
Gödel’s Theorem Without Tears

Essential Incompleteness in Synthetic Computability
Final Bachelor Talk

Benjamin Peters

Advisor: Dominik Kirst
Supervisor: Professor Gert Smolka

Saarland University

17th June, 2022

0 / 17



Gödel’s Theorem Without Tears1

Essential Incompleteness in Synthetic Computability

22nd June, 2022
TYPES 2022

Benjamin Peters Dominik Kirst

computer science

saarland
university

1Abstract title: “Strong, Synthetic, and Computational Proofs of Gödel’s First Incompleteness Theorem”
1 / 17



Gödel’s First Incompleteness Theorem

Gödel’s first incompleteness theorem2

Any effective, sound, and sufficiently powerful formal logic is incomplete.

▶ Has been mechanised often3

▶ We present Kleene’s folklore and strengthened incompleteness proofs using
computability theory abstractly

▶ We formalise them in the setting of synthetic computability theory, avoiding
low-level manipulations

▶ We instantiate these results to first-order Robinson arithmetic

▶ All results have been mechanised in Coq4

2Gödel 1931.

3Shankar 1994; O’Connor 2005; Harrison 2009; Paulson 2014; Popescu and Traytel 2019.
4https://github.com/uds-psl/coq-synthetic-incompleteness/tree/bachelor

2 / 17

https://github.com/uds-psl/coq-synthetic-incompleteness/tree/bachelor


Gödel’s First Incompleteness Theorem

Gödel-Rosser incompleteness theorem2

Any effective, sound consistent, and sufficiently powerful formal logic is incomplete.

▶ Has been mechanised often3

▶ We present Kleene’s folklore and strengthened incompleteness proofs using
computability theory abstractly

▶ We formalise them in the setting of synthetic computability theory, avoiding
low-level manipulations

▶ We instantiate these results to first-order Robinson arithmetic

▶ All results have been mechanised in Coq4

2Gödel 1931; Rosser 1936.

3Shankar 1994; O’Connor 2005; Harrison 2009; Paulson 2014; Popescu and Traytel 2019.
4https://github.com/uds-psl/coq-synthetic-incompleteness/tree/bachelor

2 / 17

https://github.com/uds-psl/coq-synthetic-incompleteness/tree/bachelor


Gödel’s First Incompleteness Theorem

Gödel-Rosser incompleteness theorem2

Any effective, sound consistent, and sufficiently powerful formal logic is incomplete.

▶ Has been mechanised often3

▶ We present Kleene’s folklore and strengthened incompleteness proofs using
computability theory abstractly

▶ We formalise them in the setting of synthetic computability theory, avoiding
low-level manipulations

▶ We instantiate these results to first-order Robinson arithmetic

▶ All results have been mechanised in Coq4

2Gödel 1931; Rosser 1936.
3Shankar 1994; O’Connor 2005; Harrison 2009; Paulson 2014; Popescu and Traytel 2019.

4https://github.com/uds-psl/coq-synthetic-incompleteness/tree/bachelor

2 / 17

https://github.com/uds-psl/coq-synthetic-incompleteness/tree/bachelor


Gödel’s First Incompleteness Theorem

Gödel-Rosser incompleteness theorem2

Any effective, sound consistent, and sufficiently powerful formal logic is incomplete.

▶ Has been mechanised often3

▶ We present Kleene’s folklore and strengthened incompleteness proofs using
computability theory abstractly

▶ We formalise them in the setting of synthetic computability theory, avoiding
low-level manipulations

▶ We instantiate these results to first-order Robinson arithmetic

▶ All results have been mechanised in Coq4

2Gödel 1931; Rosser 1936.
3Shankar 1994; O’Connor 2005; Harrison 2009; Paulson 2014; Popescu and Traytel 2019.

4https://github.com/uds-psl/coq-synthetic-incompleteness/tree/bachelor

2 / 17

https://github.com/uds-psl/coq-synthetic-incompleteness/tree/bachelor


Gödel’s First Incompleteness Theorem

Gödel-Rosser incompleteness theorem2

Any effective, sound consistent, and sufficiently powerful formal logic is incomplete.

▶ Has been mechanised often3

▶ We present Kleene’s folklore and strengthened incompleteness proofs using
computability theory abstractly

▶ We formalise them in the setting of synthetic computability theory, avoiding
low-level manipulations

▶ We instantiate these results to first-order Robinson arithmetic

▶ All results have been mechanised in Coq4

2Gödel 1931; Rosser 1936.
3Shankar 1994; O’Connor 2005; Harrison 2009; Paulson 2014; Popescu and Traytel 2019.

