A Computational and Abstract Approach to Gödel's First Incompleteness Theorem

First Bachelor seminar talk

Benjamin Peters
Advisor: Dominik Kirst
Supervisor: Professor Gert Smolka

Universität des Saarlandes
December 15, 2021

Theorem (Gödel's first incompleteness theorem)

Any consistent and sufficiently powerful formal system is incomplete.

Theorem (Gödel's first incompleteness theorem)

Any consistent and sufficiently powerful formal system is incomplete.

- Similar statement first shown by Gödel 1931
- Idea: Use logical formulas to represent provability
- Strengthened by Rosser 1936 to this modern form

Theorem (Gödel's first incompleteness theorem)

Any consistent and sufficiently powerful formal system is incomplete.

- Similar statement first shown by Gödel 1931
- Idea: Use logical formulas to represent provability
- Strengthened by Rosser 1936 to this modern form
- There is a folklore proof of a weaker theorem using computability theory
- Can this be strengthened?

Theorem (Gödel's first incompleteness theorem)

$$
\forall T \supseteq Q
$$

T is powerful enough

Theorem (Gödel's first incompleteness theorem)

$$
\begin{aligned}
& \forall T \supseteq Q \\
& \quad \mathbb{N} \vDash T \longrightarrow
\end{aligned}
$$

T is powerful enough
T is sound

Theorem (Gödel's first incompleteness theorem)

```
\(\forall T \supseteq Q\).
    \(\mathbb{N} \vDash T \longrightarrow\)
\(T\) enumerable \(\longrightarrow\)
```

T is powerful enough
T is sound
T is reasonable

Theorem (Gödel's first incompleteness theorem)

$$
\begin{array}{ll}
\forall T \supseteq Q . & T \text { is powerful e } \\
& \mathbb{N} \vDash T \longrightarrow \\
T \text { enumerable } \longrightarrow & \\
& T \text { is sound } \\
(\forall \varphi . T \vdash \varphi \vee T \vdash \neg \varphi) \longrightarrow & T \text { is complete }
\end{array}
$$

Theorem (Gödel's first incompleteness theorem)

$\forall T \supseteq Q$.	T is powerful enough
$\mathbb{N} \vDash T \longrightarrow$	T is sound
T enumerable \longrightarrow	T is reasonable
$(\forall \varphi \cdot T \vdash \varphi \vee T \vdash \neg \varphi) \longrightarrow$	T is complete
$\operatorname{dec} H_{\mathrm{TM}}$	

Theorem (Gödel's first incompleteness theorem)

```
\(\forall T \supseteq Q . \quad T\) is powerful enough
    \(\mathbb{N} \vDash T \longrightarrow\)
    \(T\) enumerable \(\longrightarrow\)
    \((\forall \varphi . T \vdash \varphi \vee T \vdash \neg \varphi) \longrightarrow \quad T\) is complete
    \(\operatorname{dec} H_{\mathrm{TM}}\)
```

T is powerful enough
T is sound
T is reasonable
T is complete
falsity

Proof has been mechanized in the Coq Library of Undecidability Proofs ${ }^{1}$ (CLUP) by Kirst and Hermes 2021 using synthetic computability

$$
{ }^{1} \text { https://github.com/uds-psl/coq-library-undecidability }
$$

How can we strengthen this?

$$
\begin{aligned}
\forall T & \supseteq Q . \\
& \mathbb{N} \vDash T \longrightarrow \\
& T \text { enumerable } \longrightarrow \\
& (\forall \varphi \cdot T \vdash \varphi \vee T \vdash \neg \varphi) \longrightarrow \\
& \operatorname{dec} H_{\mathrm{TM}}
\end{aligned}
$$

How can we strengthen this?

$$
\begin{aligned}
\forall T & \supseteq Q . \\
& \mathbb{N} \vDash T \longrightarrow \\
& T \text { enumerable } \longrightarrow \\
& (\forall \varphi \cdot T \vdash \varphi \vee T \vdash \neg \varphi) \longrightarrow \\
& \operatorname{dec} H_{\mathrm{TM}} \perp
\end{aligned}
$$

