Gödel's Theorem Without Tears

Essential Incompleteness in Synthetic Computability Final Bachelor Talk

Benjamin Peters

Advisor: Dominik Kirst Supervisor: Professor Gert Smolka

Saarland University

17th June, 2022

Gödel's Theorem Without Tears¹

Essential Incompleteness in Synthetic Computability

22nd June. 2022 **TYPES 2022**

Benjamin Peters Dominik Kirst

COMPUTER SCIENCE

¹Abstract title: "Strong, Synthetic, and Computational Proofs of Gödel's First Incompleteness Theorem"

Gödel's first incompleteness theorem²

Any effective, sound, and sufficiently powerful formal logic is incomplete.

²Gödel 1931.

²Gödel 1931; Rosser 1936.

Any effective, sound consistent, and sufficiently powerful formal logic is incomplete.

► Has been mechanised often³

²Gödel 1931; Rosser 1936.

³Shankar 1994; O'Connor 2005; Harrison 2009; Paulson 2014; Popescu and Traytel 2019.

- ► Has been mechanised often³
- We present Kleene's folklore and strengthened incompleteness proofs using computability theory *abstractly*

²Gödel 1931; Rosser 1936.

³Shankar 1994; O'Connor 2005; Harrison 2009; Paulson 2014; Popescu and Traytel 2019.

- ► Has been mechanised often³
- We present Kleene's folklore and strengthened incompleteness proofs using computability theory *abstractly*
- We formalise them in the setting of synthetic computability theory, avoiding low-level manipulations

²Gödel 1931; Rosser 1936.

³Shankar 1994; O'Connor 2005; Harrison 2009; Paulson 2014; Popescu and Traytel 2019.

- ► Has been mechanised often³
- We present Kleene's folklore and strengthened incompleteness proofs using computability theory *abstractly*
- We formalise them in the setting of synthetic computability theory, avoiding low-level manipulations
- ► We instantiate these results to first-order Robinson arithmetic

²Gödel 1931; Rosser 1936.

³Shankar 1994; O'Connor 2005; Harrison 2009; Paulson 2014; Popescu and Traytel 2019.

- ► Has been mechanised often³
- We present Kleene's folklore and strengthened incompleteness proofs using computability theory *abstractly*
- We formalise them in the setting of synthetic computability theory, avoiding low-level manipulations
- ► We instantiate these results to first-order Robinson arithmetic
- ► All results have been mechanised in Coq⁴

²Gödel 1931; Rosser 1936.

³Shankar 1994; O'Connor 2005; Harrison 2009; Paulson 2014; Popescu and Traytel 2019.

⁴https://github.com/uds-psl/coq-synthetic-incompleteness/tree/bachelor

Abstract Incompleteness Proofs

Instantiation to first-order Robinson arithmetic

We work in CIC, where we can consider the function space to only contain computable functions $% \left(\mathcal{L}^{2}\right) =\left(\mathcal{L}^{2}\right) \left(\mathcal{L}^{2}\right) \left$

⁵Richman 1983; Bauer 2006.

We work in CIC, where we can consider the function space to only contain computable functions

Definition

A predicate $P:X\to \mathbb{P}$ is

• enumerable if
$$\exists f : \mathbb{N} \to \mathcal{O}(X)$$
. $Px \leftrightarrow \exists k. fk = \lceil x \rceil$.

⁵Richman 1983; Bauer 2006.

We work in CIC, where we can consider the function space to only contain computable functions

Definition

A predicate $P: X \to \mathbb{P}$ is

- enumerable if $\exists f : \mathbb{N} \to \mathcal{O}(X)$. $Px \leftrightarrow \exists k. fk = \lceil x \rceil$.
- decidable if $\exists f: X \to \mathbb{B}$. $Px \leftrightarrow fx = tt$.

⁵Richman 1983; Bauer 2006.