4https://github.com/uds-psl/coq-synthetic-incompleteness/tree/bachelor

2 / 17

https://github.com/uds-psl/coq-synthetic-incompleteness/tree/bachelor


Gödel’s First Incompleteness Theorem

Gödel-Rosser incompleteness theorem2

Any effective, sound consistent, and sufficiently powerful formal logic is incomplete.

▶ Has been mechanised often3

▶ We present Kleene’s folklore and strengthened incompleteness proofs using
computability theory abstractly

▶ We formalise them in the setting of synthetic computability theory, avoiding
low-level manipulations

▶ We instantiate these results to first-order Robinson arithmetic

▶ All results have been mechanised in Coq4

2Gödel 1931; Rosser 1936.
3Shankar 1994; O’Connor 2005; Harrison 2009; Paulson 2014; Popescu and Traytel 2019.

4https://github.com/uds-psl/coq-synthetic-incompleteness/tree/bachelor

2 / 17

https://github.com/uds-psl/coq-synthetic-incompleteness/tree/bachelor


Gödel’s First Incompleteness Theorem

Gödel-Rosser incompleteness theorem2

Any effective, sound consistent, and sufficiently powerful formal logic is incomplete.

▶ Has been mechanised often3

▶ We present Kleene’s folklore and strengthened incompleteness proofs using
computability theory abstractly

▶ We formalise them in the setting of synthetic computability theory, avoiding
low-level manipulations

▶ We instantiate these results to first-order Robinson arithmetic

▶ All results have been mechanised in Coq4

2Gödel 1931; Rosser 1936.
3Shankar 1994; O’Connor 2005; Harrison 2009; Paulson 2014; Popescu and Traytel 2019.
4https://github.com/uds-psl/coq-synthetic-incompleteness/tree/bachelor

2 / 17

https://github.com/uds-psl/coq-synthetic-incompleteness/tree/bachelor


Abstract Incompleteness Proofs

Instantiation to first-order Robinson arithmetic

2 / 17



Synthetic Computability5

We work in CIC, where we can consider the function space to only contain computable
functions

Definition

A predicate P : X → P is

▶ enumerable if ∃f : N → O(X). Px ↔ ∃k. fk = ⌜x⌝.

▶ decidable if ∃f : X → B. Px ↔ fx = tt.

5Richman 1983; Bauer 2006.
3 / 17



Synthetic Computability5

We work in CIC, where we can consider the function space to only contain computable
functions

Definition

A predicate P : X → P is

▶ enumerable if ∃f : N → O(X). Px ↔ ∃k. fk = ⌜x⌝.

▶ decidable if ∃f : X → B. Px ↔ fx = tt.

5Richman 1983; Bauer 2006.
3 / 17



Synthetic Computability5

We work in CIC, where we can consider the function space to only contain computable
functions

Definition

A predicate P : X → P is

▶ enumerable if ∃f : N → O(X). Px ↔ ∃k. fk = ⌜x⌝.

▶ decidable if ∃f : X → B. Px ↔ fx = tt.

5Richman 1983; Bauer 2006.
3 / 17



Formal Systems

Definition (Formal system)

F = (S,¬,⊢) is a formal system if:

▶ S : T is a discrete type of sentences

▶ ¬ : S → S is a negation function

▶ ⊢ : S → P is an enumerable provability predicate

▶ F is consistent: ∀s.¬(F ⊢ s ∧ F ⊢ ¬s)
F is complete if ∀s.F ⊢ s ∨ F ⊢ ¬s.

First-order logic over a consistent and enumerable axiomatisation is a formal system in
this sense

4 / 17



Formal Systems

Definition (Formal system)

F = (S,¬,⊢) is a formal system if:

▶ S : T is a discrete type of sentences

▶ ¬ : S → S is a negation function

▶ ⊢ : S → P is an enumerable provability predicate

▶ F is consistent: ∀s.¬(F ⊢ s ∧ F ⊢ ¬s)
F is complete if ∀s.F ⊢ s ∨ F ⊢ ¬s.