- Actual falsity instead of dec H_{TM}

How can we strengthen this?

$$
\begin{aligned}
\forall T & \supseteq Q . \\
& \mathbb{N} \vdash T T \nvdash \perp \longrightarrow \\
& T \text { enumerable } \longrightarrow \\
& (\forall \varphi \cdot T \vdash \varphi \vee T \vdash \neg \varphi) \longrightarrow \\
& \operatorname{dec} H_{\mathrm{TM}} \perp
\end{aligned}
$$

- Actual falsity instead of dec H_{TM}
- Require consistency instead of soundness

How can we strengthen this?

$$
\begin{aligned}
& \forall T \supseteq Q . \\
& \quad \mathbb{N} \vdash T T \nvdash \perp \longrightarrow \\
& T \text { enumerable } \longrightarrow \\
& (\forall \varphi \cdot T \vdash \varphi \vee T \vdash \neg \varphi) \longrightarrow \\
& \quad \operatorname{dec} H_{\mathrm{TM}} \pm \\
& \exists \varphi \cdot T \nvdash \varphi \wedge T \nvdash \neg \varphi
\end{aligned}
$$

- Actual falsity instead of dec H_{TM}
- Require consistency instead of soundness
- Explicitly construct independent sentence

How can we strengthen this?

$$
\begin{aligned}
& \forall T \supseteq Q . \\
& \quad \mathbb{N} \vdash T T \nvdash \perp \longrightarrow \\
& T \text { enumerable } \longrightarrow \\
& (\forall \varphi \cdot T \vdash \varphi \vee T \vdash \rightarrow \varphi) \longrightarrow \\
& \quad \operatorname{dec} H_{\mathrm{TM}} \pm \\
& \exists \varphi \cdot T \nvdash \varphi \wedge T \nvdash \neg \varphi
\end{aligned}
$$

- Actual falsity instead of dec H_{TM}
- Require consistency instead of soundness
- Explicitly construct independent sentence

Computational proof from Kleene 1967
We will do this computationally and abstractly!

Definition (Formal system)

A formal system $\mathrm{FS}=(S, \neg, \vdash)$ such that:

- $S: \mathbb{T}$ is an enumerable and discrete type of sentences
- $\neg: S \rightarrow S$ is a negation function
$-\vdash: S \rightarrow \mathbb{P}$ is an enumerable provability predicate
- FS is consistent: $\forall s . \neg(\vdash s \wedge \vdash \neg s)$

Definition (Formal system)

A formal system $\mathrm{FS}=(S, \neg, \vdash)$ such that:

- $S: \mathbb{T}$ is an enumerable and discrete type of sentences
- $\neg: S \rightarrow S$ is a negation function
$-\vdash: S \rightarrow \mathbb{P}$ is an enumerable provability predicate
- FS is consistent: $\forall s . \neg(\vdash s \wedge \vdash \neg s)$

Definition (Completeness)

$\mathrm{FS}=(S, \neg, \vdash)$ is complete, if $\forall s . \vdash s \vee \vdash \neg s$.

Definition (Formal system)

A formal system $\mathrm{FS}=(S, \neg, \vdash)$ such that:

- $S: \mathbb{T}$ is an enumerable and discrete type of sentences
- $\neg: S \rightarrow S$ is a negation function
- $\vdash: S \rightarrow \mathbb{P}$ is an enumerable provability predicate
- FS is consistent: $\forall s . \neg(\vdash s \wedge \vdash \neg s)$

Definition (Completeness)

$\mathrm{FS}=(S, \neg, \vdash)$ is complete, if $\forall s . \vdash s \vee \vdash \neg s$.

Lemma (Decidability)

In a complete formal system, provability is decidable.

Proof.

Enumerate all provable sentences and search for a proof or refutation.