- $\mathcal{F} = (S, \neg, \vdash)$ is a formal system if:
 - $\blacktriangleright \ S:\mathbb{T} \text{ is a discrete type of sentences}$

- $\mathcal{F} = (S, \neg, \vdash)$ is a formal system if:
 - \blacktriangleright $S : \mathbb{T}$ is a discrete type of sentences
 - $\blacktriangleright \ \neg: S \to S$ is a negation function

- $\mathcal{F} = (S, \neg, \vdash)$ is a formal system if:
 - $\blacktriangleright \ S:\mathbb{T} \text{ is a discrete type of sentences}$
 - $\blacktriangleright \ \neg: S \to S$ is a negation function
 - $\blacktriangleright \ \vdash : S \rightarrow \mathbb{P}$ is an enumerable provability predicate

- $\mathcal{F} = (S, \neg, \vdash)$ is a formal system if:
 - $\blacktriangleright \ S:\mathbb{T}$ is a discrete type of sentences
 - $\blacktriangleright \ \neg: S \to S$ is a negation function
 - $\blacktriangleright \ \vdash : S \rightarrow \mathbb{P}$ is an enumerable provability predicate

•
$$\mathcal{F}$$
 is consistent: $\forall s. \neg (\mathcal{F} \vdash s \land \mathcal{F} \vdash \neg s)$

- $\mathcal{F} = (S, \neg, \vdash)$ is a formal system if:
 - $\blacktriangleright \ S:\mathbb{T}$ is a discrete type of sentences
 - $\blacktriangleright \ \neg: S \to S$ is a negation function
 - $\blacktriangleright \ \vdash : S \rightarrow \mathbb{P}$ is an enumerable provability predicate
 - \mathcal{F} is consistent: $\forall s. \neg (\mathcal{F} \vdash s \land \mathcal{F} \vdash \neg s)$
- \mathcal{F} is complete if $\forall s. \mathcal{F} \vdash s \lor \mathcal{F} \vdash \neg s$.

- $\mathcal{F} = (S, \neg, \vdash)$ is a formal system if:
 - $\blacktriangleright \ S:\mathbb{T}$ is a discrete type of sentences
 - $\blacktriangleright \ \neg: S \to S$ is a negation function
 - $\blacktriangleright \ \vdash : S \rightarrow \mathbb{P}$ is an enumerable provability predicate

•
$$\mathcal{F}$$
 is consistent: $\forall s. \neg (\mathcal{F} \vdash s \land \mathcal{F} \vdash \neg s)$

 \mathcal{F} is complete if $\forall s. \mathcal{F} \vdash s \lor \mathcal{F} \vdash \neg s$.

First-order logic over a consistent and enumerable axiomatisation is a formal system in this sense

Lemma

There is a partial function $d_{\mathcal{F}}: S \rightarrow \mathbb{B}$ separating provability from refutability:

$$\forall s. (d_{\mathcal{F}} s \rhd tt \leftrightarrow \mathcal{F} \vdash s) \land (d_{\mathcal{F}} s \rhd ff \leftrightarrow \mathcal{F} \vdash \neg s)$$

If \mathcal{F} is complete, $d_{\mathcal{F}}$ is total.

Lemma

There is a partial function $d_{\mathcal{F}}: S \rightarrow \mathbb{B}$ separating provability from refutability:

$$\forall s. (d_{\mathcal{F}} s \triangleright tt \leftrightarrow \mathcal{F} \vdash s) \land (d_{\mathcal{F}} s \triangleright ff \leftrightarrow \mathcal{F} \vdash \neg s)$$

If \mathcal{F} is complete, $d_{\mathcal{F}}$ is total.

Corollary

Any complete formal system is decidable.

Let \mathcal{F} be complete and weakly represent $P: \mathbb{N} \to \mathbb{P}$, i.e., there is an $r: \mathbb{N} \to S$ s.t.:

 $\forall x. Px \leftrightarrow \mathcal{F} \vdash rx$

Then P is decidable.

