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Computational Folklore Proof

Theorem (Folklore G1)1

Any axiomatization T that weakly represents the halting problem

λx. ∃y. θxx▷ y,

that is, there is a formula φ such that

∀x. (∃y. θxx▷ y) ↔ T ⊢ φ(x),

is incomplete.

Folklore G1 for Robinson’s Q

∀T ⊇ Q.N ⊨ T → soundness

T enumerable → effectiveness

¬(∀φ. T ⊢ φ ∨ T ⊢ ¬φ) incompleteness

1Kleene 1952.
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Church’s Thesis

Assumption (CTL)
2

The interpreter θ : N → N⇀ N for L3 satisfies

∀(f : N⇀ N). ∃c.∀xy. fx▷ y ↔ θcx▷ y.

Corollary

Let P : N → P be a predicate. It is equivalent:

▶ P is synthetically enumerable:

∃f : N → O(N). ∀x. Px ↔ ∃k. fk = °x

▶ P is enumerable in L:

∃c : N. ∀x. Px ↔ ∃k. θck▷x

2Forster 2021.
3a Turing-complete λ-calculus (Forster and Smolka 2017).
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Weak Representability in Q

Theorem (Weak representability)4

Every predicate P : N → P enumerable in L can be weakly
Σ1-represented in Q, that is, there is a formula φ ∈ ∆1 such that:

∀x. Px ↔ Q ⊢ ∃k. φ(x, k)

4largely mechanized by Larchey-Wendling and Forster 2019; Kirst and
Hermes 2021.
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Strengthened Computational Proof

Theorem (Strengthened G1)5

In any axiomatization T that strongly separates

λx. θxx▷ 1 λx. θxx▷ 0,

that is, there is a formula φ such that for all x

θxx▷ 1 → T ⊢ φ(x) θxx▷ 0 → T ⊢ ¬φ(x),

there is an independent sentence ψ, that is T ⊬ ψ and T ⊬ ¬ψ.

Strengthened G1 for Robinson’s Q

∀T ⊇ Q. T ⊬ ⊥ → consistency

T enumerable → effectiveness

∃ψ. T ⊬ ψ ∧ T ⊬ ¬ψ independent sentence

5Kleene 1952.
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Strong Separability in Q

Theorem (Strong separability)

Let P1, P2 be disjoint and enumerable predicates.
In Q, P1 and P2 are strongly separable, that is, there is a formula
Φ such that for all x:

P1x → Q ⊢ Φ(x) P2x → Q ⊢ ¬Φ(x)
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Path Towards Strengthened G1

folklore: assuming soundness

strengthened: assuming consistency

rec. insep. predicates
strong separability

Rosser’s trick Kleene’s approach

Gödel: assuming ω-consistency

Rosser: assuming consistency

Rosser’s trick
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Original Proof

Gödel’s approach6

Construct a formula Prf ∈ ∆1 weakly representing provability:

∀φ.Q ⊢ φ ↔ Q ⊢ ∃k.Prf(⌜φ⌝, k)

Rosser’s trick7

Modify provability predicate such that for all φ:

Q ⊢ φ → Q ⊢ ∃k.Prf ′(⌜φ⌝, k)
Q ⊢ ¬φ → Q ⊢ ¬∃k.Prf ′(⌜φ⌝, k)

6Gödel 1931.
7Rosser 1936.
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Rosser’s Trick for Strong Separability

Let P1, P2 be disjoint predicates, φ1, φ2 ∈ ∆1 such that:

P1x ↔ Q ⊢ ∃k. φ1(x, k)

P2x ↔ Q ⊢ ∃l. φ2(x, l)

We want to find Φ1,Φ2 such that for all x:

P1x → Q ⊢ ∃k.Φ1(x, k) P2x → Q ⊢ ¬∃k.Φ1(x, k)

P2x → Q ⊢ ∃l.Φ2(x, l)

To do this, choose:

Φ1(x, k) := φ1(x, k) ∧ ∀k′ ≤ k.¬φ2(x, k
′)

Φ2(x, l) := φ2(x, l) ∧ ∀l′ ≤ l.¬φ1(x, l
′)

Key property:

¬(Φ1(x, k) ∧ Φ2(x, l))
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Strong Separability in Q

Theorem (Strong separability)

Let P1, P2 be disjoint and weakly Σ1-representable predicates.
Now, P1 and P2 are strongly Σ1-separable, that is, there is a
formula Φ ∈ Σ1 such that for all x:

P1x → Q ⊢ Φ(x) P2x → Q ⊢ ¬Φ(x)
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Corollary (Strong representability)

In Q, a decidable predicates P is strongly representable, that is,
there is a formula Φ ∈ Σ1 (or Φ ∈ Π1) such that for all x:

Px → Q ⊢ Φ(x) ¬Px → Q ⊢ ¬Φ(x)

Theorem (Deep disjointness)8

Let P1, P2 be disjoint and enumerable predicates.
There are Φ1,Φ2 ∈ Σ1 that weakly represent and strongly separate
P1, P2 and:

PA ⊢ ∀x.¬(Φ1(x) ∧ Φ2(x))

Theorem (CTQ)

Let f : N⇀ N be a partial function. There is a Φ ∈ Σ1 such that

∀xy. fx▷ y → Q ⊢ ∀y′.Φ(x, y′) ↔ y′ = y
8Hermes and Kirst N.D.
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Conclusion

I showed, using ideas from Kleene 1952:

1. essential incompleteness for abstract formal systems that
strongly separate certain predicates using synthetic
computability theory.

2. that Robinson’s Q strongly separates disjoint and enumerable
predicates.

3. that Robinson’s Q fulfills other representability properties.
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Proof of CTQ

Theorem (CTQ)

Let f : N⇀ N be a partial function. There is a Φ ∈ Σ1 such that

∀xy. fx▷ y → Q ⊢ ∀y′.Φ(x, y′) ↔ y′ = y

Proof.

Let φ ∈ Σ1 be such that:

fx▷ y ↔ Q ⊢ ∃k. φ(x, y, k)

Choose:

Φ(x, y) := ∃k.φ(x, y, k)∧
∀y′k′. y′ + k′ ≤ y + k → φ(x, y′, k′) → y′ = y
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∆1

Definition (∆1)

A formula φ is ∆1, if for any valuation ρ:

Q ⊢ φ[ρ] ∨ Q ⊢ ¬φ[ρ]

Lemma (∆1)

All formulas only containing bounded quantifiers are ∆1.
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∃-compression

x ≤ y := ∃z. x+ z = y ∨ z + x ≤ y

Let φ ∈ Σ1.

Q ⊢ ∃x.∃y. φ(x, y) ↔ ∃z. ∃x ≤ z.∃y ≤ z. φ(x, y)

Proof: By choosing z := x+ y.
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