
Formalizing Strong Representability
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There is a simple folklore proof of Gödel’s first incompleteness theorem (G1) by Kleene
using computability theory and undecidability of the halting problem [8]. It shows
incompleteness of formal systems that weakly represent the halting problem, such as
first-order logic with the axioms of Robinson’s Q. Kleene’s proof is much easier to spell
out in detail than the original Gödel-Rosser proof [5, 15], only relying on basic results in
computability theory [10].
However, Kleene’s well-known result is weaker than the Gödel-Rosser proof: It only

works for sound as opposed to just consistent formal systems, and does not construct an
independent sentence. Similarly, Gödel’s original result only applied to omega-consistent
theories until it was strengthened by Rosser to only require consistency. Kleene also
found a way to fix these weaknesses in his proof, in part using the same trick Rosser
used [9]. We described an abstract presentation of these results in [13], assuming a form
of representability we called value representability.

In this memo, we show how to apply Rosser’s trick to weak representability to obtain
strong representability theorems, such as strong separability of disjoint predicates (as done
by Kleene [9]), value representability, Church’s thesis for Q (CTQ) assuming Church’s
thesis for a concrete machine model (CTL), and more.

1 Preliminaries

We work with a presentation of intuitionistic first-order logic with the theories of (in-
tuitionistic) Robinson’s Q as well as Heyting arithmetic HA, and the standard model
of natural numbers N, as presented in [7]. All theorems can also be derived for their
classical counterparts PQ and PA.
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Definition 1 (Comparison operators). We define the following derived notion on formu-
las:

x ≤ y := ∃z. y = x+ z ∨ y = z + x

In HA, x ≤ y can easily be shown equivalent to the more conventional ∃z. y = x+ z
using commutativity of addition. This does not hold in Q.

Definition 2 (∆1 formulas). A formula φ is ∆1, if for any closed substitution ρ, φ[ρ] is
Q-decidable, that is Q ⊢ φ or Q ⊢ ¬φ.

Lemma 3. The following formulas are ∆1:

1. propositional formulas (including falsity and equations),

2. comparisons x ≤ y,

3. bounded quantifiers ∀x ≤ t. φ or ∃x ≤ t. φ, where t is a term that does not contain
x,

4. binary bounded quantifiers ∀xy. x+ y ≤ t → φ, where t is a term that does not
contain x and y.

Proof. The proofs of 1. and 2. are easy. Bounded quantification can be shown to be
equivalent to finite conjunction/disjunction.

Definition 4 (Σ1 and Π1 formulas). We say that a formula is Σ1 if it is of the form
∃m1,m2, . . . ,mn. ψ where ψ is ∆1. We say that a formula is Π1 if it is of the form
∀m1,m2, . . . ,mn. ψ where ψ is ∆1.

Lemma 5 (∃ compression). For any formula φ ∈ Σ1 there is a formula ψ ∈ ∆1 such
that

Q ⊢ φ ↔ ∃m.ψ.

Proof. It suffices to show that we can compress two existential quantifiers, that is, for
any φ ∈ ∆1:

∃ψ ∈ ∆1.Q ⊢ (∃xy. φ(x, y)) ↔ ∃z. ψ(z)

Choose
ψ(z) := ∃x ≤ z. ∃y ≤ z. φ(x, y)

The rest of this proof is done formally in Q. The direction from right to left is trivial.
Let x, y be such that φ(x, y). Choose z := x+ y. Both bounds can easily be shown since
our definition of ≤ accommodates the absence of commutativity.

We do not know of a way to show Lemma 5 in Q using only a simpler definition of ≤.

Definition 6 (Weak representability). A formula φ ∈ Σ1 with a single free variable
weakly represents a predicate P : N → P if for all x:

Px ↔ Q ⊢ φ(x).
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Remark 7. It was shown by [12, 7] that all predicates enumerable in a concrete model
of computation L [4] are weakly Σ1-representable, that is, weakly representable by a
Σ1-formula. By assuming CTL [11, 16, 2] this also applies to all synthetically [14, 1, 3]
enumerable predicates.

