ p x).

¬ (∀ x : X, p x)↔ ∃ x : X,¬ p x.
There is a constructive choice function ∃ x : X, p x→ {x : X | p x}.

6

Finite Types Classical properties Cardinality Vectors Constructions Finite Closure Iteration Automata References

CLASSICAL PROPERTIES

Finite types often behave classically:

From list conversions:

Fact
For a decidable predicate p over X

∀ x : X, p x is decidable.
∃ x : X, p x is decidable.
(∃ x : X, p x)↔ ¬ ∀ x : X, (¬ p x).
¬ (∀ x : X, p x)↔ ∃ x : X,¬ p x.

There is a constructive choice function ∃ x : X, p x→ {x : X | p x}.

6

Finite Types Classical properties Cardinality Vectors Constructions Finite Closure Iteration Automata References

CLASSICAL PROPERTIES

Finite types often behave classically:

From list conversions:

Fact
For a decidable predicate p over X

∀ x : X, p x is decidable.
∃ x : X, p x is decidable.
(∃ x : X, p x)↔ ¬ ∀ x : X, (¬ p x).
¬ (∀ x : X, p x)↔ ∃ x : X,¬ p x.
There is a constructive choice function ∃ x : X, p x→ {x : X | p x}.

6

Finite Types Classical properties Cardinality Vectors Constructions Finite Closure Iteration Automata References

CARDINALITY

Fact
Let A be a list over X. Then

Cardinality X = card (elem X).
Cardinality X ≥ card A.
Cardinality X ≥ |A|, if A is duplicate free.

7

Finite Types Classical properties Cardinality Vectors Constructions Finite Closure Iteration Automata References

CARDINALITY

Fact
Let A be a list over X. Then

Cardinality X = card (elem X).

Cardinality X ≥ card A.
Cardinality X ≥ |A|, if A is duplicate free.

7

Finite Types Classical properties Cardinality Vectors Constructions Finite Closure Iteration Automata References

CARDINALITY

Fact
Let A be a list over X. Then

Cardinality X = card (elem X).
Cardinality X ≥ card A.

Cardinality X ≥ |A|, if A is duplicate free.

7

Finite Types Classical properties Cardinality Vectors Constructions Finite Closure Iteration Automata References

CARDINALITY

Fact
Let A be a list over X. Then

Cardinality X = card (elem X).
Cardinality X ≥ card A.
Cardinality X ≥ |A|, if A is duplicate free.

7

Finite Types Classical properties Cardinality Vectors Constructions Finite Closure Iteration Automata References

PIGEONHOLE PRINCIPLES

Pigeon hole principle from set theory also hold on finite types:

(∃ injection f : X1 → X2)→ Cardinality X1 ≤ Cardinality X2

(∃ surjection f : X1 → X2)→ Cardinality X1 ≥ Cardinality X2

(∃ bijection f : X1 → X2)→ Cardinality X1 = Cardinality X2

8

Finite Types Classical properties Cardinality Vectors Constructions Finite Closure Iteration Automata References

PIGEONHOLE PRINCIPLES

Pigeon hole principle from set theory also hold on finite types:

(∃ injection f : X1 → X2)→ Cardinality X1 ≤ Cardinality X2

(∃ surjection f : X1 → X2)→ Cardinality X1 ≥ Cardinality X2

(∃ bijection f : X1 → X2)→ Cardinality X1 = Cardinality X2

8

Finite Types Classical properties Cardinality Vectors Constructions Finite Closure Iteration Automata References

PIGEONHOLE PRINCIPLES

Pigeon hole principle from set theory also hold on finite types:

(∃ injection f : X1 → X2)→ Cardinality X1 ≤ Cardinality X2

(∃ surjection f : X1 → X2)→ Cardinality X1 ≥ Cardinality X2

(∃ bijection f : X1 → X2)→ Cardinality X1 = Cardinality X2

8

Finite Types Classical properties Cardinality Vectors Constructions Finite Closure Iteration Automata References

PIGEONHOLE PRINCIPLES

Pigeon hole principle from set theory also hold on finite types:

(∃ injection f : X1 → X2)→ Cardinality X1 ≤ Cardinality X2

(∃ surjection f : X1 → X2)→ Cardinality X1 ≥ Cardinality X2

(∃ bijection f : X1 → X2)→ Cardinality X1 = Cardinality X2

8

Finite Types Classical properties Cardinality Vectors Constructions Finite Closure Iteration Automata References

VECTORS

Usually: Collection of objects of some “type” with fixed size.

Rn :


π
e
...
0


1
2
...
n

indexed by some number n

9

Finite Types Classical properties Cardinality Vectors Constructions Finite Closure Iteration Automata References

VECTORS

Now: Collection of objects of some type Y with fixed size.

elem X :=


x1
x2
...

xn

 X-indexed Y vector :


y1
y2
...

yn


1
2
...
n

indexed by some finite type X

In Coq dependent pair: { A | |A| = Cardinality X }

10

Finite Types Classical properties Cardinality Vectors Constructions Finite Closure Iteration Automata References

VECTORS

Now: Collection of objects of some type Y with fixed size.

elem X :=


x1
x2
...

xn

 X-indexed Y vector :


y1
y2
...

yn


1
2
...
n

indexed by some finite type X

In Coq dependent pair: { A | |A| = Cardinality X }

10

Finite Types Classical properties Cardinality Vectors Constructions Finite Closure Iteration Automata References

VECTORS

Function interpretation:

elem X :=


x1
x2
...

xn


−→
−→

...
−→


y1
y2
...

yn

 =: f

X−→Y := X-indexed Y vector.

image f := [y1, y2, . . . , yn]

11

Finite Types Classical properties Cardinality Vectors Constructions Finite Closure Iteration Automata References

VECTORS

Function interpretation:

elem X :=


x1
x2
...

xn


−→
−→

...
−→


y1
y2
...

yn

 =: f

X−→Y := X-indexed Y vector.

image f := [y1, y2, . . . , yn]

11

Finite Types Classical properties Cardinality Vectors Constructions Finite Closure Iteration Automata References

VECTORS

Function interpretation:

elem X :=


x1
x2
...

xn


−→
−→

...
−→


y1
y2
...

yn

 =: f

X−→Y := X-indexed Y vector.

image f := [y1, y2, . . . , yn]

11

Finite Types Classical properties Cardinality Vectors Constructions Finite Closure Iteration Automata References

DISCRETENESS OF VECTORS

We want to decide equality

In Coq dependent pair: {A | |A| = Cardinality X }

Definition (Pure predicates[15])
A predicate p : X→ P is called pure if for every x:X there is only one
proof of p x. Decidable predicates can be converted to pure predicates.

Fact
Let f and g be two vectors. Then image f = image g→ f = g.

