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Gödel’s First Incompleteness Theorem

Gödel’s first incompleteness theorem2

Any effective, sound, and sufficiently powerful formal logic is incomplete.

▶ Has been mechanised often3

▶ We present Kleene’s folklore and strengthened incompleteness proofs using
computability theory abstractly

▶ We formalise them in the setting of synthetic computability theory, avoiding
low-level manipulations

▶ We instantiate these results to first-order Robinson arithmetic

▶ All results have been mechanised in Coq4

2Gödel 1931.

3Shankar 1994; O’Connor 2005; Harrison 2009; Paulson 2014; Popescu and Traytel 2019.
4https://github.com/uds-psl/coq-synthetic-incompleteness/tree/bachelor
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Gödel’s First Incompleteness Theorem

Gödel-Rosser incompleteness theorem2

Any effective, sound consistent, and sufficiently powerful formal logic is incomplete.
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Abstract Incompleteness Proofs

Instantiation to first-order Robinson arithmetic
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Synthetic Computability5

We work in CIC, where we can consider the function space to only contain computable
functions

Definition

A predicate P : X → P is

▶ enumerable if ∃f : N → O(X). Px ↔ ∃k. fk = ⌜x⌝.

▶ decidable if ∃f : X → B. Px ↔ fx = tt.

5Richman 1983; Bauer 2006.
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Formal Systems

Definition (Formal system)

F = (S,¬,⊢) is a formal system if:

▶ S : T is a discrete type of sentences

▶ ¬ : S → S is a negation function

▶ ⊢ : S → P is an enumerable provability predicate

▶ F is consistent: ∀s.¬(F ⊢ s ∧ F ⊢ ¬s)
F is complete if ∀s.F ⊢ s ∨ F ⊢ ¬s.

First-order logic over a consistent and enumerable axiomatisation is a formal system in
this sense
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Decidable Formal Systems

Lemma

There is a partial function dF : S ⇀ B separating provability from refutability:

∀s. (dF s▷ tt ↔ F ⊢ s) ∧ (dF s▷ff ↔ F ⊢ ¬s)

If F is complete, dF is total.

Corollary

Any complete formal system is decidable.
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Kleene’s Folklore Incompleteness Proof 6,7

Theorem

Let F be complete and weakly represent P : N → P, i.e., there is an r : N → S s.t.:

∀x. Px ↔ F ⊢ rx

Then P is decidable.

Thus, if P is undecidable, F is incomplete.

6Kleene 1936; Turing 1936.
7As mechanised by Kirst and Hermes 2021.
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Church’s Thesis9

Axiom (EPF8)

There is a function θ : N → N ⇀ B such that:

∀f : N ⇀ B. ∃c. f ≡ θc

Definition (Self-halting problem)

The self-halting problem is defined as:

H := λx. ∃b. θxx▷ b

8Richman 1983; Forster 2022.
9Kreisel 1967; Troelstra and van Dalen 1988.
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Self-halting problem

Fact

Partial functions f : N ⇀ B agreeing with the halting problem H := λx. ∃b. θxx▷ b:

∀x. x ∈ H ↔ fx▷ tt,

diverge on some input c, i.e., ∀b. fc⋫ b.

Proof.

Consider g : N ⇀ B,

gx :=

{
ff if fx▷ tt
undefined otherwise

Let c be the code of g. We have fc▷ tt ↔ fc▷ff .
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Strengthening the Folklore Proof 10

Theorem

Assume F weakly represents H, i.e., there is an r : N → S s.t.: ∀x. x ∈ H ↔ F ⊢ rx
Then F has an independent sentence rc:

F ⊬ rc ∧ F ⊬ ¬rc

Proof.

h := dF ◦ r : N ⇀ B agrees with the halting problem:

∀x. dF (rx)▷ tt ↔ F ⊢ rx ↔ x ∈ H,

and therefore diverges on some input c. Thus rc is independent in F .

10Kleene 1952.
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Going from Soundness to Consistency

▶ Consider weak representability:

∀x. Px ↔ F ⊢ rx

Definition

A formal system F ′ is an extension of F , if

∀s.F ⊢ s → F ′ ⊢ s

▶ Only transfers along extensions that preserve F ⊢ rx → Px, i.e., sound
extensions

▶ Can we do better?
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Recursively Inseparable Predicates

Theorem

Consider the following predicates:

Itt := λx. θxx▷ tt Iff := λx. θxx▷ff

They are recursively inseparable, i.e., any partial function f : N ⇀ B s.t.

∀x. (x ∈ Itt → fx▷ tt) ∧ (x ∈ Iff → fx▷ff )

diverges on some input.
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Kleene’s Improved Incompleteness Proof 11

Theorem

Assume F strongly separates Itt and Iff , i.e., there is an r : N → S s.t.:

∀x. x ∈ Itt → F ⊢ rx ∧ x ∈ Iff → F ⊢ ¬rx

F has an independent sentence rc:

F ⊬ rc ∧ F ⊬ ¬rc

Proof.

h := dF ◦ r : N ⇀ B recursively separates Itt and Iff , and therefore diverges on some
input c. Therefore, rc is independent in F .

