
Saarland University
Faculty of Mathematics and Computer Science

Bachelor’s Thesis

The Arithmetical Hierarchy,
Oracle Computability,
and Post’s Theorem

in Synthetic Computability

Author
Niklas Mück

Supervisor
Prof. Dr. Gert Smolka

Advisors
Dr. Yannick Forster

Dominik Kirst

Reviewers
Prof. Dr. Gert Smolka
Dr. Yannick Forster

Submitted: 18th June 2022

iii

Eidesstattliche Erklärung

Ich erkläre hiermit an Eides statt, dass ich die vorliegende Arbeit selbstständig ver-
fasst und keine anderen als die angegebenen Quellen und Hilfsmittel verwendet
habe.
Statement in Lieu of an Oath

I hereby confirm that I have written this thesis on my own and that I have not used
any other media or materials than the ones referred to in this thesis.

Einverständniserklärung

Ich bin damit einverstanden, dass meine (bestandene) Arbeit in beiden Versionen
in die Bibliothek der Informatik aufgenommen und damit veröffentlicht wird.
Declaration of Consent

I agree to make both versions of my thesis (with a passing grade) accessible to the
public by having them added to the library of the Computer Science Department.

Saarbrücken, 18th June, 2022

Abstract

The subject of this thesis is to formalize the arithmetical hierarchy in constructive
type theory, set up synthetic oracle computability including a synthetic definition
of the Turing jump, and connect both by proving Post’s theorem in synthetic com-
putability. We aim at establishing most proofs constructively and mechanize all
results in the proof assistant Coq.
Synthetic computability abstracts from concrete models of computation by axio-
matically considering all (partial) functions N→N as computable which allows to
elegantly establish computability theory. The subject of this thesis is to prove Post’s
theorem in such a setting.
For that purpose, we formalize two definitions of the arithmetical hierarchy. The
first definition is due to Odifreddi and is explicit in first-order arithmetic without
relying on a concretemodel of computation. It classifies formulas in prenex normal
form, for which we mechanize a structurally recursive conversion algorithm, via
counting the number of quantifier alternations. The second definition is a synthetic
version of the Kleene-Mostowski definition and classifies type-theoretic predicates
directly. After studying the equivalence of the synthetic to the better known first-
order definition, based on axioms from synthetic computability, we continue work-
ing with the second definition which is more convenient to establish synthetic re-
sults with.
As the second main ingredient, we advance a synthetic definition of Turing reduc-
tions by Forster and Kirst who follow an idea by Bauer to synthetic oracle machines
by adjusting one of its main components, the continuity requirement. This enables
constructive results like the determination of oracle machines solely by a continu-
ous higher-order partial function. Then, we define a synthetic version of the Turing
jump as the halting problem of synthetic oracle machines by assuming an enumer-
ator of continuous higher-order partial functions.
Most of our key results are constructive. Only the final proof of Post’s theorem relies
on the law of excluded middle whose usage we trace back to exactly two places.

Acknowledgements

First and foremost I owe my full gratitude to my advisors Yannick and Dominik1
for their immense support. I really know that good advising is not self-evident
but you have done even much more than I could have hoped for. Thank you very
much for motivating the topic of this thesis, for taking so much of your time, for all
the helpful and inspiring meetings, and for your numerous, rigorous and valuable
feedback. You found the right balance of guidance and letme explore onmyown. It
was always a pleasure to discuss difficulties with you and I really enjoyed working
with you and being one of your supervised students.
Of course, I would like to thank Prof. Smolka for offering me a thesis at his chair
and for introducing me to the exciting topic of constructive type theory. You have
arousedmy enthusiasm and have greatly influenced how I think about proofs. Also
thank you to you and to Yannick for reviewing this thesis.
Thank you to the team of the Campus Library for Computer Science and Mathe-
matics for getting the original papers by Uspenskii and Nerode and thank you to
Andrej for helping to understand the Uspenskii paper written in Russian language.
I want to thank my friends and family for their unwavering support during my
studies. Thank you Simon for convincing me that I had a good chance to get in-
vited to the Forschungstage at MPI by participating in the second round of BwInf
which lead to my decision of studying in Saarbrücken. Thank you Janine for your
immeasurable mental support, especially during the last few weeks. I apologize
for boring you with all my unsorted thoughts and am very grateful that you stood
by me. Thank you for taking care of some of my other duties during the last few
days and making sure that I got to bet in time. I definitely owe you a cheesecake,
maybe even two.
Finally, I want to thank Marc for proofreading this thesis and Janine for all her
intermediate feedback and her help with finding the right formulations.

1I always name them in alphabetic order of their last names but I owe them both uncomparable
much.

Contents

Abstract v

1 Introduction 1
1.1 Outline . 5
1.2 Contributions . 6

2 Preliminaries 9
2.1 Constructive Type Theory . 9
2.2 Partial Functions and Functional Relations 11
2.3 Synthetic Computability . 11

2.3.1 Basic Notions . 12
2.3.2 Axioms of Synthetic Computability 12
2.3.3 Synthetic Halting Problem . 13

2.4 Classical Logic . 13

3 Arithmetical Hierarchy 15
3.1 Arithmetical Hierarchy in First-Order Arithmetic 16

3.1.1 First-order Arithmetic . 16
3.1.2 Prenex Normal Form . 19
3.1.3 Syntactic Definition of the Arithmetical Hierarchy 24

3.2 Arithmetical Hierarchy in Type Theory 26
3.2.1 Decidable Predicates on Vectors 26
3.2.2 Semantic Definition of the Arithmetical Hierarchy 27
3.2.3 Closure Properties of the Semantic Arithmetical Hierarchy . . 29

3.3 Equivalence of Both Definitions . 32
3.3.1 Inclusion of the Syntactic in the Semantic Hierarchy 33
3.3.2 Axiom Relating Decidable Predicates to First-Order Arithmetic 33
3.3.3 Inclusion of the Semantic in the Syntactic Hierarchy 34

x Contents

4 Oracle Machines and Turing Jump 37
4.1 Synthetic Oracle Computability . 37

4.1.1 Oracle Machines . 38
4.1.2 Turing Reductions . 39
4.1.3 Oracle Semi-decidability . 40
4.1.4 Determinacy of Oracle Machines by Their Cores 42
4.1.5 Comparison to Related Work 44

4.2 Turing Jump . 46
4.2.1 Enumerating Oracle Machines 46
4.2.2 Synthetic Turing Jump . 47
4.2.3 Completeness of the Turing Jump 48

5 Post’s Theorem 51
5.1 Connecting the Arithmetical Hierarchy and Turing Jumps 52
5.2 Synthetic Proof of Post’s Theorem . 52

6 Discussion 57
6.1 Coq Mechanization . 59
6.2 Related Work . 60
6.3 Future Work . 62

Bibliography 65

Chapter 1

Introduction

The subject of this thesis is to formalize the arithmetical hierarchy in constructive
type theory, set up synthetic oracle computability including a synthetic definition
of the Turing jump, and prove Post’s theorem in synthetic computability, all mecha-
nized in the proof assistant Coq. In the following, we briefly introduce the historical
results and give a context of the synthetic setting in which we formalize them.
In computability theory, the halting problem of whether a Turing machine [56]
halts on a given input is the standard example of a problem that is undecidable.
But it is also known that there are problems that are relatively harder to decide.
In his PhD thesis, Turing came up with the idea of oracle machines [58] extending
the model of computation with a hypothetical solver for a potentially undecidable
problem. Oracle machines can be used to study the relative decidability of unde-
cidable problems.
An example of a problem that is undecidable relative to the halting problem is
totality, the question of whether a Turing machine halts on all inputs. The best one
can do is to construct a semi-decider for the complement of totality that queries a
hypothetical solver for the halting problem for all inputs.
The game continues, as cofiniteness – whether a Turing machine halts on all but
finitely many inputs – is still undecidable relative to totality. Cofiniteness is only
semi-decidable relative to totality by querying a hypothetical solver for totality on
all input ranges that exclude a finite prefix.
In fact, for every problem, a problem that is harder to decide can be constructed
following Kleene and Post [47, 33, 34]: The Turing jump of a problem Q is the
halting problem of oracle machines with an oracle for Q. It is semi-decidable but
not decidable relative to Q.

2 Introduction

Starting with a decidable problem, e.g. whether a number is in the empty set ∅,
repeated jumping gives rise to a hierarchy of undecidable problems. Wewrite∅(n)

for the n-th Turing jump starting with ∅(0) ∶= ∅. Oracle machines with an oracle
for∅ can compute the same functions as normal Turing machines, as querying the
oracle does not give any information. Therefore, the Turing jump of ∅ is Turing
equivalent to the halting problem in the sense that the halting problem can be de-
cided by an oracle machine with an oracle for ∅(1) and vice versa. Similarly, ∅(2),
i.e. the Turing jump of ∅(1) is Turing equivalent to totality in the sense that totality
can be decided relative to ∅(2) and vice versa. And ultimately, ∅(3), i.e. the Turing
jump of ∅(2) is Turing equivalent to cofiniteness in the sense that cofiniteness can
be decided relative to ∅(3) and vice versa.
Another related hierarchy is the arithmetical hierarchy developed independently
by Kleene in 1943 [31] and by Mostowski in 1947 [38]. It classifies problems based
on the quantifiers that are needed to formulate the problem.
For that, consider the following example. Let h(M, i, s) be the decidable predicate
whether a Turing machineM halts on an input i after at most s steps. Given that,
the halting problem, totality, and cofiniteness can be formulated as follows.

Halting Problem H(M, i) ∶= ∃s. h(M, i, s)
Totality Tot(M) ∶= ∀i. ∃s. h(M, i, s)

Cofiniteness Cof(M) ∶= ∃n. ∀i > n. ∃s. h(M, i, s)
One can observe that with increasing undecidability, problems needmore alternat-
ing quantifiers to be formulated. That is not a coincidence, but the result of Post’s
Theorem [47] which connects the hierarchy of undecidability gained by iterative
jumping to the arithmetical hierarchy.
The levels of the arithmetical hierarchy are denoted with ∑n and ∏n. Predicates
that are decidable form the base and are classified both as ∑0 and ∏0. Then, the
hierarchy is defined inductively as follows. If an existential quantifier is added in
front of a ∏n predicate it is classified as ∑n+1. If a universal quantifier is added
in front of a ∑n predicate it is classified as ∏n+1. Given that, a predicate that can
be written with n alternating quantifier blocks including a leading existential is
classified as∑n and if the leading quantifier is universal, it is classified as∏n.
For example, the halting predicate h from above is both in ∑0 and ∏0 because it
is decidable and can be written without quantifiers. The halting problem is in ∑1
because it can be formulated with a single existential quantifier. Totality is in ∏2

because it can be formulatedwith two quantifiers and a leading universal. Cofinite-
ness is in ∑3 because it can be formulated with three quantifiers and a leading
existential.

3

Precisely, Post’s Theorem [47] states that ∅(n) is ∑n-complete in the sense that all
other problems in∑n are decidable relative to ∅(n) and that any∑n+1-problem is
semi-decidable relative to a∏n-problem.
In the original work, Turing, Kleene, Mostowski, and Post all work in a concrete
model of computation like Turingmachines or µ-recursive functions. But construc-
tions in such a model of computation quickly become too complex to do explicitly.
Therefore, they heavily rely on the so-called Church-Turing thesis [7, 56] saying
that all algorithms that can be intuitively described are indeed computable in the
respective model of computation. This makes their arguments hard to mechanize.
A complementary approach is synthetic computability which was pioneered by
Richman, Bridges, and Bauer [48, 6, 3]. It abstracts away the concrete model of
computation by axiomatically considering all functions N→N as computable. This
is consistent in constructive logic because functions of type N→N defined in con-
structive logic correspond to programs in some model of computation which re-
sults from Kleene’s work on realizability [32].
We are working in the Calculus of Inductive Constructions (CIC) [10, 43, 44] im-
plemented in the proof assistant Coq [54]. In Coq, the correspondence between
functions and programs is made transparent because – from a user-end of view –
functions need to be defined in a functional programming language. To internal-
ize this correspondence and derive common results of computability theory within
CIC, an axiom called CT [35] can be assumed that states that all functions are com-
putable in a concrete model of computation.
Most textbooks on computability theory work classically and establish their results
upon the law of excluded middle. Richman, Bridges, and Bauer [48, 6, 3] work in
settingswhere they assume the axiomof countable choicewhich togetherwith LEM
allows the construction of non-computable functions [55]. Consequently, assum-
ing LEM in their synthetic settings is contradictory. Assuming the law of excluded
middle (LEM) in CIC, however, is consistent [60] even when assuming synthetic
axioms like CT [15, 17] and enables classical reasoning. Most of our results are
constructive but some of them, like our synthetic proof of Post’s Theorem, rely on
LEM which we always carefully label.
Many areas of computability theory are synthetically well explored. Since all func-
tions are considered computable, notions like decidability and many-one reduc-
tions can be natively expressed in synthetic computability without the need to es-
tablish a whole theory on models of computation first. Also, it is known what
axioms are needed to show results like the undecidability of the halting problem
which synthetically corresponds to the question of whether a partial function is de-
fined at a given value. For that purpose, assuming the enumerability of all partial

4 Introduction

functions (EPF) [48, 15] suffices which is a weaker axiom than CT.
In contrast, there is no obvious way to express oracle machines synthetically since
assuming an oracle-decider of an undecidable problem in synthetic computability
is equivalent to assuming falsity and compared to textbooks, there is no model of
computation to extend by an additional operation for oracles. Before this thesis,
there was only a little work on synthetic oracle computability. In a seminar talk,
Bauer [4] proposed a definition of synthetic Turing reductions based on two layers:
Intuitively, one layer describes the reduction detached from any computability re-
strictions. Given anymapping (no computability restrictions) of problem instances
to solutions, the Turing reduction transforms it into another mapping of problem
instances to solutions (also with no computability restrictions), similarly as an or-
acle machine can be seen as a transformer of an oracle-solver for one problem to a
solver of another problem. The second layer is a higher-order function that takes
an oracle as a function (considered computable in synthetic computability) and
returns another function (also considered computable). Now, both layers are re-
quired to agree on all computable oracles to ensure that the only non-computable
operation possible in the first layer is inspecting the oracle. There is however one
additional requirement needed. By now, the first layer of the Turing reduction can
inspect whether the oracle is computable and then behave differently. To prevent it
from doing so, it is crucial to require it to only inspect the oracle locally by allowing
only finitely many oracle queries. This is called continuity and discussed later in
detail. The idea by Bauer of expressing Turing reductions in two layers was picked
up by Forster and Kirst [16]. In addition, Forster has studied synthetic Turing re-
ductions with respect to different refinements like bounded Turing reductions and
total bounded Turing reductions and their relationship to truth-table reducibility.
To conclude, before this thesis there was a synthetic definition of Turing reductions
around but it was only known that it is weaker than truth-table reducibility.
In this thesis, we advance the synthetic definition of Turing reductions by Forster
andKirst to synthetic oraclemachines. By adjusting the continuity requirement to a
classically equivalent one, we gain constructive results like that there is a construc-
tive one-to-one correspondence between continuous higher-order functions and or-
acle machines. We study what axioms are needed to express the synthetic halting
problem of oracle machines, which is the Turing jump. We validate our synthetic
definition of oracle machines by proving Post’s Theorem synthetically which con-
nects our notions of synthetic oracle computability to a synthetic definition of the
arithmetical hierarchy. Furthermore, we show the synthetic definition of the arith-
metical hierarchy equivalent to a textbook presentation by Odifreddi [42] in first-
order arithmetic by assuming a CT-like axiom. Altogether, we ratify the existing
notion of synthetic Turing reductions but contribute a constructive advancement
of the continuity requirement towards a synthetic theory of oracle computability.

1.1. Outline 5

We show the eligibility by proving a deep connection of the synthetic notions of
oracle computability to a textbook representation of the arithmetical hierarchy by
assuming reasonable axioms.

1.1 Outline
In Chapter 2 of this thesis, we introduce the synthetic setting in which we are work-
ing and establish some other preliminaries.
In Chapter 3, we present the two definitions of the arithmetical hierarchy that we
have mechanized, prove results about them and study their equivalence by assum-
ing a CT-like axiom from synthetic computability.
The first definition is in the language of first-order arithmetic and is better known
in the literature. It classifies problems by analyzing the syntax of their defining
first-order formula. If the formula is in prenex normal form, i.e. has all quantifiers
in the front, the problem is classified by counting the quantifier alternations of its
quantifier prefix.
Formalizing the arithmetical hierarchy explicitly in first-order arithmetic is quite
heavyweight because it requires mechanizing the syntax and semantics of first-
order arithmetic first. For that, we use the framework provided by the Coq Library
for Mechanised First-Order Logic [30] and will contribute some of our results back.
Every first-order formula can be converted into its prenex normal form, as proved
by Skolem [50]. We present a fully mechanized and verified structurally recursive
algorithm for prenex normal form conversion.
The second definition of the arithmetical hierarchy is purely formalized in type-
theory without any additional dependencies. It can be seen as the synthetic way
of defining the arithmetical hierarchy as predicates decidable by a function of type
N→B form its base. The hierarchy is abstracted away from a concrete model of
computation or concrete first-order formulas and classifies type-theoretic predi-
cates directly. This makes it more convenient to work with and establish results
like a synthetic proof of Post’s Theorem later on.
In Chapter 4, we study relative decidability in synthetic computability. For that
purpose, we advance the synthetic definition of Turing reductions by Forster [16]
that was developed in joint work with Kirst and following an idea by Bauer [4]
and derive a synthetic notion of oracle machines. Compared to the previous def-
inition by Forster and Kirst, our synthetic oracle machines are solely determined
by a higher-order partial function which enables establishing some crucial results
constructively without relying on the law of excluded middle.

6 Introduction

Then, we present a synthetic definition of the Turing jump as the halting problem
of oracle machines by assuming an enumeration of higher-order partial functions
and study its properties.
Chapter 3 and 4 are orthogonal and can be read independently. Chapter 5 connects
the arithmetical hierarchy to the hierarchy gained by repeated jumping and with
that also the previous chapters and presents a synthetic proof of Post’s Theorem.

1.2 Contributions
This thesis includes the following main contributions:

• Two mechanized definitions of the arithmetical hierarchy proven equivalent
in Section 3.3 by assuming a CT-like axiom (Axiom 3.34).

– The first definition (Definition 3.14) is directly in first-order arithmetic.
It classifies problems by analyzing the syntax of their defining first-order
formula by counting the number of quantifier alternations. This defini-
tion is better known in the literature and serves as a sanity check for the
second synthetic definition.

– The second definition (Definition 3.21) is purely synthetic and without
additional dependencies. It is more convenient to work with to estab-
lish results like Post’s theorem synthetically as it classifies type-theoretic
predicates directly.

• A mechanized and structurally recursive algorithm for prenex normal form
conversion (Definition 3.7) that enables a rough upper-bound classification
of first-order formulas in the arithmetical hierarchy.

• A definition of synthetic oracle machines (Definition 4.1) that builds on pre-
vious work by Forster and Kirst [16] based on an idea by Bauer [4]. We ad-
vance the previous definition by adjusting the continuity requirement which
enables constructive results like that synthetic oracle machines are solely de-
terminable by a higher-order partial function (Theorem 4.17).

• The identification of a suitable axiom, namely the enumerability of higher-
order partial functions (Axiom 4.25) in order to define the, to the best of our
knowledge, first synthetic definition of the Turing jump (Definition 4.33).

• A synthetic proof of Post’s Theorem (Section 5.2) connecting the synthetic
definition of the arithmetic hierarchy to the synthetic definition of the Turing
jump. Although the proof relies on classical axioms, we were able to trace
their usage such that the heart of the proof remains essentially constructive.

1.2. Contributions 7

All results of this thesis are mechanized in the accompanying Coq development.
In the digital version of this thesis, all definitions, lemmas and theorems are hyper-
linked to the respective version in the generated Coq documentation at:

https://ps.uni-saarland.de/~mueck/bachelor/coqdoc/

Furthermore, in the digital version of this thesis, the reader can click on all notations
to get to the corresponding definitions within the pdf.

https://ps.uni-saarland.de/~mueck/bachelor/coqdoc/

Chapter 2

Preliminaries

Weareworking in theCalculus of InductiveConstructions (CIC) [44] implemented
in the proof assistant Coq [54]. In this chapter, we introduce constructive type
theory and define some well-known notions and constructions. Then, we present
synthetic computability and its basic concept and show how the halting problem is
formulated and disproven decidable in synthetic computability. Finally, we extend
our setting by classical axioms that we always carefully highlight when used to
establish results in this thesis.

2.1 Constructive Type Theory
The Calculus of Inductive Constructions (CIC) [44] features a hierarchy of type
universes T1 ∶ T2 ∶ T3 . . . with T1 ⊂ T2 ⊂ T3 . . . (for our porpuse, we can ignore
the index and only write T) and an impredicative universe of propositions P ⊂ T1.
CIC has dependent types ∀x ∶ s. t that quantify over values x of type s that may
occur in t. When the return type t does not depend on the value x of the argument
type s, simple function types s→ t are derived.
Propositions are also types and values of the type are proofs of the proposition.
This works out because of the Curry-Howard correspondence [11, 26]. So proofs
of implications are values of the corresponding function type and universally quan-
tified propositions are gained from the dependent typeswhere∀ can be interpreted
as a quantifier in the usual logical sense.
More types can be defined inductively either inP orT. While types inTmay contain
computational information, types in P do not. The elimination restriction only al-
lows doing a case analysis on values of noncomputational types in P when proving

10 Preliminaries

propositions. This enables us to assume classical axioms for proving propositions
while computational functions stay constructive.
Recursive functions need to be structurally recursive on the structure of an induc-
tive type. This guarantees termination, so all functions of type X→ Y are total.
Logical negation can be defined as ¬p ∶ P ∶= P → ⊥. We call propositions of
type X→ P predicates and write p ∶= λx. ¬p x for the complement of the predicate
p. When appropriate we use set notation for predicates. For example, we write
x ∈ p ∶= p x and p ⊆ q ∶= ∀x. p x→ q x. The subset notation can be extended to
functional relations and partial functions introduced in Section 2.2.
Also, a lot of the computational types we are using can be defined inductively:

• Unit: 1 ∶ T ∶∶= ⋆ ∶ 1

• Booleans: B ∶ T ∶∶= true ∶ B ∣ false ∶ B

A function ! ∶ B → B for boolean negation can be defined by case distinction.
• Natural numbers: N ∶ T ∶= O ∶ N ∣ S ∶ N → N

Weuse the usual notation 0 ∶= O, 1 ∶= S O, 2 ∶= S(S O), and so on. Operations
like + ∶ N → N → N and comparison predicates like ≤ ∶ N → N → P can be
defined recursively.