First-order logic over a consistent and enumerable axiomatisation is a formal system in
this sense

4 / 17



Formal Systems

Definition (Formal system)

F = (S,¬,⊢) is a formal system if:

▶ S : T is a discrete type of sentences

▶ ¬ : S → S is a negation function

▶ ⊢ : S → P is an enumerable provability predicate

▶ F is consistent: ∀s.¬(F ⊢ s ∧ F ⊢ ¬s)
F is complete if ∀s.F ⊢ s ∨ F ⊢ ¬s.

First-order logic over a consistent and enumerable axiomatisation is a formal system in
this sense

4 / 17



Formal Systems

Definition (Formal system)

F = (S,¬,⊢) is a formal system if:

▶ S : T is a discrete type of sentences

▶ ¬ : S → S is a negation function

▶ ⊢ : S → P is an enumerable provability predicate

▶ F is consistent: ∀s.¬(F ⊢ s ∧ F ⊢ ¬s)

F is complete if ∀s.F ⊢ s ∨ F ⊢ ¬s.

First-order logic over a consistent and enumerable axiomatisation is a formal system in
this sense

4 / 17



Formal Systems

Definition (Formal system)

F = (S,¬,⊢) is a formal system if:

▶ S : T is a discrete type of sentences

▶ ¬ : S → S is a negation function

▶ ⊢ : S → P is an enumerable provability predicate

▶ F is consistent: ∀s.¬(F ⊢ s ∧ F ⊢ ¬s)
F is complete if ∀s.F ⊢ s ∨ F ⊢ ¬s.

First-order logic over a consistent and enumerable axiomatisation is a formal system in
this sense

4 / 17



Formal Systems

Definition (Formal system)

F = (S,¬,⊢) is a formal system if:

▶ S : T is a discrete type of sentences

▶ ¬ : S → S is a negation function

▶ ⊢ : S → P is an enumerable provability predicate

▶ F is consistent: ∀s.¬(F ⊢ s ∧ F ⊢ ¬s)
F is complete if ∀s.F ⊢ s ∨ F ⊢ ¬s.

First-order logic over a consistent and enumerable axiomatisation is a formal system in
this sense

4 / 17



Decidable Formal Systems

Lemma

There is a partial function dF : S ⇀ B separating provability from refutability:

∀s. (dF s▷ tt ↔ F ⊢ s) ∧ (dF s▷ff ↔ F ⊢ ¬s)

If F is complete, dF is total.

Corollary

Any complete formal system is decidable.

5 / 17



Decidable Formal Systems

Lemma

There is a partial function dF : S ⇀ B separating provability from refutability:

∀s. (dF s▷ tt ↔ F ⊢ s) ∧ (dF s▷ff ↔ F ⊢ ¬s)

If F is complete, dF is total.

Corollary

Any complete formal system is decidable.

5 / 17



Kleene’s Folklore Incompleteness Proof 6,7

Theorem

Let F be complete and weakly represent P : N → P, i.e., there is an r : N → S s.t.:

∀x. Px ↔ F ⊢ rx

Then P is decidable.

Thus, if P is undecidable, F is incomplete.

6Kleene 1936; Turing 1936.
7As mechanised by Kirst and Hermes 2021.

6 / 17



Kleene’s Folklore Incompleteness Proof 6,7

Theorem

Let F be complete and weakly represent P : N → P, i.e., there is an r : N → S s.t.:

∀x. Px ↔ F ⊢ rx

Then P is decidable. Thus, if P is undecidable, F is incomplete.

6Kleene 1936; Turing 1936.
7As mechanised by Kirst and Hermes 2021.

6 / 17



Church’s Thesis9

Axiom (EPF8)

There is a function θ : N → N ⇀ B such that:

∀f : N ⇀ B. ∃c. f ≡ θc

Definition (Self-halting problem)

The self-halting problem is defined as:

H := λx. ∃b. θxx▷ b

8Richman 1983; Forster 2022.
9Kreisel 1967; Troelstra and van Dalen 1988.

7 / 17



Church’s Thesis9

Axiom (EPF8)

There is a function θ : N → N ⇀ B such that:

∀f : N ⇀ B. ∃c. f ≡ θc

Definition (Self-halting problem)

The self-halting problem is defined as:

H := λx. ∃b. θxx▷ b

8Richman 1983; Forster 2022.
9Kreisel 1967; Troelstra and van Dalen 1988.

7 / 17



Self-halting problem

Fact

Partial functions f : N ⇀ B agreeing with the halting problem H := λx. ∃b. θxx▷ b:

∀x. x ∈ H ↔ fx▷ tt,

diverge on some input c, i.e., ∀b. fc⋫ b.