Definition (Weak representability)

A formal system $\mathrm{FS}=(S, \vdash, \neg)$ weakly represents a predicate $P: X \rightarrow \mathbb{P}$ if there is a representation function $r: X \rightarrow S$ such that

$$
\forall x . P x \longleftrightarrow \vdash r x
$$

Definition (Weak representability)

A formal system $\mathrm{FS}=(S, \vdash, \neg)$ weakly represents a predicate $P: X \rightarrow \mathbb{P}$ if there is a representation function $r: X \rightarrow S$ such that

$$
\forall x . P x \longleftrightarrow \vdash r x
$$

Weak representability transfers along sound extensions.

Definition (Weak representability)

A formal system $\mathrm{FS}=(S, \vdash, \neg)$ weakly represents a predicate $P: X \rightarrow \mathbb{P}$ if there is a representation function $r: X \rightarrow S$ such that

$$
\forall x . P x \longleftrightarrow \vdash r x
$$

Weak representability transfers along sound extensions.
Lemma (Decidability of predicates)
Any predicate that can be weakly represented in a complete formal system is decidable.

Definition (Partial functions)

A function $f: X \rightharpoonup Y$ is a partial function, e.g. implemented using step-indexing.

Definition (Partial functions)

A function $f: X \rightharpoonup Y$ is a partial function, e.g. implemented using step-indexing.
A function application $f x$ can

- evaluate to y, written $f x \downarrow y$
- diverge

Definition (Partial functions)

A function $f: X \rightharpoonup Y$ is a partial function, e.g. implemented using step-indexing.
A function application $f x$ can

- evaluate to y, written $f x \downarrow y$
- diverge

We say that $f x$ halts, if $\exists y . f x \downarrow y$.

Assumption (Church's thesis ${ }^{23}$)

There is a function $\theta: \mathbb{N} \rightarrow \mathbb{N} \rightharpoonup \mathbb{B}$, such that

$$
\forall(f: \mathbb{N} \rightharpoonup \mathbb{B}) . \exists c . \forall x y . f x \downarrow y \longleftrightarrow \theta_{c}(x) \downarrow y .
$$

${ }^{2}$ Troelstra, Dalen, and Beklemishev 1988
${ }^{3}$ Formulation in constructive type theory by Forster 2022

Assumption (Church's thesis ${ }^{23}$)

There is a function $\theta: \mathbb{N} \rightarrow \mathbb{N} \rightharpoonup \mathbb{B}$, such that

$$
\forall(f: \mathbb{N} \rightharpoonup \mathbb{B}) . \exists c . \forall x y . f x \downarrow y \longleftrightarrow \theta_{c}(x) \downarrow y .
$$

Lemma (Special halting problem)

The special halting problem for θ, that is

$$
H_{0} c:=\theta_{c}(c) \text { halts, }
$$

is undecidable.
${ }^{2}$ Troelstra, Dalen, and Beklemishev 1988
${ }^{3}$ Formulation in constructive type theory by Forster 2022

Theorem (Gödel's first incompleteness theorem)
There is no complete formal system that can weakly represent H_{0}.

Theorem (Gödel's first incompleteness theorem)
There is no complete formal system that can weakly represent H_{0}.
There is a mechanized proof that Q weakly represents H_{TM}.

Theorem (Gödel's first incompleteness theorem)

There is no complete formal system that can weakly represent H_{0}.
There is a mechanized proof that Q weakly represents H_{TM}.

Theorem (Gödel's first incompleteness theorem)

$$
\begin{aligned}
& \forall T \supseteq Q . \mathbb{N} \vDash T \longrightarrow T \text { enumerable } \longrightarrow \\
& \quad(\forall \varphi . T \vdash \varphi \vee T \vdash \neg \varphi) \longrightarrow \operatorname{dec} H_{0} \perp
\end{aligned}
$$

Proof.

Instantiate abstract proof with first-order logic and Church's thesis for Turing machines.