12

Finite Types Classical properties Cardinality Vectors Constructions Finite Closure Iteration Automata References

DISCRETENESS OF VECTORS

We want to decide equality

In Coq dependent pair: {A | |A| = Cardinality X }

Definition (Pure predicates[15])
A predicate p : X→ P is called pure if for every x:X there is only one
proof of p x.

Decidable predicates can be converted to pure predicates.

Fact
Let f and g be two vectors. Then image f = image g→ f = g.

12

Finite Types Classical properties Cardinality Vectors Constructions Finite Closure Iteration Automata References

DISCRETENESS OF VECTORS

We want to decide equality

In Coq dependent pair: {A | |A| = Cardinality X }

Definition (Pure predicates[15])
A predicate p : X→ P is called pure if for every x:X there is only one
proof of p x. Decidable predicates can be converted to pure predicates.

Fact
Let f and g be two vectors. Then image f = image g→ f = g.

12

Finite Types Classical properties Cardinality Vectors Constructions Finite Closure Iteration Automata References

DISCRETENESS OF VECTORS

We want to decide equality

In Coq dependent pair: {A | pure (|A| = Cardinality X) }

Definition (Pure predicates[15])
A predicate p : X→ P is called pure if for every x:X there is only one
proof of p x. Decidable predicates can be converted to pure predicates.

Fact
Let f and g be two vectors. Then image f = image g→ f = g.

12

Finite Types Classical properties Cardinality Vectors Constructions Finite Closure Iteration Automata References

DISCRETENESS OF VECTORS

We want to decide equality

In Coq dependent pair: {A | pure (|A| = Cardinality X) }

Definition (Pure predicates[15])
A predicate p : X→ P is called pure if for every x:X there is only one
proof of p x. Decidable predicates can be converted to pure predicates.

⇒ Vectors are discrete and extensional:

Fact
Let f and g be two vectors. Then image f = image g→ f = g.

12

Finite Types Classical properties Cardinality Vectors Constructions Finite Closure Iteration Automata References

DISCRETENESS OF VECTORS

We want to decide equality

In Coq dependent pair: {A | pure (|A| = Cardinality X) }

Definition (Pure predicates[15])
A predicate p : X→ P is called pure if for every x:X there is only one
proof of p x. Decidable predicates can be converted to pure predicates.

⇒ Vectors are discrete and extensional:

Fact
Let f and g be two vectors. Then image f = image g→ f = g.

12

Finite Types Classical properties Cardinality Vectors Constructions Finite Closure Iteration Automata References

A FINITE VECTOR TYPE

Theorem

There is a finite type XX1
2 such that XX1

2 = X1−→X2.

Theorem

Cardinality XX1
2 = (Cardinality X2)Cardinality X1 .

13

Finite Types Classical properties Cardinality Vectors Constructions Finite Closure Iteration Automata References

A FINITE VECTOR TYPE

Theorem

There is a finite type XX1
2 such that XX1

2 = X1−→X2.

Theorem

Cardinality XX1
2 = (Cardinality X2)Cardinality X1 .

13

Finite Types Classical properties Cardinality Vectors Constructions Finite Closure Iteration Automata References

VECTORS VS. FUNCTIONS

Function interpretation:
f vector X−→Y

elem X :=


x1
x2
...

xn


−→
−→

...
−→


y1
y2
...

yn

 =: f

Function applyVect: X−→Y→ X→ Y.

Defined as coercion. We can write f x instead of applyVect f x.

14

Finite Types Classical properties Cardinality Vectors Constructions Finite Closure Iteration Automata References

VECTORS VS. FUNCTIONS

Function interpretation:
f vector X−→Y

elem X :=


x1
x2
...

xn


−→
−→

...
−→


y1
y2
...

yn

 =: f

Function applyVect: X−→Y→ X→ Y.

Defined as coercion. We can write f x instead of applyVect f x.

14

Finite Types Classical properties Cardinality Vectors Constructions Finite Closure Iteration Automata References

VECTORS VS. FUNCTIONS

Function interpretation:
f vector X−→Y

elem X :=


x1
x2
...

xn


−→
−→

...
−→


y1
y2
...

yn

 =: f

Function applyVect: X−→Y→ X→ Y.

Defined as coercion. We can write f x instead of applyVect f x.

14

Finite Types Classical properties Cardinality Vectors Constructions Finite Closure Iteration Automata References

VECTORS VS. FUNCTIONS

Vector interpretation:
f function X→ Y

elem X :=


x1
x2
...

xn



Function vectorise: (X→ Y)→ (X−→Y).

15

Finite Types Classical properties Cardinality Vectors Constructions Finite Closure Iteration Automata References

VECTORS VS. FUNCTIONS

Vector interpretation:
f function X→ Y

elem X :=


x1
x2
...

xn

 vectorise f :=


f x1
f x2

...
f xn



Function vectorise: (X→ Y)→ (X−→Y).

15

Finite Types Classical properties Cardinality Vectors Constructions Finite Closure Iteration Automata References

VECTORS VS. FUNCTIONS

Vector interpretation:
f function X→ Y

elem X :=


x1
x2
...

xn

 vectorise f :=


f x1
f x2

...
f xn



Function vectorise: (X→ Y)→ (X−→Y).

15

Finite Types Classical properties Cardinality Vectors Constructions Finite Closure Iteration Automata References

VECTORS VS. FUNCTIONS

applyVect and vectorise are inverse functions:

Theorem
Let f be a vector X−→Y. Then vectorise f = f .

Theorem
Let f be a function X→ Y. Then (vectorise f) x = f x.

16

Finite Types Classical properties Cardinality Vectors Constructions Finite Closure Iteration Automata References

VECTORS VS. FUNCTIONS

applyVect and vectorise are inverse functions:

Theorem
Let f be a vector X−→Y. Then vectorise f = f .

Theorem
Let f be a function X→ Y. Then (vectorise f) x = f x.

16

Finite Types Classical properties Cardinality Vectors Constructions Finite Closure Iteration Automata References

VECTORS VS. FUNCTIONS

applyVect and vectorise are inverse functions:

Theorem
Let f be a vector X−→Y. Then vectorise f = f .

Theorem
Let f be a function X→ Y. Then (vectorise f) x = f x.