• Option types: O(X ∶ T) ∶ T ∶∶= None ∣ Some(x ∶ X)
• Products: × (X ∶ T, Y ∶ T) ∶ T ∶∶= pair ∶ X→ Y → X × Y

• Sum types: + (X ∶ T, Y ∶ T) ∶ T ∶∶= left ∶ X→ X + Y ∣ right ∶ Y → X + Y

We call a function of type ∀x y ∶ X. (x = y) + (x ≠ y) an equality decider of
X and call the type X ∶ T discrete if such an equality decider can be defined.
We write _x = y^ for the function that is true if x = y and false else.

• Dependent pairs: Σ (X ∶ T, p ∶ X→ T) ∶ T ∶∶= sig ∶ ∀x ∶ X. p x→ Σx. p x

We write {x ∶ X ∣ p x} as notation for the dependent pair Σx. p x.
• Lists: L (X ∶ T) ∶ T ∶∶= [] ∶ L (X) ∣ ∶∶ ∶ X→ L (X) → L (X)

Wewrite [x, y, z] as notation for the list x∶∶y∶∶z∶∶[]. A function ∣⋅∣ ∶ L (X) → N

determining the length of a list, a function ++ ∶ L (X) → L (X) → L (X)
concatenating two lists, and on discrete types X also a membership predicate
∈ ∶ X→ L (X) → P can be defined recursively.

• Vectors: ∀(X ∶ T)(k ∶ N). Xk ∶∶= [] ∶ X0 ∣ ∶∶ ∶ X→ X
n
→ X

Sk

2.2. Partial Functions and Functional Relations 11

Vectors are lists with a fixed length. A function extracting the n-th element
of a vector can be defined recursively. We write x⃗[n] for the n-th element of
the vector x⃗ ∶ Nk if n < k.

A pairing function ⟨⋅, ⋅⟩ ∶ N×N → N can be easily constructed that acts as a bijection
between N×N and N. We write λ⟨n,m⟩. f nm as notation for a function that unem-
beds its singe argument to two numbers such that (λ⟨n,m⟩. f nm)⟨n,m⟩ = f nm.

2.2 Partial Functions and Functional Relations
We reuse the definition of partial functions by Forster [16].

Definition 2.1 Partial functions f ∶ X⇀ Y are functions X → part Y, where part Y is the
following monadic structure and f x ▹ y means that f is defined at x to be y.

partA ∶ T
▹ ∶ partA→ A→ P x ▹ a1 → x ▹ a2→ a1 = a2
ret ∶ A→ partA ret a ▹ a
≫= ∶ partA→ (A→ partB) → partB x≫= f ▹ b↔ (∃a. x ▹ a ∧ f a ▹ b)
undef ∶ partA /∃ a. undef ▹ a
µ ∶ (N → B) → part N µf ▹ n↔ f n = true ∧∀m<n. fm = false
seval ∶ partA→ N → OA x ▹ a↔ ∃n. seval xn = Somea

seval xn = Somea→
m ≥ n→ seval xm = Somea

While partial functions can be considered computable in synthetic computability,
functional relations form the uncomputable counterpart and can be used to express
uncomputable mappings.
A function relation R ∶ X↝⇀ Y ∶= X → Y → P is a binary predicate that is functional
such that R x y1 → R x y2 → y1 = y2. We say that a partial function f computes a
functional relation R andwrite f▹R if∀x y. f x▹y↔R x y. We again use set notation
when appropriate and write Dom(R) x ∶= ∃y. R x y, R1 ⊆ R2 ∶= R1 x y→ R2 x y and
R1 ⊆L R2 ∶= x ∈ L→ R1 x y→ R2 x y.
We write f1 ≈ f2 ∶= ∀x y. f1 x ▹ y↔ f2 x ▹ y and R1 ≈ R2 ∶= ∀x y. R1 x y↔ R2 x y for
the extensional equality of partial functions and functional relations.

2.3 Synthetic Computability
In synthetic computability [48, 6, 3, 16], all functions are considered computable.
This allows to natively express notions such as (semi-)decidability and many-one

https://ps.uni-saarland.de/~mueck/bachelor/coqdoc/PostTheorem.external.partial.html#partiality

12 Preliminaries

reductions without talking about a model of computation. We show these defi-
nitions in Subsection 2.3.1. In Subsection 2.3.2, we introduce axioms that can be
assumed to among others establish negative results like the undecidability of the
halting problem in Subsection 2.3.3.

2.3.1 Basic Notions

The following definitions in constructive type theory are by Forster et al. [18, 16].
Definition 2.2 A predicate p ∶ X → P is decidable if there is exists a decider f ∶ X → B:
D(p) ∶= ∃f. ∀x. p x↔ f x = true

Definition 2.3 A predicate p ∶ X → P is semi-decidable if there exists is a semi-decider
f ∶ X→ N → B: S(p) ∶= ∃f. ∀x. p x↔ ∃n. f x n = true

Alternatively, semi-decidability can be defined using partial functions. We useDef-
inition 2.3 in Chapter 3 and the alternative characterization given by Lemma 2.4 in
Chapter 4.
Lemma 2.4 S(p)↔ ∃g ∶ X⇀ 1 . p x↔ g x ▹ ⋆

Proof As O 1 is isomorphic to B, the construction using seval is straightforward.□
Definition 2.5 A predicate p ∶ X → P is many-one reducible to a predicate q ∶ A → P
if there is a many-one reduction f ∶ X → A that translates instances of p to instances of q:
p ⪯m q ∶= ∃f. ∀x. p x↔ q (f x)
Lemma 2.6 Many-one reductions are transitive: p ⪯m q→ q ⪯m r→ p ⪯m r

Proof Composing the two reductions leads to the claimed many-one reduction. □

2.3.2 Axioms of Synthetic Computability

The axiom CT [35, 15] makes explicit that all functions N→N are considered com-
putable in synthetic computability by assuming that there exists a universal func-
tion ϕ in a concrete model of computation like µ-recursive functions.
Definition 2.7 There exists a step-wise interpreter of µ-recursive functions ϕµ where
ϕµ i x n is the output of the i-th µ-recursive function on input x after n steps, or None if
the i-th µ-function does not terminate after n steps:
CT ∶= ∀f ∶ N → N . ∃i ∶ N . ∀x ∶ N . ∃n ∶ N . ϕµ i x n = Some (f x)

We introduce a CT-like axiom in Subsection 3.3.2 for studying the equivalence of
our two definitions of the arithmetical hierarchy.
To establish negative results like the synthetic halting problem in Subsection 2.3.3,
a weaker and purely synthetic axiom, that there exists an enumeration (can also be
seen as a universal partial function) of partial functions can be assumed [48, 15]:

https://ps.uni-saarland.de/~mueck/bachelor/coqdoc/PostTheorem.external.Synthetic.Definitions.html#decidable
https://ps.uni-saarland.de/~mueck/bachelor/coqdoc/PostTheorem.external.Synthetic.Definitions.html#semi_decidable
https://ps.uni-saarland.de/~mueck/bachelor/coqdoc/PostTheorem.OracleComputability.html#semi_decidable_part_iff_True
https://ps.uni-saarland.de/~mueck/bachelor/coqdoc/PostTheorem.external.Synthetic.Definitions.html#reduces
https://ps.uni-saarland.de/~mueck/bachelor/coqdoc/PostTheorem.OracleComputability.html#red_m_transitive

2.4. Classical Logic 13

Definition 2.8 There exists an enumeration θ ∶ N → (N⇀N) of partial functions:
EPF ∶= ∀f ∶ N⇀N . ∃i. θ i ≈ f

2.3.3 Synthetic Halting Problem

Using the enumeration of partial functions EPF, the synthetic self halting problem
can be defined as whether the i-th partial functions to N⇀N is defined on input i.

Definition 2.9 K i ∶= ∃n. θ i i ▹ n

Fact 2.10 The synthetic halting problem is semi-decidable: S(K)

Proof In the notion of Lemma 2.4, λi. (θ i i)≫= (λn. ret ⋆) is a semi-decider. □

Fact 2.11 The complement of the synthetic halting problem is not semi-decidable: ¬S(K)

Proof By Lemma 2.4, assume that there is a partial function f semi-decidingK such
that K i↔ f i▹⋆. By EPF, let i be given such that θ i i▹n↔ (f i)≫= (λu. ret 0)▹n.
After unfolding the definition of K, we get the contradiction K i↔K i. □

2.4 Classical Logic
Some of our results rely on classical axioms. Assuming the law of excludedmiddle
LEM allows classical reasoning. For some of our classical results, Markov’s princi-
ple MP which is a weaker classical axiom is enough. We always carefully label the
usage of classical axioms. Most of our results are constructive.

Definition 2.12 LEM ∶= ∀p ∶ P . p ∨ ¬p

Definition 2.13 MP ∶= ∀f ∶ N → B . ¬(∀x. f x = false)→ ∃n. f n = true

https://ps.uni-saarland.de/~mueck/bachelor/coqdoc/PostTheorem.TuringJump.html#halting
https://ps.uni-saarland.de/~mueck/bachelor/coqdoc/PostTheorem.TuringJump.html#K
https://ps.uni-saarland.de/~mueck/bachelor/coqdoc/PostTheorem.TuringJump.html#semidecidable_K
https://ps.uni-saarland.de/~mueck/bachelor/coqdoc/PostTheorem.TuringJump.html#not_semidecidable_compl_K
https://ps.uni-saarland.de/~mueck/bachelor/coqdoc/PostTheorem.PostsTheorem.html#LEM
https://ps.uni-saarland.de/~mueck/bachelor/coqdoc/PostTheorem.ArithmeticalHierarchySemantic.html#Markov

Chapter 3

Arithmetical Hierarchy

The arithmetical hierarchy was developed independently by Kleene in 1943 [31]
andMostowski in 1947 [38]. It classifies predicates on numbers into the classes∑n
and∏n according to the number of quantifiers alternations that are required to for-
mulate them on top of a decidable predicate. The decidability notion in the base of
the hierarchy differs in multiple equivalent definitions in the literature. Mostowski
defines the hierarchy in first-order arithmetic with formulas decidable according
to the ordinary inference rules of first-order logic in the base. Kleene defines the
hierarchy with predicates decidable by µ-recursive functions in the base.
In the arithmetical hierarchy, many problems of computability theory can be clas-
sified. For example, consider the predicate h(M, i, s) ∶= "Turing machine M halts
on input i after ≤ s steps" which is a decidable and can be used as a base for more
complex predicates. Then, totality – whether a Turing machineM halts on all in-
puts – can be formulated as ∀i. ∃s. h(M, i, s). The quantifier prefix consists of two
alternating quantifiers with a leading universal quantifier and hence totality can be
classified as∏2.
There is also another definition of the arithmetical hierarchy known in the literature
that does not rely on the notion of decidability. For example, Odifreddi [42] men-
tions as a side note that the arithmetical hierarchy can be solely defined in first-order
arithmetic with a quantifier-free formula in the base and classifies all first-order for-
mulas that have all their quantifiers in the front, the so-called prenex normal form.
This definition is equivalent to the other ones with a decidable predicate in the base
starting with ∑1 and ∏1. The 0-levels of the hierarchies differ as pointed out by
Odifreddi [42]. For example, the formula ∃n.∀k. n ≥ k is composed of a quantifier
prefix and a quantifier-free base formula. It consists of two alternating quantifiers
with a leading existential quantifier and hence the formula can be classified as∑2.

16 Arithmetical Hierarchy

In this chapter, we formalize two definitions of the arithmetical hierarchy in con-
structive type theory. Both hierarchies are defined without relying on decidability
in a concrete model of computation, in contrast to most definitions in the literature.
In Section 3.1, we formalize a syntactic definition of the arithmetical hierarchy using
formulas in first-order arithmetic, with quantifier-free formulas in the base. This
definition is known in the literature and serves as a sanity check for our second
definition. In Section 3.2, we formalize a semantic definition of the arithmetical
hierarchy based on the synthetic notion of decidability, i.e. predicates decidable
by a function N→B. As the second definition classifies type-theoretic predicates
directly, it is more convenient to establish results in synthetic computability later.
In Section 3.3, we study the equivalence of both definitions, based on axioms of
synthetic computability.

3.1 Arithmetical Hierarchy in First-Order Arithmetic
Each predicate defined by a first-order formula can be classified in the arithmeti-
cal hierarchy. For this, the formula needs to be transformed into prenex normal
form with all quantifiers in front. Then, the predicate can be classified based on its
quantifier prefix:
Let n be the number of quantifier alternations in prenex normal form. If the first
quantifier is an existential then the formula is a∑n-formula else it is a∏n-formula.
If the formula does not contain quantifiers it is both a∑0, and a∏0-formula
In Subsection 3.1.1 we will present the inductive definition of first-order formulas
that we work with. Then, we present a structurally recursive algorithm for trans-
forming formulas into prenex normal form, in Subsection 3.1.2. The algorithm
gives an upper bound classification in the arithmetical hierarchy for every first-
order formula. In Subsection 3.1.3, we set up a syntactic definition of the arithmeti-
cal hierarchy that classifies type-theoretic predicates that are reflected by a first-
order formula.

3.1.1 First-order Arithmetic

We are working with the definition of first-order arithmetic from the Coq Library for
Mechanised First-Order Logic [30]:

Definition 3.1 (Syntax)
Formulas φ,ψ ∶ F that contain terms t1, t2 ∶ T are defined inductively as follows:
t1, t2 ∶ T ∶∶= n ∣ xi ∣ t1 ⊕ t2 ∣ t1 ⊗ t2 n, i ∈ N

φ,ψ ∶ F ∶∶= ⊥̇ ∣ t1 =̇ t2 ∣ φ∧̇ψ ∣ φ∨̇ψ ∣ φ →̇ ψ ∣ ∀̇φ ∣ ∃̇φ
For convenience, we write ⋄ as place holder for ∧̇, ∨̇ or →̇ and define a type Q ∶∶= ∀̇ ∣ ∃̇.

https://ps.uni-saarland.de/~mueck/bachelor/coqdoc/PostTheorem.external.FOL.Syntax.Core.html#form

3.1. Arithmetical Hierarchy in First-Order Arithmetic 17

The syntax presented on paper differs from the syntax of the framework we use in
the accompanying Coq development in two aspects.
First, the syntax from the framework generalizes over a signature. This means that
the basic predicates and functions are variable and can be instantiated appropri-
ately. For our need, we instantiate the predicates with a single binary predicate =̇

and the functions with two binary functions⊕ and⊗ such that we obtain the arith-
metical hierarchy we want. Only the results on prenex normal form conversion in
Subsection 3.1.2 can be generalized to an arbitrary signature.
Secondly, the framework does not contain primitive numerals. Instead, it only has
a zero constant and some syntax for the successor. In our on-paper presentation,
we however write n for the n-th successor of 0 and n⊕1 for the successor of n. This
change can be seen just as notation or else as an equivalent definition (according to
the semantics we define below).
Variable binding is implemented using de Bruijn indices [13] where quantifiers do
not introduce explicit names for variables they bind. Instead, variables are encoded
as numbers that correspond to the number of quantifiers that are in scope between
the usage of the variable and the quantifier that binds it. As quantifiers bind wide
the whole term after a quantifier is in its scope. For example, ∀̇n. ∃̇k. n =̇ 2 ⊗ k is
encoded as ∀̇∃̇ x1 =̇2⊗x0. A single variable bound by a single quantifiermight have
different de Bruijn indices depending on where it is used. For example, the term
∀̇n. n =̇42 ∨̇(∃̇k. n =̇k) is encoded as ∀̇ x0 =̇42 ∨̇(∃̇ x1 =̇x0)where n is translated to
x0 in its first occurrence and to x1 in its second occurrence, because there is another
quantifier in between. Numbers greater than the number of quantifiers in scope
correspond to free variables. For example, the formula ∀̇ x0 =̇ 42 ∧̇ (∃̇ x1 =̇x27⊕x0)
can be seen to encode ∀̇x. x =̇ 42 ∧̇ (∃̇z. x =̇ a ⊕ z). Note that the free variable x27
and the name a have been chosen arbitrarily in the example before. Instead any xi
with i ≥ 2 (where 2 is the number of bound variables) and similarly any name that
is not already bound by a quantifier could have been chosen.
Formally, this encoding is realized by the following two definitions, instantiation
of variables and the semantics of formulas.
Definition 3.2 (De Bruijn Instantiation)
Instantiation of a (parallel) substitution σ ∶ N → T on terms is defined as follows:

n[σ] ∶= n xi[σ] ∶= σ i (t1 ⊙ t2)[σ] ∶= t1[σ]⊙ t2[σ] ⊙ ∈ {⊕,⊗}
and on formulas as follows:

⊥̇[σ] ∶= ⊥̇ (t1 =̇ t2)[σ] ∶= t1[σ] =̇ t2[σ] (φ ⋄ ψ)[σ] ∶= φ[σ] ⋄ ψ[σ]
(∀̇φ)[σ] ∶= ∀̇(φ[⇑ σ]) (∃̇φ)[σ] ∶= ∃̇(φ[⇑ σ])

where ⇑ σ ∶= x0; λi. (σ i)[↑] at what t;σ maps x0 to t and xi+1 to σ i, and ↑ ∶= λi. xi+1

https://ps.uni-saarland.de/~mueck/bachelor/coqdoc/PostTheorem.external.FOL.Syntax.Core.html#subst_form

18 Arithmetical Hierarchy

We write ⇑ n ∶=⇑ ◦. . .◦ ⇑ and ↑
n ∶=↑ ◦. . .◦ ↑ for applying ⇑ or ↑ for n times.

The crucial rules are those for the quantifiers. Consider the following example, first
with explicit variable names: If we want to instantiate y with z ⊕ 1 in the formula
∀̇x. x⊕y=̇0, the instantiation is ∀̇x. x⊕(z⊕1)=̇0. But what if we instead instantiate
ywith x⊕ 1? Simply replacing the sub-term to ∀̇x. x⊕ (x⊕ 1) =̇ 0would be wrong
as x is a free variable in x ⊕ 1 and should also be free in the resulting term. To
avoid this kind of problem, traditional on-paper proofs often rely on Barendregt’s
convention [2] that free variables are distinct from bound variables. But aswework
formally in a proof assistant, we cannot do so and instead use de Bruijn indices
which enable a capture-avoiding substitution.
Reconsider the same example as before but now with de Bruijn indices. The vari-
able y from before corresponds to the first and z to the second free variable, namely
x0 and x1 in the outer scope. The formula translates to ∀̇ x0⊕x1=̇0. The instantiation
that substitutes the first free variable with the successor of the second free variable
and leaves all other variables in place is σ ∶= λi. if i = 0 then x1⊕1 else xi. But the
first free variable occurs under a quantifier that introduces another variable. The
instantiation only instantiates free variables and to this end should not touch the
newly introduced variable. With one quantifier in scope, the first free variable is x1.
Consequently the instantiation σ needs to be shifted such that it keeps x0 and sub-
stitutes xi+1 with σ i, namely the term by which the i-th free variable would have
been instantiated by σ. However, only shifting σ is not good enough yet as we in-
stantiate a variable with an arbitrary term that could also contain another variable.
For this reason, the variables in the instantiated term also need to be shifted. This
is how the instantiation rule for quantifiers operates. In our example, the resulting
formula is ∀̇ x0 ⊕ (x2 ⊕ 1) =̇ 0.

Definition 3.3 (Semantics) Term evaluation J⋅Kρ ∶ T → N and formula satisfaction
ρ ⊨ ⋅ ∶ F → P on an environment ρ ∶ N → N is defined as follows:

JnKρ ∶= n JxiKρ ∶= ρ i Jt1 ⊕ t2Kρ ∶= Jt1Kρ + Jn2Kρ Jt1 ⊗ t2Kρ ∶= Jt1Kρ ⋅ Jn2Kρ

ρ ⊨ ⊥̇ ∶= ⊥ ρ ⊨ t1 =̇ t2 ∶= Jt1Kρ = Jt2Kρ ρ ⊨ φ∧̇ψ ∶= (ρ ⊨ φ) ∧ (ρ ⊨ ψ)
ρ ⊨ φ∨̇ψ ∶= (ρ ⊨ φ) ∨ (ρ ⊨ ψ) ρ ⊨ φ →̇ ψ ∶= (ρ ⊨ φ)→ (ρ ⊨ ψ)

ρ ⊨ ∀̇φ ∶= ∀n. (n; ρ) ⊨ φ ρ ⊨ ∃̇φ ∶= ∃n. (n; ρ) ⊨ φ

where n; ρ is the environment that maps x0 to n and xi+1 to ρ i.

Note that in the standard Tarski semantics we are using, all connectives are just
reflected into the type-theoretic level. For that, we rely on the Coq Library for Mech-
anised First-Order Logic [30].

https://ps.uni-saarland.de/~mueck/bachelor/coqdoc/PostTheorem.external.FOL.Semantics.Tarski.FullCore.html#sat

3.1. Arithmetical Hierarchy in First-Order Arithmetic 19

Again, we slightly differ from the framework in our on-paper presentation. As
mentioned above, the framework describes a more general setting where a signa-
ture abstracts the basic predicates and functions in the syntax. Accordingly, the
semantics is defined with respect to a model that gives an interpretation of the ba-
sic predicates and functions. For our purpose, we rely on the standard model and
interpret the predicate =̇ and the functions⊕ and⊗with their corresponding type-
theoretic equivalent.

