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What if we could solve the Halting Problem?
Halting Problem [Turing (1936)]

“Does a Turing machine halt on a given input?”

+ The halting problem is undecidable.

Oracle Machine [Turing (1939)]

“A Turing machine having a black box for solving a given problem”

Turing reducibility [Turing (1939); Post (1944)]

𝑃 ≤𝑇 𝑄 ∶=“𝑃 can be solved by an oracle machine for 𝑄”
+ “𝑃 is decidable relative to 𝑄”
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What if we could solve the Halting Problem?
Well-known problems that are undecidable relative to the halting problem:

Totality

Tot ∶=“Does a Turing machine halt on all inputs?”

+ H ≤𝑇 Tot, but Tot ≰𝑇 H
Best one can do: Semi-decider for Tot relative to H.

Cofiniteness
Cof ∶=“Does a Turing machine halt on all but finitely many inputs?”

+ Tot ≤𝑇 Cof, but Cof ≰𝑇 Tot
Best one can do: Semi-decider for Cof relative to Tot.
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What if we could solve the Halting Problem?
For each problem there exists a relatively undecidable problem:

Turing jump [Post (1948); Kleene and Post (1954)]

𝑄′ ∶= “halting problem of oracle machines with an oracle for 𝑄”

+ 𝑄′ is semi-decidable by oracle machines with an oracle for 𝑄.
+ Repeated jumping gives rise to a hierarchy of undecidability.
+ ∅(𝑛) ∶= “the 𝑛-th Turing jump starting with the empty predicate”
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Arithmetical Hierarchy [Kleene (1943); Mostowski (1947)]

ℎ(𝑀, 𝑖, 𝑠) ∶= “Turing machine 𝑀 halts on input 𝑖 after ≤ 𝑠 steps”

Halting Problem H(𝑀, 𝑖) ∶= ∃𝑠. ℎ(𝑀, 𝑖, 𝑠) ∈ ∑1

⪈ 𝑇

Totality Tot(𝑀) ∶= ∀𝑖. ∃𝑠. ℎ(𝑀, 𝑖, 𝑠) ∈ ∏2

⪈ 𝑇

Cofiniteness Cof(𝑀) ∶= ∃𝑛. ∀𝑖 ≥ 𝑛. ∃𝑠. ℎ(𝑀, 𝑖, 𝑠) ∈ ∑3

+ Post’s Theorem [Post (1948)]:
Connection between the arithmetical hierarchy and the Turing jump
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Synthetic Computability1

+ Consider all (partial) functions e.g. ℕ → ℕ as computable
+ In constructive type theory only computable functions can be defined
Definition
A predicate 𝑃 ∶ ℕ → ℙ is
• decidable: 𝒟(𝑃) ∶= ∃𝑓 ∶ ℕ → 𝔹 . 𝑃 𝑥 ↔ 𝑓 𝑥 = true
• semi-decidable: 𝒮(𝑃) ∶= ∃𝑓 ∶ ℕ ⇀ 𝟙. 𝑃 𝑥 ↔ 𝑓 𝑥 ⊳ ⋆
• many-one reducible to a predicate 𝑄 ∶ ℕ → ℙ:

𝑃 ⪯𝑚 𝑄 ∶= ∃𝑓 ∶ ℕ → ℕ . 𝑃 𝑥 ↔ 𝑄 (𝑓 𝑥)

+ Native reasoning without manipulating concrete models of computation

1Approach by [Richman (1983); Bridges and Richman (1987); Bauer (2005)]
In constructive type theory by [Forster et al. (2019); Forster (2021b)]
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Synthetic Computability – Halting Problem
“Does a partial function output a value?”

Problem: (Partial) functions are not associated with their source code
+ Gödel encoding cannot be constructed

Axiom: Enumerability of Partial Functions [Richman (1983); Forster (2021a)]

EPF ∶= 𝛴𝜃 ∶ ℕ → (ℕ ⇀ ℕ). ∀𝑓 ∶ ℕ ⇀ ℕ. ∃𝑐 ∶ ℕ. 𝜃 𝑖 ≈ 𝑓
𝜃 𝑖 𝑥 ⊳ 𝑦 ≙ “𝑖-th partial function terminates on 𝑥 with output 𝑦”

Self-halting problem 𝒦𝑖 ∶= ∃𝑦. 𝜃 𝑖 𝑖 ⊳ 𝑦
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Synthetic Computability – Turing Reductions2

𝑃 ⪯𝑇 𝑄 ∶= “𝑀 that maps the characteristic relation of 𝑄 to the one of 𝑃 ”