16

Finite Types Classical properties Cardinality Vectors Constructions Finite Closure Iteration Automata References

MORE COMPOUNT TYPES

Cartesian product

Sum
Option
Dependent pairs to P (subtypes)

I Uses pure predicates
I No equation for cardinality

General dependent pairs

I Uses Hedberg’s theorem
I No equation for equality

From a list

I Uses subtypes

Vectors

I Uses subtypes

17

Finite Types Classical properties Cardinality Vectors Constructions Finite Closure Iteration Automata References

MORE COMPOUNT TYPES

Cartesian product
Sum

Option
Dependent pairs to P (subtypes)

I Uses pure predicates
I No equation for cardinality

General dependent pairs

I Uses Hedberg’s theorem
I No equation for equality

From a list

I Uses subtypes

Vectors

I Uses subtypes

17

Finite Types Classical properties Cardinality Vectors Constructions Finite Closure Iteration Automata References

MORE COMPOUNT TYPES

Cartesian product
Sum
Option

Dependent pairs to P (subtypes)

I Uses pure predicates
I No equation for cardinality

General dependent pairs

I Uses Hedberg’s theorem
I No equation for equality

From a list

I Uses subtypes

Vectors

I Uses subtypes

17

Finite Types Classical properties Cardinality Vectors Constructions Finite Closure Iteration Automata References

MORE COMPOUNT TYPES

Cartesian product
Sum
Option
Dependent pairs to P (subtypes)

I Uses pure predicates
I No equation for cardinality

General dependent pairs

I Uses Hedberg’s theorem
I No equation for equality

From a list

I Uses subtypes

Vectors

I Uses subtypes

17

Finite Types Classical properties Cardinality Vectors Constructions Finite Closure Iteration Automata References

MORE COMPOUNT TYPES

Cartesian product
Sum
Option
Dependent pairs to P (subtypes)

I Uses pure predicates

I No equation for cardinality
General dependent pairs

I Uses Hedberg’s theorem
I No equation for equality

From a list

I Uses subtypes

Vectors

I Uses subtypes

17

Finite Types Classical properties Cardinality Vectors Constructions Finite Closure Iteration Automata References

MORE COMPOUNT TYPES

Cartesian product
Sum
Option
Dependent pairs to P (subtypes)

I Uses pure predicates
I No equation for cardinality

General dependent pairs

I Uses Hedberg’s theorem
I No equation for equality

From a list

I Uses subtypes

Vectors

I Uses subtypes

17

Finite Types Classical properties Cardinality Vectors Constructions Finite Closure Iteration Automata References

MORE COMPOUNT TYPES

Cartesian product
Sum
Option
Dependent pairs to P (subtypes)

I Uses pure predicates
I No equation for cardinality

General dependent pairs

I Uses Hedberg’s theorem
I No equation for equality

From a list

I Uses subtypes

Vectors

I Uses subtypes

17

Finite Types Classical properties Cardinality Vectors Constructions Finite Closure Iteration Automata References

MORE COMPOUNT TYPES

Cartesian product
Sum
Option
Dependent pairs to P (subtypes)

I Uses pure predicates
I No equation for cardinality

General dependent pairs
I Uses Hedberg’s theorem

I No equation for equality
From a list

I Uses subtypes

Vectors

I Uses subtypes

17

Finite Types Classical properties Cardinality Vectors Constructions Finite Closure Iteration Automata References

MORE COMPOUNT TYPES

Cartesian product
Sum
Option
Dependent pairs to P (subtypes)

I Uses pure predicates
I No equation for cardinality

General dependent pairs
I Uses Hedberg’s theorem
I No equation for equality

From a list

I Uses subtypes

Vectors

I Uses subtypes

17

Finite Types Classical properties Cardinality Vectors Constructions Finite Closure Iteration Automata References

MORE COMPOUNT TYPES

Cartesian product
Sum
Option
Dependent pairs to P (subtypes)

I Uses pure predicates
I No equation for cardinality

General dependent pairs
I Uses Hedberg’s theorem
I No equation for equality

From a list

I Uses subtypes
Vectors

I Uses subtypes

17

Finite Types Classical properties Cardinality Vectors Constructions Finite Closure Iteration Automata References

MORE COMPOUNT TYPES

Cartesian product
Sum
Option
Dependent pairs to P (subtypes)

I Uses pure predicates
I No equation for cardinality

General dependent pairs
I Uses Hedberg’s theorem
I No equation for equality

From a list
I Uses subtypes

Vectors

I Uses subtypes

17

Finite Types Classical properties Cardinality Vectors Constructions Finite Closure Iteration Automata References

MORE COMPOUNT TYPES

Cartesian product
Sum
Option
Dependent pairs to P (subtypes)

I Uses pure predicates
I No equation for cardinality

General dependent pairs
I Uses Hedberg’s theorem
I No equation for equality

From a list
I Uses subtypes

Vectors

I Uses subtypes

17

Finite Types Classical properties Cardinality Vectors Constructions Finite Closure Iteration Automata References

MORE COMPOUNT TYPES

Cartesian product
Sum
Option
Dependent pairs to P (subtypes)

I Uses pure predicates
I No equation for cardinality

General dependent pairs
I Uses Hedberg’s theorem
I No equation for equality

From a list
I Uses subtypes

Vectors
I Uses subtypes

17

Finite Types Classical properties Cardinality Vectors Constructions Finite Closure Iteration Automata References

FINITE CLOSURE ITERATION[14, 13]

Compute subset of finite type F:

predicate step: list X→ X→ P
function pick: ∀ A, {x | step A x ∧ ¬ (x ∈ A)} + ∀ x, step A x→ x ∈ A.

FCStep
Definition FCStep A :=
match (pick A) with
|inl L ⇒ match L with

|exists _ x _ ⇒ x::A end

|inr _ ⇒ A end.

18

Finite Types Classical properties Cardinality Vectors Constructions Finite Closure Iteration Automata References

FINITE CLOSURE ITERATION[14, 13]

Compute subset of finite type F:

predicate step: list X→ X→ P

function pick: ∀ A, {x | step A x ∧ ¬ (x ∈ A)} + ∀ x, step A x→ x ∈ A.

FCStep
Definition FCStep A :=
match (pick A) with
|inl L ⇒ match L with

|exists _ x _ ⇒ x::A end

|inr _ ⇒ A end.

18

Finite Types Classical properties Cardinality Vectors Constructions Finite Closure Iteration Automata References

FINITE CLOSURE ITERATION[14, 13]

Compute subset of finite type F:

predicate step: list X→ X→ P
function pick: ∀ A, {x | step A x ∧ ¬ (x ∈ A)} + ∀ x, step A x→ x ∈ A.

FCStep
Definition FCStep A :=
match (pick A) with
|inl L ⇒ match L with

|exists _ x _ ⇒ x::A end

|inr _ ⇒ A end.

18

Finite Types Classical properties Cardinality Vectors Constructions Finite Closure Iteration Automata References

FINITE CLOSURE ITERATION[14, 13]

Compute subset of finite type F:

predicate step: list X→ X→ P
function pick: ∀ A, {x | step A x ∧ ¬ (x ∈ A)} + ∀ x, step A x→ x ∈ A.

FCStep
Definition FCStep A :=
match (pick A) with
|inl L ⇒ match L with

|exists _ x _ ⇒ x::A end

|inr _ ⇒ A end.

18

Finite Types Classical properties Cardinality Vectors Constructions Finite Closure Iteration Automata References

FINITE CLOSURE ITERATION[14, 13]: IDEA

Iterate FCStep until it reaches a fixed point

How many times?