Theorem (Gödel's first incompleteness theorem)

There is no complete formal system that can weakly represent H_{0}.
There is a mechanized proof that Q weakly represents H_{TM}.

Theorem (Gödel's first incompleteness theorem)

$$
\begin{aligned}
& \forall T \supseteq Q . \mathbb{N} \vDash T \longrightarrow T \text { enumerable } \longrightarrow \\
& (\forall \varphi \cdot T \vdash \varphi \vee T \vdash \neg \varphi) \longrightarrow \text { dec } H_{0} \perp
\end{aligned}
$$

Proof.

Instantiate abstract proof with first-order logic and Church's thesis for Turing machines.

What do we need to do to allow consistent extensions?

Definition (Weak representability)

A formal system $\mathrm{FS}=(S, \vdash, \neg)$ weakly represents a predicate $P: X \rightarrow \mathbb{P}$ if there is a representation function $r: X \rightarrow S$ such that

$$
\forall x . P x \longleftrightarrow \vdash r x
$$

Weak representability transfers along sound extensions.

Definition (Value-representability)

A formal system $\mathrm{FS}=(S, \vdash, \neg)$ value-represents a function $f: \mathbb{N} \rightharpoonup \mathbb{B}$ if there is a representation function $r: \mathbb{N} \rightarrow \mathbb{B} \rightarrow S$ such that

$$
\forall x y . f x \downarrow y \longrightarrow \vdash r x y \wedge \vdash \neg r x(!y) .
$$

Value-representability transfers along consistent extensions.

Definition (Value-representability)

A formal system $\mathrm{FS}=(S, \vdash, \neg)$ value-represents a function $f: \mathbb{N} \rightharpoonup \mathbb{B}$ if there is a representation function $r: \mathbb{N} \rightarrow \mathbb{B} \rightarrow S$ such that

$$
\forall x y . f x \downarrow y \longrightarrow \vdash r x y \wedge \vdash \neg r x(!y) .
$$

Value-representability transfers along consistent extensions.

Definition

A formal system value-represents all computable functions, if
$\forall c . \Sigma r . r$ value-represents θ_{c}.

Definition (Consistent guessing)

A language $L \subseteq \mathbb{N}$ fulfills consistent guessing if

$$
\left\{(c, x) \mid \theta_{c}(x) \downarrow \text { true }\right\} \subseteq L \quad \wedge \quad\left\{(c, x) \mid \theta_{c}(x) \downarrow \text { false }\right\} \cap L=\emptyset
$$

Definition (Consistent guessing)

A language $L \subseteq \mathbb{N}$ fulfills consistent guessing if

$$
\left\{(c, x) \mid \theta_{c}(x) \downarrow \text { true }\right\} \subseteq L \quad \wedge \quad\left\{(c, x) \mid \theta_{c}(x) \downarrow \text { false }\right\} \cap L=\emptyset
$$

Lemma (Consistent guessing is undecidable)

Any language $L \subseteq \mathbb{N}$ that fulfills consistent guessing is undecidable.

Definition (Consistent guessing)

A language $L \subseteq \mathbb{N}$ fulfills consistent guessing if

$$
\left\{(c, x) \mid \theta_{c}(x) \downarrow \text { true }\right\} \subseteq L \quad \wedge \quad\left\{(c, x) \mid \theta_{c}(x) \downarrow \text { false }\right\} \cap L=\emptyset
$$

Lemma (Consistent guessing is undecidable)

Any language $L \subseteq \mathbb{N}$ that fulfills consistent guessing is undecidable.

Proof.

Let $f: \mathbb{N} \rightarrow \mathbb{N} \rightarrow \mathbb{B}$ be s.t. $\forall c x . f c x=\operatorname{true} \longleftrightarrow(c, x) \in L$.

