
A Computational and Abstract Approach to
Gödel’s First Incompleteness Theorem

Benjamin Peters
Universität des Saarlandes

December 13, 2021

Gödel’s first incompleteness theorem [4] in its modern form states that any consistent
and sufficiently powerful formal system is incomplete. His original proof requires ω-
consistency instead of consistency, a slightly stronger and more technical condition, but
a few years after its publication Rosser [8] discovered a way to strengthen Gödel’s result,
giving it its modern form.

The theorem is also often presented in conjunction with computability theory: As-
suming a sound and sufficiently powerful formal system, this approach usually shows
that the halting problem would be decidable. This proof requires soundness instead
of consistency or ω-consistency and does not construct an independent sentence, which
both Gödel’s and Rosser’s proofs do.

Kleene [6] shows the incompleteness theorem in its modern form using computability
theory by using a slightly different approach than usual, although it requires a different
notion of power for the formal system. This proof was then presented in a different
form in a blog post by Scott Aaronson [1], although his presentation does not mention
the possibility of finding an explicit independent sentence. This approach was improved
upon by an anonymous user on the Mathematics Stack Exchange [10] which was picked
up by Anatoly Vorobey [11], who gave an overview on the different strengths in which
the incompleteness theorem can be shown.

We give and compare two abstract proofs of Gödel’s first incompleteness theorem
using computability theory based on [10] in a constructive type theory, one in its weakest
(soundness and no explicit independent sentence) and one in its strongest and modern
(consistency and an explicit independent sentence) form.

A similar, but weaker statement has been shown and mechanized in [5].

1

1 Preliminaries

We work in the framework of a constructive type theory such as the one implemented
in Coq. In such a theory all definable functions are total. To represent partial functions
we need to resort to step-indexing:

Definition 1. A function f : X → N→ O(Y) is called partial, if it is stationary, i.e.

∀xykk′. f x k = °y −→ k′ ≥ k −→ f x k′ = °y.

In this case we write f : X ⇀ Y .
Let f, g : X ⇀ Y . We say that

• f evaluates on x to y, written f x ↓ y, if ∃k. f x k = °y,

• f halts on x, written f x ↓, if ∃y. f x ↓ y,

• f diverges on x, written f x ↑, if ∀k. fx = ∅,

• f is total, if ∀x. f x ↓,

• f and g return the same value on x, written f x ≡ g x, if ∀y. f x ↓ y ←→ g x ↓ y,

• f and g are equivalent, written f ≡ g, if ∀x. f x ≡ g x.

Lemma 1. For any function f : X → N→ O(Y) that is functional, that is

∀xk1k2y1y2. f x k1 = y1 −→ f x k2 = y2 −→ y1 = y2,

there is an equivalent partial function.

In our type theory it is consistent to assume that all functions that can be explicitly
defined are computable. We make this formal by assuming a variant of Church’s thesis
[7, 9] as formulated by [2] in constructive type theory:

Assumption 1 (Church’s thesis). There is a function θ : N→ N⇀ B, such that

∀f. ∃c.∀x. f x ≡ θc(x).

It is important to keep in mind that the conversion from functions to codes is not
necessarily computable. For our purposes it suffices to consider Assumption 1 as shown
above, which can be shown equivalent to a more canonical one with f : N ⇀ N and
θ : N → N ⇀ N. We will write ! for boolean negation, t for boolean true and f for
boolean false.

2

2 Formal systems

Definition 2 (Formal systems). A formal system FS = (S,¬,`) consists of a type S : T
of logical sentences, a negation function ¬ : S → S and a provability predicate ` : S → P
fulfilling the following properties:

• S is enumerable and discrete.

• ` is enumerable.

• FS is consistent: ∀s.¬(` s ∧ `¬s).

FS can easily be instantiated with any reasonable formal logic with respect to a set of
axioms, e.g. first- or second-order logic with a natural deduction system and the axioms
of Robinson’s Q or Peano arithmetic.

Definition 3 (Completeness). A formal system (S,¬,`) is complete if every sentence
can either be proven or disproven: ∀s.` s ∨ `¬s.

Lemma 2 (Deep negations). Let (S,¬,`) be a complete formal system and s : S be a
sentence. Then `¬s ←→ 0 s.

Proof. −→ by consistency, ←− by completeness.

Lemma 3 (Co-enumerability). In any complete formal system (S,¬,`), ` is co-enum-
erable.

Proof. We can construct a semi-decider for λs.`¬s instead of a co-enumerator for `
using Theorem 2 and enumerability of S. Given a sentence s, enumerate all provable
sentences s′. If ¬s = s′, then accept, otherwise continue searching.

Now, s is disprovable iff the semi-decider accepts s.

Theorem 4 (Decidability). In any complete formal system FS = (S,¬,`), ` is decid-
able.

Proof. We get enumerability from the definition of FS and co-enumerability by The-
orem 3. To constructively get a decider from this we need a form of Post’s theorem.
We use a formulation by [3] that additionally only requires discreteness of S and log-
ical decidability of ` , which we get using the definition of FS and using completeness
respectively.

