Formalizing Strong Representability Theorems for Gödel's First Incompleteness Theorem and Other Applications Second Bachelor's Seminar Talk

Benjamin Peters

Advisor: Dominik Kirst Supervisor: Professor Gert Smolka

Universität des Saarlandes

March 28, 2021

Computational Folklore Proof

Theorem (Folklore $G1)^1$

Any axiomatization \boldsymbol{T} that weakly represents the halting problem

 $\lambda x. \exists y. \theta xx \triangleright y,$

that is, there is a formula φ such that

$$\forall x. (\exists y. \theta x x \triangleright y) \leftrightarrow T \vdash \varphi(x),$$

is incomplete.

Folklore G1 for Robinson's Q	
$\forall T \supseteq Q. \mathbb{N} \vDash T \ \rightarrow$	soundness
T enumerable $ ightarrow$	effectiveness
$\neg(\forall \varphi. T \vdash \varphi \lor T \vdash \neg \varphi)$	incompleteness

¹Kleene 1952.

Church's Thesis

Assumption $(CT_L)^2$

The interpreter $\theta : \mathbb{N} \to \mathbb{N} \longrightarrow \mathbb{N}$ for L³ satisfies

 $\forall (f:\mathbb{N} \rightharpoonup \mathbb{N}). \ \exists c. \ \forall xy. \ fx \rhd y \ \leftrightarrow \ \theta cx \rhd y.$

Corollary

Let $P : \mathbb{N} \to \mathbb{P}$ be a predicate. It is equivalent:

► *P* is synthetically enumerable:

 $\exists f: \mathbb{N} \to \mathcal{O}(\mathbb{N}). \, \forall x. \, Px \; \leftrightarrow \; \exists k. \, fk = °x$

► *P* is enumerable in L:

$$\exists c : \mathbb{N}. \, \forall x. \, Px \; \leftrightarrow \; \exists k. \, \theta ck \triangleright x$$

²Forster 2021.

³a Turing-complete λ -calculus (Forster and Smolka 2017).

Theorem (Weak representability)⁴

Every predicate $P : \mathbb{N} \to \mathbb{P}$ enumerable in L can be weakly Σ_1 -represented in Q, that is, there is a formula $\varphi \in \Delta_1$ such that:

 $\forall x. Px \leftrightarrow \mathsf{Q} \vdash \exists k. \varphi(x, k)$

⁴largely mechanized by Larchey-Wendling and Forster 2019; Kirst and Hermes 2021.

Strengthened Computational Proof

Theorem (Strengthened G1)⁵

In any axiomatization ${\boldsymbol{T}}$ that strongly separates

$$\lambda x. \,\theta xx \triangleright 1 \qquad \qquad \lambda x. \,\theta xx \triangleright 0,$$

that is, there is a formula φ such that for all x

 $\theta xx \rhd 1 \ \rightarrow \ T \vdash \varphi(x) \qquad \quad \theta xx \rhd 0 \ \rightarrow \ T \vdash \neg \varphi(x),$

there is an independent sentence ψ , that is $T \nvDash \psi$ and $T \nvDash \neg \psi$.

Strengthened G1 for Robinson's Q

 $\begin{array}{ll} \forall T \supseteq \mathsf{Q}. \ T \nvDash \bot \ \rightarrow & \text{consistency} \\ T \text{ enumerable } \rightarrow & \text{effectiveness} \\ \exists \psi. \ T \nvDash \psi \land T \nvDash \neg \psi & \text{independent sentence} \end{array}$

Theorem (Strong separability)

Let P_1,P_2 be disjoint and enumerable predicates. In Q, P_1 and P_2 are strongly separable, that is, there is a formula Φ such that for all x:

$$P_1x \rightarrow \mathsf{Q} \vdash \Phi(x) \qquad P_2x \rightarrow \mathsf{Q} \vdash \neg \Phi(x)$$

Path Towards Strengthened G1

folklore: assuming soundness ----> Rosser's trick rec. insep. predicates strong separability

Kleene's approach

strengthened: assuming consistency

Gödel: assuming ω -consistency

- Rosser's trick

Rosser: assuming consistency

Gödel's approach⁶

Construct a formula $Prf \in \Delta_1$ weakly representing provability:

$$\forall \varphi. \, \mathsf{Q} \vdash \varphi \; \leftrightarrow \; \mathsf{Q} \vdash \exists k. \, \Pr(\ulcorner \varphi \urcorner, k)$$

Rosser's trick⁷

Modify provability predicate such that for all φ :

$$\mathbf{Q} \vdash \varphi \rightarrow \mathbf{Q} \vdash \exists k. \operatorname{Prf}'(\ulcorner \varphi \urcorner, k)$$
$$\mathbf{Q} \vdash \neg \varphi \rightarrow \mathbf{Q} \vdash \neg \exists k. \operatorname{Prf}'(\ulcorner \varphi \urcorner, k)$$

⁶Gödel 1931. ⁷Rosser 1936.