Definition (Consistent guessing)

A language $L \subseteq \mathbb{N}$ fulfills consistent guessing if

$$
\left\{(c, x) \mid \theta_{c}(x) \downarrow \text { true }\right\} \subseteq L \quad \wedge \quad\left\{(c, x) \mid \theta_{c}(x) \downarrow \text { false }\right\} \cap L=\emptyset
$$

Lemma (Consistent guessing is undecidable)

Any language $L \subseteq \mathbb{N}$ that fulfills consistent guessing is undecidable.

Proof.

Let $f: \mathbb{N} \rightarrow \mathbb{N} \rightarrow \mathbb{B}$ be s.t. $\forall c x . f c x=\operatorname{true} \longleftrightarrow(c, x) \in L$.
Consider $g: \mathbb{N} \rightarrow \mathbb{B}, g c:=!f c c$, let c be the code of g.

Definition (Consistent guessing)

A language $L \subseteq \mathbb{N}$ fulfills consistent guessing if

$$
\left\{(c, x) \mid \theta_{c}(x) \downarrow \text { true }\right\} \subseteq L \quad \wedge \quad\left\{(c, x) \mid \theta_{c}(x) \downarrow \text { false }\right\} \cap L=\emptyset
$$

Lemma (Consistent guessing is undecidable)

Any language $L \subseteq \mathbb{N}$ that fulfills consistent guessing is undecidable.

Proof.

Let $f: \mathbb{N} \rightarrow \mathbb{N} \rightarrow \mathbb{B}$ be s.t. $\forall c x . f c x=\operatorname{true} \longleftrightarrow(c, x) \in L$.
Consider $g: \mathbb{N} \rightarrow \mathbb{B}, g c:=!f c c$, let c be the code of g.
We now have

$$
f c c=\text { true } \longleftrightarrow f c c=\text { false }
$$

Theorem (Gödel's first incompleteness theorem)

Any formal system $\mathrm{FS}=(S, \neg, \vdash)$ that can value-represent all computable functions is incomplete.

Theorem (Gödel's first incompleteness theorem)

Any formal system $\mathrm{FS}=(S, \neg, \vdash)$ that can value-represent all computable functions is incomplete.

Proof.

We write r_{c} for the value-representation of a code c. Let $h: \mathbb{N} \rightarrow \mathbb{N} \rightarrow \mathbb{B}$ be the following function:

$$
h c x:= \begin{cases}\text { true } & \text { if } r_{c} x \text { true is provable } \\ \text { false } & \text { otherwise }\end{cases}
$$

Theorem (Gödel's first incompleteness theorem)

Any formal system $\mathrm{FS}=(S, \neg, \vdash)$ that can value-represent all computable functions is incomplete.

Proof.

We write r_{c} for the value-representation of a code c. Let $h: \mathbb{N} \rightarrow \mathbb{N} \rightarrow \mathbb{B}$ be the following function:

$$
h c x:= \begin{cases}\text { true } & \text { if } r_{c} x \text { true is provable } \\ \text { false } & \text { otherwise }\end{cases}
$$

Assuming FS is complete, h is well-defined and decides

$$
L=\{(c, x) \mid h c x=\text { true }\}
$$

which fulfills consistent guessing.

Theorem (Gödel's first incompleteness theorem)

$$
\begin{gathered}
\forall T \supseteq Q \cdot \mathbb{N} \vdash T T \nvdash \perp \longrightarrow T \text { enumerable } \longrightarrow \\
(\forall \varphi \cdot T \vdash \varphi \vee T \vdash \neg \varphi) \longrightarrow H_{0} \perp
\end{gathered}
$$

Theorem (Gödel's first incompleteness theorem)

In any formal system that can value-represent all computable functions there is an independent sentence.

Definition (Consistent guessing)

A language $L \subseteq \mathbb{N}$ fulfills consistent guessing if

$$
\left\{(c, x) \mid \theta_{c}(x) \downarrow \text { true }\right\} \subseteq L \quad \wedge \quad\left\{(c, x) \mid \theta_{c}(x) \downarrow \text { false }\right\} \cap L=\emptyset
$$

Lemma (Consistent guessing is undecidable)

Any language $L \subseteq \mathbb{N}$ that fulfills consistent guessing is undecidable.

