
A Computational and Abstract Approach to
Gödel’s First Incompleteness Theorem

First Bachelor seminar talk

Benjamin Peters

Advisor: Dominik Kirst
Supervisor: Professor Gert Smolka

Universität des Saarlandes

December 15, 2021

1 / 20

Theorem (Gödel’s first incompleteness theorem)

Any consistent and sufficiently powerful formal system is
incomplete.

I Similar statement first shown by Gödel 1931

I Idea: Use logical formulas to represent provability

I Strengthened by Rosser 1936 to this modern form

I There is a folklore proof of a weaker theorem using
computability theory

I Can this be strengthened?

2 / 20

Theorem (Gödel’s first incompleteness theorem)

∀T ⊇ Q. T is powerful enough

N � T −→ T is sound

T enumerable −→ T is reasonable

(∀ϕ. T ` ϕ ∨ T ` ¬ϕ) −→ T is complete

decHTM falsity

Proof has been mechanized in the Coq Library of Undecidability
Proofs1 (CLUP) by Kirst and Hermes 2021 using synthetic
computability

1https://github.com/uds-psl/coq-library-undecidability
3 / 20

https://github.com/uds-psl/coq-library-undecidability

How can we strengthen this?

∀T ⊇ Q.
N � T T 0 ⊥ −→
T enumerable −→
(∀ϕ. T ` ϕ ∨ T ` ¬ϕ) −→
decHTM ⊥
∃ϕ. T 0 ϕ ∧ T 0 ¬ϕ

I Actual falsity instead of decHTM

I Require consistency instead of soundness

I Explicitly construct independent sentence

Computational proof from Kleene 1967
We will do this computationally and abstractly!

4 / 20

Definition (Formal system)

A formal system FS = (S,¬,`) such that:

I S : T is an enumerable and discrete type of sentences

I ¬ : S → S is a negation function

I ` : S → P is an enumerable provability predicate

I FS is consistent: ∀s.¬(` s ∧ `¬s)

Definition (Completeness)

FS = (S,¬,`) is complete, if ∀s.` s ∨ `¬s.

Lemma (Decidability)

In a complete formal system, provability is decidable.

Proof.

Enumerate all provable sentences and search for a proof or
refutation.

5 / 20

Definition (Weak representability)

A formal system FS = (S,` ,¬) weakly represents a predicate
P : X → P if there is a representation function r : X → S such
that

∀x. P x ←→ ` r x.

Weak representability transfers along sound extensions.

Lemma (Decidability of predicates)

Any predicate that can be weakly represented in a complete formal
system is decidable.

6 / 20

Definition (Partial functions)

A function f : X ⇀ Y is a partial function, e.g. implemented
using step-indexing.
A function application f x can

I evaluate to y, written f x ↓ y
I diverge

We say that f x halts, if ∃y. f x ↓ y.

7 / 20

Assumption (Church’s thesis23)

There is a function θ : N→ N⇀ B, such that

∀(f : N⇀ B).∃c.∀xy. f x ↓ y ←→ θc(x) ↓ y.

Lemma (Special halting problem)

The special halting problem for θ, that is

H0 c := θc(c) halts,

is undecidable.

2Troelstra, Dalen, and Beklemishev 1988
3Formulation in constructive type theory by Forster 2022

8 / 20

Theorem (Gödel’s first incompleteness theorem)

There is no complete formal system that can weakly represent H0.

There is a mechanized proof that Q weakly represents HTM.

Theorem (Gödel’s first incompleteness theorem)

∀T ⊇ Q.N � T −→ T enumerable −→
(∀ϕ. T ` ϕ ∨ T ` ¬ϕ) −→ decH0 ⊥

Proof.

Instantiate abstract proof with first-order logic and Church’s thesis
for Turing machines.

What do we need to do to allow consistent extensions?

9 / 20

Definition (Weak representability)

A formal system FS = (S,` ,¬) weakly represents a predicate
P : X → P if there is a representation function r : X → S such
that

∀x. P x ←→ ` r x.

Weak representability transfers along sound extensions.

Lemma (Decidability of predicates)

Any predicate that can be weakly represented in a complete formal
system is decidable.

10 / 20

Definition (Value-representability)

A formal system FS = (S,` ,¬) value-represents a function
f : N⇀ B if there is a representation function r : N→ B→ S
such that

∀xy. f x ↓ y −→ ` r x y ∧ `¬r x (!y).

Value-representability transfers along consistent extensions.

Definition

A formal system value-represents all computable functions, if

∀c.Σr. r value-represents θc.