Fact
Let A be a list over X and FCIter := FCStepCardinality X. Then
FCIter A is a fixed point of FCStep.

19

Finite Types Classical properties Cardinality Vectors Constructions Finite Closure Iteration Automata References

FINITE CLOSURE ITERATION[14, 13]: IDEA

Iterate FCStep until it reaches a fixed point

How many times?

Fact
Let A be a list over X and FCIter := FCStepCardinality X. Then
FCIter A is a fixed point of FCStep.

19

Finite Types Classical properties Cardinality Vectors Constructions Finite Closure Iteration Automata References

FCITER INDUCTION [14, 13]

Induction principle for predicates preserved by FCStep:

A ⊆ p := ∀ x ∈ A, p x

Theorem
Let p be a predicate over X and A a list over X. Then
A ⊆ p→ (∀ A x,A ⊆ p→ step A x→ p x)→ FCIter A ⊆ p.

20

Finite Types Classical properties Cardinality Vectors Constructions Finite Closure Iteration Automata References

FCITER INDUCTION [14, 13]

Induction principle for predicates preserved by FCStep:
A ⊆ p := ∀ x ∈ A, p x

Theorem
Let p be a predicate over X and A a list over X. Then
A ⊆ p→ (∀ A x,A ⊆ p→ step A x→ p x)→ FCIter A ⊆ p.

20

Finite Types Classical properties Cardinality Vectors Constructions Finite Closure Iteration Automata References

FCITER INDUCTION [14, 13]

Induction principle for predicates preserved by FCStep:
A ⊆ p := ∀ x ∈ A, p x

Theorem
Let p be a predicate over X and A a list over X. Then
A ⊆ p→ (∀ A x,A ⊆ p→ step A x→ p x)→ FCIter A ⊆ p.

20

Finite Types Classical properties Cardinality Vectors Constructions Finite Closure Iteration Automata References

LEAST FIXED POINTS

Corollary
Let A be a list over X. Then FCIter A is a fixed point of FCStep.

Is it a least fixed point?

No! But ...

21

Finite Types Classical properties Cardinality Vectors Constructions Finite Closure Iteration Automata References

LEAST FIXED POINTS

Corollary
Let A be a list over X. Then FCIter A is a fixed point of FCStep.

Is it a least fixed point?

No! But ...

21

Finite Types Classical properties Cardinality Vectors Constructions Finite Closure Iteration Automata References

LEAST FIXED POINTS CONTAINING A

Definition (Least fixed points containing A)
Let A: list Y and f: list Y→ list Y. A fixed point B of f is called the least
fixed point containing A if A ⊆ B and for any other fixed point B′ of f:
A ⊆ B′ → B ⊆ B′.

Definition (Consistency)
A step predicate is called consistent if
∀ A x, step A x→ ∀ A′,A ⊆ A′ → step A′ x.

Theorem
If step is consistent then for any A the list FCIter A is the least fixed
point containing A.

22

Finite Types Classical properties Cardinality Vectors Constructions Finite Closure Iteration Automata References

LEAST FIXED POINTS CONTAINING A

Definition (Least fixed points containing A)
Let A: list Y and f: list Y→ list Y. A fixed point B of f is called the least
fixed point containing A if A ⊆ B and for any other fixed point B′ of f:
A ⊆ B′ → B ⊆ B′.

Definition (Consistency)
A step predicate is called consistent if
∀ A x, step A x→ ∀ A′,A ⊆ A′ → step A′ x.

Theorem
If step is consistent then for any A the list FCIter A is the least fixed
point containing A.

22

Finite Types Classical properties Cardinality Vectors Constructions Finite Closure Iteration Automata References

LEAST FIXED POINTS CONTAINING A

Definition (Least fixed points containing A)
Let A: list Y and f: list Y→ list Y. A fixed point B of f is called the least
fixed point containing A if A ⊆ B and for any other fixed point B′ of f:
A ⊆ B′ → B ⊆ B′.

Definition (Consistency)
A step predicate is called consistent if
∀ A x, step A x→ ∀ A′,A ⊆ A′ → step A′ x.

Theorem
If step is consistent then for any A the list FCIter A is the least fixed
point containing A.

22

Finite Types Classical properties Cardinality Vectors Constructions Finite Closure Iteration Automata References

TEST CASE: FINITE AUTOMATA WITH FINITE TYPES

Inspired by [3] (Talk on Monday 3:15 pm)

Assume a finite type Σ as the alphabet.

Deterministic finite automata are formalised by:

A finite type S, the set of states.
Some s of type S, the start state.
A decidable predicate F over S to define the accepting states.
A transition function δS : S→ Σ→ S.

We lift δS as δ∗S to words.

Definition (Acceptance)
An automaton accepts a word w if F (δ∗S s w).

23

Finite Types Classical properties Cardinality Vectors Constructions Finite Closure Iteration Automata References

TEST CASE: FINITE AUTOMATA WITH FINITE TYPES

Inspired by [3] (Talk on Monday 3:15 pm)

Assume a finite type Σ as the alphabet.

Deterministic finite automata are formalised by:

A finite type S, the set of states.
Some s of type S, the start state.
A decidable predicate F over S to define the accepting states.
A transition function δS : S→ Σ→ S.

We lift δS as δ∗S to words.

Definition (Acceptance)
An automaton accepts a word w if F (δ∗S s w).

23

Finite Types Classical properties Cardinality Vectors Constructions Finite Closure Iteration Automata References

TEST CASE: FINITE AUTOMATA WITH FINITE TYPES

Inspired by [3] (Talk on Monday 3:15 pm)

Assume a finite type Σ as the alphabet.

Deterministic finite automata are formalised by:
A finite type S, the set of states.

Some s of type S, the start state.
A decidable predicate F over S to define the accepting states.
A transition function δS : S→ Σ→ S.

We lift δS as δ∗S to words.

Definition (Acceptance)
An automaton accepts a word w if F (δ∗S s w).

23

Finite Types Classical properties Cardinality Vectors Constructions Finite Closure Iteration Automata References

TEST CASE: FINITE AUTOMATA WITH FINITE TYPES

Inspired by [3] (Talk on Monday 3:15 pm)

Assume a finite type Σ as the alphabet.

Deterministic finite automata are formalised by:
A finite type S, the set of states.
Some s of type S, the start state.

A decidable predicate F over S to define the accepting states.
A transition function δS : S→ Σ→ S.

We lift δS as δ∗S to words.

Definition (Acceptance)
An automaton accepts a word w if F (δ∗S s w).

23

Finite Types Classical properties Cardinality Vectors Constructions Finite Closure Iteration Automata References

TEST CASE: FINITE AUTOMATA WITH FINITE TYPES

Inspired by [3] (Talk on Monday 3:15 pm)

Assume a finite type Σ as the alphabet.