Proof.

Let $f: \mathbb{N} \rightarrow \mathbb{N} \rightarrow \mathbb{B}$ be s.t. $\forall c x . f c x=\operatorname{true} \longleftrightarrow(c, x) \in L$.
Consider $g: \mathbb{N} \rightarrow \mathbb{B}, g c:=!f c c$, let c be the code of g.
We now have

$$
f c c=\text { true } \longleftrightarrow f c c=\text { false }
$$

We write r_{c} for the value-representation of a code c. Consider the following program $f(c, x)$:

1. enumerate all provable sentences s.

2 . if $s=r_{c} x$ true, accept.
3. if $s=\neg r_{c} x$ true, reject.
4. otherwise, continue searching

We write r_{c} for the value-representation of a code c. Consider the following program $f(c, x)$:

1. enumerate all provable sentences s.
2. if $s=r_{c} x$ true, accept.
3. if $s=\neg r_{c} x$ true, reject.
4. otherwise, continue searching
and the function g :

$$
g c:= \begin{cases}\text { false } & \text { if } f(c, c) \downarrow \text { true } \\ \text { true } & \text { if } f(c, c) \downarrow \text { false } \\ \text { undefined } & \text { if } f(c, c) \text { diverges }\end{cases}
$$

Let c be the code of g.

Proof.

We write r_{c} for the value-representation of a code c. Consider the following program $f(c, x)$:

1. enumerate all provable sentences s.
2. if $s=r_{c} x$ true, accept.
3. if $s=\neg r_{c} x$ true, reject.
4. otherwise, continue searching and the function g :

$$
g c:= \begin{cases}\text { false } & \text { if } f(c, c) \downarrow \text { true } \\ \text { true } & \text { if } f(c, c) \downarrow \text { false } \\ \text { undefined } & \text { if } f(c, c) \text { diverges }\end{cases}
$$

Let c be the code of g. Now, $r_{c} c$ true is independent in FS, that is $\nvdash r_{c} c$ true and $\nvdash \neg r_{c} c$ true.

Theorem (Gödel's first incompleteness theorem)

$$
\begin{aligned}
& \forall T \supseteq Q \cdot \mathbb{N} \vDash T \longrightarrow T \text { enumerable } \longrightarrow \\
& (\forall \varphi \cdot T \vdash \varphi \vee T \vdash \neg \varphi) \longrightarrow \operatorname{dec} H_{0} \\
& \forall T \supseteq Q \cdot T \nvdash \perp \longrightarrow T \text { enumerable } \longrightarrow \\
& \quad \exists \varphi \cdot T \nvdash \varphi \wedge T \nvdash \neg \varphi
\end{aligned}
$$

I verified all of the abstract arguments using Coq.

Goals

- Complete instantiation of the abstract proof to first-order logic with Q, additionally assuming a form of value-representability

Goals

- Complete instantiation of the abstract proof to first-order logic with Q, additionally assuming a form of value-representability
- Instantiate the proof using the halting problem with a proof of weak representability of Turing machines in Q from CLUP

Goals

- Complete instantiation of the abstract proof to first-order logic with Q, additionally assuming a form of value-representability
- Instantiate the proof using the halting problem with a proof of weak representability of Turing machines in Q from CLUP
- Attempt to investigate Gödel's second incompleteness theorem using the abstract approach

Goals

- Complete instantiation of the abstract proof to first-order logic with Q, additionally assuming a form of value-representability
- Instantiate the proof using the halting problem with a proof of weak representability of Turing machines in Q from CLUP
- Attempt to investigate Gödel's second incompleteness theorem using the abstract approach
- Investigate using recursively inseparable sets for showing the abstract theorems

Goals

- Complete instantiation of the abstract proof to first-order logic with Q, additionally assuming a form of value-representability
- Instantiate the proof using the halting problem with a proof of weak representability of Turing machines in Q from CLUP
- Attempt to investigate Gödel's second incompleteness theorem using the abstract approach
- Investigate using recursively inseparable sets for showing the abstract theorems
- Mechanize a proof of value-representability of Turing machines in Q