⁶Kleene 1936; Turing 1936.

⁷As mechanised by Kirst and Hermes 2021.

Let \mathcal{F} be complete and weakly represent $P: \mathbb{N} \to \mathbb{P}$, i.e., there is an $r: \mathbb{N} \to S$ s.t.:

 $\forall x. Px \leftrightarrow \mathcal{F} \vdash rx$

Then P is decidable. Thus, if P is undecidable, \mathcal{F} is incomplete.

⁶Kleene 1936; Turing 1936.

⁷As mechanised by Kirst and Hermes 2021.

Axiom (EPF⁸)

There is a function $\theta : \mathbb{N} \to \mathbb{N} \rightharpoonup \mathbb{B}$ such that:

$$\forall f: \mathbb{N} \to \mathbb{B}. \exists c. f \equiv \theta c$$

⁸Richman 1983; Forster 2022.

⁹Kreisel 1967; Troelstra and van Dalen 1988.

Axiom (EPF⁸)

There is a function $\theta : \mathbb{N} \to \mathbb{N} \rightharpoonup \mathbb{B}$ such that:

$$\forall f: \mathbb{N} \to \mathbb{B}. \exists c. f \equiv \theta c$$

Definition (Self-halting problem)

The self-halting problem is defined as:

 $\mathcal{H} := \lambda x. \exists b. \, \theta x x \triangleright b$

⁸Richman 1983; Forster 2022.

⁹Kreisel 1967; Troelstra and van Dalen 1988.

Fact

Partial functions $f : \mathbb{N} \to \mathbb{B}$ agreeing with the halting problem $\mathcal{H} := \lambda x. \exists b. \theta xx \triangleright b$:

```
\forall x. \, x \in \mathcal{H} \ \leftrightarrow \ fx \rhd tt,
```

diverge on some input c, i.e., $\forall b. fc \not > b$.

Fact

Partial functions $f : \mathbb{N} \to \mathbb{B}$ agreeing with the halting problem $\mathcal{H} := \lambda x. \exists b. \theta xx \triangleright b$:

```
\forall x. x \in \mathcal{H} \iff fx \rhd tt,
```

diverge on some input c, i.e., $\forall b. fc \not > b$.

Proof.

Consider $g: \mathbb{N} \rightarrow \mathbb{B}$,

$$gx := \begin{cases} ff & \text{if } fx \triangleright tt \\ \text{undefined} & \text{otherwise} \end{cases}$$

Let c be the code of g. We have $fc \triangleright tt \leftrightarrow fc \triangleright ff$.

Assume \mathcal{F} weakly represents \mathcal{H} , i.e., there is an $r : \mathbb{N} \to S$ s.t.: $\forall x. x \in \mathcal{H} \leftrightarrow \mathcal{F} \vdash rx$ Then \mathcal{F} has an independent sentence rc:

 $\mathcal{F} \nvDash rc \land \mathcal{F} \nvDash \neg rc$

Assume \mathcal{F} weakly represents \mathcal{H} , i.e., there is an $r : \mathbb{N} \to S$ s.t.: $\forall x. x \in \mathcal{H} \leftrightarrow \mathcal{F} \vdash rx$ Then \mathcal{F} has an independent sentence rc:

 $\mathcal{F} \nvDash rc \land \mathcal{F} \nvDash \neg rc$

Proof.

 $h := d_{\mathcal{F}} \circ r : \mathbb{N}
ightarrow \mathbb{B}$ agrees with the halting problem:

$$\forall x. d_{\mathcal{F}}(rx) \triangleright tt \leftrightarrow \mathcal{F} \vdash rx \leftrightarrow x \in \mathcal{H},$$

and therefore diverges on some input c. Thus rc is independent in \mathcal{F} .

¹⁰Kleene 1952.