11 / 20

Definition (Consistent guessing)

A language L ⊆ N fulfills consistent guessing if

{(c, x) | θc(x) ↓ true} ⊆ L ∧ {(c, x) | θc(x) ↓ false} ∩ L = ∅.

Lemma (Consistent guessing is undecidable)

Any language L ⊆ N that fulfills consistent guessing is undecidable.

Proof.

Let f : N→ N→ B be s.t. ∀cx. f c x = true ←→ (c, x) ∈ L.
Consider g : N→ B, g c := !f c c, let c be the code of g.
We now have

f c c = true ←→ f c c = false.

12 / 20

Theorem (Gödel’s first incompleteness theorem)

Any formal system FS = (S,¬,`) that can value-represent all
computable functions is incomplete.

Proof.

We write rc for the value-representation of a code c. Let
h : N→ N→ B be the following function:

h c x :=

{
true if rc x true is provable

false otherwise

Assuming FS is complete, h is well-defined and decides

L = {(c, x) | h c x = true},

which fulfills consistent guessing.

13 / 20

Theorem (Gödel’s first incompleteness theorem)

∀T ⊇ Q.N � T T 0 ⊥ −→ T enumerable −→
(∀ϕ. T ` ϕ ∨ T ` ¬ϕ) −→ H0 ⊥

14 / 20

Theorem (Gödel’s first incompleteness theorem)

In any formal system that can value-represent all computable
functions there is an independent sentence.

15 / 20

Definition (Consistent guessing)

A language L ⊆ N fulfills consistent guessing if

{(c, x) | θc(x) ↓ true} ⊆ L ∧ {(c, x) | θc(x) ↓ false} ∩ L = ∅.

Lemma (Consistent guessing is undecidable)

Any language L ⊆ N that fulfills consistent guessing is undecidable.

Proof.

Let f : N→ N→ B be s.t. ∀cx. f c x = true ←→ (c, x) ∈ L.
Consider g : N→ B, g c := !f c c, let c be the code of g.
We now have

f c c = true ←→ f c c = false.

16 / 20

Proof.

We write rc for the value-representation of a code c. Consider the
following program f(c, x):

1. enumerate all provable sentences s.

2. if s = rc x true, accept.

3. if s = ¬rc x true, reject.

4. otherwise, continue searching

and the function g:

g c :=

false if f(c, c) ↓ true

true if f(c, c) ↓ false

undefined if f(c, c) diverges

Let c be the code of g. Now, rc c true is independent in FS, that is
0 rc c true and 0¬rc c true.

17 / 20

Theorem (Gödel’s first incompleteness theorem)

∀T ⊇ Q.N � T −→ T enumerable −→
(∀ϕ. T ` ϕ ∨ T ` ¬ϕ) −→ decH0

∀T ⊇ Q.T 0 ⊥ −→ T enumerable −→
∃ϕ. T 0 ϕ ∧ T 0 ¬ϕ

I verified all of the abstract arguments using Coq.

18 / 20

Goals

I Complete instantiation of the abstract proof to first-order logic
with Q, additionally assuming a form of value-representability

I Instantiate the proof using the halting problem with a proof of
weak representability of Turing machines in Q from CLUP

I Attempt to investigate Gödel’s second incompleteness
theorem using the abstract approach

I Investigate using recursively inseparable sets for showing the
abstract theorems

I Mechanize a proof of value-representability of Turing
machines in Q

19 / 20

Theorem (Gödel’s first incompleteness theorem)

∀T ⊇ Q.N � T −→ T enumerable −→
(∀ϕ. T ` ϕ ∨ T ` ¬ϕ) −→ decH0

∀T ⊇ Q.T 0 ⊥ −→ T enumerable −→
∃ϕ. T 0 ϕ ∧ T 0 ¬ϕ

I verified all of the abstract arguments using Coq.

20 / 20

References I

Forster, Yannick (2022). “Parametric Church’s Thesis:
Synthetic Computability without Choice”. In: Logical
Foundations of Computer Science: International Symposium,
LFCS 2022, January 10-13, 2022.
Gödel, K. (1931). “Über formal unentscheidbare Sätze der
Principia Mathematica und verwandter Systeme I”. In:
Monatshefte für Mathematik und Physik 38, pp. 173–198.