Proof.

Consider g : N ⇀ B,

gx :=

{
ff if fx▷ tt
undefined otherwise

Let c be the code of g. We have fc▷ tt ↔ fc▷ff .

8 / 17



Self-halting problem

Fact

Partial functions f : N ⇀ B agreeing with the halting problem H := λx. ∃b. θxx▷ b:

∀x. x ∈ H ↔ fx▷ tt,

diverge on some input c, i.e., ∀b. fc⋫ b.

Proof.

Consider g : N ⇀ B,

gx :=

{
ff if fx▷ tt
undefined otherwise

Let c be the code of g. We have fc▷ tt ↔ fc▷ff .

8 / 17



Strengthening the Folklore Proof 10

Theorem

Assume F weakly represents H, i.e., there is an r : N → S s.t.: ∀x. x ∈ H ↔ F ⊢ rx
Then F has an independent sentence rc:

F ⊬ rc ∧ F ⊬ ¬rc

Proof.

h := dF ◦ r : N ⇀ B agrees with the halting problem:

∀x. dF (rx)▷ tt ↔ F ⊢ rx ↔ x ∈ H,

and therefore diverges on some input c. Thus rc is independent in F .

10Kleene 1952.
9 / 17



Strengthening the Folklore Proof 10

Theorem

Assume F weakly represents H, i.e., there is an r : N → S s.t.: ∀x. x ∈ H ↔ F ⊢ rx
Then F has an independent sentence rc:

F ⊬ rc ∧ F ⊬ ¬rc

Proof.

h := dF ◦ r : N ⇀ B agrees with the halting problem:

∀x. dF (rx)▷ tt ↔ F ⊢ rx ↔ x ∈ H,

and therefore diverges on some input c. Thus rc is independent in F .

10Kleene 1952.
9 / 17



Going from Soundness to Consistency

▶ Consider weak representability:

∀x. Px ↔ F ⊢ rx

Definition

A formal system F ′ is an extension of F , if

∀s.F ⊢ s → F ′ ⊢ s

▶ Only transfers along extensions that preserve F ⊢ rx → Px, i.e., sound
extensions

▶ Can we do better?

10 / 17



Going from Soundness to Consistency

▶ Consider weak representability:

∀x. Px ↔ F ⊢ rx

Definition

A formal system F ′ is an extension of F , if

∀s.F ⊢ s → F ′ ⊢ s

▶ Only transfers along extensions that preserve F ⊢ rx → Px, i.e., sound
extensions

▶ Can we do better?

10 / 17



Going from Soundness to Consistency

▶ Consider weak representability:

∀x. Px ↔ F ⊢ rx

Definition

A formal system F ′ is an extension of F , if

∀s.F ⊢ s → F ′ ⊢ s

▶ Only transfers along extensions that preserve F ⊢ rx → Px, i.e., sound
extensions

▶ Can we do better?

10 / 17



Going from Soundness to Consistency

▶ Consider weak representability:

∀x. Px ↔ F ⊢ rx

Definition

A formal system F ′ is an extension of F , if

∀s.F ⊢ s → F ′ ⊢ s

▶ Only transfers along extensions that preserve F ⊢ rx → Px, i.e., sound
extensions

▶ Can we do better?

10 / 17



Recursively Inseparable Predicates

Theorem

Consider the following predicates:

Itt := λx. θxx▷ tt Iff := λx. θxx▷ff

They are recursively inseparable, i.e., any partial function f : N ⇀ B s.t.

∀x. (x ∈ Itt → fx▷ tt) ∧ (x ∈ Iff → fx▷ff )

diverges on some input.

11 / 17



Kleene’s Improved Incompleteness Proof 11

Theorem

Assume F strongly separates Itt and Iff , i.e., there is an r : N → S s.t.:

∀x. x ∈ Itt → F ⊢ rx ∧ x ∈ Iff → F ⊢ ¬rx

F has an independent sentence rc:

F ⊬ rc ∧ F ⊬ ¬rc

Proof.

h := dF ◦ r : N ⇀ B recursively separates Itt and Iff , and therefore diverges on some
input c. Therefore, rc is independent in F .