Deterministic finite automata are formalised by:
A finite type S, the set of states.
Some s of type S, the start state.
A decidable predicate F over S to define the accepting states.

A transition function δS : S→ Σ→ S.

We lift δS as δ∗S to words.

Definition (Acceptance)
An automaton accepts a word w if F (δ∗S s w).

23

Finite Types Classical properties Cardinality Vectors Constructions Finite Closure Iteration Automata References

TEST CASE: FINITE AUTOMATA WITH FINITE TYPES

Inspired by [3] (Talk on Monday 3:15 pm)

Assume a finite type Σ as the alphabet.

Deterministic finite automata are formalised by:
A finite type S, the set of states.
Some s of type S, the start state.
A decidable predicate F over S to define the accepting states.
A transition function δS : S→ Σ→ S.

We lift δS as δ∗S to words.

Definition (Acceptance)
An automaton accepts a word w if F (δ∗S s w).

23

Finite Types Classical properties Cardinality Vectors Constructions Finite Closure Iteration Automata References

TEST CASE: FINITE AUTOMATA WITH FINITE TYPES

Inspired by [3] (Talk on Monday 3:15 pm)

Assume a finite type Σ as the alphabet.

Deterministic finite automata are formalised by:
A finite type S, the set of states.
Some s of type S, the start state.
A decidable predicate F over S to define the accepting states.
A transition function δS : S→ Σ→ S.

We lift δS as δ∗S to words.

Definition (Acceptance)
An automaton accepts a word w if F (δ∗S s w).

23

Finite Types Classical properties Cardinality Vectors Constructions Finite Closure Iteration Automata References

TEST CASE: FINITE AUTOMATA WITH FINITE TYPES

Inspired by [3] (Talk on Monday 3:15 pm)

Assume a finite type Σ as the alphabet.

Deterministic finite automata are formalised by:
A finite type S, the set of states.
Some s of type S, the start state.
A decidable predicate F over S to define the accepting states.
A transition function δS : S→ Σ→ S.

We lift δS as δ∗S to words.

Definition (Acceptance)
An automaton accepts a word w if F (δ∗S s w).

23

Finite Types Classical properties Cardinality Vectors Constructions Finite Closure Iteration Automata References

TEST CASE: FINITE AUTOMATA WITH FINITE TYPES

Inspired by [3] (Talk on Monday 3:15 pm)

Assume a finite type Σ as the alphabet.

Deterministic finite automata are formalised by:
A finite type S, the set of states.
Some s of type S, the start state.
A decidable predicate F over S to define the accepting states.
A transition function δS : S→ Σ→ S.

We lift δS as δ∗S to words.

Definition (Acceptance)
An automaton accepts a word w if F (δ∗S s w).

23

Finite Types Classical properties Cardinality Vectors Constructions Finite Closure Iteration Automata References

FCITER IN ACTION

0 1

b

2

4

3

a c
a

a

ab cb c

1 {2}
2 {2,3}
3 {2,3,4}
4 {2,3,4,1}
5 {2,3,4,1}← fixed point

24

Finite Types Classical properties Cardinality Vectors Constructions Finite Closure Iteration Automata References

FCITER IN ACTION

0 1

b

2

4

3

a c
a

a

ab cb c

1 {2}

2 {2,3}
3 {2,3,4}
4 {2,3,4,1}
5 {2,3,4,1}← fixed point

24

Finite Types Classical properties Cardinality Vectors Constructions Finite Closure Iteration Automata References

FCITER IN ACTION

0 1

b

2

4

3

a c
a

a

ab cb c

1 {2}
2 {2,3}

3 {2,3,4}
4 {2,3,4,1}
5 {2,3,4,1}← fixed point

24

Finite Types Classical properties Cardinality Vectors Constructions Finite Closure Iteration Automata References

FCITER IN ACTION

0 1

b

2

4

3

a c
a

a

ab cb c

1 {2}
2 {2,3}
3 {2,3,4}

4 {2,3,4,1}
5 {2,3,4,1}← fixed point

24

Finite Types Classical properties Cardinality Vectors Constructions Finite Closure Iteration Automata References

FCITER IN ACTION

0 1

b

2

4

3

a c
a

a

ab cb c

1 {2}
2 {2,3}
3 {2,3,4}
4 {2,3,4,1}

5 {2,3,4,1}← fixed point

24

Finite Types Classical properties Cardinality Vectors Constructions Finite Closure Iteration Automata References

FCITER IN ACTION

0 1

b

2

4

3

a c
a

a

ab cb c

1 {2}
2 {2,3}
3 {2,3,4}
4 {2,3,4,1}
5 {2,3,4,1}← fixed point

24

Finite Types Classical properties Cardinality Vectors Constructions Finite Closure Iteration Automata References

FCITER IN ACTION

0 1

b

2

4

3

a c
a

a

ab cb c

1 {2}
2 {2,3}
3 {2,3,4}
4 {2,3,4,1}
5 {2,3,4,1}← fixed point

Allows to decide
language is Σ∗.

language emptiness.
language inclusion.
language equivalence.

24

Finite Types Classical properties Cardinality Vectors Constructions Finite Closure Iteration Automata References

FCITER IN ACTION

0 1

b

2

4

3

a c
a

a

ab cb c

1 {2}
2 {2,3}
3 {2,3,4}
4 {2,3,4,1}
5 {2,3,4,1}← fixed point

Allows to decide
language is Σ∗.
language emptiness.

language inclusion.
language equivalence.

24

Finite Types Classical properties Cardinality Vectors Constructions Finite Closure Iteration Automata References

FCITER IN ACTION

0 1

b

2

4

3

a c
a

a

ab cb c

1 {2}
2 {2,3}
3 {2,3,4}
4 {2,3,4,1}
5 {2,3,4,1}← fixed point

Allows to decide
language is Σ∗.
language emptiness.
language inclusion.

language equivalence.

24

Finite Types Classical properties Cardinality Vectors Constructions Finite Closure Iteration Automata References

FCITER IN ACTION

0 1

b

2

4

3

a c
a

a

ab cb c

1 {2}
2 {2,3}
3 {2,3,4}
4 {2,3,4,1}
5 {2,3,4,1}← fixed point

Allows to decide
language is Σ∗.
language emptiness.
language inclusion.
language equivalence.