Definition 8 (Strong separability). A formula φ with a single free variable strongly
separates two disjoint predicates A1, A2 if for all x:

x ∈ A1 → Q ⊢ φ(x) x ∈ A2 → Q ⊢ ¬φ(x)

The definitions of representability and separability can easily be extended to predicates
of arbitrary arity.

Lemma 9 (Σ1-completeness). Let φ ∈ Σ1 be a closed formula. Then N ⊨ φ → Q ⊢ φ.

Proof. Let φ = ∃m1, . . . ,mn. ψ be with ψ ∈ ∆1. We obtain m1, . . . ,mn ∈ N and
N ⊨ ψ(m1, . . . ,mn). By decidability (Lemma 3) and soundness, Q ⊢ ψ(m1, . . . ,mn) must
hold.

Corollary 10 (Σ1-witnesses). Witnesses for closed Σ1-formulas are always standard,
that is, for any formula φ ∈ Σ1 with a single free variable x:

Q ⊢ ∃x. φ(x) → ∃x.Q ⊢ φ(x).

Proof. By extracting a witness in N using soundness and reestablishing the formula using
Σ1-completeness.

1.1 Rosser’s trick

Gödel’s proof of G1 relies on the arithmetization of provability in the form of a binary
provability relation PrfF such that

F ⊢ φ ↔ F ⊢ ∃k.PrfF (⌜φ⌝, k),

from which the independent Gödel sentence is constructed. Here, F denotes an arbitrary
enumerable and ω-consistent theory that subsumes Q and ⌜·⌝ denotes some Gödelization
of formulas. Rosser defined a modified provability relation Prf ′F :

Prf ′F (x, k) := PrfF (x, k) ∧ ∀k′ ≤ k.¬PrfF (neg(x), k),

where neg : N → N negates a gödelized formula. Intuitively, ∃k.Prf ′F (⌜φ⌝, k) states
that there is a proof of φ and there is no smaller refutation of φ. Rosser showed that
∃k.Prf ′F (x, k) strongly separates the sets of provable and refutable formulas, which
allowed him to weaken the requirement of ω-consistency for F , leaving only consistency
and enumerability.
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2 Strong separability

Lemma 11 (Decidability of ≤). Let x ∈ N. Then

Q ⊢ ∀y. x ≤ y ∨ y ≤ x

Proof. By induction on x and a case distinction on y in the successor case.

We would not be able to show this if x was quantified within the formula, since we
would not be able to do induction, as Q does not have an induction scheme.

Theorem 12 (Strong separability of disjoint predicates). Let P1, P2 be disjoint and
weakly Σ1-representable predicates. There are formulas φ1, φ2 ∈ Σ1 that both strongly
separate P1, P2, that is:

P1x → Q ⊢ φ1(x) (1)

P2x → Q ⊢ φ2(x) (2)

P1x → Q ⊢ ¬φ2(x) (3)

P2x → Q ⊢ ¬φ1(x) (4)

Proof. Using Lemma 5, let ψ1, ψ2 ∈ ∆1 be such that

∀x. P1x ↔ Q ⊢ ∃k. ψ1(x, k) (5) ∀x. P2x ↔ Q ⊢ ∃k. ψ2(x, k) (6)

Choose

Φ1(x, k) := ψ1(x, k) ∧ ∀k′ ≤ k.¬ψ2(x, k
′)

Φ2(x, k) := ψ2(x, k) ∧ ∀k′ ≤ k.¬ψ1(x, k
′)

Now, φ1(x) := ∃k.Φ1(x, k) and φ2(x) := ∃k.Φ2(x, k) fulfil (1) through (4):

(1) Let x ∈ N be such that P1x. By (5) and soundness we have a k ∈ N such
that N ⊨ ψ1(x, k). By Σ1-completeness it suffices to show N ⊨ ∃k.Φ1(x, k). By
choosing k, the first conjunct is trivial. For the second one, let k′ ≤ k be such
that N ⊨ ψ2(x, k′). By Σ1-completeness and (5) we have P2x, which contradicts
disjointness.

(2) Analogous to (1).