ℕ ⇝⇀ 𝔹 ℕ ⇝⇀ 𝔹

ℕ ⇀ 𝔹 ℕ ⇀ 𝔹

ℕ ⇝⇀ 𝔹 ∶= {𝑅 ∶ ℕ → 𝔹 → ℙ ∣ 𝑅 functional}

require diagram to commute

𝑀

𝑀𝑐

Theorem
If 𝑄 is undecidable then for any 𝑃 : 𝑃 ⪯𝑇 𝑄

Proof.
Define 𝑀 𝑅 𝑥 𝑏 as: If 𝑅 is decidable then true else reflect 𝑃 .

2Forster (2021b) in joint work with Kirst following two-layer idea by Bauer (2021)
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Synthetic Computability – Turing Reductions2

𝑃 ⪯𝑇 𝑄 ∶= “𝑀 that maps the characteristic relation of 𝑄 to the one of 𝑃 ”

ℕ ⇝⇀ 𝔹 ℕ ⇝⇀ 𝔹

ℕ ⇀ 𝔹 ℕ ⇀ 𝔹

ℕ ⇝⇀ 𝔹 ∶= {𝑅 ∶ ℕ → 𝔹 → ℙ ∣ 𝑅 functional}

require diagram to commute

𝑀

𝑀𝑐

+ Prevent 𝑀 from inspecting the oracle globally
+ Forster-Krist: require 𝑀 to be weakly continuous and monotonic

• ∀𝑅 𝑥. ¬¬∃𝐿 ∈ L (ℕ). ∀𝑅′ ⊇𝐿 𝑅 → ∀𝑦. 𝑀 𝑅 𝑥 𝑦 → 𝑀 𝑅′ 𝑥 𝑦
• ∀𝑅 𝑅′. 𝑅 ⊆ 𝑅′ → 𝑀 𝑅 ⊆ 𝑀 𝑅′

2Forster (2021b) in joint work with Kirst following two-layer idea by Bauer (2021)
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Synthetic Oracle Computability
Before my Bachelor’s thesis:

• There was only a proposal of synthetic Turing reductions
• Forster has shown that it differs from truth-table reductions

My Bachelor’s thesis:

• Advance definition of Turing reducibility (constructively strengthen
continuity requirement)
• Constructive results: can be expressed solely by a continuous higher
order partial function
• Connection to a textbook presentation of the arithmetical hierarchy by
proving Post’s theorem synthetically
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Advancing Synthetic Oracle Computability

July 06, 2022 Niklas Mück: The Arithmetical Hierarchy, Oracle Computability, and Post’s Theorem in Synthetic Computability 11



Synthetic Oracle Computability

ℕ ⇝⇀ 𝔹 ℕ ⇝⇀ 𝔹/𝟙

ℕ ⇀ 𝔹 ℕ ⇀ 𝔹/𝟙

ℕ ⇝⇀ 𝔹 ∶= {𝑅 ∶ ℕ → 𝔹 → ℙ ∣ 𝑅 functional}

require diagram to commute

𝑀

𝑀𝑐

+ Require 𝑀 to be constructively continuous
• ∀𝑅 𝑥 𝑦. 𝑀 𝑅 𝑥 𝑦 → ∃𝐿 ⊆ Dom(𝑅). ∀𝑅′ =𝐿 𝑅. 𝑀 𝑅′ 𝑥 𝑦

Turing Reducibility
𝑃 ⪯ 𝑄 ∶= ∃𝑀 ∶ 𝕄𝔹. 𝑀 𝑄 ≈ 𝑃

Oracle Semi-decidability
𝒮𝑄(𝑃 ) ∶= ∃𝑀 ∶ 𝕄𝟙. 𝑀 𝑄 𝑥 ⋆ ↔ 𝑃 𝑥
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Determinacy of Oracle Machines by Their Cores
Theorem
𝑀 𝑅 𝑥 𝑦 ↔ ∃𝐿true 𝐿false. (∀𝑎 ∈ 𝐿true. 𝑅 𝑎 true) ∧ (∀𝑎 ∈ 𝐿false. 𝑅 𝑎 false)

