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Computational Folklore Proof

Theorem (Folklore G1)*

Any axiomatization 1" that weakly represents the halting problem
Az. Jy. Ozx >y,
that is, there is a formula ¢ such that
Ve. (Jy. 0zx>y) < TF o(z),

is incomplete.

Folklore G1 for Robinson's Q

VI'DOQ.NET — soundness
T enumerable — effectiveness
(V. TH eV THE —p) incompleteness

'Kleene 1952.
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Church’'s Thesis

Assumption (CT_)?

The interpreter # : N — N — N for L3 satisfies

V(f:N—=N).Je.Vay. fr>y < Ocx>y.

Corollary

Let P : N — P be a predicate. It is equivalent:

» P is synthetically enumerable:
3f :N— O(N).Vo. Pr < 3k. fk="z
» P is enumerable in L:

de: N.Vz. Px < Jk.Ock>z

2Forster 2021.

3a Turing-complete A-calculus (Forster and Smolka 2017).
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Weak Representability in Q

Theorem (Weak representability)*

Every predicate P : N — P enumerable in L can be weakly
Y1-represented in Q, that is, there is a formula ¢ € A such that:

Va. Pr < QF k. o(x, k)

*largely mechanized by Larchey-Wendling and Forster 2019; Kirst and

Hermes 2021.
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Strengthened Computational Proof

Theorem (Strengthened G1)°

In any axiomatization 1" that strongly separates
Az. Oxx>1 Azx.Ozx >0,
that is, there is a formula ¢ such that for all x
Oxz>1 — T+ p(x) Orz>0 — T F —p(z),

there is an independent sentence ), that is T ¥ ¢ and T' ¥ —).

Strengthened G1 for Robinson’s Q

VI'D2Q.THFI — consistency
T enumerable — effectiveness
J.THFYNTF independent sentence

5Kleene 1952.

5/12



Strong Separability in Q

Theorem (Strong separability)

Let P, P, be disjoint and enumerable predicates.
In Q, P; and P; are strongly separable, that is, there is a formula
® such that for all z:

Pz — QF ®(z) Px — QF =®(z)
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Path Towards Strengthened G1

folklore: assuming soundness

rec. insep. predicates

. Kl ' h
strong separability eene s approac

------> Rosser’s trick

strengthened: assuming consistency

Godel: assuming w-consistency

----1- Rosser's trick

Rosser: assuming consistency
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Original Proof
Godel's approach®

Construct a formula Prf € A; weakly representing provability:

Vo.QlF ¢ < QF k. Prf(Tp7, k)

Rosser's trick’

Modify provability predicate such that for all :

QF ¢ — QF 3k.Prf ("o, k)
QF —p — QF =3k Prf'(Tp7, k)

6Godel 1931.

"Rosser 1936.
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Rosser's Trick for Strong Separability

Let Py, P» be disjoint predicates, @1, 2 € A7 such that:

Pz < QF Jk.pi(x, k)
P < QF 3l pa(x,l)

We want to find ®1, ®5 such that for all x:

Pz — QF 3k.&(z,k) P — QF -3k &1(a, k)
Pox — Qb 3. &y(z, 1)

To do this, choose:

D1 (z,k) = @1(z, k) ANVE < k. —pa(z, k)
Dy(x,1) = po(z,l) AV < 1.~y (z,1)

Key property:
(P (x, k) A Py (l‘, l))
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Strong Separability in Q

Theorem (Strong separability)

Let P, P, be disjoint and weakly ¥;-representable predicates.
Now, P, and P, are strongly Xi-separable, that is, there is a
formula ® € X1 such that for all z:

Pz — QF ®(z) Px — QF =®(x)
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Corollary (Strong representability)

In Q, a decidable predicates P is strongly representable, that is,
there is a formula ® € ¥; (or ® € II;) such that for all z:

Pr — QF &(x) -Px — QF =®(x)

Theorem (Deep disjointness)®

Let P, P, be disjoint and enumerable predicates.
There are ®;, 5 € 3 that weakly represent and strongly separate
P, Py and:

PAFVz.=(®1(z) A Pa(x))

Theorem (CTq)

Let f: N — N be a partial function. There is a ® € ¥ such that

/

Voy. fr>y — QFVY . ®(z,y) « v =y
8Hermes and Kirst N.D.
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Conclusion

| showed, using ideas from Kleene 1952:

1.

essential incompleteness for abstract formal systems that
strongly separate certain predicates using synthetic
computability theory.

that Robinson’s Q strongly separates disjoint and enumerable
predicates.

that Robinson’s Q fulfills other representability properties.
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Proof of CTq

Theorem (CTq)

Let f: N — N be a partial function. There is a ® € ¥; such that

/

Voy. fr>y — QFVY . ®(z,y) « v =y

Let ¢ € X1 be such that:

fx>y < QF Jk.p(z,y, k)
Choose:

®(z,y) = Ik.o(z,y, k)A
VK Y +E <y+k — oy k) = =y
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Definition (A;)

A formula ¢ is Ay, if for any valuation p:

QF ¢lp] vV QF —p[p]

Lemma (A;)

All formulas only containing bounded quantifiers are A;.
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J-compression

r<y:=Jz.x+z=yVz+ax<y
Let p € 5.

QF 3x.Jy. o(x,y) < Fz.3x < z.Jy < z.¢(z,y)

Proof: By choosing z := x + y.
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