(3) Let x ∈ N be such that P1x. By (1) we have Q ⊢ φ1(x) and by Corollary 10 we have
a k1 ∈ N such that Q ⊢ ψ1(x, k1) ∧ ∀k′1 ≤ k1.¬ψ2(x, k

′
1). The rest of this proof is

done formally in Q. Assume a k2 such that ψ2(x, k2) and ∀k′2 ≤ k2.¬ψ1(x, k
′
2). We

are done by doing a case distinction on whether k1 ≤ k2 or k2 ≤ k1 using Lemma 11
and instantiating one of the quantified assumptions.

(4) Analogous to (3).
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By weakening all consistent extensions of Q also strongly separate such predicates,
even if they are unsound. The definitions of Φ1 and Φ2 are an application of Rosser’s
trick close to Rosser’s original use.
Theorem 12 can be instantiated to yield value representability for partial functions

N⇀ B as described in [13]. This allows us to show Gödel’s first incompleteness theorem
only assuming CTL.

Corollary 13 (Decidable predicates). Let P be a predicate such that both P and P
are weakly Σ1-representable. There are formulas Φ1 ∈ Σ1,Φ2 ∈ Π1 that both strongly
represent P and P , that is

Px → Q ⊢ Φ1(x)

¬Px → Q ⊢ ¬Φ1(x)

Px → Q ⊢ ¬Φ2(x)

¬Px → Q ⊢ Φ2(x)

Proof. By Theorem 12, let φ1, φ2 ∈ Σ1 be predicates that separate the disjoint sets P
and P . Choose Φ1 := φ1. It is easy to find a Φ2 ∈ Π1 that is equivalent to ¬φ2.

By Remark 7 and assuming CTL, such predicates are for instance the synthetically
decidable predicates, since they are both synthetically enumerable and co-enumerable.

Corollary 14 (Deep disjointness). Let P1, P2 be disjoint and weakly Σ1-representable
predicates and φ1, φ2 be chosen as in the proof of Theorem 12. Now,

PA ⊢ ∀x.¬(φ1(x) ∧ φ2(x)).

Proof. This proof is done formally in PA. As opposed to in Q, it is possible to show
PA ⊢ ∀xy. x ≤ y ∨ y ≤ x by induction on x. Now, obtain the witnesses from φ1(x) and
φ2(x), compare them and instantiate one of the assumptions.

We do not know of a way to show this in Q. A related property was assumed in [6].

3 Functions

Theorem 15 (CTQ). Let f : N⇀ N be a partial function such that the graph of f , that
is {(x, y) | fx▷ y}, is weakly Σ1-representable. There is a φ ∈ Σ1 such that

fx▷ y → Q ⊢ ∀y′. φ(x, y′) ↔ y′ = y

Proof. By Lemma 5, let ψ ∈ ∆1 be such that

fx▷ y ↔ Q ⊢ ∃k. ψ(x, y, k).

Choose

Φ(x, y, k) := ψ(x, y, k) ∧ ∀y′k′. y′ + k′ ≤ y + k → ψ(x, y′, k′) → y′ = y

φ(x, y) := ∃k.Φ(x, y, k).
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Assume fx▷ y. The proof of Q ⊢ y′ = y → ∀y′. φ(x, y′) is similar to the proof of (1)
above. The rest of this proof is done formally in Q, except when stated otherwise.
Assume y′, k′ such that Φ(x, y′, k′). By fx▷ y and the direction from right to left we

also have φ(x, y) and therefore by Corollary 10 a k ∈ N such that Φ(x, y, k). We are
done by doing a case distinction on whether y + k ≤ y′ + k′ or y′ + k′ ≤ y + k using
Lemma 11.

The graph of a partial function is synthetically enumerable. Using Remark 7 we can
therefore deduce CTQ for all partial functions only assuming CTL.

Corollary 16 (CTQ for total functions). Let f : N → N be a (total) function. Assuming
CTL, there is a φ ∈ Σ1 such that

Q ⊢ ∀y. φ(x, y′) ↔ y = fx.

This version of CTQ restricted to partial functions was assumed in [6].

Corollary 17 (Value representability). Let f : N⇀ N be a partial function. Assuming
CTL, there is a φ ∈ Σ1 that value-represents f , that is:

fx▷ y → Q ⊢ φ(x, y) ∧ ∀y′ ̸= y.Q ⊢ ¬φ(x, y′)

Value representability appears to be weaker than CTQ because we lose information on
the behavior of φ(x, y) for non-standard y.
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