Theorem (Gödel's first incompleteness theorem)

$$
\begin{aligned}
& \forall T \supseteq Q \cdot \mathbb{N} \vDash T \longrightarrow T \text { enumerable } \longrightarrow \\
& (\forall \varphi \cdot T \vdash \varphi \vee T \vdash \neg \varphi) \longrightarrow \operatorname{dec} H_{0} \\
& \forall T \supseteq Q \cdot T \nvdash \perp \longrightarrow T \text { enumerable } \longrightarrow \\
& \quad \exists \varphi \cdot T \nvdash \varphi \wedge T \nvdash \neg \varphi
\end{aligned}
$$

References I

围 Forster, Yannick (2022). "Parametric Church's Thesis: Synthetic Computability without Choice". In: Logical Foundations of Computer Science: International Symposium, LFCS 2022, January 10-13, 2022.
國 Gödel, K. (1931). "Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I". In: Monatshefte für Mathematik und Physik 38, pp. 173-198.

References II

(Kirst, Dominik and Hermes, Marc (2021). "Synthetic Undecidability and Incompleteness of First-Order Axiom Systems in Coq". In: 12th International Conference on Interactive Theorem Proving (ITP 2021). Ed. by Liron Cohen and Cezary Kaliszyk. Vol. 193. Leibniz International
Proceedings in Informatics (LIPIcs). Dagstuhl, Germany:
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 23:1-23:20.
ISBN: 978-3-95977-188-7. DOI:
10.4230/LIPIcs.ITP.2021.23. URL: https:
//drops.dagstuhl.de/opus/volltexte/2021/13918.
國 Kleene, Stephen Cole (1967). Mathematical Logic. Dover Publications.
國 Rosser, Barkley (1936). "Extensions of Some Theorems of Gödel and Church". In: The Journal of Symbolic Logic 1.3, pp. 87-91. ISSN: 00224812. URL:
http://www.jstor.org/stable/2269028.

References III

Troelstra, A.S., Dalen, D. van, and Beklemishev, L.D. (1988). Constructivism in Mathematics, Vol 1. Constructivism in Mathematics. Elsevier Science. ISBN: 9780444703583 . URL: https://books.google.de/books?id=EubuAAAAMAAJ.

Halting problem is undecidable

Lemma

The predicate

$$
H_{0} c:=\theta_{c}(c) \text { halts }
$$

is undecidable.

Proof.

Let $f: \mathbb{N} \rightarrow \mathbb{B}$ be a function such that $\forall c . f c=$ true $\longleftrightarrow H_{0} c$. Choose

$$
g: \mathbb{N} \rightharpoonup \mathbb{B}, g c:= \begin{cases}0 & \text { if } f c=\text { false } \\ \text { undefined } & \text { if } f c=\text { true }\end{cases}
$$

and let c be the code of g. We have

$$
\begin{aligned}
f c= & \text { false } \\
& \longleftrightarrow g c=0 \longleftrightarrow \theta_{c}(c) \text { halts } \longleftrightarrow H_{0} c \\
& \longleftrightarrow c=\text { true }
\end{aligned}
$$

Therefore, H_{0} is undecidable.

Undecidability of CG

Lemma (Consistent guessing is undecidable)

Any language $L \subseteq \mathbb{N}$ that fulfills consistent guessing is undecidable.

Proof.