3.1.2 Prenex Normal Form

Every first-order formula can be transformed to an equivalent formula with all
quantifiers in the front, the so-called prenex normal form, or PNF for short. As far
as we have found out, this normal formwas first formalized and proved by Skolem
in 1920 [50] but is attributed to Kuratowski and Tarski [36] by Odifreddi [42]. The
rules needed for transforming a formula into prenex normal form seemed to be
folklore already during that time.
Although we only present the results of this subsection in the standard model of
first-order arithmetic on paper, all definitions, lemmas and theorems easily gener-
alize to a general model with other basic predicates and functions as we prove in
the accompanying Coq development.

Definition 3.4 (Prenex Normal Form)
We define a prenex normal form predicate PNF ∶ F → P inductively. A PNF-formula is a
quantifier-free formula with quantifiers stacked to the front:

PNF φ

PNF (∀̇φ)
PNF φ

PNF (∃̇φ)
noQuant φ

PNF φ

noQuant ⊥̇ noQuant (t1 =̇ t2)
noQuant φ noQuant ψ

noQuant (φ ⋄ ψ)
for all binary operators ⋄ ∈ {∧̇, ∨̇, →̇}

In 3.4 textbooks [42, 49], for each operator a rule is given to pull out the quantifiers
by one level. Some of the rules only hold classically.

https://ps.uni-saarland.de/~mueck/bachelor/coqdoc/PostTheorem.PrenexNormalForm.html#PNF_ind

20 Arithmetical Hierarchy

Lemma 3.5 All these rules hold in intuitionistic logic for an arbitrary environment ρ:

ρ ⊨ ((∀̇φ)∧̇ψ) ↔̇ (∀̇(φ∧̇ψ[↑])) ρ ⊨ ((∃̇φ)∧̇ψ) ↔̇ (∃̇(φ∧̇ψ[↑]))
ρ ⊨ (φ∧̇(∀̇ψ) ↔̇ (∀̇(φ[↑]∧̇ψ)) ρ ⊨ (φ∧̇(∃̇ψ)) ↔̇ (∃̇(φ[↑]∧̇ψ))
ρ ⊨ ((∀̇φ)∨̇ψ) →̇ (∀̇(φ∨̇ψ[↑])) ρ ⊨ ((∃̇φ)∨̇ψ) ↔̇ (∃̇(φ∨̇ψ[↑]))
ρ ⊨ (φ∨̇(∀̇ψ)) →̇ (∀̇(φ[↑]∨̇ψ)) ρ ⊨ (φ∨̇(∃̇ψ)) ↔̇ (∃̇(φ[↑]∨̇ψ))
ρ ⊨ ((∀̇φ) →̇ ψ) ←̇ (∃̇(φ →̇ ψ[↑])) ρ ⊨ ((∃̇φ) →̇ ψ) ↔̇ (∀̇(φ →̇ ψ[↑]))
ρ ⊨ (φ →̇ (∀̇ψ)) ↔̇ (∀̇(φ[↑] →̇ ψ)) ρ ⊨ (φ →̇ (∃̇ψ)) ←̇ (∃̇(φ[↑] →̇ ψ))

The remaining directions hold when assuming LEM.

Proof All proofs are straightforward as the semantics reflects the type-theoretic
level. □

The rules proved in Lemma 3.5 give rise to an algorithm for converting a formula
into prenex normal form that Mostowski – in his paper defining the arithmetical
hierarchy [38] – revers to as “Kuratowski-Tarski method” [36] and Rogers names
“Tarski-Kuratowski algorithm” [49]. The algorithm is non-deterministic as also the
PNF of a formula is not unique. For example, the PNF of (∃̇∀̇φ) ∧ (∃̇ψ) depends
on whether the left or right quantifiers are pulled out first. In our implementation
of a PNF-conversion algorithm, we apply the rules in a fixed order such that the
algorithm becomes deterministic.
The algorithm – as derived from the rules – is terminating but not structurally
recursive. For example, (∃̇∀̇φ) ∧ (∃̇ψ) can be transformed by a single rule to
∃̇((∀̇φ) ∧ (∃̇ψ)) and then (∀̇φ) ∧ (∃̇ψ) needs to be converted to PNF recursively,
which is not structurally smaller. In Coq only terminating algorithms can be de-
fined. For that reason, structurally recursive algorithms are desirable because ter-
mination is obvious and does not need to be proven separately. In order to be struc-
turally recursive, two PNF formulas that are composed together with a binary op-
erator need to be converted to a PNF formula in a single step.
We propose a structurally recursive algorithm that computes the quantifier pre-
fix as a list and the quantifier-free suffix formula separately. When attaching the
quantifiers to the quantifier-free formula, we get the prenex normal of the initial
formula.

Definition 3.6 We define a function ⋅ ∶ L (Q) → L (Q) that inverts a list of quantifiers
and another function _ +̇+ _ ∶ L (Q) → F → F that stacks a list of quantifiers to the front
of a formula.

https://ps.uni-saarland.de/~mueck/bachelor/coqdoc/PostTheorem.PrenexNormalForm.html#PNFrules
https://ps.uni-saarland.de/~mueck/bachelor/coqdoc/PostTheorem.PrenexNormalForm.html#swap_quant

3.1. Arithmetical Hierarchy in First-Order Arithmetic 21

[] ∶= []

∀̇ ∶∶ L ∶= ∃̇ ∶∶ L

∃̇ ∶∶ L ∶= ∀̇ ∶∶ L

[] +̇+ φ ∶= φ
(∀̇ ∶∶ L) +̇+ φ ∶= ∀̇(L +̇+ φ)
(∃̇ ∶∶ L) +̇+ φ ∶= ∃̇(L +̇+ φ)

Definition 3.7 (PNF Conversion) We define two auxillary functions cL ∶ F → L (Q)
and cF ∶ F → F that determine the quantifier prefix and the quantifier-free suffix of the
prenex normal form of a formula.

cL ⊥̇ ∶= []
cL (t1 =̇ t2) ∶= []

cL (φ ∧̇ ψ) ∶= (cLφ)++ (cLψ)
cL (φ ∨̇ ψ) ∶= (cLφ)++ (cLψ)
cL (φ →̇ ψ) ∶= (cLφ)++ (cLψ)
cL (∀̇ φ) ∶= ∀̇ ∶∶ (cLφ)
cL (∃̇ φ) ∶= ∃̇ ∶∶ (cLφ)

cF ⊥̇ ∶= ⊥̇

cF (t1 =̇ t2) ∶= t1 =̇ t2
cF (φ ⋄ ψ) ∶=

(cFφ)[↑ ∣cLψ∣] ⋄ (cFψ)[⇑ ∣cLψ∣(↑ ∣cLφ∣)]
cF (∀̇ φ) ∶= cFφ

cF (∃̇ φ) ∶= cFφ

Using cL and cF, we then define a function convert ∶ F → F that converts a formula into
its prenex normal form.

convert φ ∶= (cLφ) +̇+ (cFφ)

The trick that makes the algorithm structurally recursive and enables composing
two sub-formulas in PNF by a binary operator is to detach the quantifier prefix
from the quantifier-free suffix and compute it separately in a list. This allows that
the quantifier lists of the two sub-formulas can simply be concatenated in a single
step instead of pulling out quantifiers one after another which has caused a non-
structurally recursive algorithm. In the case of →̇, the quantifiers of the premises
list need to be inverted (cf. Lemma 3.5).
The handling of the de Bruijn indices needs more explanation.
First, we have detailed look at ⇑ ℓ(↑ k) which is the function application of the
substitution transformer ⇑ ℓ ∶ (N → T) → (N → T) to the argument ↑ k ∶ N → T .
The following lemma gives more insight by proving the explicit form.

Lemma 3.8 ⇑
ℓ
σ i = {xi if i < ℓ

(σ (i − ℓ)) ↑ ℓ if i ≥ ℓ

Proof If i < ℓ, the proof is by induction on i with ℓ generalized. If i ≥ ℓ, the proof
is by induction on ℓwith i generalized. □

Corollary 3.9 ⇑
ℓ(↑ k) i = {xi if i < ℓ

x(i+k) if i ≥ ℓ

https://ps.uni-saarland.de/~mueck/bachelor/coqdoc/PostTheorem.PrenexNormalForm.html#convert_PNF
https://ps.uni-saarland.de/~mueck/bachelor/coqdoc/PostTheorem.PrenexNormalForm.html#upN_explicit
https://ps.uni-saarland.de/~mueck/bachelor/coqdoc/PostTheorem.PrenexNormalForm.html#shift_quant_explicit

22 Arithmetical Hierarchy

So ⇑
ℓ(↑ k) keeps the first ℓ indices in place and shifts the other indices by k.

With that in mind, we have another look at the renaming in the algorithm. The
quantifier lists are concatenated such that the quantifiers from the left sub-formula
are on the left and those from the right sub-formula are on the right. To ensure
that the quantifiers added between the left sub-formula and its quantifiers do not
bind anything in the left sub-formula, the de Bruijn indices in the left sub-formula
are raised above the newly added quantifiers. From the viewpoint of the right sub-
formula, there is no quantifier added in the scope of its quantifiers. So all bound
variables are kept in place. However, there are more quantifiers added to the out-
side, such that the free variables need to be shifted. Let us consider following ex-
ample:

convert ((∀̇∀̇φ)∧̇(∃̇∃̇∃̇φ)) = ∀̇∀̇∃̇∃̇∃̇(φ[↑ 3]∧̇ψ[⇑ 3
↑
2])

The indices of the left sub-formula φ are shifted by 3 because there are three ad-
ditional ∃̇-quantifiers added that should not bind anything in φ. The first three
indices x0; x1; x2 of ψ are held in place because they are bound by the inner ex-
istential quantifiers. The free indices are shifted by 2 because the two additional
∀̇-quantifier should not bind anything in ψ.
The PNF conversion algorithm presented in Definition 3.7 is quite naive and does
not minimize the quantifier alternations. For example (for the sake of readability
with explicit variable naming) convert (∃̇x.∀̇y. φ) ∧ (∃̇z. ψ) = ∃̇x.∀̇y.∃̇z. (φ ∧ ψ)
but ∃̇x.∃̇z.∀̇y. (φ∧ψ)would be an equivalent formula in prenex normal formwith
less quantifier alternations.
This is caused by simply concatenating the two quantifier lists of the sub-formulas
of a binary operator. A possible solution would be to merge the quantifier lists in
a more intelligent way by optimizing the number of quantifier alternations. We
however leave such optimization to future work, as the de Bruijn renaming as well
as the verification would be more complicated and would require more work.
Also note that even if the PNF conversion algorithm would optimize quantifier al-
ternations, the algorithmwould still only give an upper bound classification of for-
mulas in the arithmetical hierarchy. Finding an equivalent formula with a minimal
number of quantifiers is undecidable in general.1

The verification of the PNF conversion algorithm consists of showing two proper-
ties. First, that the result is actually a PNF formula (Theorem 3.11) and second, that
the result is still equivalent to the initial formula (Theorem 3.13).

1The Entscheidungsproblem [23]whether a formula is generally valid is known to be undecidable
due to Turing [56] and Church [8]. A reduction from the Entscheidungsproblem can be done as
follows. Given a formula φ, compute its equivalent formula with minimal quantifiers ψ. Now φ is
universally valid if and only if ψ is quantifier-free and equivalent to the true formula.

3.1. Arithmetical Hierarchy in First-Order Arithmetic 23

We start by showing the easier property that the result is actually a PNF formula.
For that purpose, we first prove that the resulting formula of cL is quantifier-free.

Lemma 3.10 noQuant cFφ

Proof The proof is straightforward by induction on φ, after showing that variable
substitution of a quantifier-free formula does not add additional quantifiers. □

Theorem 3.11 PNF (convert φ)

Proof After unfolding the definition of convert, the proof is straightforward by in-
duction on the list and using Lemma 3.10. □

Showing that the result is an equivalent formula is a bit more involved and needs
the right lemma for de Bruijn handling.

Lemma 3.12 (L +̇+ φ)[σ] = L +̇+ (φ[⇑ ∣L∣
σ])

Proof The proof is straightforward by induction on L with σ generalized, as each
application of the instantiation rule for quantifiers (cf. Definition 3.2) adds a ⇑. □

Theorem 3.13 When assuming LEM, each formula is equivalent to its PNF-conversion:
ρ ⊨ φ ↔̇ (convert φ)

Proof The proof is by induction on φ. The two base cases are trivial as falsity and
equality are converted to itself. The case for quantifiers follows directly from the
inductive hypothesis. The proofs for the binary operators are very similar to each
other. So we only prove the ∧̇-case here:
It suffices to show ρ ⊨ (convert φ)∧̇(convert ψ) ↔̇ convert (φ∧̇ψ) by the inductive
hypothesis. Let Lφ ∶= cLφ,φ ′ ∶= cFφ, Lψ ∶= cLψ, andψ ′ ∶= cF ψ. The claim reduces
to: ρ ⊨ (Lφ +̇+ φ ′)∧̇(Lψ +̇+ ψ ′) ↔̇ (Lφ ++ Lψ) +̇+ (φ ′[↑ ∣Lψ∣]∧̇ψ ′[⇑ ∣Lψ∣(↑ ∣Lφ∣)])

We prove the claim by induction on Lφ and in the []-case by another induction on
Lψ, both inductions with ρ,φ ′ and ψ ′ quantified. If both lists are empty, the claim
is trivial. In the two remaining cases, either a quantifier is pulled out from the right
or from the left. Both cases are symmetric but the second one needs a bit more
attention on the de Bruijn handling. So we only prove the second one.

https://ps.uni-saarland.de/~mueck/bachelor/coqdoc/PostTheorem.PrenexNormalForm.html#conv_form_noQuant
https://ps.uni-saarland.de/~mueck/bachelor/coqdoc/PostTheorem.PrenexNormalForm.html#convert_PNF_PNF
https://ps.uni-saarland.de/~mueck/bachelor/coqdoc/PostTheorem.PrenexNormalForm.html#quant_list_to_form_rename_free
https://ps.uni-saarland.de/~mueck/bachelor/coqdoc/PostTheorem.PrenexNormalForm.html#PNF_equiv

24 Arithmetical Hierarchy

Assume Lφ = ∀̇ ∶∶ L ′φ (the ∃̇-case is analogous). The proof is as follows:

ρ ⊨ (∀̇(L ′φ +̇+ φ ′))∧̇(Lψ +̇+ ψ ′)
↔ ρ ⊨ ∀̇((L ′φ +̇+ φ ′)∧̇(Lψ +̇+ ψ ′)[↑]) Lem. 3.5
↔ ρ ⊨ ∀̇((L ′φ +̇+ φ ′)∧̇(Lψ +̇+ ψ ′[⇑ ∣Lψ∣(↑)]) Lem. 3.12
↔ ∀n. n; ρ ⊨ ((L ′φ +̇+ φ ′)∧̇(Lψ +̇+ ψ ′[⇑ ∣Lψ∣(↑)]) Def. 3.3
↔ ∀n. n; ρ ⊨ (L ′φ ++ Lψ) +̇+ (φ ′[↑ ∣Lψ∣]∧̇ψ ′[⇑ ∣Lψ∣(↑

»»»»»L
′
φ
»»»»»+1)]) Ind. hyp.

↔ ρ ⊨ ∀̇(L ′φ ++ Lψ) +̇+ (φ ′[↑ ∣Lψ∣]∧̇ψ ′[⇑ ∣Lψ∣(↑
»»»»»L

′
φ
»»»»»+1)]) Def. 3.3

In the penultimate step, we apply the induction hypothesis for environment n; ρ
and formulas φ ′ and ψ ′[⇑ ∣Lψ∣(↑)]. In addition, we merge ↑

»»»»»L
′
φ
»»»»» and ↑.

Also note that in the first step, Lemma 3.5 needs LEM for pulling a ∀̇ out of an ∨̇
and for pulling any quantifier out of the premises of an →̇. □

The general case of Theorem 3.13 for an arbitrary semantical model is equivalent
to LEM.

3.1.3 Syntactic Definition of the Arithmetical Hierarchy

For the syntactic definition of the arithmetical hierarchy, we first define the hierar-
chy on formulas.
We define it upwards-closed such that ∑n ⊆ ∑n+1 and ∏n ⊆ ∏n+1 by defining
that quantifier-free formulas are ∑n-formulas for all n (and similar for ∏n). As
we later only talk about formulas that reflect a predicate, this does notmatter (since
there is always an equivalent formula with an unused additional quantifier) and is
only for convenience.
Additionally, we also allow stackingmultiple quantifiers of the same type (without
raising complexity). This is also only for convenience as proved for the semantic
arithmetical hierarchy in Subsection 3.2.3 which follows for this definition due to
the equivalence proved in Section 3.3.
Definition 3.14 (Arithmetical Hierarchy on Formulas)
We define ∑n ∶ F → P and ∏n ∶ F → P mutually inductive:

noQuant φ

∑n φ
∏n φ

∑n+1 ∃̇φ
∑n+1 φ
∑n+1 ∃̇φ

noQuant φ

∏n φ

∑n φ
∏n+1 ∀̇φ

∏n+1 φ

∏n+1 ∀̇φ

https://ps.uni-saarland.de/~mueck/bachelor/coqdoc/PostTheorem.PrenexNormalForm.html#PNF_equiv_DN
https://ps.uni-saarland.de/~mueck/bachelor/coqdoc/PostTheorem.PrenexNormalForm.html#PNF_equiv_DN
https://ps.uni-saarland.de/~mueck/bachelor/coqdoc/PostTheorem.ArithmeticalHierarchySyntactic.html#7500b565e65690b09a75fe82fa751235

3.1. Arithmetical Hierarchy in First-Order Arithmetic 25

In the base case, quantifier-free formulas are both ∑n- and ∏n-formulas. Adding
an ∃̇ to a∏n-formula adds a quantifier alternation and consequently, the resulting
formula is ∑n+1. Similarly, adding a ∀̇ to a ∑n-formula adds a quantifier alterna-
tion and consequently, the resulting formula is∏n+1. If a formula already is∑n+1
another ∃̇ can be added without increasing the complexity. Similarly, if a formula
already is∏n+1 another ∀̇ can be added without increasing the complexity.
To that effect, ∑0- and ∏0-formulas are exactly the quantifier-free formulas. And
a ∑n+1-formula is allowed to have at least n quantifier alternations with a leading
∃̇. Similarly, a ∏n+1-formula is allowed to have at least n quantifier alternations
with a leading ∀̇.
The structure of having a quantifier-free formula in the base case and then allow-
ing quantifiers added to the front reminds of the prenex normal form. The follow-
ing fact shows that the formulas in the arithmetical hierarchy are exactly those in
prenex normal form.

Fact 3.15 PNF φ↔ {n ∶ N ∣ ∑nφ +∏nφ}

Proof First, note that PNF φ on the left is of type P and that we have a dependent
pair of type T on the right. By the elimination restriction (cf. Section 2.1), induction
onPNFφ is not possible by defaultwhen constructiong a dependent pair. However,
a strong eliminator of PNF ∶ F → P to T can be defined by case distinction on
the formula φ which is possible because F ∶ T and PNF is defined inductively on
the structure of formulas. (We construct the eliminator in the corresponding Coq
development.)
Then, the actual proof is straightforward by induction using the strong eliminator
on PNF φ, respectively by mutual induction on ∑n φ and ∏n φ for the other di-
rection. □

Because Fact 3.15 is formulated computationaly with a dependent pair, it gives rise
to an algorithm that – together with the PNF-conversion algorithm from Subsec-
tion 3.7 – enables an upper bound classification of formulas in the arithmetical hi-
erarchy.
Next, we define a syntactic arithmetical hierarchy, that classifies type-theoretical
predicates that are reflected by a formula in first-order arithmetic. For that purpose,
we first establish the notion of a reflecting formula.

Definition 3.16 We call φ ∶ F a reflecting formula for p ∶ Nk → P, written φ ≡ p if:
∀v ∶ Nk . ρv ⊨ φ↔ p v

where ρv i ∶= if i < k then v[i] else 0 is the environment (a function N → N) that looks
up the value i at the i-th position of the vector or returns a dummy value if it is out of range.

https://ps.uni-saarland.de/~mueck/bachelor/coqdoc/PostTheorem.ArithmeticalHierarchySyntactic.html#2b5d4f367192de1153ae82f9ebdb7a27
https://ps.uni-saarland.de/~mueck/bachelor/coqdoc/PostTheorem.ArithmeticalHierarchySyntactic.html#reflecting

26 Arithmetical Hierarchy

Definition 3.17 (Syntactic Arithmetical Hierarchy)
We lift the arithmetical hierarchy of formulas to predicates p ∶ Nk → P in type theory:

∑kn p ∶= ∃φ ≡ p.∑nφ ∏k
n p ∶= ∃φ ≡ p.∏nφ

Note that the upper index k of ∑kn and ∏k
n is the arity of the predicate in the style of

Mostowski [38] but is sometimes used differently in the literature. When the arity is arbi-
trary or clear from the context, we omit it.

We do not show many properties of the syntactic arithmetical hierarchy here, as
they are inherited by the semantic arithmetical hierarchy (Section 3.2) which we
prove equivalent in Section 3.3. The equivalence proof however needs a lemma.

Lemma 3.18 ∑kn p→ ∑kn+ℓ p and respectively ∏k
n p→ ∏k

n+ℓ p

Proof Choose the same reflecting formula. The intermediate step ∑nφ → ∑n+ℓφ
is straightforward by induction on∑nφ and similarly for∏nφ→ ∏n+ℓφ. □

3.2 Arithmetical Hierarchy in Type Theory
In this section, we present a definition of the arithmetical hierarchy in synthetic
computability. k-ary predicates that are computed by functions build the base.
Quantifying some arguments of a k-ary predicate leads to a predicate of higher
complexity.
In Subsection 3.2.1 we discuss decidable k-ary predicates using which we define
the semantic arithmetical hierarchy in Subsection 3.2.2. Then, in Subsection 3.2.3
we prove some properties of the hierarchy.