∧ 𝑀𝑐 (lookup 𝐿true 𝐿false) 𝑥 ⊳ 𝑦

where lookup 𝐿true 𝐿false 𝑎 ∶=
⎧{
⎨{⎩

true if 𝑎 ∈ 𝐿true

false if 𝑎 ∈ 𝐿false

undef. else

Proof.
𝑀 is continuous:
∀𝑅 𝑥 𝑦. 𝑀 𝑅 𝑥 𝑦 → ∃𝐿 ⊆ Dom(𝑅). ∀𝑅′ =𝐿 𝑅. 𝑀 𝑅′ 𝑥 𝑦
+ 𝐿 ⊆ Dom(𝑅) ∶= ∀𝑎 ∈ 𝐿. ∃𝑏. 𝑅 𝑎 𝑏 + split 𝐿 into 𝐿true and 𝐿false

+ Proof is constructive
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Synthetic Turing Jump
Theorem
𝑀 𝑅 𝑥 𝑦 ↔ ∃𝐿true 𝐿false. (∀𝑎 ∈ 𝐿true. 𝑅 𝑎 true) ∧ (∀𝑎 ∈ 𝐿false. 𝑅 𝑎 false)

∧ 𝑀𝑐 (lookup 𝐿true 𝐿false) 𝑥 ⊳ 𝑦

+ One-to-one correspondence between oracle machines and continuous
higher-order partial functions.
Axiom
Assume an enumeration of continuous higher-order partial functions
𝜉 ∶ ℕ → ((ℕ ⇀ 𝔹) → (ℕ ⇀ 𝟙))

+ Construct enumeration of oracle machines 𝛯 ∶ ℕ → 𝕄𝟙

Turing jump
𝑄′ 𝑖 ∶= (𝛯 𝑖) 𝑄 𝑖 ⋆

Fact
S𝑄(𝑄′) but ¬S𝑄(𝑄′)
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Arithmetical Hierarchy
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Arithmetical Hierarchy in First-Order Logic
Definition in first-order arithmetic3 following Odifreddi (1992) without relying
on a concrete model of computation:

∑𝑛 ∶ 𝔽 → ℙ
Classify formulas in prenex normal form4 (all quantifier in front):

noQuant 𝜑
∑𝑛 𝜑

∏𝑛 𝜑
∑𝑛+1 ∃𝜑

∑𝑛+1 𝜑
∑𝑛+1 ∃𝜑

+ same definition for ∏𝑛, mutually inductive

For predicates: 𝑝 ∶ ℕ𝑘 → ℙ
∑𝑛 𝑝 ∶= ∃𝜑. ∑𝑛 𝜑 ∧ (∀ ⃗𝑣. 𝑝 ⃗𝑣 ↔ ⃗𝑣 ⊨ℕ 𝜑)

3Using the mechanization from the “Coq Library for Mechanised First-Order Logic” [Kirst et al. (2022)]
4I have mechanized an algorithm for that
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Arithmetical Hierarchy – Synthetic Definition

∑̃𝑛 ∶ (ℕ𝑘 → ℙ) → ℙ
𝑓 ∶ ℕ𝑘 → 𝔹

∑̃𝑛(𝜆 ⃗𝑣. 𝑓 ⃗𝑣 = true)
∏̃𝑛 𝑝

∑̃𝑛+1(𝜆 ⃗𝑣. ∃𝑥. 𝑝(𝑥 ∶∶ ⃗𝑣))
+ same definition for ∏̃𝑛, mutually inductive

+ Both definitions are equivalent when assuming a CT5-like axiom
Axiom
∀𝑓 ∶ ℕ𝑘 → 𝔹 . ∑1(𝜆 ⃗𝑣. 𝑓 ⃗𝑣 = true)

+ The synthetic definition is more elegant to establish synthetic results

5Kreisel (1965)
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Proving Post’s Theorem Synthetically
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Post’s Theorem

Theorem
LEM → 𝑃 ∈ ∑̃𝑛+1 ↔ ∃𝑄 ∈ ∏̃𝑛 . 𝒮𝑄(𝑃 )

Proof.
→ Linearly search for the ∃-quantified value
← “There exists a number of steps”-intuition does not work.
Instead: follow proof of Odifreddi (1992) and show: Given 𝑄 ∈ ∏̃𝑛
∃𝐿t 𝐿f. (∀𝑎 ∈ 𝐿t. 𝑄 𝑎)⏟⏟⏟⏟⏟⏟⏟

bounded quantifier

∈ ∏̃𝑛

∧ (∀𝑎 ∈ 𝐿f. 𝑄 𝑎)⏟⏟⏟⏟⏟⏟⏟
requires LEM

∈ ∑̃𝑛

∧ 𝑀𝑐 (lookup 𝐿t 𝐿f) 𝑥 ⊳ 𝑦⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
partial functions are stepwise