11Kleene 1951, c.f. Kleene 1952; Kleene 1967
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Abstract Incompleteness Proofs

Instantiation to first-order Robinson arithmetic
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Instantiating the Incompleteness Proofs

From now on: Assume θ in EPF to be an interpreter for µ-recursive functions

Lemma

FA12 weakly represents any enumerable predicate P : N → P using a Σ1-formula φ:

∀x. Px ↔ FA ⊢ φ(x)

Proof.

See Kirst and Hermes 2021, relying on a mechanisation of the DPRM theorem by
Larchey-Wendling and Forster 2022.

Goal: Show that Robinson arithmetic is strong enough to strongly separate any pair of
enumerable and disjoint predicates.

12A subset of Robinson arithmetic.
13 / 17



Instantiating the Incompleteness Proofs

From now on: Assume θ in EPF to be an interpreter for µ-recursive functions

Lemma

FA12 weakly represents any enumerable predicate P : N → P using a Σ1-formula φ:

∀x. Px ↔ FA ⊢ φ(x)

Proof.

See Kirst and Hermes 2021, relying on a mechanisation of the DPRM theorem by
Larchey-Wendling and Forster 2022.

Goal: Show that Robinson arithmetic is strong enough to strongly separate any pair of
enumerable and disjoint predicates.

12A subset of Robinson arithmetic.
13 / 17



Instantiating the Incompleteness Proofs

From now on: Assume θ in EPF to be an interpreter for µ-recursive functions

Lemma

FA12 weakly represents any enumerable predicate P : N → P using a Σ1-formula φ:

∀x. Px ↔ FA ⊢ φ(x)

Proof.

See Kirst and Hermes 2021, relying on a mechanisation of the DPRM theorem by
Larchey-Wendling and Forster 2022.

Goal: Show that Robinson arithmetic is strong enough to strongly separate any pair of
enumerable and disjoint predicates.

12A subset of Robinson arithmetic.
13 / 17



Path Towards Rosser’s Trick

folklore: assuming soundness

strengthened: assuming consistency

rec. insep. predicates
strong separabilityRosser’s trick

Kleene’s approach

Gödel: assuming ω-consistency

Rosser: assuming consistency

Rosser’s trick
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Rosser’s Trick for Strong Separability

Let P1, P2 be enumerable and disjoint predicates, and φ1, φ2 ∈ ∆0 such that:

P1 x ↔ Q ⊢ ∃k. φ1(x, k) P2 x ↔ Q ⊢ ∃l. φ2(x, l)

We want to find Φ1 such that for all x:

P1 x → Q ⊢ ∃k.Φ1(x, k) P2 x → Q ⊢ ¬∃k.Φ1(x, k)

φ1(x,−) ✓
k

φ2(x,−) ✓

l

✓
k

Φ1(x, k) := φ1(x, k) ∧ ∀k′ ≤ k.¬φ2(x, k
′)

15 / 17
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φ1(x,−) ✓
k

φ2(x,−) ✓

l

✓
k

Φ1(x, k) := φ1(x, k) ∧ ∀k′ ≤ k.¬φ2(x, k
′)
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Instantiating the Strengthened Incompleteness Proof

Theorem

Robinson arithmetic is essentially incomplete.

∀T ⊇ Q. T enumerable → T ⊬ ⊥ → ∃φ. T ⊬ φ ∧ T ⊬ ¬φ

∀T ⊇ Q. T enumerable → N ⊨ T → (∀φ. T ⊢ φ ∨ T ⊢ ¬φ) → HTM decidable
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Summary

▶ Gave abstract incompleteness proofs due to Kleene in different strengths,
reformulated in synthetic computability
▶ Assuming weak representability, using the halting problem
▶ Assuming strong separability, using recursively inseparable predicates
▶ Mechanised in only about 450 stand-alone lines of Coq, 200 for the strongest result

▶ Instantiated those proofs to first-order Robinson arithmetic using Rosser’s trick
▶ Relying on libraries of undecidability13 and first-order logic14

▶ Mechanised in around 2200 lines of Coq

▶ Future Work:
▶ Church’s thesis for Robinson arithmetic
▶ Avoid DPRM
▶ Gödel’s second incompleteness theorem

13Forster et al. 2020.
14Kirst, Hostert, et al. 2022.

17 / 17



Summary

▶ Gave abstract incompleteness proofs due to Kleene in different strengths,
reformulated in synthetic computability
▶ Assuming weak representability, using the halting problem
▶ Assuming strong separability, using recursively inseparable predicates
▶ Mechanised in only about 450 stand-alone lines of Coq, 200 for the strongest result

▶ Instantiated those proofs to first-order Robinson arithmetic using Rosser’s trick
▶ Relying on libraries of undecidability13 and first-order logic14

▶ Mechanised in around 2200 lines of Coq

▶ Future Work:
▶ Church’s thesis for Robinson arithmetic
▶ Avoid DPRM
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Church’s thesis

∀f : N ⇀ N. ∃φ ∈ Σ1.∀xy. fx▷ y ↔ Q ⊢ ∀y′. φ(x, y′) ↔ y = y′
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