21 / 20

References II

Kirst, Dominik and Hermes, Marc (2021). “Synthetic
Undecidability and Incompleteness of First-Order Axiom
Systems in Coq”. In: 12th International Conference on
Interactive Theorem Proving (ITP 2021). Ed. by Liron Cohen
and Cezary Kaliszyk. Vol. 193. Leibniz International
Proceedings in Informatics (LIPIcs). Dagstuhl, Germany:
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 23:1–23:20.
isbn: 978-3-95977-188-7. doi:
10.4230/LIPIcs.ITP.2021.23. url: https:
//drops.dagstuhl.de/opus/volltexte/2021/13918.
Kleene, Stephen Cole (1967). Mathematical Logic. Dover
Publications.
Rosser, Barkley (1936). “Extensions of Some Theorems of
Gödel and Church”. In: The Journal of Symbolic Logic 1.3,
pp. 87–91. issn: 00224812. url:
http://www.jstor.org/stable/2269028.

22 / 20

https://doi.org/10.4230/LIPIcs.ITP.2021.23
https://drops.dagstuhl.de/opus/volltexte/2021/13918
https://drops.dagstuhl.de/opus/volltexte/2021/13918
http://www.jstor.org/stable/2269028

References III

Troelstra, A.S., Dalen, D. van, and Beklemishev, L.D. (1988).
Constructivism in Mathematics, Vol 1. Constructivism in
Mathematics. Elsevier Science. isbn: 9780444703583. url:
https://books.google.de/books?id=EubuAAAAMAAJ.

23 / 20

https://books.google.de/books?id=EubuAAAAMAAJ

Halting problem is undecidable

Lemma

The predicate
H0 c := θc(c) halts

is undecidable.

Proof.

Let f : N→ B be a function such that ∀c. f c = true ←→ H0 c.
Choose

g : N⇀ B, g c :=

{
0 if f c = false

undefined if f c = true

and let c be the code of g. We have

f c = false ←→ g c = 0 ←→ θc(c) halts ←→ H0 c

←→ f c = true

Therefore, H0 is undecidable.
24 / 20

Undecidability of CG

Lemma (Consistent guessing is undecidable)

Any language L ⊆ N that fulfills consistent guessing is undecidable.

Proof.

Let f : N→ N→ B be s.t. ∀cx. f c x = true ←→ (c, x) ∈ L.
Consider g : N→ B, g c := !f c c, let c be the code of g. We have:

f c c = true −→ g c = false −→ θc(c) ↓ false −→ (c, c) /∈ L
−→ f c c = false

f c c = false ←→ g c = true ←→ θc(c) ↓ true −→ (c, c) ∈ L
←→ f c c = true.

25 / 20

Undecidability of CG

Lemma (Consistent guessing is undecidable)

Any language L ⊆ N that fulfills consistent guessing is undecidable.

Proof.

Let f : N→ N→ B be s.t. ∀cx. f c x = true ←→ (c, x) ∈ L.
Consider g : N→ B, g c := !f c c, let c be the code of g. We have:

f c c = true ←→ g c = false ←→ θc(c) ↓ false −→ (c, c) /∈ L
←→ f c c = false

f c c = false ←→ g c = true ←→ θc(c) ↓ true −→ (c, c) ∈ L
←→ f c c = true.

26 / 20

h computes consistent guessing

Let h : N→ N→ B be the following function:

h c x :=

{
true if rc x true is provable

false otherwise

To show: L = {(c, x) | h c x = true} fulfills consistent guessing.

We have: To show:

θc(x) ↓ true (c, x) ∈ L
` rc x true by value-representability h c x = true

We have: To show:

θc(x) ↓ false (c, x) /∈ L
`¬rc x true by value-representability h c x = false

0 rc x true by consistency

27 / 20

Proof.

We write rc for the value-representation of a code c. Consider the
following program f(c, x):

1. enumerate all provable sentences s.

2. if s = rc x true, accept.

3. if s = ¬rc x true, reject.

4. otherwise, continue searching

and the function g:

g c :=

false if f(c, c) ↓ true

true if f(c, c) ↓ false

undefined if f(c, c) diverges

Let c be the code of g. Now, rc c true is independent in FS, that is
0 rc c true and 0¬rc c true.

28 / 20

Independence in FS

We have: To show:

` rc c true ⊥
STS: `¬rc c true

θc(c) ↓ false

g c = false

f(c, c) ↓ true

We have: To show:

`¬rc c true ⊥
STS: ` rc c true

θc(c) ↓ true

g c = true

f(c, c) ↓ false

29 / 20

Versions of Gödel’s first incompleteness theorem

No explicit sentence Explicit sentence

Soundness H0, KH2021
ω-consistency Gödel’s proof
Consistency CG 1 CG 2, Rosser’s trick

30 / 20

	Introduction
	First Act
	Second Act
	Third Act
	Appendix
	References