This result can also be shown by directly giving a decider: Given a sentence s we
enumerate all provable sentences s′ and check whether s = s′ or ¬s = s′ using discrete-
ness. Correctness is easy to show and totality is by completeness. Note that this does
not require enumerability of S. However, this approach is tedious to handle in Coq as it
requires working with a total function S ⇀ B. To our knowledge it would again require
enumerability of S to convert it to a function S → B or a decider.

3

3 Weak representability

Definition 4 (Weak representability). Let FS = (S,¬,`) be a formal system, X : T, P :
X → P be a predicate, r : X → S. We say r weakly represents P in FS, if

∀x. P x ←→ ` r x.

If such an r exists, we call P weakly representable in FS.

From a computational perspective, r would be considered a many-one reduction from
P to ` .

Lemma 5 (Special halting problem). The special halting problem for θ, that is

H0 c := θc(c) ↓,

is undecidable.

Proof. Let f : N→ B be a function such that ∀c. f c = t ←→ H0 c. Choose

g : N⇀ B, g c :=

{
0 if f c = f

undefined if f c = t

and let c be the code of g. We have

f c = f ←→ g c = 0 ←→ θc(c) ↓ ←→ H0 c ←→ f c = t

Therefore, H0 is undecidable.

Theorem 6. Let FS = (S,¬,`) be a complete formal system that can weakly represent
the special halting problem for θ. Then H0 is decidable.

Proof. By Theorem 4, ` is decidable, and, because decidability transports across equiv-
alences, also H.

Corollary 6.1 (Weak Gödel’s first incompleteness theorem). Any formal system that
can weakly represent H0 is incomplete.

There are many formal systems that fulfill the requirements of Corollary 6.1, such as
any reasonable deduction system for first-order logic with the axioms of Robinson’s Q
as well as its sound extensions.

4 Value-representability

Definition 5 (Value-representability). Let FS = (S,¬,`) be a formal system, f : N ⇀
B, and r : N→ B→ S. We say r value-represents f , if

∀xy. f x ↓ y −→ (` r x y) ∧ (`¬r x (!y))

If such an r exists, FS value-represents f .

4

Definition 6. A formal system value-represents all computable functions, if

∀c.Σr. r value-represents θc.

It would be possible to quantify over functions instead of codes in Definition 6. This
would essentially form a variant of Church’s thesis for formal systems with a computable
mapping from functions f to their codes r. We believe that this would still be consistent,
but it might force us to interpret functions intensionally and prevent us from assuming
some common axioms, such as functional extensionality.

Note that the definition of weak representability requires a form of soundness: From
the provability of a sentence in a formal system we need to deduce a truth in our meta-
system. Value-representability does not require this. Instead, we only need to be able
to correctly reason about programs that actually halt: We do not pose restrictions on a
representation ` r x y if f x is undefined.

Most importantly, if a theory T value-represents a function f in first-order logic, all
of its consistent extensions also value-represent f . Weak representability only preserves
along sound extensions.

It is difficult to compare the notions of weak and value-representability. If we restrict
ourselves to functions of the form θc and predicates P (x) = θc(x) ↓ t, generally both
notions are incomparable. In complete formal systems however, weak representability of
such a predicate implies value-representability of the respective function.

Definition 7 (Consistent guessing). A language L ⊆ N fulfills consistent guessing if

{(c, x) | θc(x) ↓ t} ⊆ L ∧ {(c, x) | θc(x) ↓ f} ∩ L = ∅,

or equivalently,

∀cv. (θc(x) ↓ t −→ (c, x) ∈ L) ∧ (θc(x) ↓ f −→ (c, x) /∈ L).

Note that this definition does not place any restrictions on tuples (c, x) such that θc(x)
is undefined, or rather, such that c does not halt on input x.

Lemma 7 (Consistent guessing is undecidable). Any language L ⊆ N that fulfills con-
sistent guessing is undecidable.

Proof. Let f : N → N → B be a function such that ∀cx. f c x = t ←→ (c, x) ∈ L.
Choose

g : N→ N, g c := !f c c

and let c be the code of g. We have

f c c = t ←→ g c = f ←→ θc(c) ↓ f −→ (c, c) /∈ L ←→ f c c = f

and
f c c = f ←→ g c = t ←→ θc(c) ↓ t −→ (c, c) ∈ L ←→ f c c = t.

Therefore, L is undecidable.

In essence, Theorem 7 shows that the following sets are recursively inseparable:

{(c, x) | θc(x) ↓ t} {(c, x) | θc(x) ↓ f}

5

5 Main result

Theorem 8 (Consistent guessing is decidable). Let FS = (S,¬,`) be a complete formal
system that can value-represent all computable functions. Then there is a decidable
language that fulfills consistent guessing.

Proof. We write rc for the value-representation of a code c. Let h : N→ N→ B be the
following function:

h c x :=

{
t if rc x t is provable

f otherwise

h is total by Theorem 4 and completeness. It suffices to show that L := {(c, x) | h c x = t}
fulfills consistent guessing.