3.2.1 Decidable Predicates on Vectors

In synthetic computability all functions N → B are considered computable (cf. Sec-
tion 2.3). Vectors Nk consist of finitely many natural numbers that can be encoded
into a single natural number by Cantor’s pairing function. Thus, functions of type
Nk → B can be encoded by functions of type N → B and therefore we also consider
them computable.
So decidable predicates on vectors are of the following form:

Definition 3.19 A predicate p ∶ Nk → P is decidable if there is a function f ∶ Nk → B
such that: p = (λn⃗. f n⃗ = true).

Whenworking with predicates on vectors, we assume the following axiom that can
be derived from functional and propositional extensionality.

https://ps.uni-saarland.de/~mueck/bachelor/coqdoc/PostTheorem.ArithmeticalHierarchySyntactic.html#e3bfc126f3f181edb8075c690008e62a
https://ps.uni-saarland.de/~mueck/bachelor/coqdoc/PostTheorem.ArithmeticalHierarchySyntactic.html#bb63dcd63bdcd8c205193d4b4b3992f2
https://ps.uni-saarland.de/~mueck/bachelor/coqdoc/PostTheorem.external.Synthetic.Definitions.html#decidable

3.2. Arithmetical Hierarchy in Type Theory 27

Axiom 3.20 (Predicate Extensionality)
PredExt ∶= ∀p q ∶ Nk → P . (∀n⃗. pn⃗↔ qn⃗)→ p = q

The axiom assumes that point-wise equivalent predicates on vectors are equal. This
becomes handy when applying a constructor of the inductive definition of the se-
mantic arithmetical hierarchy (Definition 3.21, below) because the predicate can be
rewritten by a point-wise equivalent one that meets the required syntactical shape.
Instead, we could have added another rule to the inductive definition of the hi-
erarchy, that a predicate is in the hierarchy if a point-wise equivalent one is. We
discuss this design decision in more detail after defining the semantic arithmetical
hierarchy.

3.2.2 Semantic Definition of the Arithmetical Hierarchy

Definition 3.21 (Semantic Arithmetical Hierarchy)
We define ∑̃kn ∶ (Nk → P) → P and ∏̃k

n ∶ (N
k
→ P) → P mutually inductive:

f ∶ Nk → B

∑̃k0(λn⃗. fn⃗ = true)
f ∶ Nk → B

∏̃k
0(λn⃗. fn⃗ = true)

∏̃k+1
n p

∑̃kn+1(λn⃗. ∃x. p(x ∶∶ n⃗))
∑̃k+1n p

∏̃k
n+1(λn⃗. ∀x. p(x ∶∶ n⃗))

Note that the upper index k of ∑̃kn and ∏̃k
n is the arity of the predicate in the style of

Mostowski [38] but is sometimes used differently in the literature. When the arity is arbi-
trary or clear from the context, we omit it.

In the base case, predicates that are computed by a function Nk → B are both in
∑̃0 and ∏̃0. Quantifying the first argument of a k+1-ary ∏̃n-predicate with an
∃-quantifier (in the type-theoretic level) leads to a ∑̃n+1-predicate with smaller
arity k. Similarly, quantifying the first argument of a k+1-ary ∑̃n-predicate with
an∀-quantifier (in the type-theoretic level) leads to a ∏̃n+1-predicatewith smaller
arity k.
Note that compared to our definition of the arithmetical hierarchy on formulas (cf.
Definition 3.14) there is no native rule that decidable predicateswithout quantifiers
are in ∑̃n and ∏̃n for all n and no rule that allows stacking multiple quantifiers
of the same kind. Both rules can however be derived as proved in Lemma 3.23 and
Lemma 3.26.
The inductive rules are very strict on the exact form of the predicate. For example,
the quantified variables always need to be combined with the argument vector to a

https://ps.uni-saarland.de/~mueck/bachelor/coqdoc/PostTheorem.ArithmeticalHierarchySemantic.html#PredExt
https://ps.uni-saarland.de/~mueck/bachelor/coqdoc/PostTheorem.ArithmeticalHierarchySemantic.html#dcce78e25b1a71bddb5c80acf6e5da10

28 Arithmetical Hierarchy

single vector that then gets passed to an inner predicate. The inner predicate cannot
access the quantified variable directly and needs to decompose the vector again.
At this point predicate extensionality (Axiom 3.20) can be used to successively
rewrite the predicate being classified such that it fits the syntactical form of the
inductive rule.
For example if we want so show λn⃗.∃k. n⃗[0] = 2 ⋅ k ∈ ∑̃11. First of all, we rewrite
the type-theoretic predicate using PredExt to λn⃗,∃k, (λm⃗. m⃗[1] = 2 ⋅ m⃗[0])(k ∶∶ m⃗).
Then by definition of the semantic arithmetical hierarchy it suffices to show that
λm⃗. m⃗[1] = 2 ⋅ m⃗[0] ∈ ∏̃2

0. Again by PredExt we rewrite the predicate such that
it relies on a decidable predicate to λm⃗. (λn⃗. _m⃗[1] = 2 ⋅ m⃗[0]^)(m⃗) ∈ ∏̃2

0 which
follows by definition. (Note that evenness is decidable and can be shown to be in
∑̃0 by giving a function directly.)
Another example of how we work with predicate extensionality is the following
lemma.

Lemma 3.22 S(p)↔ p ∈ ∑̃1
Proof We prove both directions separately.
→ Assume S(p) that means that there is a function f ∶ Nk → N → B such that

p n⃗↔ ∃ℓ. f n⃗ ℓ = true. By PredExt it suffices to show ∃ℓ. f n⃗ ℓ = true ∈ ∑̃n.
Again by PredExtwe can rewrite to λn⃗.∃ℓ. (λm⃗. (λℓ∶∶n⃗. f n⃗ ℓ) m⃗ = true)(ℓ∶∶m⃗).
Which is in the right form such that two inductive rules can be applied suc-
cessively in order to show that it is a ∑̃1-predicate.

← Assume p ∈ ∑̃1. By inversion there exists a function f ∶ Nk+1 → B such that
p = (λn⃗. ∃ℓ. f (ℓ ∶∶ n⃗) = true). The claimed semi-decider is λn⃗ ℓ. f (ℓ ∶∶ n⃗). □

We continue relying on PredExt but will not do the rewriting explicitly to apply the
inductive rules in the subsequent proofs.
As mentioned earlier, instead of assuming predicate extensionality as an axiom in
order to make predicates fit the exact form of the inductive rules, we could have
also added a rule to the definition of the semantic arithmetical hierarchy that says
a predicate is ∑̃n if a point-wise equivalent predicate is ∑̃n, formally p ∈ ∑̃n ∧
(∀n⃗. pn⃗↔ qn⃗) → q ∈ ∑̃n and similarly of ∏̃n. We have however decided not
to do so as this would have added two rules to the definition of the hierarchy that
would have needed to be considered in proofs.

https://ps.uni-saarland.de/~mueck/bachelor/coqdoc/PostTheorem.ArithmeticalHierarchySemantic.html#2277e45d2616aa48c3cfa16c15a1f7bf

3.2. Arithmetical Hierarchy in Type Theory 29

3.2.3 Closure Properties of the Semantic Arithmetical Hierarchy

In this subsection, we prove several closure properties of the semantic arithmetical
hierarchy like that, it is closed upwards, under many-one reductions and intersec-
tion, by adding additional quantifiers of the same type, that bounded quantifiers do
not increase the complexity, that it the complement of ∑̃n is ∏̃n (when assuming
LEM), and more.
We start by proving the two laws that were built-in in the inductive definition of the
syntactic arithmetical hierarchy but not in the inductive definition of the semantic
arithmetical hierarchy and have been claimed to not be necessary as they can be
derived. One is Lemma 3.23 the other ist 3.26.
Lemma 3.23 Decidable predicates are in the semantic arithemtical hierarchy for any n:
∑̃kn(λn⃗. fn⃗ = true) and ∏̃k

n(λn⃗. fn⃗ = true).

Proof The idea is to stack quantifiers whose bound variables are not used. The
proof is by induction on n with k and f generalized. If the base case for n = 0 the
rule is within the definition of the hierarchy. The inductive case can be rewritten to
λn⃗. ∃x. (λx ∶∶ n⃗. f n⃗)(x ∶∶ n⃗) ∈ ∑̃kn+1 and then follows by the inductive hypothesis
and the definition of the hierarchy. □

Corollary 3.24 ∑̃n ⊆ ∑̃n+ℓ and ∏̃n ⊆ ∏̃n+ℓ

Proof The proof is by mutual induction on ∑̃n and ∏̃n. The base cases follow
by Lemma 3.23. The other cases by applying the respective inductive rule of the
hierarchy’s definition. □

Next, we prove that stackingmultiple quantifiers of the same kind is possible with-
out increasing the complexity. Intuitively this holds becausemultiple natural num-
bers can be encoded into a single one by Cantor’s pairing function. The idea is to
change the decidable predicate at the base such that it first destructs numbers that
encode pairs appropriately.
Coming up with the proof shown below, however, needed several attempts. Our
first proof was by generalizing a single Cantor pairing by a general embedding
function of Nℓ to Nk. Later we found a shorter and more meaningful proof using
that the arithmetical hierarchy is closed under many-one reducibility.
Lemma 3.25 The semantic arithmetical hierarchy is closed under many-one reducibility.
Formally, for two predicates p ∶ Nk → P and q ∶ Nℓ → P such that p ⪯m q:
q ∈ ∑̃ℓn→ p ∈ ∑̃kn and q ∈ ∏̃ℓ

n→ p ∈ ∏̃k
n.

Proof The proof is by mutual induction on q ∈ ∑̃ℓn and q ∈ ∏̃ℓ
n with p general-

ized. We only prove the two ∑̃ cases, because the two cases for ∏̃ are analogous.

https://ps.uni-saarland.de/~mueck/bachelor/coqdoc/PostTheorem.ArithmeticalHierarchySemantic.html#607b8561ac54700151cf63c7b45473ac
https://ps.uni-saarland.de/~mueck/bachelor/coqdoc/PostTheorem.ArithmeticalHierarchySemantic.html#e714274f94d7a7fe9762e02bef901ac3
https://ps.uni-saarland.de/~mueck/bachelor/coqdoc/PostTheorem.ArithmeticalHierarchySemantic.html#b62f9e36ef1e9a2a46f8b4ddaa49a60f

30 Arithmetical Hierarchy

In the base case, we know λn⃗. f n⃗ = true ∈ ∑̃ℓ0, for some f and p⪯m (λn⃗. f n⃗ = true),
namely that there is an encoding e ∶ Nk → Nℓ such that p n⃗↔ f (e n⃗) = true. By
PredExt it suffices to show λn⃗. f (e n⃗) = true ∈ ∑̃k0 which holds by definition.
In the other case, we know λn⃗. ∃x. q (x ∶∶ n⃗) ∈ ∑̃ℓn+1 for some q ∈ ∏̃ℓ+1

n and
p ⪯m (λn⃗. ∃x. q (x ∶∶ n⃗)), namely that there is an encoding e ∶ Nk → Nℓ such that
p n⃗↔∃x. q (x ∶∶ (e n⃗)). By PredExt is suffices to show λn⃗. ∃x. q (x ∶∶ (e n⃗)) ∈ ∑̃kn+1
which is by the definition of the hierarchy λx ∶∶ n⃗. q (x ∶∶ (e n⃗)) ∈ ∏̃k+1

n . This
predicate is many-one reducible to q and thus the claim follows by the inductive
hypothesis. □

Lemma 3.26 Quantifiers of the same kind can be stacked without raising the complexity:
p ∈ ∑̃k+1n+1→ ∃x. λn⃗. p(x ∶∶ n⃗) ∈ ∑̃kn+1 and p ∈ ∏̃k+1

n+1→ ∀x. λn⃗. p(x ∶∶ n⃗) ∈ ∏̃k
n+1.

Proof We only show the claim for ∑̃ as the proof for ∏̃ is analogous. We assume
p ∈ ∑̃k+1n+1. By inversion there exists a q ∈ ∏̃k+2

n with λn⃗. ∃x. q (x ∶∶ n⃗) ∈ ∏̃k+1
n .

Hence it suffices to show λn⃗.∃x1x2. q (x1∶∶x2∶∶n⃗) ∈ ∑̃kn+1. ByPredExt this claim can
be rewritten to only quantifying a single number that then is destructed by Cantor’s
pairing function: λn⃗. ∃x. (λ⟨x1, x2⟩ ∶∶ n⃗. q (x1 ∶∶ x2 ∶∶ n⃗))(x ∶∶ n⃗) ∈ ∑̃kn+1. By the
definition of the hierarchy it suffices to show λ⟨x1, x2⟩ ∶∶ n⃗. q (x1 ∶∶ x2 ∶∶ n⃗) ∈ ∏̃k+1

n .
The claim follows by Lemma 3.25 as obviously λ⟨x1, x2⟩ ∶∶ n⃗. q (x1 ∶∶ x2 ∶∶ n⃗)⪯m q.□

Next, we prove two lemmas that connect ∑̃ to ∏̃. The first lemma states that every
∏̃n predicate is also a ∑̃n+1 predicate because it is equivalent to a predicate with
an unused∃-Quantifier (and similarly for ∑̃ and ∏̃ swapped). The second lemma
states that – in classical logic – ∑̃n is exactly the complement of ∏̃n.

Lemma 3.27 ∏̃k
n ⊆ ∑̃kn+1 and ∑̃kn ⊆ ∏̃k

n+1

Proof Assume p ∈ ∏̃k
n. By Lemma 3.25 also λx ∶∶ n⃗. pn⃗ ∈ ∏̃k+1

n , because the two
predicates are many-one reducible. Consequently, by definition of the hierarchy
λn⃗. ∃x. (λx ∶∶ n⃗. pn⃗)(x ∶∶ n⃗) ∈ ∑̃kn+1. The predicate is equivalent to p. Thus, the
claim follows by PredExt. The proof of the other claim is analogous. □

Lemma 3.28 For n ≤ 1 and else assuming LEM: p ∈ ∑̃n→ p ∈ ∏̃n

For n = 0, for n = 1 assuming MP, and else assuming LEM: p ∈ ∏̃n→ p ∈ ∑̃n
Proof In the n = 0 cases, by inversion there exists a function f that computes p
such that such that pn⃗ = (fn⃗ = true). By case distinction on fn⃗, ¬pn⃗↔ (fn⃗ = false).
Consequently, λn⃗. !(fn⃗) decides λn⃗. ¬pn⃗ and both claims follow by the definition
of the hierarchy.

https://ps.uni-saarland.de/~mueck/bachelor/coqdoc/PostTheorem.ArithmeticalHierarchySemantic.html#179694fac61c03e5be96c5a624e8a4e4
https://ps.uni-saarland.de/~mueck/bachelor/coqdoc/PostTheorem.ArithmeticalHierarchySemantic.html#eece1bf2be91a7f704508bea86c9f04a
https://ps.uni-saarland.de/~mueck/bachelor/coqdoc/PostTheorem.ArithmeticalHierarchySemantic.html#6b370dc96efbd512af29a786155bbf6e

3.2. Arithmetical Hierarchy in Type Theory 31

In the p ∈ ∑̃1 case, by inversion p = (λn⃗. ∃x. q(x ∶∶ n⃗)) for some q ∈ ∏̃0. We have
just shown that consequently λn⃗.¬qn⃗ ∈ ∑̃0. The claim follows by PredExt and the
following intuitionistic fact: ¬∃x. q(x ∶∶ n⃗)↔∀x. ¬q(x ∶∶ n⃗).
In the p ∈ ∏̃1 case, by inversion p = (λn⃗. ∃x. f(x ∶∶ n⃗) = true) for a function f. Now,
MP states that ¬(∀x. g x = false) → ∃x. ¬(g x = true) for a function g ∶ N → B
(the back direction holds in intuitionistic logic). The claim follows together with
PredExt when choosing g ∶= λx. f(x ∶∶ n⃗) for a fixed n⃗.
For the general case, the proof is bymutual induction on p ∈ ∑̃n and p ∈ ∏̃n. The
base cases have been shown above. In the p ∈ ∑̃n+1 case, the claim can be rewritten
similarly as above andwithout using classical axioms to λn⃗.∀x.¬q(x ∶∶ n⃗) ∈ ∏̃n+1
which reduces to the induction hypothesis by the definition of the hierarchy. The
p ∈ ∏̃n+1 case is similar, but rewriting the claim form λn⃗.¬(∀x. p(x ∶∶ n⃗)) ∈ ∑̃n+1
into λn⃗. ∀x. ¬p(x ∶∶ n⃗) ∈ ∑̃n+1 relies on LEM. □

We have shown p ∈ ∏̃1 → p ∈ ∑̃1 by assuming MP in Lemma 3.28. Actually,
assuming S(p) → S(p) – which seem to be weaker than MP – would have been
enough and is equivalent to the statement for n = 1.
The general case for n ≥ 2 also seems to be weaker than LEM because LEM is about
arbitrary predicates and not only about predicates in the arithmetical hierarchy.
Akama et al. [1] present an arithmetical hierarchy of classical axioms that seems
to be related.
Lemma 3.29 The semantic arithmetical hierarchy is closed under intersection, formally:
p ∈ ∑̃n∧q ∈ ∑̃n→ λn⃗. pn⃗∧qn⃗ ∈ ∑̃n and p ∈ ∏̃n∧q ∈ ∏̃n→ λn⃗. pn⃗∧qn⃗ ∈ ∏̃n

Proof The proof is by induction on n generalized over p and q and followed by
inversion on the assumptions. In the base cases, construct a function that returns
true if and only if the two functions deciding p and q return true. In the other cases,
pull out the quantifiers similarly to the PNF rules in Lemma 3.5. Then we obtain
two quantifiers of the same kind. Consequently, the claim follows by Lemma 3.26,
the definition of the hierarchy, and the inductive hypothesis. □

Showing that the arithmetical hierarchy is closed under union – when connecting
two predicates with a logical or – would be very similar. However, pulling a uni-
versal quantifier from a logical or needs classical assumptions (cf. Lemma 3.5).
For proving Post’s Theorem later in Chapter 5, we need to show that if p ∈ ∑̃n so
is the predicate lifted to lists λL. ∀n⃗ ∈ L. pn⃗ ∈ ∑̃n.2 For that, we first prove that

2To be exact, this does not type check and we implicitly assume an encoding of vectors into num-
bers and lists of vectors into natural numbers. Here and in the following, we abuse the notation and
treat them as first-class.

https://ps.uni-saarland.de/~mueck/bachelor/coqdoc/PostTheorem.ArithmeticalHierarchySemantic.html#15650701781f9b0e4abe30a7c87f60f5

32 Arithmetical Hierarchy

adding bounded quantifiers to a predicate does not increase its complexity.

Lemma 3.30 Bounded universal quantifiers do not increase the complexity, formally
p ∈ ∑̃n→ (λN ∶∶ n⃗. ∀x ≤ N. p(x ∶∶ n⃗)) ∈ ∑̃n

and p ∈ ∏̃n→ (λN ∶∶ n⃗. ∀x ≤ N. p(x ∶∶ n⃗)) ∈ ∏̃n

Proof First, observe that adding a bounded quantifier to a decidable predicate re-
mains decidable as checking finitely many values can be done recursively. Then,
the proof idea is to push the bounded quantifier all the way down to the decidable
base predicate. When lifting a bounded quantifier over a normal quantifier e.g.
∀x ≤ N. ∃y. p(x ∶∶ y ∶∶ n⃗), we can instead quantify over a vector y⃗ of N numbers
where the x-th number in the vector corresponds to the y associated with the num-
ber x ≤ N, e.g. ∃y⃗. ∀x ≤ N. p(x ∶∶ y⃗[x] ∶∶ n⃗). □

Lemma 3.31 Predicates can be lifted to lists: p ∈ ∑̃n→ λL. ∀n⃗ ∈ L. pn⃗ ∈ ∑̃n
Proof The proof idea is to rewrite the claim such that it has a bounded quantifier:
λL. ∀i ≤ ∣L∣ . p (L[i]) and then apply Lemma 3.30. Formally, the proof needs some
more carefulness on encoding and decoding vectors and lists of vectors. The coding
does not increase the complexity of the predicate as the hierarchy in closed under
many-one reductions by Lemma 3.25. □

3.3 Equivalence of Both Definitions
Wehave defined two versions of the arithmetical hierarchy, in the previous sections.
A syntactic definition explicitly in first-order arithmetic and a semantic definition
using notions of synthetic computability. In this section, we study the equivalence
of both definitions.
Whenever relating synthetic computability to a concrete model of computation or
first-order arithmetic, an axiom is needed that expresses that all functions that are
considered computable in synthetic computability are in fact computable in a con-
crete model of computation. We discuss this in Subsection 3.3.2.
Also, observe that the equivalence does not hold in the base case. There are decid-
able predicates than cannot be expressed as a first-order formula without quanti-
fiers. For example, consider the decidable evenness predicate on numbers, it can
only be expressed as ∃̇k. n =̇ 2⊗ k or ∀̇k. n =̇ 2⊗ k⊕ 1 →̇ ⊥̇ but not without a quan-
tifier3. As a consequence we can only show that our semantic definition includes
the syntactic one starting with ∑̃1 and ∏̃1, in Subsection 3.3.3. This is an inherent

3Evenness can be expressedwith a bounded quantifier though, butwe do not have bounded quan-
tifiers in the syntactical arithmetical hierarchy.

https://ps.uni-saarland.de/~mueck/bachelor/coqdoc/PostTheorem.ArithmeticalHierarchySemantic.html#609e71bbb965958d74f4f866ac48460d
https://ps.uni-saarland.de/~mueck/bachelor/coqdoc/PostTheorem.ArithmeticalHierarchySemantic.html#b979b03d333fb5489723e7ba5f7880c8

3.3. Equivalence of Both Definitions 33

artifact of defining the syntactic hierarchywith a quantifier-free formula in the base
and was observed e.g. by Odifreddi [42].
The other directions that the syntactic definition includes the semantic one, how-
ever, can be shown directly without relying on any axioms and for all∑n and ∏̃n.
We do so in Subsection 3.3.1.