∈ ∑̃1

∈ ∑̃𝑛+1
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Post’s Theorem

Theorem
LEM → 𝑃 ∈ ∑̃𝑛+1 ↔ ∃𝑄 ∈ ∏̃𝑛 . 𝒮𝑄(𝑃 )

Corollary
LEM → 𝑃 ∈ ∑̃𝑛+1 ↔ ∃𝑄 ∈ ∑̃𝑛 . 𝒮𝑄(𝑃 )

Corollary
LEM → ∅(𝑛+1) ∈ ∑̃𝑛+1 is many-one complete
LEM → ∅(𝑛) ∈ ∑̃𝑛 is Turing complete

Corollary
LEM → 𝑃 ∈ ∑̃𝑛+1 ↔ 𝒮∅(𝑛)(𝑃 )

Cooper (2004)
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Overview of My Contributions

• Advance definition of synthetic oracle machines (constructive continuity)
+ can be expressed solely by a continuous higher order partial function

• Identify axiom needed for the first synthetic definition of the Turing jump

• Validate synthetic definitions by proving Post’s theorem, connecting to

• Synthetic definition of the arithmetical hierarchy, shown equivalent6 to
• The arithmetical hierarchy in first-order logic found in Odifreddi (1992)
• A mechanized and structurally recursive algorithm for PNF conversion

+ All in all, I ratify the existing definition of synthetic Turing reductions
but propose a constructive refinement

6using a CT-like axiom
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Coq Development
Specification Proofs

Prenex Normal Form 185 326
Arithmetical Hierarchy in First-order Logic 45 236
Arithmetical Hierarchy in Type Theory 103 459
Arithmetical Hierarchy – Equivalence 15 105
Oracle Computability 170 649
Turing Jump 64 152
Post’s Theorem 49 168
Total 631 2095

Dependencies: Formalization of partial functions by Forster (2021b) and
syntax and semantics of first-order logic by Kirst et al. (2022)
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Prenex Normal Form

Prenex Normal Form
For each formula there is an equivalent formula with all quantifiers in the
front.

Textbooks
Inductive argument showing these rules:

(∀𝑥. 𝜑1) ∧ 𝜑2 ⟺ ∀𝑥. (𝜑1 ∧ 𝜑2)
(∃𝑥. 𝜑1) ∧ 𝜑2 ⟺ ∃𝑥. (𝜑1 ∧ 𝜑2)
(∀𝑥. 𝜑1) ∨ 𝜑2 ⇐⇒ ∀𝑥. (𝜑1 ∨ 𝜑2)
(∃𝑥. 𝜑1) ∨ 𝜑2 ⟺ ∃𝑥. (𝜑1 ∨ 𝜑2)

(∀𝑥. 𝜑1) → 𝜑2 ⇐⇒ ∃𝑥. (𝜑1 → 𝜑2)
(∃𝑥. 𝜑1) → 𝜑2 ⟺ ∀𝑥. (𝜑1 → 𝜑2)
𝜑1 → (∀𝑥. 𝜑2) ⟺ ∀𝑥. (𝜑1 → 𝜑2)
𝜑1 → (∃𝑥. 𝜑2) ⇐⇒ ∃𝑥. (𝜑1 → 𝜑2)

Some directions only hold in classical logic
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Mechanization of PNF
First-order logic from Coq FOL library [Kirst et al. (2022)]
For a fixed signature with relation symbols 𝑃 and terms 𝑡 we define 𝜑 ∶ 𝔽
𝜑 ∶∶= 𝑃 ⃗𝑡 ∣ ⊥ ∣ 𝜑 → 𝜓 ∣ 𝜑 ∧ 𝜓 ∣ 𝜑 ∨ 𝜓 ∣ ∀𝜑 ∣ ∃𝜑 (de Bruijn)

Tarski semantics over a given 𝜌 and a fixed structure: 𝜌 ⊨ 𝜑

PNF ∶ 𝔽 → ℙ
PNF 𝜑

PNF (∀ 𝜑)
PNF 𝜑

PNF (∃ 𝜑)
noQuant 𝜑
PNF 𝜑

noQuant ∶ 𝔽 → ℙ

noQuant ⊥ noQuant (𝑃 ⃗𝑡)
noQuant 𝜑1 noQuant 𝜑2

noQuant (𝜑1 ⋄ 𝜑2)
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PNF conversion – convert∶ 𝔽 → 𝔽
Naive approach: by recursion on the formula
Problem: (∀∀𝜑) ∧ (∃∃∃𝜓) ⇝ ∀ (∀𝜑) ∧ (∃∃∃𝜓[↑])⏟⏟⏟⏟⏟⏟⏟

not structurally recursive

My solution
Auxiliary functions returning a quantifier prefix as list and a formula
without quantifiers.
[∀, ∀] 𝜑 ∧ [∃, ∃, ∃] 𝜓 ⇝ [∀, ∀, ∃, ∃, ∃] 𝜑[↑3] ∧ 𝜓[0; 1; 2; ↑2]
+ concatenate quantifier lists and rename de Bruijn indices