Let $f: \mathbb{N} \rightarrow \mathbb{N} \rightarrow \mathbb{B}$ be s.t. $\forall c x . f c x=$ true $\longleftrightarrow(c, x) \in L$. Consider $g: \mathbb{N} \rightarrow \mathbb{B}, g c:=!f c c$, let c be the code of g. We have:

$$
\begin{aligned}
f c c= & \text { true } \longrightarrow g c=\text { false } \longrightarrow \theta_{c}(c) \downarrow \text { false } \longrightarrow(c, c) \notin L \\
& \longrightarrow f c c=\text { false } \\
f c c= & \text { false } \longleftrightarrow g c=\text { true } \longleftrightarrow \theta_{c}(c) \downarrow \text { true } \longrightarrow(c, c) \in L \\
& \longleftrightarrow f c c=\text { true }
\end{aligned}
$$

Undecidability of CG

Lemma (Consistent guessing is undecidable)

Any language $L \subseteq \mathbb{N}$ that fulfills consistent guessing is undecidable.

Proof.

Let $f: \mathbb{N} \rightarrow \mathbb{N} \rightarrow \mathbb{B}$ be s.t. $\forall c x . f c x=$ true $\longleftrightarrow(c, x) \in L$.
Consider $g: \mathbb{N} \rightarrow \mathbb{B}, g c:=!f c c$, let c be the code of g. We have:

$$
\begin{aligned}
f c c= & \text { true } \longleftrightarrow g c=\text { false } \longleftrightarrow \theta_{c}(c) \downarrow \text { false } \longrightarrow(c, c) \notin L \\
& \longleftrightarrow f c c=\text { false } \\
f c c= & \text { false } \longleftrightarrow g c=\text { true } \longleftrightarrow \theta_{c}(c) \downarrow \text { true } \longrightarrow(c, c) \in L \\
& \longleftrightarrow f c c=\text { true }
\end{aligned}
$$

h computes consistent guessing

Let $h: \mathbb{N} \rightarrow \mathbb{N} \rightarrow \mathbb{B}$ be the following function:

$$
h c x:= \begin{cases}\text { true } & \text { if } r_{c} x \text { true is provable } \\ \text { false } & \text { otherwise }\end{cases}
$$

To show: $L=\{(c, x) \mid h c x=$ true $\}$ fulfills consistent guessing.

We have:
$\theta_{c}(x) \downarrow$ true
$\vdash r_{c} x$ true by value-representability

We have:
$\theta_{c}(x) \downarrow$ false
$\vdash \neg r_{c} x$ true by value-representability
$\nvdash r_{c} x$ true by consistency

To show:
$(c, x) \in L$
$h c x=$ true

To show:

$$
\begin{array}{r}
(c, x) \notin L \\
h c x=\text { false }
\end{array}
$$

Proof.

We write r_{c} for the value-representation of a code c. Consider the following program $f(c, x)$:

1. enumerate all provable sentences s.
2. if $s=r_{c} x$ true, accept.
3. if $s=\neg r_{c} x$ true, reject.
4. otherwise, continue searching and the function g :

$$
g c:= \begin{cases}\text { false } & \text { if } f(c, c) \downarrow \text { true } \\ \text { true } & \text { if } f(c, c) \downarrow \text { false } \\ \text { undefined } & \text { if } f(c, c) \text { diverges }\end{cases}
$$

Let c be the code of g. Now, $r_{c} c$ true is independent in FS, that is $\nvdash r_{c} c$ true and $\nvdash \neg r_{c} c$ true.

Independence in FS

We have:
$\vdash r_{c} c$ true

To show:
\perp
STS: $\vdash \neg r_{c} c$ true

$$
\begin{array}{r}
\theta_{c}(c) \downarrow \text { false } \\
g c=\text { false } \\
f(c, c) \downarrow \text { true }
\end{array}
$$

We have:
$\vdash \neg r_{c} c$ true

To show:
\perp
STS: $\vdash r_{c} c$ true

$$
\begin{array}{r}
\theta_{c}(c) \downarrow \text { true } \\
g c=\text { true } \\
f(c, c) \downarrow \text { false }
\end{array}
$$

Versions of Gödel's first incompleteness theorem

	No explicit sentence	Explicit sentence
Soundness	$H_{0}, \mathrm{KH} 2021$	
ω-consistency		Gödel's proof
Consistency	CG 1	CG 2, Rosser's trick