24

Finite Types Classical properties Cardinality Vectors Constructions Finite Closure Iteration Automata References

MORE ABOUT AUTOMATA

Closure properties

I Complement
I Intersection
I Union
I Difference
I Concatenation
I Kleene Operator

Non deterministic finite automata (NFA)

I Equivalence of NFA and DFA

F Uses vectors

Other constructions

I Automaton only accepting ε
I Automaton adding some letter x to every word of a language
I Automaton accepting some only some word w

25

Finite Types Classical properties Cardinality Vectors Constructions Finite Closure Iteration Automata References

MORE ABOUT AUTOMATA

Closure properties
I Complement

I Intersection
I Union
I Difference
I Concatenation
I Kleene Operator

Non deterministic finite automata (NFA)

I Equivalence of NFA and DFA

F Uses vectors

Other constructions

I Automaton only accepting ε
I Automaton adding some letter x to every word of a language
I Automaton accepting some only some word w

25

Finite Types Classical properties Cardinality Vectors Constructions Finite Closure Iteration Automata References

MORE ABOUT AUTOMATA

Closure properties
I Complement
I Intersection

I Union
I Difference
I Concatenation
I Kleene Operator

Non deterministic finite automata (NFA)

I Equivalence of NFA and DFA

F Uses vectors

Other constructions

I Automaton only accepting ε
I Automaton adding some letter x to every word of a language
I Automaton accepting some only some word w

25

Finite Types Classical properties Cardinality Vectors Constructions Finite Closure Iteration Automata References

MORE ABOUT AUTOMATA

Closure properties
I Complement
I Intersection
I Union

I Difference
I Concatenation
I Kleene Operator

Non deterministic finite automata (NFA)

I Equivalence of NFA and DFA

F Uses vectors

Other constructions

I Automaton only accepting ε
I Automaton adding some letter x to every word of a language
I Automaton accepting some only some word w

25

Finite Types Classical properties Cardinality Vectors Constructions Finite Closure Iteration Automata References

MORE ABOUT AUTOMATA

Closure properties
I Complement
I Intersection
I Union
I Difference

I Concatenation
I Kleene Operator

Non deterministic finite automata (NFA)

I Equivalence of NFA and DFA

F Uses vectors

Other constructions

I Automaton only accepting ε
I Automaton adding some letter x to every word of a language
I Automaton accepting some only some word w

25

Finite Types Classical properties Cardinality Vectors Constructions Finite Closure Iteration Automata References

MORE ABOUT AUTOMATA

Closure properties
I Complement
I Intersection
I Union
I Difference
I Concatenation

I Kleene Operator
Non deterministic finite automata (NFA)

I Equivalence of NFA and DFA

F Uses vectors

Other constructions

I Automaton only accepting ε
I Automaton adding some letter x to every word of a language
I Automaton accepting some only some word w

25

Finite Types Classical properties Cardinality Vectors Constructions Finite Closure Iteration Automata References

MORE ABOUT AUTOMATA

Closure properties
I Complement
I Intersection
I Union
I Difference
I Concatenation
I Kleene Operator

Non deterministic finite automata (NFA)

I Equivalence of NFA and DFA

F Uses vectors

Other constructions

I Automaton only accepting ε
I Automaton adding some letter x to every word of a language
I Automaton accepting some only some word w

25

Finite Types Classical properties Cardinality Vectors Constructions Finite Closure Iteration Automata References

MORE ABOUT AUTOMATA

Closure properties
I Complement
I Intersection
I Union
I Difference
I Concatenation
I Kleene Operator

Non deterministic finite automata (NFA)

I Equivalence of NFA and DFA

F Uses vectors

Other constructions

I Automaton only accepting ε
I Automaton adding some letter x to every word of a language
I Automaton accepting some only some word w

25

Finite Types Classical properties Cardinality Vectors Constructions Finite Closure Iteration Automata References

MORE ABOUT AUTOMATA

Closure properties
I Complement
I Intersection
I Union
I Difference
I Concatenation
I Kleene Operator

Non deterministic finite automata (NFA)
I Equivalence of NFA and DFA

F Uses vectors

Other constructions

I Automaton only accepting ε
I Automaton adding some letter x to every word of a language
I Automaton accepting some only some word w

25

Finite Types Classical properties Cardinality Vectors Constructions Finite Closure Iteration Automata References

MORE ABOUT AUTOMATA

Closure properties
I Complement
I Intersection
I Union
I Difference
I Concatenation
I Kleene Operator

Non deterministic finite automata (NFA)
I Equivalence of NFA and DFA

F Uses vectors

Other constructions

I Automaton only accepting ε
I Automaton adding some letter x to every word of a language
I Automaton accepting some only some word w

25

Finite Types Classical properties Cardinality Vectors Constructions Finite Closure Iteration Automata References

MORE ABOUT AUTOMATA

Closure properties
I Complement
I Intersection
I Union
I Difference
I Concatenation
I Kleene Operator

Non deterministic finite automata (NFA)
I Equivalence of NFA and DFA

F Uses vectors

Other constructions

I Automaton only accepting ε
I Automaton adding some letter x to every word of a language
I Automaton accepting some only some word w

25

Finite Types Classical properties Cardinality Vectors Constructions Finite Closure Iteration Automata References

MORE ABOUT AUTOMATA

Closure properties
I Complement
I Intersection
I Union
I Difference
I Concatenation
I Kleene Operator

Non deterministic finite automata (NFA)
I Equivalence of NFA and DFA

F Uses vectors

Other constructions
I Automaton only accepting ε

I Automaton adding some letter x to every word of a language
I Automaton accepting some only some word w

25

Finite Types Classical properties Cardinality Vectors Constructions Finite Closure Iteration Automata References

MORE ABOUT AUTOMATA

Closure properties
I Complement
I Intersection
I Union
I Difference
I Concatenation
I Kleene Operator

Non deterministic finite automata (NFA)
I Equivalence of NFA and DFA

F Uses vectors

Other constructions
I Automaton only accepting ε
I Automaton adding some letter x to every word of a language

I Automaton accepting some only some word w

25

Finite Types Classical properties Cardinality Vectors Constructions Finite Closure Iteration Automata References

MORE ABOUT AUTOMATA

Closure properties
I Complement
I Intersection
I Union
I Difference
I Concatenation
I Kleene Operator

Non deterministic finite automata (NFA)
I Equivalence of NFA and DFA

F Uses vectors

Other constructions
I Automaton only accepting ε
I Automaton adding some letter x to every word of a language
I Automaton accepting some only some word w

25

Finite Types Classical properties Cardinality Vectors Constructions Finite Closure Iteration Automata References

BIBLIOGRAPHY I

[1] Pierre Castéran and Matthieu Sozeau. A gentle introduction to type
classes and relations in Coq. This document presents the main
features of type classes and user-defined relations in the Coq
proof assistant. May 2014. URL:
http://www.labri.fr/perso/casteran/CoqArt/
TypeClassesTut/typeclassestut.pdf.

[2] Christian Doczkal, Jan-Oliver Kaiser, and Gert Smolka. “A
Constructive Theory of Regular Languages in Coq”. In: Certified
Programs and Proofs, Third International Conference (CPP 2013).
Ed. by Geroges Gonthier and Michael Norrish. Vol. 8307. LNCS.
Springer, Dec. 2013, pp. 82–97.

