
Oracle Machines and the Turing Jump in

Synthetic Computability

Niklas Mück

March 7, 2022

1 Oracle Machines

It is well-known that the halting problem is undecidable, and that there are
harder problems that still cannot be decided even when extending the model
of computation with an oracle for the halting problem. In order to study the
relative computability of decision problems, Turing [1] came up with the idea
of oracle machines. An oracle machine is a Turing machine with an addition
operation for querying a black-box solver for a given problem.

Having such a model of computation, one can introduce Turing reducibility
P ≤T Q saying that a problem (set of numbers) P is computable relative to a
problem Q if there exists an oracle machine with an oracle for Q that solves P .
The first idea of this notion goes back to Turing [1] and was later developed by
Post [2].

Because oracle machines only have a single additional operation compared
to normal Turing machines, the Gödel encoding can be extended easily and one
can construct a universal oracle machine (for a fixed oracle) very similarly to
the universal Turing machine. Also the halting problem of oracle machines with
an oracle for Q can be formulated as the set of all numbers encoding oracle
machines that halt on their own encoding as an input. This set is also called
the Turing jump [3] of Q, written Q′.

2 Synthetic Computability

We are working in constructive type theory implemented by the proof assistent
Coq. Functions in Coq can only be defined by implementing them in the func-
tional programming language Coq provides. Therefore it seems very natural to
treat the type N→ N as the type of computable functions. It allows us to build
a whole theory on this idea without arguing in a concrete model of computation.

This approach was pioneered by Richman, Bridges, and Bauer [4, 5, 6] and
advanced in constructive type theory by Forster et al. [7, 8]. It can be seen as
“synthetic” meaning that the objects under investigation are defined axiomat-
ically. It is dual to the “analytic” approach often used in textbooks where the
objects under investigation are modeled in a greater system and afterwards in-
teresting properties are derived.

1



Most computability theory textbooks first define a concrete model of com-
putation e.g. Turing machines, then construct a Gödel encoding and argue that
there is a universal Turing machine implementing a universal function. As a first
key result they formulate the halting problem and show that it is not decidable.

In our synthetic setting we cannot do it in the same way as functions are
not associated with their source code1.
Instead we work with an enumerability of partial functions axiom (EPF) [4, 9]:

EPF := Σθ : N→ (N ⇀ N). ∀f : N ⇀ N. ∃c : N. θc ≡ f

We say that θ is an enumerator for elements of the type N ⇀ N which is there-
fore countable. In synthetic computability, θ plays a similar role as the universal
function. Using this axiom we can formulate a problem K that is similar to the
self-halting problem of Turing machines: Kc := ∃v. θcc ▷ v

3 Oracle Machines in Synthetic Computability

All functions N → N being computable becomes very handy when studying
computable functions. However the existing setup does not extend that easily
(by adding a single oracle operation) to oracle machines in order to study rela-
tive computability.

Forster [8] proposes a synthetic definition of Turing reducibility in his PhD
thesis on which our work mainly builds on. It was conceived in joint work with
Dominik Kirst and follows an idea by Bauer [10].
A Turing reduction consists of:

• a functional relation transformer r : (Y ⇝ B) → (X ⇝ B) mapping
functional relations Y ⇝ B (which can be seen as an oracle) to functional
relations X ⇝ B

• a computable core r′ : (Y ⇀ B)→ (X ⇀ B) mapping partial functions to
partial functions

• such that: ∀R f. (∀x y. R x y ↔ f x▷y)→ (∀x y. (r R) x y ↔ (r′ f) x▷y)
• in addition it also needs to be continuous (see [8])

Functional relations are the non-computable counterpart to partial functions.
Therefore the (potentially uncomputable) oracle is taken as a functional relation
and is used in order to build another functional relation. The computable core
makes sure that the only uncomputability comes from the oracle by requiring
that the Turing reduction is computable by a partial function for all computable
oracles. Continuity intuitively makes sure that the oracle is only queried finitely
many times. We will study this property in detail later.

We take Forster’s definition of Turing reducibility and derive a notion of
oracle machines for semi-decision (naming the type M) by changing the
type to r : (Y ⇝ B) → (X ⇝ 1) and r′ : (Y ⇀ B) → (X ⇀ 1). We call r the
halting relation Mhalts because choosing these types, halting means returning
the unique value ⋆ of type 1. Then we define oracle semi-decidability:

SQ(P ) := ∃M : M. ∀x. x ∈ P ↔Mhalts Q x

1this would even be inconsistent in classical set theory

2



We call a problem P semi-decidable with respect to an oracle Q if there is an
oracle machine that halts – when passing an oracle for Q – on x if and only if
x fulfills P .

4 Turing jump

The halting problem of oracle machines i.e. the Turing jump [3] of a problem
Q is oracle semi-decidable relative to Q but its complement is not. We would
like to find a synthetic definition for the Turing jump and show its properties.

In order to define the halting problem of oracle machines we need to relate
oracle machines with natural numbers, their codes. We follow the definition of
K and derive codes by enumerating oracle machines. As we would like to pass
a natural number as an input and are only interested in whether the machine
halts we reuse our definition of oracle machines for semi-decision.

Fact 1 gives that two oracle machines with the same computational core
behave extensionally equal due to continuity reasons:

Fact 1. ∀M M ′ R x. Mcore = M ′
core → ¬Mhalts R x→ ¬M ′

halts R x.