3.3.1 Inclusion of the Syntactic in the Semantic Hierarchy

In this subsection we show that every predicate p ∈ ∑n that is reflected by a first-
order formula φ ∈ ∑n also is in the same level of the semantic arithmetical hierar-
chy, that is p ∈ ∑̃n, and similar for∏n.
Intuitively this holds because quantifier-free first-order formulas in the standard
model are decidable as they only consist of some computable functions (⊕ and
⊗) and a decidable equality predicate on numbers =̇ (Lemma 3.32). Quantifiers
that are stacked before a quantifier-free base reflect the type-theoretic ones so the
quantifier prefix can be translated into the semantic hierarchy one by one.

Lemma 3.32 Quantifier-free formulas are decidable: noQuant φ→ ∀ρ. D(ρ ⊨ φ)

Proof The proof is by induction onφ using the equality decider for numbers in the
=̇-case. The quantifier cases are contradictory by inversion on noQuant φ. □

Theorem 3.33 ∑n ⊆ ∑̃n and ∏n ⊆ ∏̃n

Proof As in the syntactic hierarchy predicates are reflected by formulas, it suffices
to showφ ∈ ∑n→ λn⃗. ρn⃗ ⊨ φ ∈ ∑̃n andφ ∈ ∏n→ λn⃗. ρn⃗ ⊨ φ ∈ ∏̃n by mutual
induction on φ ∈ ∏n and φ ∈ ∑n.
In the base cases, quantifier-free formulas are decidable by Lemma 3.32 so the claim
follows for ∑̃0 and ∏̃0 and hence for any n by Lemma 3.23.
There are two ∑n+1-cases where it remains to show λn⃗. ρn⃗ ⊨ ∃̇φ ∈ ∑̃n+1. In one
case φ ∈ ∑n+1 and in the other case φ ∈ ∏n. By the definition of the semantics,
the claim reduces to λn⃗. ∃x. (x; ρn⃗) ⊨ φ ∈ ∑̃n with a type-theoretic ∃-quantifier.
The claim follows by Lemma 3.26 in one case and by the semantic definition of the
hierarchy in the other case. The∏n+1-cases are analogous. □

3.3.2 Axiom Relating Decidable Predicates to First-Order Arithmetic

The Church-Turing thesis [7, 56] states that all intuitively computable functions are
indeed computable in a concrete model of computation (e.g. in the λ-calculus or
by a Turingmachine). In constructive mathematics, this thesis wasmade formal by
Kreisel [35] as an axiom called CT stating that all functions N → B are computable

https://ps.uni-saarland.de/~mueck/bachelor/coqdoc/PostTheorem.ArithmeticalHierarchyEquiv.html#noQuant_dec
https://ps.uni-saarland.de/~mueck/bachelor/coqdoc/PostTheorem.ArithmeticalHierarchyEquiv.html#593da65cda93f85f9a9b790e34c83339

34 Arithmetical Hierarchy

in a concrete model of computation. CT can be assumed consistently in the setting
we are working with [62, 53, 17].
We assume a CT-like axiom, we call first-order arithemetical CT (ACT), that every
function of type Nk → B is reflected by a formulaφ ∈ ∑1. This axiom is not known
in the literature but can be probably derived from a more common version of CT
as we discuss at the end of this subsection and therefore seems to be consistent.

Axiom 3.34 ACT ∶= λn⃗. f n⃗ = true ∈ ∑1

The same for∏1 follows directly.

Lemma 3.35 ∀f. (λn⃗. f n⃗ = true ∈ ∑1)→ ∀f. (λn⃗. f n⃗ = true ∈ ∏1)

Proof We equivalently prove λn⃗. !f n⃗ ≠ true ∈ ∏1. And gain from the assumption
that λn⃗. !(f n⃗) = true ∈ ∑1. Now the claim follows as (∃x. ¬p x)→ ¬∀x. p x holds
in intuitionistic logic. □

Now,Axiom3.34 andLemma 3.35 give the base case of the inclusion of the semantic
in the syntactic hierarchy for n = 1.

Corollary 3.36 When assuming ACT: ∑̃1 ⊆ ∑1 ∧ ∏̃1 ⊆ ∏1

Proof Follows by inversion and by the fact that multiple ∃̇ (or ∀̇ respectively) can
be stacked without increasing the complexity. □

We are confident that in future work our axiom ACT can be reduced to a more
common variant of CT. In his Bachelor’s thesis, Peters [45] derives a similar fact,
namely that when assuming a common variant of CT, each synthetically enumer-
able predicate is in∑1 for an arithmetical hierarchy built on Q-decidable formulas
by combining the work of Larchey-Wendling and Forster [37] – who have proved
that µ-enumerable predicates are Diophantine (as a part of their mechanization
of Hilbert’s tenth problem in Coq) – with the work of Kirst and Hermes [29] –
who have mechanized a many-one reduction of Hilbert’s tenth problem to the Q-
fragment of first-order Peano arithmetic and using representability results by Her-
mes and Kirst [22]. Combining all those works, ACT could confidently be derived
from a common variant of CT.

3.3.3 Inclusion of the Semantic in the Syntactic Hierarchy

In this subsection, we show that every predicate p ∈ ∑̃n is reflected by a first-order
formulaφ ∈ ∑n, when assumingACT. The actual proof and consequently also this
subsection is very short as the base case already follows by Corollary 3.36.

https://ps.uni-saarland.de/~mueck/bachelor/coqdoc/PostTheorem.ArithmeticalHierarchyEquiv.html#d2cb8f1940cd4cbbcf3e6359f5510168
https://ps.uni-saarland.de/~mueck/bachelor/coqdoc/PostTheorem.ArithmeticalHierarchyEquiv.html#d04c7270d6d3261eaf60b9fba6ea6564
https://ps.uni-saarland.de/~mueck/bachelor/coqdoc/PostTheorem.ArithmeticalHierarchyEquiv.html#501eea62a140bb3628cbd2b9a777d84a

3.3. Equivalence of Both Definitions 35

Theorem 3.37 When assuming the ACT: ∑̃n+1 ⊆ ∑n+1 and ∏̃n+1 ⊆ ∏n+1

Proof The proof is by mutual induction. The base cases follow by Corollary 3.36
and the CT-like axiom. The other two cases follow directly by the inductive hy-
pothesis as the semantics of first-order formulas reflects the type-theoretic level.□

https://ps.uni-saarland.de/~mueck/bachelor/coqdoc/PostTheorem.ArithmeticalHierarchyEquiv.html#936e72a6fd5e054cba17e1e342517101

Chapter 4

Oracle Machines and Turing Jump

In Section 2.3 we have introduced synthetic computability, the setting we are work-
ing in. The main idea of synthetic computability was to treat all (partial) functions
N⇀N (and N⇀B) as computable. This works very well when studying only com-
putable problems.
This chapter on the other hand will introduce notions that allow talking about un-
computable problems synthetically. In Section 4.1 we set up synthetic oracle com-
putability and then define a synthetic notion of the Turing jump in Section 4.2.

4.1 Synthetic Oracle Computability
In order to study relative computability, Turing came up with the idea of oracle
machines [57] which was developed further by Post [46]. Oracle machines are
adapted Turing machines [56] with an additional operation for querying an oracle
solver for a given problem.
Having such a model of computation, the notions of oracle semi-decidability and
Turing reducibility follow. A problem P is (oracle) semi-decidable relative to a
problem Q if P can be semi-decided by an oracle machine with an oracle for Q.
Likewise, a problem P is Turing reducible to a problemQ if P can be decided by an
oracle machine with an oracle for Q.
Equivalently Kleene [33] builds relative computability on partial µ-recursive func-
tionals. A partial µ-recursive functional is variable in a partial function on num-
bers and can be obtained from the given function and some primitive functions
by composition, primitive recursion and unrestricted µ-recursion. In this context,
partial functions are set-theoretic so not necessarily computable. Only when the

38 Oracle Machines and Turing Jump

given function (and all primitive functions) are computable, then also the partial
µ-recursive functional is computable.
Although we are using constructions more related to partial µ-recursive function-
als, we still speak about “oracles” as we believe that the notion is more intuitive.
In this section, we set up a synthetic version of oracle computability. Our work
builds upon a synthetic definition of Turing reducibility by Forster [16] which was
developed in joint work with Kirst following an idea by Bauer [4]. We first present
the notions and thendiscuss how they are derived as an adjustment of the definition
by Forster and Kirst in Subsection 4.1.5.

4.1.1 Oracle Machines

Oraclemachines are the central concept of oracle computability. We present its syn-
thetic definition and then explain the intuition behind it in detail.

Definition 4.1 (Oracle Machines ∶ MA,B
X,Y) Given Types X, Y and Z:

An oracle machineM ∶ MA,BX,Y consists of a relation transformer and a computational core

M ∶ (A↝⇀ B) → (X↝⇀ Y)
Mc ∶ (A⇀ B) → (X⇀ Y)

and needs to fulfill the following properties:

• core specification

∀f R. f ▹ R→ Mc f ▹M R

• continuity

∀R x y. MRx ▸ y→ ∃L ⊆ Dom(R). ∀R2 ≈L R. MR2 x ▸ y

Functional relations are the potentially uncomputable counterpart to partial func-
tions. The relation transformer takes a functional relation as an input which can
be seen as a potentially uncomputable oracle. It then returns another functional
relation, a solver for another potentially uncomputable problem. So the relation
transformerM provides information about the "observable behavior" of the oracle
machine M. We write MRx ▸ y in order to express that M halts given an oracle
relation R on input xwith output y.
But the relation transformer cannot return a solver of an arbitrary uncomputable
problem. Intuitively the only non-computable operation an oracle machine is al-
lowed to do is querying the oracle. That is why we require the relation transformer

https://ps.uni-saarland.de/~mueck/bachelor/coqdoc/PostTheorem.OracleComputability.html#oracle_machine

4.1. Synthetic Oracle Computability 39

to agree with its computational core on computational input according to the core
specification.
Intuitively, whenever an oracle machine halts (given a fixed oracle and input) it can
only have queried the oracle finitely many times and the oracle has answered all
queries. Formally continuity requires that there is a list containing oracle queries
such that the oracle machine halts with the same output when changing the oracle
to another oracle that agrees on the queries in the list.
Continuity of the core follows:
Lemma 4.2 The core ofM ∶ MA,BX,Y is continuous, formally:
∀f x y. Mc f x ▹ y→ ∃L ⊆ Dom(f). ∀f2 ≈L f. Mc f2 x ▹ y

Proof Follows by the core specification and continuity of the relation transformer.
□

The reader might see synthetic oracle machines as a synthetic version of partial µ-
recursive functionals as both are variable in an oracle and computable if the oracle
is. The definition of synthetic oracle machines axiomatically requires the relation
transformer to be continuous. Partial µ-recursive functionals are monotone and
compact by constructionwhich is due to Kleene [33] andDavis [12]. The following
fact that Odifreddi [42] attributes to Uspenskii [59] and Nerode [41] states that
both notions are equivalent.
Fact 4.3 Continuity is equivalent to monotonicity and compactness
M is continous ↔ (∀R R ′. R ⊆ R

′
→ M R ⊆M R

′)
∧ (∀R x y. MRx▸y→ ∃RL⊆R. (∃L.∀a. a ∈ L↔∃b. RL a b)∧MRL y z)

The type MA,BX,Y of oracle machines is parametric in the argument type A and return
type B of the oracle and on the input type X and the output type Y of the actual
machine. We omit the types A, B and X when they are clear from the context and
only annotate the type parameter Y. We often choose B ∶= B as we want the oracle
to be a decider of a given problem. In subsection 4.1.2 we choose MB in order to
define Turing reductions and in subsection 4.1.3 we choose M1 in order to define
oracle semi-decidability.

4.1.2 Turing Reductions

A decision problem P is Turing reducible to a decision problem Q if there exists an
oracle machine that computes the characteristic relation of P when given an oracle
for the characteristic relation of Q.
Definition 4.4 (Turing Reductions) Given P ∶ X → P and Q ∶ A → P we define:
P ⪯T Q ∶= ∃M ∶ MA,BX,B . MQ ≈ P

https://ps.uni-saarland.de/~mueck/bachelor/coqdoc/PostTheorem.OracleComputability.html#oracle_machine_core_coninous
https://ps.uni-saarland.de/~mueck/bachelor/coqdoc/PostTheorem.OracleComputability.html#cont_is_mon_and_comp
https://ps.uni-saarland.de/~mueck/bachelor/coqdoc/PostTheorem.OracleComputability.html#red_Turing

40 Oracle Machines and Turing Jump

Here and in the following, we identify predicates Q ∶ A → P with their character-
istic relation λa b. b = true ↔Qa.

Lemma 4.5 P ⪯m Q→ P ⪯T Q

Proof By definition of P ⪯m Q there is a function f ∶ X → A that translates an
instance of P to an instance ofQ such that∀x. P x↔Q (f x). In order to show Turing
reducibility we construct an oracle machine of type MB. Choose MRx ∶= R (f x)
andMc r x ∶= r (f x). The core specification is easily fulfilled, for continuity choose
the singleton list containing f x.
It remains to show thatMQx = Q (f x) agrees with P which follows from the fact
that P x↔Q (f x). □

Using classical assumptions we can prove that each predicate is Turing equivalent
to its complement.

Lemma 4.6 LEM → P ⪯T P ∧ P ⪯T P

Proof For both directions the same oracle machine M ∶ MB suffices. Given by
MRx ▸ b ∶= R x (!b) andMc r x ∶= r x≫= λb. ret !b.
The core specification follows from the specification of ≫= and ret . For continu-
ity, if MRx ▸ b the oracle R was queried for x and has answered with !b. It re-
mains to show that M computes the characteristic relation, so MP ≈ P which is
∀x b. P x (!b)↔ P x b andMP ≈ P which is ∀x b. P x (!b)↔ P x b. For both reduc-
tions this reduces to showing both P x↔ P x, which is trivial, and P x↔ P x, which
is double negation elimination and equivalent to LEM. □

4.1.3 Oracle Semi-decidability

A decision problem P is oracle semi-decidable relative to a decision problem Q if
there exists an oracle machine that halts on x if and only if P xwhen given an oracle
for the characteristic relation of Q.
The actual output of the oracle machine does not matter. Therefore we choose 1 as
the return type, having only a single value ⋆ ∶ 1.

Definition 4.7 (Oracle Semi-decidability) Given P ∶ X → P and Q ∶ A → P:
SQ(P) ∶= ∃M ∶ M1 . ∀x. P x↔MQx ▸ ⋆

Lemma 4.8 If the oracle is decidable, oracle semi-decidability and semi-decidability agree:
S(P)→ SQ(P) and D(Q)→ SQ(P)→ S(P)

Proof We prove both claims separately:

https://ps.uni-saarland.de/~mueck/bachelor/coqdoc/PostTheorem.OracleComputability.html#red_m_impl_red_T
https://ps.uni-saarland.de/~mueck/bachelor/coqdoc/PostTheorem.OracleComputability.html#Turing_red_compl
https://ps.uni-saarland.de/~mueck/bachelor/coqdoc/PostTheorem.OracleComputability.html#oracle_semi_decidable
https://ps.uni-saarland.de/~mueck/bachelor/coqdoc/PostTheorem.OracleComputability.html#no_oracle_semi_decidable

4.1. Synthetic Oracle Computability 41

• For the first claim, by S(P) and Lemma 2.4 there is a partial function f ∶ X⇀1
semi-deciding P such that∀x. P x↔f x▹⋆. It is enough to construct an oracle
machine of typeM1 that semi-decides P by ignoring its oracle and consulting f.
ChooseMRx▸⋆ ∶= P x andMc R x ∶= f x. AsM ignores its oracle, continuity
is trivial. The core specification reduces to ∀x. P x↔ f x ▹ ⋆ which is exactly
the specification of f.

• For the second claim, by definition of D(Q) there is a function d ∶ A → B
that decides Q such that ∀a. Qa ↔ d a = true. Assuming SQ(P) there is
an oracle machine M that semi-decides P when passing an oracle for Q i.e.
P x ↔ MQx ▸ ⋆. Again by Lemma 2.4 showing S(P) reduces to finding a
partial function f ∶ X⇀B such that∀x. P x↔ f x▹⋆. By the core specification
Mc (λa. ret (d a)) suffices, as d is a total function deciding Q. □

Lemma 4.9 P1 ⪯m P2→ SQ(P2)→ SQ(P1)

Proof The proof essentially does not differ form the respective property of semi-
decidability without oracles. Assume P1 ⪯m P2, that there is a function f such that
∀x. P1 x↔P2 (f x) and assume SQ(P2), that there is an oracle machineM ∶ M1 that
semi-decides P2 relative to Q such that ∀y. P2 y↔MQy ▸ ⋆.
The oracle machineM ′ ∶ M1 with relation transformerM ′

R x ▸ ⋆ ∶= MR (f x) ▸ ⋆
and core M ′

c r x ∶= Mc r (f x) is a semi-decider for P1 relative to Q. The core
specification and continuity follow from the respective properties ofM. □

Lemma 4.10 Q1 ⪯T Q2→ SQ1(P)→ SQ2(P)

Proof AssumeQ1⪯TQ2 i.e. that there is an oracle machineMT ∶ MB that computes
the characteristic function of Q1 when given an oracle for Q2 and assume SQ1(P)
i.e. that there is an oracle machineMS ∶ M1 that semi-decides P relative to Q1.
The oracle machineM ∶ M1 with relation transformerMRx▸⋆ ∶=MS (MT R) x▸⋆
and coreMc r x ∶= MSc (MT c r) x is a semi-decider for P relative to Q2. The core
specification follows from the respective property ofMS.
For continuity, given R and x such that MRx ▸ ⋆ we need to find a list of oracle
queries to R. By continuity ofMS there exists a list LMS

of oracle queries toMT R

such thatMT R halts on all queries. This fact is important here because halting is a
precondition for the continuity ofMT which says that there exists a list of queries
to R for each query toMT R that halts. The claimed list can be constructed by con-
catenating the lists obtained by the continuity ofMT for each element in LMS

. □

Corollary 4.11 LEM → SQ(P)↔ SQ(P)

Proof A direct consequence of Lemma 4.6 and Lemma 4.10. □

https://ps.uni-saarland.de/~mueck/bachelor/coqdoc/PostTheorem.OracleComputability.html#semi_decidable_m_red
https://ps.uni-saarland.de/~mueck/bachelor/coqdoc/PostTheorem.OracleComputability.html#semi_dec_turing_red_trans
https://ps.uni-saarland.de/~mueck/bachelor/coqdoc/PostTheorem.OracleComputability.html#oracle_semi_decidable_complement_iff

42 Oracle Machines and Turing Jump

Instead of choosing 1 as the return type of oracle machines used for semi-decision,
we could have defined oracle semi-decidability with any other inhabited type. Par-
ticularly, we could have chosen B and reused oracle machines with the same type
as for Turing reducibility. However, we have chosen M1 to emphasize at the level
of types that the oracle machine is used for semi-decision only and does not carry
other information.

Lemma 4.12 Given predicates Q ∶ A→ P, P ∶ X→ P and an inhabited type Y:
SQ(P)↔ ∃M ∶ MA,BX,Y . ∀x. P x↔ ∃y. MQx ▸ y

Lemma 4.13 Given predicatesQ ∶ A→ P, P ∶ X→ P and a discrete type Y with value y:
SQ(P)↔ ∃M ∶ MA,BX,Y . ∀x. P x↔MQx ▸ y

4.1.4 Determinacy of Oracle Machines by Their Cores

In this subsection, we study general oracle machines in more detail. The key result
is Corollary 4.18 that oracle machines with the same core behave equally. Remark-
ably, all of the following results are constructive and solely enabled by carefully
choosing the continuity requirement of oracle machines.
The key idea is to express the relation transformer only by using the computational
core. This is possible because due to continuity the oracle has only been queried
finitely many times if the oracle machine halts. In addition, continuity ensures that
on all these queries the oracle has either answered true or false.
Therefore, if the oracle machine halts, there exist two lists Ltrue and Lfalse containing
all queries whose answer was true or false. From those two lists, a partial function
can be constructed that searches for the answer in one of the finite lists and is unde-
fined if no answer is found. This function can be passed to the computational core
which agrees with the relation transformer due to monotonicity (Fact 4.3).
We first define a partial function lookup that takes two lists Ltrue and Lfalse containing
the elements on which the partial function should return true or false and that is
undefined elsewhere. The argument type needs to be discrete in order to check
whether a value is in one of the lists.

Definition 4.14 Given a discrete type A, define lookup ∶ L (A) → L (A) → A⇀ B:

lookup Ltrue Lfalse a ∶=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ret true if a ∈ Ltrue

ret false if a ∈ Lfalse

undef else

Lemma 4.15 Given a discrete type A, two disjoint lists Ltrue and Lfalse and a value a ∶ A:

• lookup Ltrue Lfalse a ▹ true ↔ a ∈ Ltrue

https://ps.uni-saarland.de/~mueck/bachelor/coqdoc/PostTheorem.OracleComputability.html#oracle_semi_dec_inhabited_type
https://ps.uni-saarland.de/~mueck/bachelor/coqdoc/PostTheorem.OracleComputability.html#oracle_semi_dec_inhabited_discrete_type
https://ps.uni-saarland.de/~mueck/bachelor/coqdoc/PostTheorem.OracleComputability.html#oracle_from_lists
https://ps.uni-saarland.de/~mueck/bachelor/coqdoc/PostTheorem.OracleComputability.html#oracle_from_lists_spec

4.1. Synthetic Oracle Computability 43

• lookup Ltrue Lfalse a ▹ false ↔ a ∈ Lfalse

Next, we prove a lemma that allows us to split the list from continuity into two lists
Ltrue and Lfalse.