Consider weak representability:

 $\forall x. Px \leftrightarrow \mathcal{F} \vdash rx$

► Consider weak representability:

 $\forall x. Px \leftrightarrow \mathcal{F} \vdash rx$

Definition

A formal system \mathcal{F}' is an extension of $\mathcal{F},$ if

 $\forall s. \mathcal{F} \vdash s \rightarrow \mathcal{F}' \vdash s$

► Consider weak representability:

 $\forall x. Px \leftrightarrow \mathcal{F} \vdash rx$

Definition

A formal system \mathcal{F}' is an extension of \mathcal{F} , if

 $\forall s. \mathcal{F} \vdash s \rightarrow \mathcal{F}' \vdash s$

• Only transfers along extensions that preserve $\mathcal{F} \vdash rx \rightarrow Px$, i.e., sound extensions

Consider weak representability:

 $\forall x. Px \leftrightarrow \mathcal{F} \vdash rx$

Definition

A formal system \mathcal{F}' is an extension of \mathcal{F} , if

 $\forall s. \mathcal{F} \vdash s \rightarrow \mathcal{F}' \vdash s$

- Only transfers along extensions that preserve $\mathcal{F} \vdash rx \rightarrow Px$, i.e., sound extensions
- ► Can we do better?

Consider the following predicates:

$$\mathcal{I}_{tt} := \lambda x. \, \theta x x \triangleright tt \qquad \mathcal{I}_{ff} := \lambda x. \, \theta x x \triangleright ff$$

They are recursively inseparable, i.e., any partial function $f: \mathbb{N} \rightarrow \mathbb{B}$ s.t.

$$\forall x. (x \in \mathcal{I}_{tt} \rightarrow fx \triangleright tt) \land (x \in \mathcal{I}_{ff} \rightarrow fx \triangleright ff)$$

diverges on some input.

Assume \mathcal{F} strongly separates \mathcal{I}_{tt} and \mathcal{I}_{ff} , i.e., there is an $r : \mathbb{N} \to S$ s.t.:

$$\forall x. \, x \in \mathcal{I}_{tt} \ \rightarrow \ \mathcal{F} \vdash rx \quad \land \quad x \in \mathcal{I}_{ff} \ \rightarrow \ \mathcal{F} \vdash \neg rx$$

 \mathcal{F} has an independent sentence rc:

 $\mathcal{F} \nvDash rc \land \mathcal{F} \nvDash \neg rc$

¹¹Kleene 1951, c.f. Kleene 1952; Kleene 1967

Assume \mathcal{F} strongly separates \mathcal{I}_{tt} and \mathcal{I}_{ff} , i.e., there is an $r: \mathbb{N} \to S$ s.t.:

$$\forall x. x \in \mathcal{I}_{tt} \rightarrow \mathcal{F} \vdash rx \quad \land \quad x \in \mathcal{I}_{ff} \rightarrow \mathcal{F} \vdash \neg rx$$

 \mathcal{F} has an independent sentence rc:

 $\mathcal{F} \nvDash rc \land \mathcal{F} \nvDash \neg rc$

Proof.

 $h := d_{\mathcal{F}} \circ r : \mathbb{N} \to \mathbb{B}$ recursively separates \mathcal{I}_{tt} and \mathcal{I}_{ff} , and therefore diverges on some input c. Therefore, rc is independent in \mathcal{F} .

¹¹Kleene 1951, c.f. Kleene 1952; Kleene 1967

Assume \mathcal{F} strongly separates \mathcal{I}_{tt} and \mathcal{I}_{ff} , i.e., there is an $r : \mathbb{N} \to S$ s.t.:

$$\forall x. x \in \mathcal{I}_{tt} \rightarrow \mathcal{F} \vdash rx \quad \land \quad x \in \mathcal{I}_{ff} \rightarrow \mathcal{F} \vdash \neg rx$$

Any (consistent) extension \mathcal{F}' of \mathcal{F} has an independent sentence rc:

 $\mathcal{F}' \nvDash rc \land \mathcal{F}' \nvDash \neg rc$

Proof.