Rosser's Trick for Strong Separability

Let P_1,P_2 be disjoint predicates, $\varphi_1,\varphi_2\in\Delta_1$ such that:

$$P_1 x \leftrightarrow \mathsf{Q} \vdash \exists k. \varphi_1(x,k) P_2 x \leftrightarrow \mathsf{Q} \vdash \exists l. \varphi_2(x,l)$$

We want to find Φ_1, Φ_2 such that for all x:

$$P_1 x \to \mathbf{Q} \vdash \exists k. \, \Phi_1(x, k) \qquad P_2 x \to \mathbf{Q} \vdash \neg \exists k. \, \Phi_1(x, k)$$
$$P_2 x \to \mathbf{Q} \vdash \exists l. \, \Phi_2(x, l)$$

To do this, choose:

$$\Phi_1(x,k) := \varphi_1(x,k) \land \forall k' \le k. \neg \varphi_2(x,k')$$

$$\Phi_2(x,l) := \varphi_2(x,l) \land \forall l' \le l. \neg \varphi_1(x,l')$$

Key property:

$$\neg(\Phi_1(x,k) \land \Phi_2(x,l))$$

Theorem (Strong separability)

Let P_1, P_2 be disjoint and weakly Σ_1 -representable predicates. Now, P_1 and P_2 are strongly Σ_1 -separable, that is, there is a formula $\Phi \in \Sigma_1$ such that for all x:

$$P_1x \rightarrow \mathsf{Q} \vdash \Phi(x) \qquad P_2x \rightarrow \mathsf{Q} \vdash \neg \Phi(x)$$

Corollary (Strong representability)

In Q, a decidable predicates P is strongly representable, that is, there is a formula $\Phi \in \Sigma_1$ (or $\Phi \in \Pi_1$) such that for all x:

$$Px \rightarrow \mathsf{Q} \vdash \Phi(x) \qquad \neg Px \rightarrow \mathsf{Q} \vdash \neg \Phi(x)$$

Theorem (Deep disjointness)⁸

Let P_1, P_2 be disjoint and enumerable predicates. There are $\Phi_1, \Phi_2 \in \Sigma_1$ that weakly represent and strongly separate P_1, P_2 and:

$$\mathsf{PA} \vdash \forall x. \neg (\Phi_1(x) \land \Phi_2(x))$$

Theorem (CT_Q)

Let $f : \mathbb{N} \to \mathbb{N}$ be a partial function. There is a $\Phi \in \Sigma_1$ such that

$$\forall xy. \ fx \rhd y \ \rightarrow \ \mathsf{Q} \vdash \forall y'. \ \Phi(x,y') \ \leftrightarrow \ y' = y$$

⁸Hermes and Kirst N.D.

I showed, using ideas from Kleene 1952:

- 1. essential incompleteness for abstract formal systems that strongly separate certain predicates using synthetic computability theory.
- 2. that Robinson's Q strongly separates disjoint and enumerable predicates.
- 3. that Robinson's Q fulfills other representability properties.

References I

- Forster, Yannick (2021). "Church's Thesis and Related Axioms in Coq's Type Theory". In: 29th EACSL Annual Conference on Computer Science Logic (CSL 2021). Vol. 183. Leibniz International Proceedings in Informatics (LIPIcs), 21:1–21:19.
- Forster, Yannick and Gert Smolka (2017). "Weak Call-by-Value Lambda Calculus as a Model of Computation in Coq". In: International Conference on Interactive Theorem Proving. Springer, pp. 189–206.
- Gödel, Kurt (1931). "Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I". In:

Monatshefte für Mathematik und Physik 38, pp. 173–198.

Hermes, Marc and Dominik Kirst (N.D.). "An Analysis of

Tennenbaum's Theorem in Constructive Type Theory". unpublished. URL: https://www.ps.uni-

saarland.de/~hermes/Tennenbaum_paper.pdf (visited on 03/04/2022).

References II

- Kirst, Dominik and Marc Hermes (2021). "Synthetic Undecidability and Incompleteness of First-Order Axiom Systems in Coq". In: *ITP 2021*.
- Kleene, Stephen C. (1936). "General recursive functions of natural numbers.". In: Mathematische Annalen 112, pp. 727–742.
- (1943). "Recursive predicates and quantifiers". In: Transactions of the American Mathematical Society 53, pp. 41–73.
- **—** (1952). Introduction to Metamathematics. North Holland.
 - (1967). Mathematical Logic. Dover Publications.
- Larchey-Wendling, Dominique and Yannick Forster (2019). "Hilbert's Tenth Problem in Coq". In: 4th International Conference on Formal Structures for Computation and Deduction (FSCD 2019). Vol. 131, 27:1–27:20.

Proof of CT_Q

Theorem (CT_Q)

Let $f: \mathbb{N} \to \mathbb{N}$ be a partial function. There is a $\Phi \in \Sigma_1$ such that

$$\forall xy. \ fx \rhd y \ \rightarrow \ \mathsf{Q} \vdash \forall y'. \ \Phi(x, y') \ \leftrightarrow \ y' = y$$

Proof.

Let $\varphi \in \Sigma_1$ be such that:

$$fx \rhd y \ \leftrightarrow \ \mathsf{Q} \vdash \exists k. \, \varphi(x, y, k)$$

Choose:

$$\begin{split} \Phi(x,y) &:= \exists k.\varphi(x,y,k) \land \\ \forall y'k'.\,y'+k' \leq y+k \ \rightarrow \ \varphi(x,y',k') \ \rightarrow \ y'=y \end{split}$$

Definition (Δ_1)

A formula φ is Δ_1 , if for any valuation ρ :

$$\mathsf{Q}\vdash \varphi[\rho] \lor \mathsf{Q} \vdash \neg \varphi[\rho]$$

Lemma (Δ_1)

All formulas only containing bounded quantifiers are Δ_1 .

$$\begin{aligned} x &\leq y := \exists z. \ x + z = y \lor z + x \leq y \\ \text{Let } \varphi \in \Sigma_1. \\ Q \vdash \exists x. \exists y. \varphi(x, y) \iff \exists z. \exists x \leq z. \exists y \leq z. \varphi(x, y) \end{aligned}$$
Proof: By choosing $z := x + y$.