Lemma 4.16 Given a list L and a functional relation R ∶ A↝⇀ B with a discrete argument
type A such that ∀a ∈ L. ∃b. R a b, there exist two lists Ltrue and Lfalse that can be
constructed constructively and are fulfilling the following properties:

• ∀a ∈ Ltrue. R a true

• ∀a ∈ Lfalse. R a false

• ∀a ∈ L. a ∈ Ltrue ∨ a ∈ Lfalse

• ∀a. ¬(a ∈ Ltrue ∧ a ∈ Lfalse)

Proof by induction on L.
Base case: Choose Ltrue ∶= [] and Lfalse ∶= []
Inductive step L = a ∶∶ L ′:
By the inductive hypothesis, there are two lists Ltrue and Lfalse that fulfill the prop-
erties for L ′. By assumption ∃b. R ab. If b = true add a to Ltrue else to Lfalse. The first
three properties are trivial. Disjointness follows by the functionality of the func-
tional relation R. □

Next, we show that the relation transformer of oracle machines (with a discrete
oracle argument type) can be expressed only by talking about its computational
core.

Theorem 4.17 GivenM ∶ MA,BX,Y with a discrete oracle argument type A, constructively:

MRx ▸ y↔ ∃Ltrue Lfalse. (∀a. a ∈ Ltrue → R a true) ∧ (∀a. a ∈ Lfalse → R a false)
∧Mc (lookup Ltrue Lfalse) x ▹ y

Proof We show both directions of the equivalence independently:
→ AssumeMRx▸y. By continuity there exists a list L such that∀a ∈ L.∃b. R x b

and∀R ′ ⊇L R.MR
′
x▸y. By the first property togetherwith Lemma 4.16 there

are two lists Ltrue and Lfalse that fulfill the first two claims and the premises of
the lookup specification Lemma 4.15.
It remains to show Mc (lookup Ltrue Lfalse) x ▹ y. By the result of Lemmas
4.15 and 4.16 lookup Ltrue Lfalse computes the oracle R on all argument in L.
Therefore by continuity and the core specification the claim follows.

https://ps.uni-saarland.de/~mueck/bachelor/coqdoc/PostTheorem.OracleComputability.html#split_L_LT_LF
https://ps.uni-saarland.de/~mueck/bachelor/coqdoc/PostTheorem.OracleComputability.html#oracle_iff_exists_LT_LF

44 Oracle Machines and Turing Jump

← Assume there are two lists Ltrue and Lfalse such that for all elements of Ltrue
the oracle R outputs true and false for all elements in Lfalse. Also assume
Mc (lookup LtrueLfalse) x ▹ y.
Togetherwith the lookup specification Lemma 4.15, lookup Ltrue Lfalse computes
R on all arguments in the lists. The claim now follows by the core specifica-
tion and monotonicity (Fact 4.3). □

Therefore, oracle machines with extensionally equal cores are extensionally equal.

Corollary 4.18 Oracle machines with same core behave equally:
Given two oracle machinesM andM ′ ∶ MA,BX,Y with a discrete oracle argument type:
Mc ≈M

′
c → ∀R. M R ≈M

′
R

Also, we can construct an oracle machine for each continuous core.

Lemma 4.19 Given a continuous partial function f with a discrete oracle argument type:
{M ∶ MA,BX,Y ∣Mc = f}

Proof Choose the relation transformer as specified by Theorem 4.17. Functionality
of the relation follows bymonotonicity of f (Fact 4.3) on lookup in the concatenation
of the given oracle lists. The proof of the core specification is similar to the proof of
Theorem 4.17, continuity follows by concatenating Ltrue and Lfalse. □

4.1.5 Comparison to Related Work

Our definition of oracle machines is a slight modification of the Turing functionals
that Forster [16] uses in his definition of Turing reducibility developed in jointwork
with Dominik Kirst. Their definition goes back to an idea by Bauer [4].
Bauer does not work in constructive type theory but in the intuitionistic effective
topos. He first came up with the idea of defining synthetic Turing reductions in
two layers as a transformer of solvers of potentially uncomputable problems that
factors through a computable core on computable oracles.
More precisely, Bauer’s oracles O ∶= {(S0, S1) ∈ P(N) × P(N) ∣ S0 ∩ S1 = ∅} are
pairs of disjoint sets of numbers containing partial positive andnegative answers. A
Turing reduction r ∶ O → O is a map taking an oracle and returning another oracle.
When passing a pair of two disjoint enumerable sets also the result is required to
be a pair of two disjoint enumerable sets. Similar to our oracle machines r needs to
be continuous in the notion Bauer uses i.e. it needs to preserve directed suprema.
The Forster-Kirst definition of Turing functionals was mainly taken as the oracle
machines we are working with:

https://ps.uni-saarland.de/~mueck/bachelor/coqdoc/PostTheorem.OracleComputability.html#eq_core
https://ps.uni-saarland.de/~mueck/bachelor/coqdoc/PostTheorem.OracleComputability.html#core_to_om

4.1. Synthetic Oracle Computability 45

Compared to our oracle machines the return type of Turing functionals is fixed to
B. This is however only a cosmetic difference since we later instantiate the return
type with B for Turing reductions and 1 for oracle semi-decidability. As discussed
in the Remark at the end of Section 4.1.3, we could have also chosen B as a return
type for semi-decidability and therefore used the Forster-Kirst definition as it is, for
that matter.
What paid off, however, and enabled the constructive results of Subsection 4.1.4was
adapting the definition of continuity. Forster andKirst areworkingwith a construc-
tively weaker definition of continuity with a double-negated existential quantifier.
They call F continuous, here called weakly continuous if:

∀R x. ¬¬∃L. ∀R2. (∀a ∈ L b. R ab→ R2 ab)→ ∀y. F R x ▸ y→ F R2 x ▸ y

The following proofs show that our definition of Turing reducibility ⪯T implies
the Forster-Kirst definition, which we call ⪯FK, and that they are equivalent when
assuming the law of excluded middle.
Fact 4.20 Given F ∶ (Y ↝⇀W) → (X↝⇀ Z): F is continous → F is weakly continous

Proof Showing a stable claim allows local classical reasoning. The interesting ques-
tion is (∃y. F R x▸ y)∨¬(∃z. F R x▸ y). In the first case, the assumption gives a list
that suffices, the second case is contradictory when choosing e.g. the empty list. □
Corollary 4.21 P ⪯T Q→ P ⪯FK Q

Fact 4.22 When assuming LEM and given F ∶ (Y ↝⇀W) → (X↝⇀ Z):
F is weakly continous → F is continous

Proof LEM allows dropping the double negation and case distinction whether the
oracle halts for the elements in the list. Therefore constructing a list that contains all
necessary elements on that the oracle halts is possible. This list is sufficient because
both definitions only talk about other oracles that agree when the oracle has known
the answer. □

Corollary 4.23 LEM → P ⪯FK Q→ P ⪯T Q

Strengthening the continuity definition compared to Forster and Kirst has enabled
Theorem 4.17 and Corollary 4.18. On the other hand, showing the stronger notion
of continuity does not seem to make proofs more complicated. For all oracle ma-
chines that we have constructed, knowing that the machine halts was good enough
to construct a list of queries.
With theweak continuity notion by Forster andKirst oraclemachineswith the same
computational core only behave weakly equally:
Fact 4.24 ∀MM

′ ∶ MFK . Mc ≈M
′
c → ∀R x z. ¬M R x ▸ z↔ ¬M ′

R x ▸ z

https://ps.uni-saarland.de/~mueck/bachelor/coqdoc/PostTheorem.OracleComputability.html#cont_impl_ForsterKirst
https://ps.uni-saarland.de/~mueck/bachelor/coqdoc/PostTheorem.OracleComputability.html#redT_impl_ForsterKirst
https://ps.uni-saarland.de/~mueck/bachelor/coqdoc/PostTheorem.OracleComputability.html#cont_ForsterKirst_impl
https://ps.uni-saarland.de/~mueck/bachelor/coqdoc/PostTheorem.OracleComputability.html#ForsterKirst_impl_redT
https://ps.uni-saarland.de/~mueck/bachelor/coqdoc/PostTheorem.OracleComputability.html#eq_core_ForsterKirst

46 Oracle Machines and Turing Jump

4.2 Turing Jump
In this section, we set up a Q-complete predicate, such that every predicate that
is semi-decidable relative to Q is many-one reducible to the Q-complete predicate.
Such a predicate is called the jump of Q, written Q ′ and is due to Post and Kleene.
In his preliminary report from 1948 [47], Post has first reported that he has set
up a Q-complete predicate. The first construction of a Q-complete predicate using
Kleene’s T -predicate was published by Kleene in his book "Introduction to meta-
mathematics" in 1952 [33]. In the Kleene-Post paper from 1954 [34], a jump oper-
ator was introduced and it was proven that if two predicates are Turing reducible
so are their jumps.
In textbooks [42, 9, 51] the Turing jump is defined as the halting problem of oracle
machines. In this section, we translate the definition to our synthetic setting. We
take the "normal" synthetic halting problem 2.3.3 as an orientation that is built upon
an enumeration of partial functions.
In Subsection 4.2.1we address enumerating oraclemachines. In Subsection 4.2.2we
define a synthetic version of the Turing jump and show that it gives rise to a harder
problem. In Subsection 4.2.3 we then prove that the jump of Q is Q-complete.

4.2.1 Enumerating Oracle Machines

To formulate the halting problem of oracle machines (aka the Turing jump), we
need to have a notion connecting oracle machines to natural numbers, their codes.
Similar to the construction of the synthetic halting problem in Subsection 2.3.3 us-
ing EPF, we would like to enumerate oracle machines.
As we are only interested in whether an oracle machine halts and not in the actual
output, we again choose 1 as the return type.
In Subsection 4.1.4 we have seen that oracle machines with the same core behave
equally. Therefore an enumerator for computational cores suffices to construct an
enumerator for oracle machines. Unfortunately, it is not known how an enumera-
tor for higher-order partial functions can be constructed only by assuming known
axioms like EPF.
Axiom 4.25 There is a function ξ ∶ N → (N⇀B) → (N⇀1) that is:
• surjective ∀f ∶ (N⇀B) → (N⇀ 1). f is continous→ ∃i. ξ i ≈ f

• continuous ∀i g x. ξ i g x ▹ ⋆→ ∃L ⊆ Dom(g). ∀g2 ≈L g. ξ i g2 x ▹ ⋆

First of all, we upgrade ξ to a parametric enumerator. This allows us to construct a
parametric enumerator for oracle machines that enables SMN-like reasoning later.

https://ps.uni-saarland.de/~mueck/bachelor/coqdoc/PostTheorem.TuringJump.html#d8018db2db1950b3ef20dd561e0ac739

4.2. Turing Jump 47

Definition 4.26 ξ
′ ⟨j, i⟩ f x ∶= ξ i f ⟨j, x⟩

Lemma 4.27 ξ
′ is parametric:

∀F ∶ N → (N⇀B) → (N⇀1). (∀i. F i is continous)→ ∃γ. ∀j. ξ ′ (γ j) ≈ F j

Proof Let F ∶ N → (N⇀B) → (N⇀ 1) be given. Because ξ is surjective there exists
a code i for the function λf ⟨j, n⟩. F j f n such that∀f j n. ξ i f ⟨j, n⟩▹⋆↔F j f n▹⋆.
Choose γ j ∶= ⟨j, i⟩. Now, given j, f, andn: ξ ′(γ j) f n = ξ

′⟨j, i⟩ f n = ξ i f ⟨j, n⟩≈F j f n
□

Corollary 4.28 ξ
′ is surjective: ∀f ∶ (N⇀B) → (N⇀1). f is continous→ ∃i. ξ ′ i ≈ f

Proof After choosing F j ∶= f, the claim follows by Lemma 4.27. □

Lemma 4.29 ξ
′ is continuous: ∀i f x. ξ ′ i f x▹⋆→∃L ⊆ Dom(f).∀f2≈Lf. ξ ′ i f2 y▹⋆

Proof After unfolding the definition of ξ ′, the claim follows respectively from the
continuity of ξ. □

Next, we construct a (parametric) enumerator for oracle machines.

Definition 4.30 Ξ ∶ N → MN,B
N,1

Proof By Lemma 4.19, there is an oracle machine for each continuous computa-
tional core. Therefore, we can upgrade the i-th computational core given by ξ ′
(that is continuous because of Lemma 4.29) to the i-th oracle machine.

Lemma 4.31 Ξ is parametric: ∀F ∶ N → MN,B
N,1 . ∃γ ∶ N → N . ∀i. Ξ γi ≈ F i

Proof Follows from the parametricity of ξ ′ (Lemma 4.27) andCorollary 4.18 saying
that oracle machines with the same core behave equally. □

Corollary 4.32 Ξ is surjective: ∀M ∶ MN,B
N,1 . ∃i. Ξ i ≈M

Proof After choosing F j ∶=M, the claim follows by Lemma 4.31. □

4.2.2 Synthetic Turing Jump

We define the Turing jump of Q as all numbers i such that the i-th oracle machine
halts on input i.

Definition 4.33 (Turing jump) Q
′
i ∶= Ξ iQ i ▸ ⋆

Next, we prove that jumping gives rise to a harder problem, namely that the jump
Q
′ is semi-decidable relative to Q, but its complement is not.

https://ps.uni-saarland.de/~mueck/bachelor/coqdoc/PostTheorem.TuringJump.html#ec19abbe590ff043b7f6b9cc8ad50c57
https://ps.uni-saarland.de/~mueck/bachelor/coqdoc/PostTheorem.TuringJump.html#1808adb60638b645f03be1360f55a238
https://ps.uni-saarland.de/~mueck/bachelor/coqdoc/PostTheorem.TuringJump.html#a65633e20d02b74a7ffb0084cab45725
https://ps.uni-saarland.de/~mueck/bachelor/coqdoc/PostTheorem.TuringJump.html#bf7b2b4b50b8016c583e6b2f0c3a16a3
https://ps.uni-saarland.de/~mueck/bachelor/coqdoc/PostTheorem.TuringJump.html#38ab514280d7467e0eded5a23d266bd6
https://ps.uni-saarland.de/~mueck/bachelor/coqdoc/PostTheorem.TuringJump.html#b9c4a837b19de4832a63d9732c10e191
https://ps.uni-saarland.de/~mueck/bachelor/coqdoc/PostTheorem.TuringJump.html#c8489ef9623f3dca2271d3278bbbcf73
https://ps.uni-saarland.de/~mueck/bachelor/coqdoc/PostTheorem.TuringJump.html#J

48 Oracle Machines and Turing Jump

Lemma 4.34 SQ(Q ′)

Proof The oracle machine given byMR i ∶= Ξ i R i andMc f i ∶= (Ξ i)c f i is a semi-
decider. The core specification and continuity follow from the respective properties
of Ξ i. □

Lemma 4.35 ¬SQ(Q ′)

Proof Assume that there is an oracle machineM that semi-decidesQ ′ when given
an oracle for Q, i.e. ∀i. MQ i ▸ ⋆↔Q ′ i. Let i be the code ofM, it exists because of
the surjectivity of Ξ (Corollary 4.32). By definition Q ′

i if and only ifM halts on its
own code i. This leads to Q ′ i↔Q

′
i, a contradiction. □

4.2.3 Completeness of the Turing Jump

In this subsection, we prove that all predicates that are semi-decidable relative to
Q are many-one reducible to the Turing jump Q ′, given any predicate Q.
In order to do so, we first set up an alternative definition of the Turing jump, namely
the predicate of all numbers encoding pairs ⟨i, x⟩ such that the i-th oracle machine
halts on input x, and prove that it is many-one equivalent. The two definitions are
related to the halting and self-halting problem of Turing machines in the literature.

Definition 4.36 (Universal jump) Q
◦ ⟨i, x⟩ ∶= Ξ iQx ▸ ⋆

Lemma 4.37 Q
′
≡m Q

◦

Proof First we show Q
′
⪯m Q

◦, then Q◦ ⪯m Q ′:
• λi. ⟨i, i⟩ is a many-one reduction.
• This direction needs SMN-like reasoning enabled by the parametricity of the

enumerator Ξ (Lemma 4.31).
Therefore, we first define a parametric family of oracle machines N → MN,B

N,1 :
Given an index ⟨i, x⟩ chooseM⟨i,x⟩ R y ∶= Ξ i R x andM⟨i,x⟩c f y ∶= Ξ ic f x.
In other words,M⟨i,x⟩ is the oracle machine that ignores its input and is hard
coded to query the i-th oracle machine on input x. The core specification and
continuity follow respectively from Ξ i.
Now, by Lemma 4.31 there is a function γ ∶ N → N that takes numbers encod-
ing pairs ⟨i, x⟩ and returns the code ofM⟨i,x⟩. AsM⟨i,x⟩ halts on its code (or
any other input) if and only if themachine with code i halts on x, the function
γ translates instances of Q◦ into instances of Q ′ and therefore is a sufficient
many-one reduction. □

https://ps.uni-saarland.de/~mueck/bachelor/coqdoc/PostTheorem.TuringJump.html#semidecidable_J
https://ps.uni-saarland.de/~mueck/bachelor/coqdoc/PostTheorem.TuringJump.html#not_semidecidable_compl_J
https://ps.uni-saarland.de/~mueck/bachelor/coqdoc/PostTheorem.TuringJump.html#f0fd9302cd9bcc926edddbfe729639a6
https://ps.uni-saarland.de/~mueck/bachelor/coqdoc/PostTheorem.TuringJump.html#6615e92e5884b49d61e727d1e63bacd6

4.2. Turing Jump 49

Next we prove thatQ ′ isQ-complete. We make use of the fact thatQ ′
≡mQ

◦ as one
direction is more convenient to prove usingQ◦ and the other one directly usingQ ′.

Lemma 4.38 SQ(P)↔ P ⪯m Q
′

Proof We show SQ(P)→ P ⪯m Q
◦ and P ⪯m Q ′

→ SQ(P). The claim then follows
by Q ′

≡m Q
◦ (Lemma 4.37) and the transitivity of ⪯m (Lemma 2.6).

→ Assume there exists an oracle machine M that semi-decides P when given
an oracle for Q. We need to show P ⪯m Q

◦. Let i be the code ofM, it exists
because of surjectivity of Ξ (Corollary 4.32). The function λx. ⟨i, x⟩ is a many-
one reduction.

← Assume there exists a function fm ∶ N → N such that P x↔ Q
′ (fm x). Now,

construct an oracle machine that semi-decides P when given an oracle for Q.
ChooseMR x ∶= Ξ (fm x) R (fm x) andMc f x ∶= Ξ (fm x)c f (fm x). The core
specification and continuity follow respectively from Ξ (fm x). □

https://ps.uni-saarland.de/~mueck/bachelor/coqdoc/PostTheorem.TuringJump.html#red_m_iff_semidec_jump

Chapter 5

Post’s Theorem

In Chapter 3, we have seen how predicates on numbers can be classified based on
the arithmetic formulas that define them. In Chapter 4, we have studied oracle de-
cidability and set up notions that allow comparing predicates of numbers based on
their degree of undecidability. Post’s theorem gives a deep connection between the
arithmetical hierarchy and repeated Turing jumps starting with a decidable predi-
cate like the empty predicate.
This connection was first reported by Post in his preliminary report in 1948 [47].
He claimed that he was able to prove that more quantifiers in the arithmetical hier-
archy allow predicates of a higher degree of unsolvability. Unfortunately, Post did
not publish any proof of his finding, but the preliminary report indicates that the
result was established by a connection to repeated jumps starting with the empty
predicate.
In 1952, the first proof was published by Kleene in his book “Introduction to Meta-
mathematics” [33] but attributed by him to Post. Kleene did not explicitly talk
about jumps starting from the empty predicate. He proved that a predicate is both
in ∑n+1 and ∏n+1 if and only if it is Turing reducible to possibly multiple predi-
cates in∑n or∏n ([33] Theorem XIC, page 293).
Nowadays, in textbooks e.g. by Odifreddi [42], Cooper [9], and Soare [51], there
are usuallymultiple statements proven that together are called Post’s Theorem. The
initial statement of Odifreddi and Soare is that a predicate is in ∑n+1 if and only
if it is semi-decidable relative to a predicate in ∏n or in ∑n (or semi-decidable
relative to the n-th jump of the empty predicate in case of Cooper). Then it can be
shown that the (n+1)-th Turing jump is many-one-complete in ∑n+1, done so by
Soare. Cooper shows the statements in reverse order.

52 Post’s Theorem

Wewill present a synthetic proof of Post’s theorem following the order of Soare [51]
in Section 5.2. Beforehand we formally set up the hierarchy of repeated Turing
jumps in Section 5.1.

5.1 Connecting theArithmeticalHierarchy andTuring Jumps
We define "repeated jumping starting with the empty predicate" as follows:

Definition 5.1 The n-th Turing jump of the empty predicate ∅(n) ∶ N → P is defined as:

∅
(0)
∶= λi.⊥

∅
(n+1)

∶= ∅
(n) ′

The predicate ∅(n) is defined on numbers, while the arithmetical hierarchy is de-
fined on predicates of vectors of numbers. This is however not a big deal as vectors
can be encoded into a single number using Cantor’s pairing function repeatedly.
Thus, encodings between vectors and numbers are many-one reductions between
the respective predicates and the arithmetical hierarchy is closed under many-one
reduction (cf. Lemma 3.25).
In this chapter, we will abstract away from underlying vectors and treat the arith-
metical hierarchy as it would classify (unary) predicates on numbers. We encode
multi-arity predicates by using Cantor’s pairing functions. Keeping the encodings
implicit shifts the attention to the main part of the proofs.