Let c, x be such that θc(x) ↓ t. By value-representability we have ` rc x t, and therefore
h c x = t and (c, x) ∈ L.

Let c, x be such that θc(x) ↓ f. Similarly, we have `¬rc x t and therefore h c x = f by
consistency and (c, x) /∈ L.

Corollary 8.1. There is no complete formal system that can value-represent all func-
tions.

Corollary 8.2 (Gödel’s first incompleteness theorem). Any formal system that can
value-represent all functions is incomplete.

Theorem 9 (Explicit incompleteness). Let FS = (S,¬,`) be a formal system that
value-represents all computable functions. We write rc for the value-representation of a
function c. Consider the following program f(c, x):

1. enumerate all provable sentences s.

2. if s = rc x t, accept.

3. if s = ¬rc x t, reject.

4. otherwise, continue searching

and the function g′:

g′ c :=

f if f(c, c) ↓ t
t if f(c, c) ↓ f
undefined if f(c, c) ↑

Note that g′ is not immediately monotonic. By Lemma 1, let g : N⇀ B be an equivalent
partial and therefore monotonic function, and c its code.

Now, rc c t is independent in FS, that is 0 rc c t and 0¬rc c t.

Proof. Assume ` rc c t. It suffices to show θc(c) ↓ f by consistency and value-represent-
ability. We have θc(c) ↓ f ←→ g c = f ←→ f(c, c) ↓ t ←→ ` rc c t.

Assume `¬rc c t. It suffices to show ` rc c t by consistency. We have ` rc c t ←−
θc(c) ↓ t ←→ g c = t ←→ f(c, c) ↓ f ←→ `¬rc c t.

6

Note that f would compute a language that fulfills consistent guessing if FS were
complete and that g is the function constructed in the undecidability proof of consistent
guessing.

As opposed to the Corollary 6.1, Corollary 8.1 and Theorem 9 can both not only
establish incompleteness of a theory, but also of its consistent extensions, that is essential
incompleteness.

We believe that enumerability of sentences is not required for showing Theorem 9.
Kleene [6] shows the same result by more abstractly using two recursively enumerable

and recursively inseparable sets, which correspond exactly to the two sets in Definition
7, and exploiting the fact that any computable characteristic function separating both
sets must diverge on an input, in this case g.

7

References

[1] Scott Aaronson. Rosser’s theorem via turing machines. Shtetl-Optimized.
URL:https://scottaaronson.blog/?p=710 (version: 2021-11-25).

[2] Yannick Forster. Parametric church’s thesis: Synthetic computability without
choice. In Logical Foundations of Computer Science: International Symposium,
LFCS 2022, January 10-13, 2022, 2022.

[3] Yannick Forster, Dominik Kirst, and Gert Smolka. On synthetic undecidability
in coq, with an application to the entscheidungsproblem. In Proceedings of the
8th ACM SIGPLAN International Conference on Certified Programs and Proofs,
CPP 2019, page 38–51, New York, NY, USA, 2019. Association for Computing
Machinery.

[4] K. Gödel. Über formal unentscheidbare Sätze der Principia Mathematica und ver-
wandter Systeme I. Monatshefte für Mathematik und Physik, 38:173–198, 1931.

[5] Dominik Kirst and Marc Hermes. Synthetic Undecidability and Incompleteness of
First-Order Axiom Systems in Coq. In Liron Cohen and Cezary Kaliszyk, editors,
12th International Conference on Interactive Theorem Proving (ITP 2021), volume
193 of Leibniz International Proceedings in Informatics (LIPIcs), pages 23:1–23:20,
Dagstuhl, Germany, 2021. Schloss Dagstuhl – Leibniz-Zentrum für Informatik.

[6] Stephen Cole Kleene. Mathematical Logic. Dover Publications, 1967.

[7] Georg Kreisel. Mathematical logic. Journal of Symbolic Logic, 32(3):419–420, 1967.

[8] Barkley Rosser. Extensions of some theorems of gödel and church. The Journal of
Symbolic Logic, 1(3):87–91, 1936.

[9] A.S. Troelstra, D. van Dalen, and L.D. Beklemishev. Constructivism in Mathemat-
ics, Vol 1. Constructivism in Mathematics. Elsevier Science, 1988.

[10] user21820 (https://math.stackexchange.com/users/21820/user21820). Com-
putability viewpoint of godel/rosser’s incompleteness theorem. Mathematics Stack
Exchange. URL:https://math.stackexchange.com/q/2486349 (version: 2017-12-
31).

[11] Anatoly Vorobey. First incompleteness via computation: an explicit construction.
Foundations of Mathematics mailing list. URL:https://cs.nyu.edu/pipermail/
fom/2021-September/022872.html (version: 2021-11-25).

8

https://scottaaronson.blog/?p=710
https://math.stackexchange.com/users/21820/user21820
https://math.stackexchange.com/q/2486349
https://cs.nyu.edu/pipermail/fom/2021-September/022872.html
https://cs.nyu.edu/pipermail/fom/2021-September/022872.html

	Preliminaries
	Formal systems
	Weak representability
	Value-representability
	Main result