 $h := d_{\mathcal{F}'} \circ r : \mathbb{N} \to \mathbb{B}$ recursively separates \mathcal{I}_{tt} and \mathcal{I}_{ff} , and therefore diverges on some input c. Therefore, rc is independent in \mathcal{F}' .

¹¹Kleene 1951, c.f. Kleene 1952; Kleene 1967

Abstract Incompleteness Proofs

Instantiation to first-order Robinson arithmetic

Instantiating the Incompleteness Proofs

From now on: Assume θ in EPF to be an interpreter for μ -recursive functions

¹²A subset of Robinson arithmetic.

Instantiating the Incompleteness Proofs

From now on: Assume θ in EPF to be an interpreter for $\mu\text{-recursive functions}$

Lemma

 FA^{12} weakly represents any enumerable predicate $P: \mathbb{N} \to \mathbb{P}$ using a Σ_1 -formula φ :

 $\forall x. Px \leftrightarrow \mathrm{FA} \vdash \varphi(\overline{x})$

Proof.

See Kirst and Hermes 2021, relying on a mechanisation of the DPRM theorem by Larchey-Wendling and Forster 2022.

¹²A subset of Robinson arithmetic.

Instantiating the Incompleteness Proofs

From now on: Assume θ in EPF to be an interpreter for $\mu\text{-recursive functions}$

Lemma

 FA^{12} weakly represents any enumerable predicate $P : \mathbb{N} \to \mathbb{P}$ using a Σ_1 -formula φ :

 $\forall x. Px \leftrightarrow \mathrm{FA} \vdash \varphi(\overline{x})$

Proof.

See Kirst and Hermes 2021, relying on a mechanisation of the DPRM theorem by Larchey-Wendling and Forster 2022.

Goal: Show that Robinson arithmetic is strong enough to strongly separate any pair of enumerable and disjoint predicates.

¹²A subset of Robinson arithmetic.

folklore: assuming soundness		
	rec. insep. predicates strong separability	Kleene's approach
strengthened: assuming consistency		

folklore: assuming soundness

```
rec. insep. predicates strong separability
```

Kleene's approach

strengthened: assuming consistency

Gödel: assuming ω -consistency

Gödel-Rosser approach

folklore: assuming soundness

```
rec. insep. predicates strong separability
```

Kleene's approach

strengthened: assuming consistency

Gödel: assuming ω -consistency Rosser's trick Rosser: assuming consistency

Gödel-Rosser approach

folklore: assuming soundness

rec. insep. predicates ---> Rosser's trick strong separability

Kleene's approach

strengthened: assuming consistency

Gödel: assuming ω -consistency

----- Rosser's trick Rosser: assuming consistency

Gödel-Rosser approach

Let P_1, P_2 be enumerable and disjoint predicates, and $\varphi_1, \varphi_2 \in \Delta_0$ such that:

 $P_1 x \leftrightarrow \mathbf{Q} \vdash \exists k. \, \varphi_1(\overline{x}, k) \qquad P_2 x \leftrightarrow \mathbf{Q} \vdash \exists l. \, \varphi_2(\overline{x}, l)$

Let P_1, P_2 be enumerable and disjoint predicates, and $\varphi_1, \varphi_2 \in \Delta_0$ such that:

$$P_1 x \leftrightarrow \mathbf{Q} \vdash \exists k. \varphi_1(\overline{x}, k) \qquad P_2 x \leftrightarrow \mathbf{Q} \vdash \exists l. \varphi_2(\overline{x}, l)$$

We want to find Φ_1 such that for all x:

$$P_1 x \rightarrow Q \vdash \exists k. \Phi_1(\overline{x}, k) \qquad P_2 x \rightarrow Q \vdash \neg \exists k. \Phi_1(\overline{x}, k)$$