In the accompanying Coq development, we cast ∅(n) to vectors by only extracting
the last element from the vector. During the proofs of Post’s Theorem, we explicitly
construct the many-one reductions to convert vectors of different arity.

5.2 Synthetic Proof of Post’s Theorem
The main theorem that connects oracle machines and the arithmetical hierarchy
is Theorem 5.4 stating that a predicate is ∑̃n+1 if and only if it is semi-decidable
relative to a predicate in ∏̃n. We prove both directions separately in Lemma 5.2
and Lemma 5.3. The other statements of Post’s Theorem are more or less direct
consequences of Theorem 5.4 and lemmas we have proven before.
The following Lemma, that a ∑̃n+1 predicate is semi-decidable relative to a ∏̃n

predicate can be easily shown by constructing a semi-decider that linearly searches
for the existentially quantified value.

Lemma 5.2 P ∈ ∑̃n+1→ ∃Q ∈ ∏̃n. SQ(P)

https://ps.uni-saarland.de/~mueck/bachelor/coqdoc/PostTheorem.TuringJump.html#jump_n
https://ps.uni-saarland.de/~mueck/bachelor/coqdoc/PostTheorem.PostsTheorem.html#c0444fdb467ff79f80b0ace81c8334b4

5.2. Synthetic Proof of Post’s Theorem 53

Proof Assume P ∈ ∑̃n+1, by inversion P = λx. ∃y. Q⟨y, x⟩ for Q ∈ ∏̃n. We
show SQ(P) by constructing an oracle machine that semi-decides P relative to Q
by linearly searching x. Choose MRx ▸ ⋆ ∶= ∃y. R ⟨y, x⟩ true and Mc f x ∶=

µ λ⟨y,m⟩. {Some ⋆ if seval (f ⟨x, y⟩)m = Some true

None else .

The core specification follows by the specification of µ and seval. For continuity
choose the singleton list only containing ⟨y, x⟩. Because ifM halts then there exists
a y such that the oracle halts on ⟨y, x⟩with output true. □

For the other direction, we first want to give some intuition. Intuitively, it states
that if there is an oracle machine that semi-decides a predicate then the predicate is
only a ∃-quantifier away from the oracle. In the introduction of this thesis in Chap-
ter 1, we relied on the intuition that the halting problem for Turing machines can
be expressed as “there exists a number of steps s such that the Turing machine has
halted after ≤ s steps”. Soare [51] extends this intuition to a proof of Theorem 5.4.
This intuition, however, can not be applied to our setting as synthetic oracle ma-
chines as introduced in Chapter 4 can not be simulated step-wise. Instead, we ex-
tract the proof idea of Odifreddi [42] who exploits compactness and monotonicity
of µ-recursive functionals. The idea behind our proof of Theorem 5.4 is that by
Theorem 4.17 the behavior of synthetic oracle machines can be expressed only by
its core (which is computable) by existentially quantifying the answeres (stored in
two lists Ltrue and Lfalse) to the finitely many oracles queries that the oracle machine
does during an execution that halts.
We classically show Lemma 5.3 and consequently all results derived from it by as-
suming LEM. Still, the classical reasoning of the proofs can be traced back to exactly
two usages of LEM, as we discuss at the end of this section.

Lemma 5.3 LEM → P ∈ ∑̃n+1↔ ∃Q ∈ ∏̃n. SQ(P)

Proof Assume Q ∈ ∏̃n and SQ(P). Then there is an oracle machine M such
that P x↔ MQx ▸ ⋆. By PredExt it suffices to show that MQy ▸ ⋆ is in ∑̃n+1.
By Theorem 4.17 the behavior of an oracle machine can be described as follows
λx. ∃Ltrue Lfalse. (∀a∈Ltrue. Q a) ∧ (∀a∈Lfalse. Q a) ∧Mc (lookup Ltrue Lfalse) x ▹ ⋆
which suffices to show in ∑̃n+1. For this purpose, we use1 a bijection that encodes
lists of vectors of natural numbers into natural numbers. Therefore we treat the ex-
istentials that quantify lists normally and apply Lemma 3.26 that allows to stack ad-
ditional quantifiers on a ∑̃n+1 predicate. Because ∑̃n+1 is closed under∧ (Lemma
3.29) we only need to show that the three predicates are in ∑̃n+1 separately.

1Made explicit in the corresponding Coq development.

https://ps.uni-saarland.de/~mueck/bachelor/coqdoc/PostTheorem.PostsTheorem.html#f734680c87c6eb50cbfffa3b183176d5

54 Post’s Theorem

• λ ⟨⟨Ltrue, Lfalse⟩, x⟩. ∀a ∈ Ltrue. Q a ∈ ∑̃n+1
By Lemma 3.31 the bounded quantifier does not increase the complexity. It
remains to show Q ∈ ∑̃n+1 which follows by Lemma 3.27 from the assump-
tion Q ∈ ∏̃n.

• λ ⟨⟨Ltrue, Lfalse⟩, x⟩. ∀a ∈ Lfalse. Q a ∈ ∑̃n+1
By Lemma 3.31 the bounded quantifier does not increase the complexity. It
remains to show Q ∈ ∑̃n+1. We know Q ∈ ∏̃n+1 by Corollary 3.24. The
claim follows by LEM and Lemma 3.28.

• λ ⟨⟨Ltrue, Lfalse⟩, x⟩. Mc (lookup Ltrue Lfalse) x ▹ ⋆ ∈ ∑̃n+1
Showing ∃n. seval (Mc (lookup Ltrue Lfalse) x) n = Some⋆ ∈ ∑̃n+1 suffices,
by the specification of seval. The existential does not increase the complexity
of a ∑̃n+1 formula, by Lemma 3.26. The claim follows as seval is decidable.

□

Theorem 5.4 LEM → P ∈ ∑̃n+1↔ ∃Q ∈ ∏̃n. SQ(P)

Proof We have proven both directions separately in Lemma 5.2 and Lemma 5.3.□

As classically a predicate is Turing equivalent to its complement and oracles can be
replaced by a Turing equivalent one, we can also show that a predicate is in ∑̃n+1
if and only if it is semi-decidable relative to a predicate in ∑̃n as a corollary.

Corollary 5.5 LEM → P ∈ ∑̃kn+1↔ ∃Q ∈ ∑̃k+1n . SQ(P)

Proof By LEM and Lemma 3.28, Q ∈ ∑̃n↔Q ∈ ∏̃n. Further, by LEM and Corol-
lary 4.11, SQ(P)↔SQ(P). Therefore, the claim follows by LEM and Theorem 5.4.□

Next, we prove that the n+ 1-th Turing jump is ∑̃n+1-many-one-complete. This is
not true for ∅(0) because a many-one reduction would need to encode instances of
a given predicate into an instance of the empty predicate but no number fulfills the
empty predicate. Consequently,∅ is not amany-one-complete decidable predicate.

Theorem 5.6 LEM → ∅(n)
∈ ∑̃n and LEM → ∀P ∈ ∑̃n+1. P ⪯m ∅(n+1)

Proof We prove both claims separately, both by induction on n.

• In the base case, ∅ is decidable. In the induction step, ∅(n+1)
∈ ∑̃n+1 if it is

semi-decidable relative to ∅(n)
∈ ∑̃n, by employing the induction hypoth-

esis, LEM and Corollary 5.5. The claim follows as S∅(n)(∅(n) ′) by Lemma
4.34.

https://ps.uni-saarland.de/~mueck/bachelor/coqdoc/PostTheorem.PostsTheorem.html#ba127c4bdc65441fbc6b612ba97c641f
https://ps.uni-saarland.de/~mueck/bachelor/coqdoc/PostTheorem.PostsTheorem.html#cd762944af8bc584431b8fa7fe56bff6
https://ps.uni-saarland.de/~mueck/bachelor/coqdoc/PostTheorem.PostsTheorem.html#a42c22556e4b1c863ba4a0669512cada

5.2. Synthetic Proof of Post’s Theorem 55

• In the base case, given P ∈ ∑̃1, we need to show P ⪯m ∅
′. By Lemma 4.38 it

suffices to show S∅(P). As ∅ is decidable, by Lemma 4.8 it suffices to show
S(P). The claim follows by Lemma 3.22 and the assumption P ∈ ∑̃1.
In the induction case, assume P ∈ ∑̃n+2. By LEM and Corollary 5.5 there is
Q ∈ ∑̃n+1 such that SQ(P). We need to show P ⪯m ∅(n+2), so it suffices to
show S∅(n+1)(P) by Lemma 4.38. By Lemma 4.10 and the assumption SQ(P)
the claim reduces toQ⪯T∅

(n+1), which follows by Lemma 4.5 because∅(n+1)

is ∑̃n+1-complete by the inductive hypothesis. □

In order to fix the n = 0 case of Theorem 5.6, we further show for all n that ∅(n) is
∑̃n-Turing-complete.

Corollary 5.7 LEM → ∀P ∈ ∑̃n. P ⪯T ∅(n)

Proof For n = 0 the claim is trivial as P is decidable. For n > 0 the claim follows by
Lemma 4.5 as a corollary of Theorem 5.6. □

As a final corollary, we show that a predicate is in ∑̃n+1 if and only if it is semi-
decidable relative to ∅(n).

Corollary 5.8 LEM → P ∈ ∑̃n+1↔ S∅(n)(P)

Proof We prove both directions separately.
→ Assume P ∈ ∑̃n+1 so by LEM and Corollary 5.5 that there is a Q ∈ ∑̃n such

that SQ(P). By Lemma 4.10 it suffices to show P ⪯T ∅
(n) which follows by

LEM and Corollary 5.7

← Assume S∅(n)(P). By LEM and Corollary 5.5 it suffices to show ∅(n)
∈ ∑̃n

which holds by LEM and Theorem 5.6. □

All proofs in this section require LEM. However, the usage can be traced back to
exactly two places. First, in Theorem 5.4 we use that if a predicate is in ∑̃n then
its complement is in ∏̃n (Lemma 3.28) in order to reason that the specification
of Lfalse is in ∑̃n+1. Secondly, in Corollary 5.5 we again use Lemma 3.28 and that
P ≡T P (Lemma 4.6) in order to reason that a predicate is semi-decidable in a ∑̃n
predicate if and only if it is semi-decidable in a ∏̃n predicate. Besides those two
usages of LEM, our proofs are constructive.

https://ps.uni-saarland.de/~mueck/bachelor/coqdoc/PostTheorem.PostsTheorem.html#60981a6f6a4129569de11decfc15f0cc
https://ps.uni-saarland.de/~mueck/bachelor/coqdoc/PostTheorem.PostsTheorem.html#8225e9db0905d648e0b9b3a883e22f9e

Chapter 6

Discussion

We conclude this thesis with a brief discussion of our results.
In Chapter 3 we have formalized two definitions of the arithmetical hierarchy in
constructive type theory and have studied their equivalence by assuming axioms
from synthetic computability.
The first definitionwas directly in first-order arithmetic and serves as a sanity check
for the second synthetic definition. For that, we used the mechanization of the syn-
tax and semantics of first-order arithmetic provided by the Coq Library for Mecha-
nised First-Order Logic [30]. This kind of defining the arithmetical hierarchy can be
found as a side note in the textbook by Odifreddi [42]. In contrast to the majority
of other definitions in the literature (as we discuss in Section 6.2), it enables classi-
fying formulas solely based on their syntax via counting the number of quantifier
alternations in prenex normal form, so especially without incorporating computa-
tional properties.
To enable a rough upper-bound classification of arbitrary formulas, we have im-
plemented and verified a prenex normal form algorithm. The algorithm is struc-
turally recursive which allows a direct implementation in Coq. A consequential
difficulty we were able to solve was to correctly rename variables when pulling
multiple quantifiers at once. The prenex normal form is a classical result and thus
we assumed the law of excluded middle for the verification of the algorithm. We
generalized our results on prenex normal form to a general signature andmodel of
first-order arithmetic, for which it is equivalent to the law of excluded middle. The
algorithm does not optimize the number of quantifier alternations and thus only
gives a rough upper-bound classification in the arithmetical hierarchy. We leave a
further improvement for future work (cf. Section 6.3).

58 Discussion

The second definition of the arithmetical hierarchy classifies type-theoretic pred-
icates directly. It is purely synthetic without depending on a concrete model of
computation. This makes it more convenient to work with and establish Post’s the-
orem synthetically.
In Chapter 4 we have presented synthetic oracle machines and the first synthetic
definition of the Turing jump.
The synthetic definition of Turing reducibility by Forster and Kirst [16] who have
followed an idea by Bauer [4] has served as a starting point. However, how and
under which axioms a synthetic Turing jump could be defined was unclear in the
beginning since explicit constructions as they are presented in textbooks are in a
concrete model of computation (e.g. oracle Turing machines or µ-recursive partial
functionals) and cannot be translated to the synthetic setting.
Our key insight was that by adjusting the continuity requirement of synthetic or-
acle machines compared to Forster and Kirst, constructive results like that oracle
machines can be solely described by a higher-order partial function were possible.
This allows for constructing an enumeration of synthetic oracle machines by as-
suming an enumeration of continuous higher-order partial functions that can be
used to define the synthetic Turing jump. We leave further investigation on the as-
sumption and the question of whether an enumeration of continuous higher-order
partial functions could eventually be constructed by assuming known axioms like
EPF for future work (cf. Section 6.3).
As synthetic oraclemachines can be solely described by a higher-order partial func-
tion, the question arises whether notions like Turing reducibility or oracle semi-
decidability could be defined only by using higher-order partial functions. At the
moment the characterization given by Theorem 4.17 is not very informative. Thus,
we keep the definitions using oracle machines for the moment as we believe that
they are more intuitive.
Ultimately, we have found a way to connect the synthetic arithmetic hierarchy to
the synthetic Turing jump by proving Post’s theorem synthetically. Meanwhile,
the question has arisen if a step-wise interpretation of oracle machines would have
been needed to establish Post’s theorem (like in the proof by Soare [51]), but we
were able to exploit continuity instead, following the proof idea of Odifreddi [42].
Most textbooks work in classical set theory and establish all their results classically.
Therefore itwas open how constructive a possible proof of Post’s theoremwould be.
Our proof of Post’s theorem does rely on the law of excluded middle but we were
able to trace the classical reasoning in the proofs back to exactly two usages of LEM.
We leave the further investigation on whether weakening the classical assumptions
is possible for future work (cf. Section 6.3).

6.1. Coq Mechanization 59

In Section 6.1, we briefly discuss our Coq development. Then, we discuss some
related work in Section 6.2 and finally point out possible future work in Section 6.3.

6.1 Coq Mechanization
All results of this thesis are mechanized in the accompanying Coq development. In
the digital version of this thesis, all definitions, lemmas, and theorems are hyper-
linked to the respective position of the HTML that allows interactive navigation.
The whole Coq development has been placed in the following Github repository
that is self-contained and includes all dependencies.

https://github.com/uds-psl/coq-posts-theorem/tree/ba-mueck

All external dependencies are in the external folder and have been labeled with
the exact source. The primary source of dependencies is the accompanying Coq
development of Forster’s PhD thesis [16] where we have taken e.g. the definition
and proofs from our preliminaries Chapter 2 from. The definition of the syntax and
semantics of first-order logic together with some corresponding facts was taken
from the Coq Library of Undecidability Proofs [30].
Compared to the on-paper proofs, the Coq proofs are not more complex in general.
Some of the proofs on the arithmetical hierarchy, especially Lemma 3.30 that the
hierarchy is closed under bounded quantifiers and Lemma 3.31 that predicates of
the hierarchy can be lifted to lists required some technical encodings that we have
omitted on paper. For the bounded quantifier proof, we have assumed an encoding
of lists to numbers that is known how to be constructed but not spelled out for this
thesis. The proof of Post’s theorem in Chapter 5 was presented on unary predicates
on paper. In Coq, the respective encodings are made explicit, which adds another
rewriting step and a trivial many-one reduction but does not increase the general
complexity. In the future, it might be worth trying if an intermediate definition of
the arithmetical hierarchy on unary predicates would simply the proofs similarily
like on paper.
The Coq development is structured similarly to this thesis. The number of lines of
code for the respective sections splits up as follows:

https://github.com/uds-psl/coq-posts-theorem/tree/ba-mueck

60 Discussion

Specification Proofs
Prenex Normal Form 185 326
Arithemtical Hierarchy 45 236
in First-order Logic
Arithemtical Hierarchy 103 459
in Type Theory
Arithemtical Hierarchy 15 105
Equivalence
Oracle Computability 170 649
Turing Jump 64 152
Post’s Theorem 49 168
Total 631 2095

6.2 Related Work
Arithmetical Hierarchy Kleene [31] and Mostowski [38] developed the arith-
metical hierarchy independently. Kleene was aware of Mostowski’s work at least in
1952 [33] when he attributes the hierarchy to himself and Mostowski. Kleene de-
fines the hierarchy with predicates decidable by µ-recursive functions in the base.
Mostowski defines the hierarchy in first-order arithmetic with decidable formulas
in the base according to the ordinary rules of inference and the ordinary arithmeti-
cal axioms.
Mostowski observes that quantifier-free formulas are at the base level of the hierar-
chy and that adding quantifiers may give an undecidable formula, but the defini-
tion of the arithmetical hierarchy in first-order arithmeticalwe present in Section 3.1
is not equivalent toMostowski’s hierarchy in the base. In the EnglishWikipedia en-
try on the arithmetical hierarchy [61], the hierarchy is definedwith only quantifier-
free formulas at the base and variations like the hierarchywith decidable predicates
in the base are discussed together with the inequality of ∑0 and ∏0. We have
checked several textbooks [49, 42, 9, 51, 14, 25, 24] but all define the arithmetical
hierarchy with decidable predicates in the base. Only Odifreddi [42] mentions the
alternative definition that only allows quantifier-free formulas and the inequality
in the base.

Synthetic Computability Richman and Bridges [48, 6] study computability the-
ory in the the context of constructive metamathematics in the sense of Bishop [5].
Richman [48] lays the foundation of synthetic computability by proposing the ax-
iom of the enumerability of all enumerable sets and proving the undecidability of
the halting problem solely synthetically without a concrete model of computation.
Bauer [3] develops synthetic computability in Hyland’s effective topos [27] by as-

6.2. Related Work 61

suming the enumerability of enumerable sets of numbers. He proves many fun-
damental results including another theorem that is well known under the name
“Post’s theorem” and should not be confused with what we consider “Post’s Theo-
rem” in this thesis. What he considers “Post’s Theorem” is that a set is decidable if
and only if it is semi-decidable and its complement also is semi-decidable.
Both Richman, Bridges and Bauer assume the axiom of countable choice which
makes the law of excluded middle disprovable since both axioms together imply
that all predicates are decidable [55].

Synthetic Computability in Coq Forster, Kirst and Smolka [18] have developed
a basic framework for synthetic computability theory in Coq by translating some of
the ideas of Bauer [3] to constructive type theory. They also prove the same “Post’s
Theorem” as Bauer – that predicates are decidable if and only if they are enumer-
able and their complement is enumerable – and mechanize that it is equivalent to
Markov’s principle [55].
Their framework for synthetic computability in Coq was developed further as part
of the Coq Library of Undecidability Proofs [19] with many applications on mecha-
nized reductions of undecidable problems.
Forster [15, 17] studiesmultiple different synthetic axioms in constructive type the-
ory and elaborates on their consistency together with the law of excluded middle.

Synthetic One-One, Many-One, and Truth-Table Reducibility In his Bachelor’s
thesis [28] and in a resulting preprint together with Forster and Smolka [20], Jahn
studies synthetic one-one, many-one, and truth-table reducibility in more detail.
They prove a constructive and synthetic version of Myhill’s isomorphism theorem
[40] that one-one equivalent predicates are isomorphic and solve Post’s problem
synthetically for many-one and truth-table reducibility by synthetically establish-
ing simple and hyper-simple predicates [46].

Synthetic Turing Reductions The first synthetic definition of Turing reductions
was proposed by Bauer [4]. Bauer does not work in constructive type theory but in
the intuitionistic effective topos. Hefirst cameupwith the idea of defining synthetic
Turing reductions in two layers as a transformer of solvers of potentially uncom-
putable problems that factors through a computable core on computable oracles.
The first synthetic definition of Turing reductions in constructive type theory is
presented by Forster in his PhD thesis [16] and was conceived in joint work with
Kirst following the two-layered idea by Bauer. Furthermore, Forster discusses two
well-known refinements of Turing reductions, bounded Turing reductions and to-
tal bounded Turing reductions and shows that the latter is equivalent to truth-table

62 Discussion

reductions. Finally, he shows the well-known fact that truth-table reductions how-
ever differ from general Turing reductions and compares their definition to Bauer’s.
Our definition of synthetic oraclemachineswasmostly adopted from the definition
of Forster and Kirst, but with an adjustment in the formulation of the continuity
requirement that has enabled us to determine synthetic oracle machines solely by
a higher-order function.
We discuss the definitions by Bauer and by Forster and Kirst in more detail in Sub-
section 4.1.5 and carefully work out the differences and what they imply.