[3] Christian Doczkal and Gert Smolka. “Two-Way Automata in
Coq”. In: Interative Theorem Proving (ITP 2016). To appear. 2016.

26

http://www.labri.fr/perso/casteran/CoqArt/TypeClassesTut/typeclassestut.pdf
http://www.labri.fr/perso/casteran/CoqArt/TypeClassesTut/typeclassestut.pdf

Finite Types Classical properties Cardinality Vectors Constructions Finite Closure Iteration Automata References

BIBLIOGRAPHY II

[4] Duality principle. Encyclopedia of Mathematics. URL:
https://www.encyclopediaofmath.org/index.php/
Duality_principle.

[5] Denis Firsov and Tarmo Uustalu. “Dependently Typed
Programming with Finite Sets”. In: Proceedings of the 11th ACM
SIGPLAN Workshop on Generic Programming. WGP 2015.
Vancouver, BC, Canada: ACM, 2015, pp. 33–44. ISBN:
978-1-4503-3810-3. DOI: 10.1145/2808098.2808102. URL:
http://doi.acm.org/10.1145/2808098.2808102.

[6] François Garillot. “Generic Proof Tools and Finite Group
Theory”. English. Thesis. Logic in Computer Science [cs.LO].
Ecole Polytechnique X, Dec. 2011. URL: https:
//pastel.archives-ouvertes.fr/pastel-00649586.

27

https://www.encyclopediaofmath.org/index.php/Duality_principle
https://www.encyclopediaofmath.org/index.php/Duality_principle
http://dx.doi.org/10.1145/2808098.2808102
http://doi.acm.org/10.1145/2808098.2808102
https://pastel.archives-ouvertes.fr/pastel-00649586
https://pastel.archives-ouvertes.fr/pastel-00649586

Finite Types Classical properties Cardinality Vectors Constructions Finite Closure Iteration Automata References

BIBLIOGRAPHY III

[7] François Garillot et al. “Packaging Mathematical Structures”. In:
Theorem Proving in Higher Order Logics. Ed. by Tobias Nipkow
and Christian Urban. Vol. 5674. Lecture Notes in Computer
Science. Munich, Germany: Springer, 2009. URL:
https://hal.inria.fr/inria-00368403.

[8] Georges Gonthier, Assia Mahboubi, and Enrico Tassi. A Small
Scale Reflection Extension for the Coq system. Research Report
RR-6455. Inria Saclay Ile de France, 2015. URL:
https://hal.inria.fr/inria-00258384.

28

https://hal.inria.fr/inria-00368403
https://hal.inria.fr/inria-00258384

Finite Types Classical properties Cardinality Vectors Constructions Finite Closure Iteration Automata References

BIBLIOGRAPHY IV

[9] Georges Gonthier et al. “A Modular Formalisation of Finite
Group Theory”. In: Proceedings of the 20th International Conference
on Theorem Proving in Higher Order Logics. TPHOLs’07.
Kaiserslautern, Germany: Springer-Verlag, 2007, pp. 86–101.
ISBN: 3-540-74590-4, 978-3-540-74590-7. URL: http:
//dl.acm.org/citation.cfm?id=1792233.1792241.

[10] Michael Hedberg. “A Coherence Theorem for Martin-Löf’s Type
Theory”. In: J. Funct. Program. 8.4 (July 1998), pp. 413–436. ISSN:
0956-7968. DOI: 10.1017/S0956796898003153. URL:
http://dx.doi.org/10.1017/S0956796898003153.

[11] Dexter C. Kozen. Automata and Computability. 1st. Ithaca, NY,
USA: Springer-Verlag New York, Inc., 1997. ISBN: 0387949070.

29

http://dl.acm.org/citation.cfm?id=1792233.1792241
http://dl.acm.org/citation.cfm?id=1792233.1792241
http://dx.doi.org/10.1017/S0956796898003153
http://dx.doi.org/10.1017/S0956796898003153

Finite Types Classical properties Cardinality Vectors Constructions Finite Closure Iteration Automata References

BIBLIOGRAPHY V

[12] Assia Mahboubi and Enrico Tassi. “Canonical Structures for the
working Coq user”. In: ITP 2013, 4th Conference on Interactive
Theorem Proving. Ed. by Sandrine Blazy, Christine Paulin, and
David Pichardie. Vol. 7998. LNCS. Rennes, France: Springer, July
2013, pp. 19–34. DOI: 10.1007/978-3-642-39634-2_5.
URL: https://hal.inria.fr/hal-00816703.

[13] Gert Smolka. Base Library for ICL. Saarland University. 2016.

[14] Gert Smolka and Chad E. Brown. “Introduction to
Computational Logic. Lecture Notes SS 2014”. Saarland
University. 2014.

30

http://dx.doi.org/10.1007/978-3-642-39634-2_5
https://hal.inria.fr/hal-00816703

Finite Types Classical properties Cardinality Vectors Constructions Finite Closure Iteration Automata References

BIBLIOGRAPHY VI

[15] Gert Smolka and Kathrin Stark. “Hereditarily Finite Sets in
Constructive Type Theory”. In: Interactive Theorem Proving - 7th
International Conference, ITP 2016, Nancy, France, August 22-27,
2016. Ed. by Jasmin Christian Blanchette and Stephan Merz.
LNCS. To appear. Springer-Verlag, 2016.

[16] Bas Spitters and Eelis van der Weegen. “Type Classes for
Mathematics in Type Theory”. In: MSCS, special issue on
‘Interactive theorem proving and the formalization of mathematics’ 21
(2011), pp. 1–31. DOI: 10.1017/S0960129511000119. URL:
http://journals.cambridge.org/action/
displayAbstract?aid=8319570.

[17] Enrico Tassi and Georges Gonthier et al. Ssreflect. URL:
http://math-comp.github.io/math-comp/.

31

http://dx.doi.org/10.1017/S0960129511000119
http://journals.cambridge.org/action/displayAbstract?aid=8319570
http://journals.cambridge.org/action/displayAbstract?aid=8319570
http://math-comp.github.io/math-comp/

Finite Types Classical properties Cardinality Vectors Constructions Finite Closure Iteration Automata References

BIBLIOGRAPHY VII

[18] The Coq development Team. The Coq Proof Assistant The standard
library. 2016. URL: https://coq.inria.fr/stdlib/.

32

https://coq.inria.fr/stdlib/

Finite Types Classical properties Cardinality Vectors Constructions Finite Closure Iteration Automata References

THE END

Thank you for your attention

Any questions? Ask away!

33

Finite Types Classical properties Cardinality Vectors Constructions Finite Closure Iteration Automata References

EXTRAS

Definition (pure)
For a decidable predicate p with
pure p x:= if p x then > else ⊥
pure p is a pure predicate.