Let P_1, P_2 be enumerable and disjoint predicates, and $\varphi_1, \varphi_2 \in \Delta_0$ such that:

$$P_1 x \leftrightarrow \mathbf{Q} \vdash \exists k. \varphi_1(\overline{x}, k) \qquad P_2 x \leftrightarrow \mathbf{Q} \vdash \exists l. \varphi_2(\overline{x}, l)$$

We want to find Φ_1 such that for all x:

$$P_1 x \rightarrow \mathbf{Q} \vdash \exists k. \, \Phi_1(\overline{x}, k) \qquad \qquad P_2 x \rightarrow \mathbf{Q} \vdash \neg \exists k. \, \Phi_1(\overline{x}, k)$$

Let P_1, P_2 be enumerable and disjoint predicates, and $\varphi_1, \varphi_2 \in \Delta_0$ such that:

$$P_1 x \leftrightarrow \mathbf{Q} \vdash \exists k. \varphi_1(\overline{x}, k) \qquad P_2 x \leftrightarrow \mathbf{Q} \vdash \exists l. \varphi_2(\overline{x}, l)$$

We want to find Φ_1 such that for all x:

$$P_1 x \rightarrow \mathbf{Q} \vdash \exists k. \, \Phi_1(\overline{x}, k) \qquad \qquad P_2 x \rightarrow \mathbf{Q} \vdash \neg \exists k. \, \Phi_1(\overline{x}, k)$$

Let P_1, P_2 be enumerable and disjoint predicates, and $\varphi_1, \varphi_2 \in \Delta_0$ such that:

$$P_1 x \leftrightarrow \mathbf{Q} \vdash \exists k. \varphi_1(\overline{x}, k) \qquad P_2 x \leftrightarrow \mathbf{Q} \vdash \exists l. \varphi_2(\overline{x}, l)$$

We want to find Φ_1 such that for all x:

 $P_1 x \rightarrow \mathbf{Q} \vdash \exists k. \, \Phi_1(\overline{x}, k) \qquad \qquad P_2 x \rightarrow \mathbf{Q} \vdash \neg \exists k. \, \Phi_1(\overline{x}, k)$

$$\Phi_1(x,k) := \varphi_1(x,k) \land \forall k' \le k. \neg \varphi_2(x,k')$$

Let P_1, P_2 be enumerable and disjoint predicates, and $\varphi_1, \varphi_2 \in \Delta_0$ such that:

$$P_1 x \leftrightarrow \mathbf{Q} \vdash \exists k. \, \varphi_1(\overline{x}, k) \qquad P_2 x \leftrightarrow \mathbf{Q} \vdash \exists l. \, \varphi_2(\overline{x}, l)$$

We want to find Φ_1 such that for all x:

 $P_1 x \rightarrow \mathbf{Q} \vdash \exists k. \, \Phi_1(\overline{x}, k) \qquad \qquad P_2 x \rightarrow \mathbf{Q} \vdash \neg \exists k. \, \Phi_1(\overline{x}, k)$

Let P_1, P_2 be enumerable and disjoint predicates, and $\varphi_1, \varphi_2 \in \Delta_0$ such that:

$$P_1 x \leftrightarrow \mathbf{Q} \vdash \exists k. \, \varphi_1(\overline{x}, k) \qquad P_2 x \leftrightarrow \mathbf{Q} \vdash \exists l. \, \varphi_2(\overline{x}, l)$$

We want to find Φ_1 such that for all x:

 $P_1 x \ \rightarrow \ \mathbf{Q} \vdash \exists k. \ \Phi_1(\overline{x}, k) \qquad \qquad P_2 x \ \rightarrow \ \mathbf{Q} \vdash \neg \exists k. \ \Phi_1(\overline{x}, k)$