11Kleene 1951, c.f. Kleene 1952; Kleene 1967
12 / 17



Kleene’s Improved Incompleteness Proof 11

Theorem

Assume F strongly separates Itt and Iff , i.e., there is an r : N → S s.t.:

∀x. x ∈ Itt → F ⊢ rx ∧ x ∈ Iff → F ⊢ ¬rx

F has an independent sentence rc:

F ⊬ rc ∧ F ⊬ ¬rc

Proof.

h := dF ◦ r : N ⇀ B recursively separates Itt and Iff , and therefore diverges on some
input c. Therefore, rc is independent in F .

11Kleene 1951, c.f. Kleene 1952; Kleene 1967
12 / 17



Kleene’s Improved Incompleteness Proof 11

Theorem

Assume F strongly separates Itt and Iff , i.e., there is an r : N → S s.t.:

∀x. x ∈ Itt → F ⊢ rx ∧ x ∈ Iff → F ⊢ ¬rx

Any (consistent) extension F ′ of F has an independent sentence rc:

F ′ ⊬ rc ∧ F ′ ⊬ ¬rc

Proof.

h := dF ′ ◦ r : N ⇀ B recursively separates Itt and Iff , and therefore diverges on some
input c. Therefore, rc is independent in F ′.

11Kleene 1951, c.f. Kleene 1952; Kleene 1967
12 / 17



Abstract Incompleteness Proofs

Instantiation to first-order Robinson arithmetic

12 / 17



Instantiating the Incompleteness Proofs

From now on: Assume θ in EPF to be an interpreter for µ-recursive functions

Lemma

FA12 weakly represents any enumerable predicate P : N → P using a Σ1-formula φ:

∀x. Px ↔ FA ⊢ φ(x)

Proof.

See Kirst and Hermes 2021, relying on a mechanisation of the DPRM theorem by
Larchey-Wendling and Forster 2022.

Goal: Show that Robinson arithmetic is strong enough to strongly separate any pair of
enumerable and disjoint predicates.

12A subset of Robinson arithmetic.
13 / 17



Instantiating the Incompleteness Proofs

From now on: Assume θ in EPF to be an interpreter for µ-recursive functions

Lemma

FA12 weakly represents any enumerable predicate P : N → P using a Σ1-formula φ:

∀x. Px ↔ FA ⊢ φ(x)

Proof.

See Kirst and Hermes 2021, relying on a mechanisation of the DPRM theorem by
Larchey-Wendling and Forster 2022.

Goal: Show that Robinson arithmetic is strong enough to strongly separate any pair of
enumerable and disjoint predicates.

12A subset of Robinson arithmetic.
13 / 17



Instantiating the Incompleteness Proofs

From now on: Assume θ in EPF to be an interpreter for µ-recursive functions

Lemma

FA12 weakly represents any enumerable predicate P : N → P using a Σ1-formula φ:

∀x. Px ↔ FA ⊢ φ(x)

Proof.

See Kirst and Hermes 2021, relying on a mechanisation of the DPRM theorem by
Larchey-Wendling and Forster 2022.

Goal: Show that Robinson arithmetic is strong enough to strongly separate any pair of
enumerable and disjoint predicates.

12A subset of Robinson arithmetic.
13 / 17



Path Towards Rosser’s Trick

folklore: assuming soundness

strengthened: assuming consistency

rec. insep. predicates
strong separabilityRosser’s trick

Kleene’s approach

Gödel: assuming ω-consistency

Rosser: assuming consistency

Rosser’s trick

14 / 17



Path Towards Rosser’s Trick

folklore: assuming soundness

strengthened: assuming consistency

rec. insep. predicates
strong separabilityRosser’s trick

Kleene’s approach

Gödel: assuming ω-consistency

Rosser: assuming consistency

Rosser’s trick Gödel-Rosser approach

14 / 17



Path Towards Rosser’s Trick

folklore: assuming soundness

strengthened: assuming consistency

rec. insep. predicates
strong separabilityRosser’s trick

Kleene’s approach

Gödel: assuming ω-consistency

Rosser: assuming consistency

Rosser’s trick Gödel-Rosser approach

14 / 17



Path Towards Rosser’s Trick

folklore: assuming soundness

strengthened: assuming consistency

rec. insep. predicates
strong separabilityRosser’s trick

Kleene’s approach

Gödel: assuming ω-consistency

Rosser: assuming consistency

Rosser’s trick Gödel-Rosser approach

14 / 17



Rosser’s Trick for Strong Separability

Let P1, P2 be enumerable and disjoint predicates, and φ1, φ2 ∈ ∆0 such that:

P1 x ↔ Q ⊢ ∃k. φ1(x, k) P2 x ↔ Q ⊢ ∃l. φ2(x, l)

We want to find Φ1 such that for all x:

P1 x → Q ⊢ ∃k.Φ1(x, k) P2 x → Q ⊢ ¬∃k.Φ1(x, k)

φ1(x,−) ✓
k

φ2(x,−) ✓

l

✓
k

Φ1(x, k) := φ1(x, k) ∧ ∀k′ ≤ k.¬φ2(x, k
′)

15 / 17



Rosser’s Trick for Strong Separability

Let P1, P2 be enumerable and disjoint predicates, and φ1, φ2 ∈ ∆0 such that:

P1 x ↔ Q ⊢ ∃k. φ1(x, k) P2 x ↔ Q ⊢ ∃l. φ2(x, l)

We want to find Φ1 such that for all x:

P1 x → Q ⊢ ∃k.Φ1(x, k) P2 x → Q ⊢ ¬∃k.Φ1(x, k)

φ1(x,−) ✓
k

φ2(x,−) ✓

l

✓
k

Φ1(x, k) := φ1(x, k) ∧ ∀k′ ≤ k.¬φ2(x, k
′)

15 / 17



Rosser’s Trick for Strong Separability

Let P1, P2 be enumerable and disjoint predicates, and φ1, φ2 ∈ ∆0 such that:

P1 x ↔ Q ⊢ ∃k. φ1(x, k) P2 x ↔ Q ⊢ ∃l. φ2(x, l)

We want to find Φ1 such that for all x:

P1 x → Q ⊢ ∃k.Φ1(x, k) P2 x → Q ⊢ ¬∃k.Φ1(x, k)

φ1(x,−) ✓
k

φ2(x,−) ✓

l

✓
k

Φ1(x, k) := φ1(x, k) ∧ ∀k′ ≤ k.¬φ2(x, k
′)

15 / 17



Rosser’s Trick for Strong Separability

Let P1, P2 be enumerable and disjoint predicates, and φ1, φ2 ∈ ∆0 such that:

P1 x ↔ Q ⊢ ∃k. φ1(x, k) P2 x ↔ Q ⊢ ∃l. φ2(x, l)

We want to find Φ1 such that for all x:

P1 x → Q ⊢ ∃k.Φ1(x, k) P2 x → Q ⊢ ¬∃k.Φ1(x, k)

φ1(x,−) ✓
k

φ2(x,−) ✓

l

✓
k

Φ1(x, k) := φ1(x, k) ∧ ∀k′ ≤ k.¬φ2(x, k
′)

15 / 17



Rosser’s Trick for Strong Separability

Let P1, P2 be enumerable and disjoint predicates, and φ1, φ2 ∈ ∆0 such that:

P1 x ↔ Q ⊢ ∃k. φ1(x, k) P2 x ↔ Q ⊢ ∃l. φ2(x, l)

We want to find Φ1 such that for all x:

P1 x → Q ⊢ ∃k.Φ1(x, k) P2 x → Q ⊢ ¬∃k.Φ1(x, k)

φ1(x,−) ✓
k

φ2(x,−) ✓

l

✓
k

Φ1(x, k) := φ1(x, k) ∧ ∀k′ ≤ k.¬φ2(x, k
′)

15 / 17



Rosser’s Trick for Strong Separability

Let P1, P2 be enumerable and disjoint predicates, and φ1, φ2 ∈ ∆0 such that:

P1 x ↔ Q ⊢ ∃k. φ1(x, k) P2 x ↔ Q ⊢ ∃l. φ2(x, l)

We want to find Φ1 such that for all x:

P1 x → Q ⊢ ∃k.Φ1(x, k) P2 x → Q ⊢ ¬∃k.Φ1(x, k)

φ1(x,−) ✓
k

φ2(x,−) ✓

l

✓
k

Φ1(x, k) := φ1(x, k) ∧ ∀k′ ≤ k.¬φ2(x, k
′)

15 / 17



Rosser’s Trick for Strong Separability

Let P1, P2 be enumerable and disjoint predicates, and φ1, φ2 ∈ ∆0 such that:

P1 x ↔ Q ⊢ ∃k. φ1(x, k) P2 x ↔ Q ⊢ ∃l. φ2(x, l)

We want to find Φ1 such that for all x:

P1 x → Q ⊢ ∃k.Φ1(x, k) P2 x → Q ⊢ ¬∃k.Φ1(x, k)

φ1(x,−) ✓
k

φ2(x,−) ✓

l

✓
k

Φ1(x, k) := φ1(x, k) ∧ ∀k′ ≤ k.¬φ2(x, k
′)

15 / 17



Rosser’s Trick for Strong Separability

Let P1, P2 be enumerable and disjoint predicates, and φ1, φ2 ∈ ∆0 such that:

P1 x ↔ Q ⊢ ∃k. φ1(x, k) P2 x ↔ Q ⊢ ∃l. φ2(x, l)

We want to find Φ1 such that for all x:

P1 x → Q ⊢ ∃k.Φ1(x, k) P2 x → Q ⊢ ¬∃k.Φ1(x, k)

φ1(x,−) ✓
k

φ2(x,−) ✓

l

✓
k

Φ1(x, k) := φ1(x, k) ∧ ∀k′ ≤ k.¬φ2(x, k
′)

15 / 17



Rosser’s Trick for Strong Separability

Let P1, P2 be enumerable and disjoint predicates, and φ1, φ2 ∈ ∆0 such that:

P1 x ↔ Q ⊢ ∃k. φ1(x, k) P2 x ↔ Q ⊢ ∃l. φ2(x, l)

We want to find Φ1 such that for all x:

P1 x → Q ⊢ ∃k.Φ1(x, k) P2 x → Q ⊢ ¬∃k.Φ1(x, k)

φ1(x,−) ✓
k

φ2(x,−) ✓

l

✓
k

Φ1(x, k) := φ1(x, k) ∧ ∀k′ ≤ k.¬φ2(x, k
′)

15 / 17



Instantiating the Strengthened Incompleteness Proof

Theorem

Robinson arithmetic is essentially incomplete.

∀T ⊇ Q. T enumerable → T ⊬ ⊥ → ∃φ. T ⊬ φ ∧ T ⊬ ¬φ

∀T ⊇ Q. T enumerable → N ⊨ T → (∀φ. T ⊢ φ ∨ T ⊢ ¬φ) → HTM decidable

16 / 17



Instantiating the Strengthened Incompleteness Proof

Theorem

Robinson arithmetic is essentially incomplete.

∀T ⊇ Q. T enumerable → T ⊬ ⊥ → ∃φ. T ⊬ φ ∧ T ⊬ ¬φ

∀T ⊇ Q. T enumerable → N ⊨ T → (∀φ. T ⊢ φ ∨ T ⊢ ¬φ) → HTM decidable

16 / 17



Summary

▶ Gave abstract incompleteness proofs due to Kleene in different strengths,
reformulated in synthetic computability
▶ Assuming weak representability, using the halting problem
▶ Assuming strong separability, using recursively inseparable predicates
▶ Mechanised in only about 450 stand-alone lines of Coq, 200 for the strongest result

▶ Instantiated those proofs to first-order Robinson arithmetic using Rosser’s trick
▶ Relying on libraries of undecidability13 and first-order logic14

▶ Mechanised in around 2200 lines of Coq

▶ Future Work:
▶ Church’s thesis for Robinson arithmetic
▶ Avoid DPRM
▶ Gödel’s second incompleteness theorem

13Forster et al. 2020.
14Kirst, Hostert, et al. 2022.

17 / 17



Summary

▶ Gave abstract incompleteness proofs due to Kleene in different strengths,
reformulated in synthetic computability
▶ Assuming weak representability, using the halting problem
▶ Assuming strong separability, using recursively inseparable predicates
▶ Mechanised in only about 450 stand-alone lines of Coq, 200 for the strongest result

▶ Instantiated those proofs to first-order Robinson arithmetic using Rosser’s trick
▶ Relying on libraries of undecidability13 and first-order logic14

▶ Mechanised in around 2200 lines of Coq

▶ Future Work:
▶ Church’s thesis for Robinson arithmetic
▶ Avoid DPRM
▶ Gödel’s second incompleteness theorem

13Forster et al. 2020.
14Kirst, Hostert, et al. 2022.