34

Finite Types Classical properties Cardinality Vectors Constructions Finite Closure Iteration Automata References

REACHABLE STATES IN DFAS

Let A be a DFA with set of states S

We use finite closure iteration to compute reachable states.

Definition (step predicate)
step_reach (set: list (S A)) (q : S A) :=
∃ q′ x, q′ ∈ set→ δS q′ x = q.

Definition
reach reach (q:S) := FCIter step_reach [q].

35

Finite Types Classical properties Cardinality Vectors Constructions Finite Closure Iteration Automata References

REACHABLE STATES IN DFAS

Let A be a DFA with set of states S

We use finite closure iteration to compute reachable states.

Definition (step predicate)
step_reach (set: list (S A)) (q : S A) :=
∃ q′ x, q′ ∈ set→ δS q′ x = q.

Definition
reach reach (q:S) := FCIter step_reach [q].

35

Finite Types Classical properties Cardinality Vectors Constructions Finite Closure Iteration Automata References

REACHABLE STATES IN DFAS

Let A be a DFA with set of states S

We use finite closure iteration to compute reachable states.

Definition (step predicate)
step_reach (set: list (S A)) (q : S A) :=
∃ q′ x, q′ ∈ set→ δS q′ x = q.

Definition
reach reach (q:S) := FCIter step_reach [q].

35

Finite Types Classical properties Cardinality Vectors Constructions Finite Closure Iteration Automata References

EQTYPES

dec (P:P) := {P} + {¬ P}.

eq_dec (X:Type) := ∀ x y, dec (x = y).

Structure eqType := EqType {
eqtype :> Type ;
decide_eq : eq_dec eqtype }.

36

Finite Types Classical properties Cardinality Vectors Constructions Finite Closure Iteration Automata References

FINTYPES

Class finTypeC (type: eqType): Type := FinTypeC {
enum: list type;
enum_ok: ∀ x: type, count enum x = 1 }.

Structure finType: Type := FinType {
type :> eqType;
class : finTypeC type }.

37

Finite Types Classical properties Cardinality Vectors Constructions Finite Closure Iteration Automata References

ADMISSIBLE FUNCTIONS

Definition (Admissibility)
A function (f: list Y→ list Y) is called admissible if a given list A is
either a fixed-point of f or card (f A) > card A.

Theorem
Let f be an admissible function list X→ list X. Then

f Cardinality X A

is a fixed point of f for any list A over elements of X.

38

Finite Types Classical properties Cardinality Vectors Constructions Finite Closure Iteration Automata References

ADMISSIBLE FUNCTIONS

Definition (Admissibility)
A function (f: list Y→ list Y) is called admissible if a given list A is
either a fixed-point of f or card (f A) > card A.

Theorem
Let f be an admissible function list X→ list X. Then

f Cardinality X A

is a fixed point of f for any list A over elements of X.

38

Finite Types Classical properties Cardinality Vectors Constructions Finite Closure Iteration Automata References

FCITER

Lemma
FCStep is an admissible function.

FCIter
FCIter := FCStepCardinality X.

Corollary
Let A be a list over X. Then FCIter A is a fixed point of FCStep.

39

Finite Types Classical properties Cardinality Vectors Constructions Finite Closure Iteration Automata References

FCITER

Lemma
FCStep is an admissible function.

FCIter
FCIter := FCStepCardinality X.

Corollary
Let A be a list over X. Then FCIter A is a fixed point of FCStep.

39

Finite Types Classical properties Cardinality Vectors Constructions Finite Closure Iteration Automata References

FCITER

Lemma
FCStep is an admissible function.

FCIter
FCIter := FCStepCardinality X.

Corollary
Let A be a list over X. Then FCIter A is a fixed point of FCStep.

39

Finite Types Classical properties Cardinality Vectors Constructions Finite Closure Iteration Automata References

A FINITE VECTOR TYPE

Goal: Construct finite type for X1−→X2.

Needed: List containing all vectors of type X1−→X2.
Construct all possible images first:

Fixpoint images (Y: Type) (A: list Y) (n: N) : list (list Y)
:=
match n with
| 0 ⇒ [[]]
| S n’ ⇒ concat (map (λ x ⇒ map (cons x) (images A n′)) A)
end.

40

Finite Types Classical properties Cardinality Vectors Constructions Finite Closure Iteration Automata References

A FINITE VECTOR TYPE

Goal: Construct finite type for X1−→X2.

Needed: List containing all vectors of type X1−→X2.

Construct all possible images first:

Fixpoint images (Y: Type) (A: list Y) (n: N) : list (list Y)
:=
match n with
| 0 ⇒ [[]]
| S n’ ⇒ concat (map (λ x ⇒ map (cons x) (images A n′)) A)
end.

40

Finite Types Classical properties Cardinality Vectors Constructions Finite Closure Iteration Automata References

A FINITE VECTOR TYPE

Goal: Construct finite type for X1−→X2.

Needed: List containing all vectors of type X1−→X2.
Construct all possible images first:

Fixpoint images (Y: Type) (A: list Y) (n: N) : list (list Y)
:=
match n with
| 0 ⇒ [[]]
| S n’ ⇒ concat (map (λ x ⇒ map (cons x) (images A n′)) A)
end.

40

Finite Types Classical properties Cardinality Vectors Constructions Finite Closure Iteration Automata References

A FINITE VECTOR TYPE

Goal: Construct finite type for X1−→X2.

Needed: List containing all vectors of type X1−→X2.
Construct all possible images first:

Fixpoint images (Y: Type) (A: list Y) (n: N) : list (list Y)
:=
match n with
| 0 ⇒ [[]]
| S n’ ⇒ concat (map (λ x ⇒ map (cons x) (images A n′)) A)
end.

40

Finite Types Classical properties Cardinality Vectors Constructions Finite Closure Iteration Automata References

A FINITE VECTOR TYPE

Goal: Construct finite type for X1−→X2.

Needed: List containing all vectors of type X1−→X2.

Fact
∀ A,A ∈ images (elem X2) (Cardinality X1)→ |A| = Cardinality X1.

⇒We can build vectors

Fact
Let A: list X2 and |A| = Cardinality X. Then
count (images (elem X2) (Cardinality X1)) A = 1.

This is enough to construct finite type XX1
2 .

41

Finite Types Classical properties Cardinality Vectors Constructions Finite Closure Iteration Automata References

A FINITE VECTOR TYPE

Goal: Construct finite type for X1−→X2.

Needed: List containing all vectors of type X1−→X2.

Fact
∀ A,A ∈ images (elem X2) (Cardinality X1)→ |A| = Cardinality X1.

⇒We can build vectors

Fact
Let A: list X2 and |A| = Cardinality X. Then
count (images (elem X2) (Cardinality X1)) A = 1.

This is enough to construct finite type XX1
2 .

41

	Finite Types
	Classical properties
	Cardinality
	Vectors
	Constructions
	Finite Closure Iteration
	Automata