Let P_1, P_2 be enumerable and disjoint predicates, and $\varphi_1, \varphi_2 \in \Delta_0$ such that:

$$P_1 x \leftrightarrow \mathbf{Q} \vdash \exists k. \, \varphi_1(\overline{x}, k) \qquad P_2 x \leftrightarrow \mathbf{Q} \vdash \exists l. \, \varphi_2(\overline{x}, l)$$

We want to find Φ_1 such that for all x:

 $P_1 x \rightarrow \mathbf{Q} \vdash \exists k. \, \Phi_1(\overline{x}, k) \qquad \qquad P_2 x \rightarrow \mathbf{Q} \vdash \neg \exists k. \, \Phi_1(\overline{x}, k)$

Let P_1, P_2 be enumerable and disjoint predicates, and $\varphi_1, \varphi_2 \in \Delta_0$ such that:

$$P_1 x \leftrightarrow \mathbf{Q} \vdash \exists k. \, \varphi_1(\overline{x}, k) \qquad P_2 x \leftrightarrow \mathbf{Q} \vdash \exists l. \, \varphi_2(\overline{x}, l)$$

We want to find Φ_1 such that for all x:

 $P_1 x \rightarrow \mathbf{Q} \vdash \exists k. \, \Phi_1(\overline{x}, k) \qquad \qquad P_2 x \rightarrow \mathbf{Q} \vdash \neg \exists k. \, \Phi_1(\overline{x}, k)$

Robinson arithmetic is essentially incomplete.

 $\forall T \supseteq \mathbf{Q}. \quad T \text{ enumerable } \rightarrow \quad T \nvDash \bot \rightarrow$

$$\exists \varphi. T \nvDash \varphi \wedge T \nvDash \neg \varphi$$

Robinson arithmetic is essentially incomplete.

 $\forall T \supseteq \mathbf{Q}. \quad T \text{ enumerable } \rightarrow \quad T \nvDash \bot \quad \rightarrow \qquad \qquad \exists \varphi. \, T \nvDash \varphi \wedge T \nvDash \neg \varphi$

 $\forall T \supseteq Q. \quad T \text{ enumerable } \rightarrow \quad \mathbb{N} \vDash T \quad \rightarrow \quad (\forall \varphi. \ T \vdash \varphi \lor T \vdash \neg \varphi) \quad \rightarrow \quad \mathcal{H}_{\mathrm{TM}} \text{ decidable}$

Summary

- Gave abstract incompleteness proofs due to Kleene in different strengths, reformulated in synthetic computability
 - Assuming weak representability, using the halting problem
 - Assuming strong separability, using recursively inseparable predicates
 - ► Mechanised in only about 450 stand-alone lines of Coq, 200 for the strongest result

¹³Forster et al. 2020.
¹⁴Kirst, Hostert, et al. 2022.

Summary

- Gave abstract incompleteness proofs due to Kleene in different strengths, reformulated in synthetic computability
 - Assuming weak representability, using the halting problem
 - ► Assuming strong separability, using recursively inseparable predicates
 - ► Mechanised in only about 450 stand-alone lines of Coq, 200 for the strongest result
- ► Instantiated those proofs to first-order Robinson arithmetic using Rosser's trick
 - Relying on libraries of undecidability¹³ and first-order logic¹⁴
 - Mechanised in around 2200 lines of Coq

¹³Forster et al. 2020.
¹⁴Kirst Hostert et al. 2022.

Summary

- Gave abstract incompleteness proofs due to Kleene in different strengths, reformulated in synthetic computability
 - Assuming weak representability, using the halting problem
 - Assuming strong separability, using recursively inseparable predicates
 - ► Mechanised in only about 450 stand-alone lines of Coq, 200 for the strongest result
- ► Instantiated those proofs to first-order Robinson arithmetic using Rosser's trick
 - Relying on libraries of undecidability¹³ and first-order logic¹⁴
 - Mechanised in around 2200 lines of Coq
- ► Future Work:
 - Church's thesis for Robinson arithmetic
 - Avoid DPRM
 - Gödel's second incompleteness theorem

¹³Forster et al. 2020.