6.3 Future Work
The prenex normal form algorithm we verified does not optimize the number of
quantifier alternations and therefore is of limited suitability for the classification
of formulas in the arithmetical hierarchy. In future work, one could improve the
algorithm concerning this matter. A possible approach could be to optimize when
merging the two sub-lists in the recursive step of a binary operator instead of simply
concatenating the lists. This would require constructing the de Bruijn renamings
simultaneously when merging the lists. Another interesting question would be if
one could prove the equivalence of such an algorithm to the non-deterministic al-
gorithm that arises out of the rules of Lemma 3.5 and is presented in textbooks [49]
(there are only finitelymany prenex normal forms for each formula when applying
these rules).
We assumed ACT – a CT-like axiom – for our equivalence result of the two arith-
metical hierarchies in Section 3.3. In future work this axiom could probably be
reduced to a more common variant of CT by using the results of Peters [45] built
on work by Larchey-Wendling and Forster [37] and Kirst and Hermes [29, 22] as
discussed in the remark at the end of Subsection 3.3.2.
For defining the Turing jump, we have assumed an enumeration for continuous
higher-order partial functions. It would be interesting to study this enumerator
more carefully. Maybe one could be able to construct it (or a weaker formulation
of it) by only using known axioms like EPF. A possible starting point could be the
lecture notes by Streicher [52] on Kleene’s second algebra where he elaborates on
the realizability of continuous functions in the Baire space.
On the other side, one could consider if defining a synthetic Turing jump might be
possible without enumerating higher-order functions. One could perhaps change
the definition of oracle machines such that the core is a function of type N×N → 1
(which is isomorphic to functions of type N → 1 that are enumerated by EPF)
where the oracle is passed as the first component of the argument such that the

6.3. Future Work 63

argument i ∶ N means that the oracle is the i-th function enumerated by EPF. It
would be interesting to study whether such a definition of oracle machines could
give an equivalent definition of Turing reductions or whether this definition might
be weaker but sufficient to construct a synthetic Turing jump.
Our synthetic proof of Post’s theorem is classical. In future work, one could study
whether some of the statements can be proven constructively or study the equiva-
lence to classical axioms.
There is one result essential in textbooks on oracle semi-decidability and Turing
reductions that has only lately attracted our attention since it is not necessary for
establishing Post’s theorem and that we were not able to prove synthetically yet:
SQ(P) ∧ SQ(P) ↔ P ⪯T Q. Note that the not relativized version is also known as
“Post’s theorem” and is equivalent to Markov’s principle [55], so the relativized
version for sure only holds when assuming classical axioms. The difficult direction
is to construct a Turing reduction given the two semi-deciders. The obvious core
of such a Turing reduction would be to step-wise simulate the partial functions
gainedwhen forwarding the oracle to the two semi-deciders and checkwhich semi-
decider terminates first. The problemhowever is, that such a core is not continuous.
Continuity requires that if an oraclemachine halts it still halts with the same output
when replacing the oracle with an oracle that agrees on the finite list in question.
For the core above not only termination matters but also the number of steps after
which the step-wise evaluation of the cores of the two semi-deciders terminates.
When replacing the oracle, another semi-decider could terminate first whichwould
change the answer of the constructed Turing reduction and violates continuity.
As there exists a framework for synthetic relative decidability now, it would be
interesting to studymore results on relative decidability synthetically. For example,
one could study the Kleene-Post theorem [34] that there are uncomparable Turing
degrees or solve Post’s problem for Turing reductions synthetically for instance by
finding a synthetic proof for the Friedberg-Muchnik theorem [21, 39]. This was
already formulated as future work by Bauer [4] and Forster [16], but to the best of
our knowledge, nobody has worked on it yet.

Bibliography

[1] Yohji Akama, Stefano Berardi, Susumu Hayashi, and Ulrich Kohlenbach. An
arithmetical hierarchy of the law of excluded middle and related principles.
In Proceedings of the 19th Annual IEEE Symposium on Logic in Computer Science,
2004., pages 192–201, 2004. doi:10.1109/LICS.2004.1319613.

[2] Hendrik P. Barendregt. The lambda calculus - its syntax and semantics, volume
103 of Studies in logic and the foundations of mathematics. North-Holland, 1985.
ISBN 978-0-444-86748-3.

[3] Andrej Bauer. First steps in synthetic computability theory. In Martín Hötzel
Escardó, Achim Jung, and Michael W. Mislove, editors, Proceedings of
the 21st Annual Conference on Mathematical Foundations of Programming Se-
mantics, MFPS 2005, Birmingham, UK, May 18-21, 2005, volume 155 of
Electronic Notes in Theoretical Computer Science, pages 5–31. Elsevier, 2005.
doi:10.1016/j.entcs.2005.11.049.

[4] Andrej Bauer. Synthetic mathematics with an excursion into computability
theory. University of Wisconsin Logic seminar, 2021. URL http://math.
andrej.com/asset/data/madison-synthetic-computability-talk.pdf.

[5] Errett Bishop. Foundations of Constructive Analysis. New York, NY, USA:
Mcgraw-Hill, 1967.

[6] Douglas Bridges and Fred Richman. Varieties of ConstructiveMathematics. Lon-
don Mathematical Society Lecture Note Series. Cambridge University Press,
1987. doi:10.1017/CBO9780511565663.

[7] Alonzo Church. An unsolvable problem of elementary number theory. Amer-
ican Journal of Mathematics, 58(2):345–363, 1936. ISSN 00029327, 10806377.
doi:10.2307/2371045.

[8] Alonzo Church. A note on the Entscheidungsproblem. Journal of Symbolic
Logic, 1(1):40–41, 1936. doi:10.2307/2269326.

https://doi.org/10.1109/LICS.2004.1319613
https://doi.org/10.1016/j.entcs.2005.11.049
http://math.andrej.com/asset/data/madison-synthetic-computability-talk.pdf
http://math.andrej.com/asset/data/madison-synthetic-computability-talk.pdf
https://doi.org/10.1017/CBO9780511565663
https://doi.org/10.2307/2371045
https://doi.org/10.2307/2269326

66 Bibliography

[9] S. Barry Cooper. Computability theory. Chapman & Hall/CRC Press, 2004.
ISBN 1584882379.

[10] Thierry Coquand and Gérard Huet. The calculus of constructions. Informa-
tion and Computation, 76(2):95–120, 1988. ISSN 0890-5401. doi:10.1016/0890-
5401(88)90005-3.

[11] Haskell B. Curry. Functionality in combinatory logic. Proceedings of the Na-
tional Academy of Sciences, 20(11):584–590, 1934. doi:10.1073/pnas.20.11.584.

[12] Martin Davis. Computability and Unsolvability. McGraw-Hill, 1958.
[13] Nicolaas G. de Bruijn. Lambda calculus notation with nameless dummies,

a tool for automatic formula manipulation, with application to the church-
rosser theorem. Indagationes Mathematicae (Proceedings), 75(5):381–392, 1972.
ISSN 1385-7258. doi:10.1016/1385-7258(72)90034-0.

[14] Rodney G. Downey andDenis R. Hirschfeldt. Algorithmic randomness and com-
plexity. Springer Science & Business Media, 2010. ISBN 978-0-387-68441-3.
doi:10.1007/978-0-387-68441-3.

[15] Yannick Forster. Church’s thesis and related axioms in Coq’s type theory. In
Christel Baier and Jean Goubault-Larrecq, editors, 29th EACSL Annual Confer-
ence onComputer Science Logic, CSL 2021, January 25-28, 2021, Ljubljana, Slovenia
(Virtual Conference), volume 183 of LIPIcs, pages 21:1–21:19. Schloss Dagstuhl
- Leibniz-Zentrum für Informatik, 2021. doi:10.4230/LIPIcs.CSL.2021.21.

[16] Yannick Forster. Computability in Constructive Type Theory. PhD thesis, Saar-
land University, 2021. doi:10.22028/D291-35758.

[17] Yannick Forster. Parametric Church’s thesis: Synthetic computability without
choice. In Sergei N. Artemov and Anil Nerode, editors, Logical Foundations
of Computer Science - International Symposium, LFCS 2022, Deerfield Beach, FL,
USA, January 10-13, 2022, Proceedings, volume 13137 of Lecture Notes in Com-
puter Science, pages 70–89. Springer, 2022. doi:10.1007/978-3-030-93100-1_6.
URL https://doi.org/10.1007/978-3-030-93100-1_6.

[18] Yannick Forster, DominikKirst, andGert Smolka. On synthetic undecidability
in Coq, with an application to the Entscheidungsproblem. In AssiaMahboubi
andMagnus O. Myreen, editors, Proceedings of the 8th ACM SIGPLAN Interna-
tional Conference on Certified Programs and Proofs, CPP 2019, Cascais, Portugal,
January 14-15, 2019, pages 38–51. ACM, 2019. doi:10.1145/3293880.3294091.

[19] Yannick Forster, Dominique Larchey-Wendling, Andrej Dudenhefner, Edith
Heiter, Dominik Kirst, Fabian Kunze, Gert Smolka, Simon Spies, Dominik
Wehr, and Maximilian Wuttke. A Coq library of undecidable problems. In

https://doi.org/10.1016/0890-5401(88)90005-3
https://doi.org/10.1016/0890-5401(88)90005-3
https://doi.org/10.1073/pnas.20.11.584
https://doi.org/10.1016/1385-7258(72)90034-0
https://doi.org/10.1007/978-0-387-68441-3
https://doi.org/10.4230/LIPIcs.CSL.2021.21
https://doi.org/10.22028/D291-35758
https://doi.org/10.1007/978-3-030-93100-1_6
https://doi.org/10.1007/978-3-030-93100-1_6
https://doi.org/10.1145/3293880.3294091

Bibliography 67

CoqPL 2020 The Sixth International Workshop on Coq for Programming Languages,
2020.

[20] Yannick Forster, Felix Jahn, and Gert Smolka. A Constructive and Synthetic
Theory of Reducibility: Myhill’s Isomorphism Theorem and Post’s Problem
forMany-one and Truth-table Reducibility in Coq (Full Version). working pa-
per or preprint, February 2022. URL https://hal.inria.fr/hal-03580081.

[21] Richard M. Friedberg. Two recursively enumerable sets of incomparable de-
grees of unsolvability (solution of Post’s problem, 1944). Proceedings of the
National Academy of Sciences, 43(2):236–238, 1957. doi:10.1073/pnas.43.2.236.

[22] Marc Hermes and Dominik Kirst. An analysis of Tennenbaum’s theorem in
constructive type theory. In 7th International Conference on Formal Structures for
Computation and Deduction (FSCD 2022), 2022.

[23] David Hilbert andW. Ackermann. Grundzüge der theoretischen Logik. Springer,
Berlin, Germany, 1972. ISBN 9783662119327.

[24] Peter G. Hinman. Recursion-Theoretic Hierarchies. Perspectives in Logic. Cam-
bridge University Press, 2017. doi:10.1017/9781316717110.

[25] Steven Homer and Alan L. Selman. Computability and complexity theory, vol-
ume 194. Springer, 2011. ISBN 978-1-4614-0682-2. doi:10.1007/978-1-4614-
0682-2.

[26] William A. Howard. The formulae-as-types notion of construction. In
Haskell B. Curry, Hindley B., Seldin J. Roger, and P. Jonathan, editors, To H. B.
Curry: Essays on Combinatory Logic, Lambda Calculus, and Formalism. Academic
Press, 1980.

[27] J. Martin E. Hyland. The effective topos. In A.S. Troelstra and D. van
Dalen, editors, The L. E. J. Brouwer Centenary Symposium, volume 110 of Stud-
ies in Logic and the Foundations of Mathematics, pages 165–216. Elsevier, 1982.
doi:10.1016/S0049-237X(09)70129-6.

[28] Felix Jahn. Synthetic One-One, Many-One, and Truth-Table Reducibility in Coq.
Bachelor’s thesis, Saarland University, September 2020. URL https://ps.
uni-saarland.de/~jahn/files/thesis.pdf.

[29] Dominik Kirst and Marc Hermes. Synthetic undecidability and incomplete-
ness of first-order axiom systems inCoq. In LironCohen andCezaryKaliszyk,
editors, 12th International Conference on Interactive Theorem Proving, ITP 2021,
June 29 to July 1, 2021, Rome, Italy (Virtual Conference), volume 193 of LIPIcs,
pages 23:1–23:20. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021.
doi:10.4230/LIPIcs.ITP.2021.23.

https://hal.inria.fr/hal-03580081
https://doi.org/10.1073/pnas.43.2.236
https://doi.org/10.1017/9781316717110
https://doi.org/10.1007/978-1-4614-0682-2
https://doi.org/10.1007/978-1-4614-0682-2
https://doi.org/10.1016/S0049-237X(09)70129-6
https://ps.uni-saarland.de/~jahn/files/thesis.pdf
https://ps.uni-saarland.de/~jahn/files/thesis.pdf
https://doi.org/10.4230/LIPIcs.ITP.2021.23

68 Bibliography

[30] Dominik Kirst, Johannes Hostert, Andrej Dudenhefner, Yannick Forster, Marc
Hermes, Mark Koch, Dominique Larchey-Wendling, Niklas Mück, Benjamin
Peters, Gert Smolka, and Dominik Wehr. A Coq library for mechanised first-
order logic. In The Coq Workshop, 2022.

[31] Stephen C. Kleene. Recursive predicates and quantifiers. Transactions of the
American Mathematical Society, 53(1):41–73, 1943. doi:10.1090/S0002-9947-
1943-0007371-8.

[32] Stephen. C. Kleene. On the interpretation of intuitionistic number theory.
Journal of Symbolic Logic, 10(4):109–124, 1945. doi:10.2307/2269016.

[33] Stephen C. Kleene. Introduction to metamathematics. 1952.
[34] Stephen C. Kleene and Emil L. Post. The upper semi-lattice of degrees

of recursive unsolvability. Annals of mathematics, pages 379–407, 1954.
doi:10.2307/1969708.

[35] Georg Kreisel. Mathematical logic. Lectures in modern mathematics 3, pages
95–195, 1965.

[36] Kazimierz Kuratowski andAlfred Tarski. Les opérations logiques et les ensembles
projectifs. Uniwersytet, SeminarjumMatematyczne, 1931. doi:10.4064/FM-17-
1-240-248.

[37] Dominique Larchey-Wendling and Yannick Forster. Hilbert’s tenth prob-
lem in coq (extended version). Log. Methods Comput. Sci., 18(1), 2022.
doi:10.46298/lmcs-18(1:35)2022.

[38] Andrzej Mostowski. On definable sets of positive integers. Fundamenta Math-
ematicae, 34(1):81–112, 1947. doi:10.4064/fm-34-1-81-112.

[39] Albert A.Muchnik. On strong andweak reducibility of algorithmic problems.
Sibirskii Matematicheskii Zhurnal, 4(6):1328–1341, 1963.

[40] John Myhill. Creative sets. Mathematical Logic Quarterly, 1(2):97–108, 1955.
doi:10.1002/malq.19550010205.

[41] A. Nerode. General topology and partial recursive functionals. Talks Cornell
Summ. Inst. Symb. Log., pages 247–251, 1957.

[42] Piergiorgio Odifreddi. Classical recursion theory. The theory of functions and sets
of natural numbers., volume 125 of Stud. Logic Found. Math. Amsterdam etc.:
North-Holland, paperback ed. edition, 1992. ISBN 0-444-89483-7.

[43] Christine Paulin-Mohring. Inductive definitions in the system Coq - rules
and properties. In Marc Bezem and Jan Friso Groote, editors, Typed Lambda
Calculi and Applications, International Conference on Typed Lambda Calculi and

https://doi.org/10.1090/S0002-9947-1943-0007371-8
https://doi.org/10.1090/S0002-9947-1943-0007371-8
https://doi.org/10.2307/2269016
https://doi.org/10.2307/1969708
https://doi.org/10.4064/FM-17-1-240-248
https://doi.org/10.4064/FM-17-1-240-248
https://doi.org/10.46298/lmcs-18(1:35)2022
https://doi.org/10.4064/fm-34-1-81-112
https://doi.org/10.1002/malq.19550010205

Bibliography 69

Applications, TLCA ’93, Utrecht, The Netherlands, March 16-18, 1993, Proceedings,
volume 664 of Lecture Notes in Computer Science, pages 328–345. Springer, 1993.
doi:10.1007/BFb0037116.

[44] Christine Paulin-Mohring. Introduction to the Calculus of Inductive Con-
structions. In BrunoWoltzenlogel Paleo andDavidDelahaye, editors,All about
Proofs, Proofs for All, volume 55 of Studies in Logic (Mathematical logic and foun-
dations). College Publications, January 2015. URL https://hal.inria.fr/
hal-01094195.

[45] Benjamin Petres. Gödel’s Theorem Without Tears - Essential Incomplete-
ness in Synthetic Computability. Bachelor’s thesis, Saarland University,
June 2022. URL https://www.ps.uni-saarland.de/~peters/bachelor/
resources/thesis.pdf.

[46] Emil L. Post. Recursively enumerable sets of positive integers and their de-
cision problems. Bulletin of the American Mathematical Society, 50(5):284–316,
1944. doi:10.1090/s0002-9904-1944-08111-1.

[47] Emil L. Post. Degrees of recursive unsolvability-preliminary report. InBulletin
of the American Mathematical Society, volume 54, pages 641–642, 1948.

[48] Fred Richman. Church’s thesis without tears. J. Symb. Log., 48(3):797–803,
1983. doi:10.2307/2273473.

[49] Hartley Rogers. Theory of recursive functions and effective computability. MIT Pr.,
2. print. edition, 1988. ISBN 0262680521.

[50] Thoralf Skolem. Logisch-kombinatorische Untersuchungen über die Erfüll-
barkeit oder Bewiesbarkeit mathematischer Sätze nebst einem Theorem über
dichte Mengen. Skrifter utgit av Videnskapsselskapet i Kristiania. I, Matematisk-
naturvidenskabelig klasse, pages 1–36, 1920.

[51] Robert I. Soare. Turing Computability : Theory and Applications. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2016. ISBN 9783642319334.

[52] Thomas Streicher. Realizability. Lecture Notes, WS 17/18. URL https://
www2.mathematik.tu-darmstadt.de/~streicher/REAL/REAL.pdf.

[53] Andrew W. Swan and Taichi Uemura. On church’s thesis in cubical as-
semblies. Mathematical Structures in Computer Science, pages 1–20, 2022.
doi:10.1017/S0960129522000068.

[54] The Coq Development Team. The Coq proof assistant. January 2022.
doi:10.5281/zenodo.5846982. Version 8.15.

https://doi.org/10.1007/BFb0037116
https://hal.inria.fr/hal-01094195
https://hal.inria.fr/hal-01094195
https://www.ps.uni-saarland.de/~peters/bachelor/resources/thesis.pdf
https://www.ps.uni-saarland.de/~peters/bachelor/resources/thesis.pdf
https://doi.org/10.1090/s0002-9904-1944-08111-1
https://doi.org/10.2307/2273473
https://www2.mathematik.tu-darmstadt.de/~streicher/REAL/REAL.pdf
https://www2.mathematik.tu-darmstadt.de/~streicher/REAL/REAL.pdf
https://doi.org/10.1017/S0960129522000068
https://doi.org/10.5281/zenodo.5846982

70 Bibliography

[55] Anne S. Troelstra and Dirk van Dalen. Constructivism in Mathematics, Vol 1:
Volume 121. Studies in logic and the foundations of mathematics. Elsevier
Science, London, England, January 1988. ISBN 0444702660.

[56] AlanM. Turing. On computable numbers, with an application to the Entschei-
dungsproblem. J. of Math, 58:345–363, 1936.

[57] Alan M. Turing. Systems of Logic Based on Ordinals. PhD thesis, Princeton
University, NJ, USA, 1938. doi:10.1112/plms/s2-45.1.161.

[58] Alan M. Turing. Systems of logic based on ordinals. Proceedings of the London
mathematical society, 2(1):161–228, 1939.

[59] Vladimir A. Uspenskii. On enumerable operators. Dokl. Acad. Nauk., 103:
773–776, 1955.

[60] Benjamin Werner. Sets in types, types in sets. In Martín Abadi and
Takayasu Ito, editors, Theoretical Aspects of Computer Software, pages 530–546,
Berlin, Heidelberg, 1997. Springer Berlin Heidelberg. ISBN 978-3-540-69530-1.
doi:10.1007/BFb0014566.

[61] Wikipedia contributors. Arithmetical hierarchy — Wikipedia, the free ency-
clopedia. https://en.wikipedia.org/w/index.php?title=Arithmetical_
hierarchy&oldid=1085052268, 2022. [Online; accessed 8-June-2022].

[62] Norihiro Yamada. Game semantics of Martin-Löf type theory, part iii: its
consistency with Church’s thesis. 2020. doi:10.48550/ARXIV.2007.08094.

https://doi.org/10.1112/plms/s2-45.1.161
https://doi.org/10.1007/BFb0014566
https://en.wikipedia.org/w/index.php?title=Arithmetical_hierarchy&oldid=1085052268
https://en.wikipedia.org/w/index.php?title=Arithmetical_hierarchy&oldid=1085052268
https://doi.org/10.48550/ARXIV.2007.08094

	Abstract
	Introduction
	Outline
	Contributions

	Preliminaries
	Constructive Type Theory
	Partial Functions and Functional Relations
	Synthetic Computability
	Basic Notions
	Axioms of Synthetic Computability
	Synthetic Halting Problem

	Classical Logic

	Arithmetical Hierarchy
	Arithmetical Hierarchy in First-Order Arithmetic
	First-order Arithmetic
	Prenex Normal Form
	Syntactic Definition of the Arithmetical Hierarchy

	Arithmetical Hierarchy in Type Theory
	Decidable Predicates on Vectors
	Semantic Definition of the Arithmetical Hierarchy
	Closure Properties of the Semantic Arithmetical Hierarchy

	Equivalence of Both Definitions
	Inclusion of the Syntactic in the Semantic Hierarchy
	Axiom Relating Decidable Predicates to First-Order Arithmetic
	Inclusion of the Semantic in the Syntactic Hierarchy

	Oracle Machines and Turing Jump
	Synthetic Oracle Computability
	Oracle Machines
	Turing Reductions
	Oracle Semi-decidability
	Determinacy of Oracle Machines by Their Cores
	Comparison to Related Work

	Turing Jump
	Enumerating Oracle Machines
	Synthetic Turing Jump
	Completeness of the Turing Jump

	Post's Theorem
	Connecting the Arithmetical Hierarchy and Turing Jumps
	Synthetic Proof of Post's Theorem

	Discussion
	Coq Mechanization
	Related Work
	Future Work

	Bibliography