Therefore an enumerator ζ : N → ((N ⇀ B)→ (N ⇀ 1)) for computational
cores is sufficient. Computational cores take a partial (computable) function
and a natural number as an argument. Both argument types are countable
so using the pairing function to combine them seems to be natural. Unfortu-
nately we cannot computationally encode partial functions into natural num-
bers (there is only an ∃c in EPF). So the type (N ⇀ B) → (N ⇀ 1) cannot
be enumerated. We will fix this problem later by a tweak in the definition of
oracle machines but skip the technical fix for now and assume an enumerator
ζ : N→ ((N ⇀ B)→ (N ⇀ 1)).

Now we can finally define the Turing jump of Q as follows2:

Q′ := {c ∈ N | ∃M : M. Mcore = ζc ∧ Mhalts Q c}

Before we can prove that the Turing jump Q′ is oracle semi-decidable with
respect to Q but its complement is not, we need a prerequisite lemma. Namely
that for each code c there is a oracle machine with a core of code c. Making such
a construction continuous is a bit involved, therefore we skip the proof first.

Lemma 1. ∀c. ∃M : M. Mcore = ζc.

Theorem 1. Q′ is oracle semi-decidable with respect to Q.

Proof. Following the definition of oracle semi-decidability we need to find an
oracle machine that halts – with oracle Q – on input n iff n ∈ Q′.
For the functional relation (relations on 1 are trivially functional) transformer
we choose: r Ro c ⋆ := ∃M. Mcore = ζc ∧ Mhalts Ro c
As computational core we choose: r′ fo c := ζc fo c
Obviously r is equivalent to Q′ when choosing an oracle for Q as Ro. But it
remains to show that r′ is a core of r. So given R and f such that f computes R
we need to show: ∀c. (∃M. Mcore = ζc ∧ Mhalts R c)↔ ζc f c ▷ ⋆

2we use set notation for predicates whenever it supports readability

3



→ We assume there is a M such that Mcore = ζc and Mhalts R c. In addition
we already know that f computes R and can use the specification of the
functional core to conclude that ζc f c ▷ ⋆.

← We assume ζc f c ▷ ⋆. Now Lemma 1 gives us an oracle machine M
with Mcore = ζc. Again we know that f computes R and can use the
specification of the functional core to conclude Mhalts R c.

Theorem 2. Q′ is not oracle semi-decidable with respect to Q.

Proof. Assuming Q′ would be oracle semi-decidable with respect to Q, we get
an oracle machine M that halts (given an oracle for Q) on n iff n ̸∈ Q′. Because
ζ is surjective, there exists a c such that ζc = Mcore. Now it is enough to show
that c ̸∈ Q′ ↔ ¬Mhalts Q c as this contradicts our assumption.

→ Assume c ̸∈ Q′ and Mhalts Q c. We know that Mcore = ζc and Mhalts Q c
by definition gives us c ∈ Q′ and leads to a contradiction.

← Assume ¬Mhalts Q c and c ∈ Q′ this means there exists an oracle machine
M ′ with functional core ζc = Mcore that does halt on c. However Fact 1
gives that if an oracle machine does not halt, then all oracle machines with
equal core also does not halt which gives a contradiction.

References

[1] Alan Mathison Turing. Systems of logic based on ordinals. Proceedings of
the London mathematical society, 2(1):161–228, 1939.

[2] Emil L Post. Recursively enumerable sets of positive integers and their de-
cision problems. bulletin of the American Mathematical Society, 50(5):284–
316, 1944.

[3] Stephen C Kleene and Emil L Post. The upper semi-lattice of degrees of
recursive unsolvability. Annals of mathematics, pages 379–407, 1954.

[4] Fred Richman. Church’s thesis without tears. The Journal of symbolic
logic, 48(3):797–803, 1983.

[5] Douglas Bridges, Fred Richman, et al. Varieties of constructive mathemat-
ics, volume 97. Cambridge University Press, 1987.

[6] Andrej Bauer. First steps in synthetic computability theory. Electronic
Notes in Theoretical Computer Science, 155:5–31, 2006.

[7] Yannick Forster, Dominik Kirst, and Gert Smolka. On synthetic undecid-
ability in coq, with an application to the entscheidungsproblem. In Pro-
ceedings of the 8th ACM SIGPLAN International Conference on Certified
Programs and Proofs - CPP 2019. ACM Press, 2019.

[8] Yannick Forster. Computability in Constructive Type Theory. PhD thesis,
PhD thesis. Saarland University, 2021.: https://ps.uni-saarland.de/

~forster/thesis/phd-thesis-yforster-printblack.pdf.

4

https://ps.uni-saarland.de/~forster/thesis/phd-thesis-yforster-printblack.pdf
https://ps.uni-saarland.de/~forster/thesis/phd-thesis-yforster-printblack.pdf


[9] Yannick Forster. Church’s thesis and related axioms in coq’s type the-
ory. In Christel Baier and Jean Goubault-Larrecq, editors, 29th EACSL
Annual Conference on Computer Science Logic, CSL 2021, January 25-
28, 2021, Ljubljana, Slovenia (Virtual Conference), volume 183 of LIPIcs,
pages 21:1–21:19. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021.

[10] Andrej Bauer. Synthetic mathematics with an excursion into
computability theory (slide set). University of Wisconsin
Logic seminar, 2020. http://math.andrej.com/asset/data/

madison-synthetic-computability-talk.pdf.

5

http://math.andrej.com/asset/data/madison-synthetic-computability-talk.pdf
http://math.andrej.com/asset/data/madison-synthetic-computability-talk.pdf

	Oracle Machines
	Synthetic Computability
	Oracle Machines in Synthetic Computability
	Turing jump