¹⁴Kirst, Hostert, et al. 2022.

 (https://math.stackexchange.com/users/21820/user21820), user21820
 (Dec. 31, 2021). Computability Viewpoint of Godel/Rosser's Incompleteness Theorem. Mathematics Stack Exchange. URL:

https://math.stackexchange.com/q/2486349 (visited on 03/22/2022).

- Aaronson, Scott (July 21, 2011). Rosser's theorem via Turing machines. Shtetl-Optimized. URL: https://scottaaronson.blog/?p=710 (visited on 02/28/2022).
- Bauer, Andrej (2006). "First Steps in Synthetic Computability Theory". In: *Electronic Notes in Theoretical Computer Science* 155, pp. 5–31.
- Forster, Yannick (2022). "Parametric Church's Thesis: Synthetic Computability Without Choice". In: International Symposium on Logical Foundations of Computer Science, pp. 70–89.

References II

- Forster, Yannick et al. (2020). "A Coq Library of Undecidable Problems". In: CoqPL 2020 The Sixth International Workshop on Coq for Programming Languages.
- Harrison, John (2009). Handbook of Practical Logic and Automated Reasoning. Cambridge University Press.
- Kirst, Dominik and Marc Hermes (2021). "Synthetic Undecidability and Incompleteness of First-Order Axiom Systems in Coq". In: *ITP 2021*.
- Kirst, Dominik, Johannes Hostert, et al. (2022). "A Coq Library for Mechanised First-Order Logic". In: *The Coq Workshop*.
- Kleene, Stephen C. (1936). "General Recursive Functions of Natural Numbers". In: *Mathematische Annalen* 112, pp. 727–742.
- (1951). "A Symmetric Form of Gödel's theorem". In: The Journal of Symbolic Logic 16.2, p. 147.
- **—** (1952). Introduction to Metamathematics. North Holland.

References III

- Kleene, Stephen C. (1967). *Mathematical Logic*. Dover Publications.
- Kreisel, Georg (1967). "Mathematical Logic". In: Journal of Symbolic Logic 32.3, pp. 419–420.
- Larchey-Wendling, Dominique and Yannick Forster (2022). "Hilbert's Tenth Problem in Coq (Extended Version)". In: Logical Methods in Computer Science 18.
- O'Connor, Russell (2005). "Essential Incompleteness of Arithmetic Verified by Coq". In: *Theorem Proving in Higher Order Logics*, pp. 245–260.
- Paulson, Lawrence C. (2014). "A Machine-Assisted Proof of Gödel's Incompleteness Theorems for the Theory of Hereditarily Finite Sets". In: The Review of Symbolic Logic 7.3, pp. 484–498.
- Popescu, Andrei and Dmitriy Traytel (2019). "A Formally Verified Abstract Account of Gödel's Incompleteness Theorems". In: Automated Deduction – CADE 27. Springer International Publishing, pp. 442–461.

- Richman, Fred (1983). "Church's Thesis Without Tears". In: *The Journal of Symbolic Logic* 48.3, pp. 797–803.
- Shankar, Natarajan (1994). Metamathematics, Machines and Gödel's Proof. Cambridge Tracts in Theoretical Computer Science. Cambridge University Press.
- Troelstra, Anne S. and Dirk van Dalen (1988). *Constructivism in Mathematics, Vol* 1. ISSN. Elsevier Science.
- Turing, Alan M. (1936). "On Computable Numbers, with an Application to the Entscheidungsproblem". In: Proceedings of the London Mathematical Society 2.42, pp. 230–265.

$$\forall f: \mathbb{N} \to \mathbb{N}. \exists \varphi \in \Sigma_1. \forall xy. fx \triangleright y \iff Q \vdash \forall y'. \varphi(\overline{x}, y') \iff y = y'$$