Proof.
• Result is a formula in PNF: ∀𝜑. PNF(convert 𝜑)
• Result is an equivalent formula: LEM ↔ ∀𝜑 𝜌. 𝜌 ⊨ (𝜑 ↔̇ convert 𝜑)

+ you need the right de Bruijn lemmas
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Arithmetical Hierarchy – Equivalence proof (1)

Theorem (first-order definition → synthetic definition)

(∀𝑝 𝑛. ∑𝑛 𝑝 → ∑̃𝑛 𝑝) ∧ (∀𝑝 𝑛. ∏𝑛 𝑝 → ∏̃𝑛 𝑝)

Proof.
Enough to show
(∀𝜑 𝑛 𝑘. ∑𝑛 𝜑 → ∑̃𝑛(𝜆 ⃗𝑣. ⃗𝑣 ⊨ℕ 𝜑)) ∧ (∀𝜑 𝑛 𝑘. ∏𝑛 𝜑 → ∏̃𝑛(𝜆 ⃗𝑣. ⃗𝑣 ⊨ℕ 𝜑))
by predicate_ext. Proof by mutual induction:
• base case: quantifier-free formulas are decidable
• ∑𝑛 allows stacking same quantifiers, but ∑̃𝑛 does not

+ use pairing function and that ∑̃𝑛 is closed under many-one reduction
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Arithmetical Hierarchy – Equivalence proof (2)
Theorem (synthetic definition → synthetic definition)

(∀𝑝 𝑛. ∑̃𝑛+1 𝑝 → ∑𝑛+1 𝑝) ∧ (∀𝑝 𝑛. ∏̃𝑛+1 𝑝 → ∏𝑛+1 𝑝)

We need to express decidable predicates in first-order logic
+ i.e. translate meta logic into a concrete model of computation
+ we have to assume a CT-like axiom [Kreisel, 1965] (“Church’s thesis”)

Axiom
∀𝑓 ∶ ℕ𝑘 → 𝔹 . ∑1(𝜆 ⃗𝑣. 𝑓 ⃗𝑣 = true)

+ the same for ∏1 follows

July 06, 2022 Niklas Mück: The Arithmetical Hierarchy, Oracle Computability, and Post’s Theorem in Synthetic Computability 31



Axioms
Axiom
∀𝑓 ∶ ℕ𝑘 → 𝔹 . ∑1(𝜆 ⃗𝑣. 𝑓 ⃗𝑣 = true)

Petres (2022) has derived a similar fact by combining the mechanization
of the DPRM theorem by Larchey-Wendling and Forster (2022) with repre-
sentability results by Hermes and Kirst (2022).
Axiom
Assume an enumeration of continuous higher-order partial functions
𝜉 ∶ ℕ → ((ℕ ⇀ 𝔹) → (ℕ ⇀ 𝟙))

Lecture notes by Streicher (WS 17/18) on Kleene’s second algebra hint
how an enumeration of higher-order continuous total functions can be con-
structed by assuming EPF.
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Usage of the Law of Excluded Middle
The following lemmas are classical:
Lemma
∏̃𝑛 𝑝 → ∑̃𝑛 𝑝 ∧ ∑̃𝑛 𝑝 → ∏̃𝑛 𝑝

Lemma
𝒮𝑄(𝑃 ) → 𝒮𝑄(𝑃 )

Those are used for Post’s theorem at exactly two places:

Theorem
𝑃 ∈ ∑̃𝑛+1 ↔ ∃𝑄 ∈ ∏̃𝑛 . 𝒮𝑄(𝑃 )

Corollary
𝑃 ∈ ∑̃𝑛+1 ↔ ∃𝑄 ∈ ∑̃𝑛 . 𝒮𝑄(𝑃 )

Forster (2022) investigates the consistency of LEM in CIC when assuming
CT due to the lack of the axiom of countable choice.
This is in contrast to the settings of Richman (1983), Bridges and Richman
(1987), and Bauer (2005) where LEM is inconsistent.
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