17 / 17



Summary

▶ Gave abstract incompleteness proofs due to Kleene in different strengths,
reformulated in synthetic computability
▶ Assuming weak representability, using the halting problem
▶ Assuming strong separability, using recursively inseparable predicates
▶ Mechanised in only about 450 stand-alone lines of Coq, 200 for the strongest result

▶ Instantiated those proofs to first-order Robinson arithmetic using Rosser’s trick
▶ Relying on libraries of undecidability13 and first-order logic14

▶ Mechanised in around 2200 lines of Coq

▶ Future Work:
▶ Church’s thesis for Robinson arithmetic
▶ Avoid DPRM
▶ Gödel’s second incompleteness theorem

13Forster et al. 2020.
14Kirst, Hostert, et al. 2022.

17 / 17



References I

(https://math.stackexchange.com/users/21820/user21820), user21820
(Dec. 31, 2021). Computability Viewpoint of Godel/Rosser’s Incompleteness
Theorem. Mathematics Stack Exchange. URL:
https://math.stackexchange.com/q/2486349 (visited on 03/22/2022).
Aaronson, Scott (July 21, 2011). Rosser’s theorem via Turing machines.
Shtetl-Optimized. URL: https://scottaaronson.blog/?p=710 (visited on
02/28/2022).
Bauer, Andrej (2006). “First Steps in Synthetic Computability Theory”. In:
Electronic Notes in Theoretical Computer Science 155, pp. 5–31.
Forster, Yannick (2022). “Parametric Church’s Thesis: Synthetic Computability
Without Choice”. In: International Symposium on Logical Foundations of
Computer Science, pp. 70–89.

18 / 17

https://math.stackexchange.com/users/21820/user21820
https://math.stackexchange.com/q/2486349
https://scottaaronson.blog/?p=710


References II

Forster, Yannick et al. (2020). “A Coq Library of Undecidable Problems”. In:
CoqPL 2020 The Sixth International Workshop on Coq for Programming
Languages.
Harrison, John (2009). Handbook of Practical Logic and Automated Reasoning.
Cambridge University Press.
Kirst, Dominik and Marc Hermes (2021). “Synthetic Undecidability and
Incompleteness of First-Order Axiom Systems in Coq”. In: ITP 2021.
Kirst, Dominik, Johannes Hostert, et al. (2022). “A Coq Library for Mechanised
First-Order Logic”. In: The Coq Workshop.
Kleene, Stephen C. (1936). “General Recursive Functions of Natural Numbers”. In:
Mathematische Annalen 112, pp. 727–742.
— (1951). “A Symmetric Form of Gödel’s theorem”. In: The Journal of Symbolic
Logic 16.2, p. 147.
— (1952). Introduction to Metamathematics. North Holland.

19 / 17



References III

Kleene, Stephen C. (1967). Mathematical Logic. Dover Publications.

Kreisel, Georg (1967). “Mathematical Logic”. In: Journal of Symbolic Logic 32.3,
pp. 419–420.
Larchey-Wendling, Dominique and Yannick Forster (2022). “Hilbert’s Tenth
Problem in Coq (Extended Version)”. In: Logical Methods in Computer Science 18.
O’Connor, Russell (2005). “Essential Incompleteness of Arithmetic Verified by
Coq”. In: Theorem Proving in Higher Order Logics, pp. 245–260.
Paulson, Lawrence C. (2014). “A Machine-Assisted Proof of Gödel’s
Incompleteness Theorems for the Theory of Hereditarily Finite Sets”. In: The
Review of Symbolic Logic 7.3, pp. 484–498.
Popescu, Andrei and Dmitriy Traytel (2019). “A Formally Verified Abstract
Account of Gödel’s Incompleteness Theorems”. In: Automated Deduction – CADE
27. Springer International Publishing, pp. 442–461.

20 / 17



References IV

Richman, Fred (1983). “Church’s Thesis Without Tears”. In: The Journal of
Symbolic Logic 48.3, pp. 797–803.
Shankar, Natarajan (1994). Metamathematics, Machines and Gödel’s Proof.
Cambridge Tracts in Theoretical Computer Science. Cambridge University Press.
Troelstra, Anne S. and Dirk van Dalen (1988). Constructivism in Mathematics, Vol
1. ISSN. Elsevier Science.
Turing, Alan M. (1936). “On Computable Numbers, with an Application to the
Entscheidungsproblem”. In: Proceedings of the London Mathematical Society 2.42,
pp. 230–265.

21 / 17



Church’s thesis

∀f : N ⇀ N. ∃φ ∈ Σ1.∀xy. fx▷ y ↔ Q ⊢ ∀y′. φ(x, y′) ↔ y = y′

22 / 17


	Appendix
	References


