Gödel's Theorem Without Tears

Essential Incompleteness in Synthetic Computability

Final Bachelor Talk

Benjamin Peters
Advisor: Dominik Kirst
Supervisor: Professor Gert Smolka

Saarland University
$17^{\text {th }}$ June, 2022

Gödel's Theorem Without Tears ${ }^{1}$

Essential Incompleteness in Synthetic Computability

$22^{\text {nd }}$ June, 2022
TYPES 2022

[^0]
Gödel's First Incompleteness Theorem

Gödel's first incompleteness theorem ${ }^{2}$
Any effective, sound, and sufficiently powerful formal logic is incomplete.

[^1]
Gödel's First Incompleteness Theorem

Gödel-Rosser incompleteness theorem ${ }^{2}$
Any effective, sound consistent, and sufficiently powerful formal logic is incomplete.

[^2]
Gödel's First Incompleteness Theorem

Gödel-Rosser incompleteness theorem ${ }^{2}$
Any effective, sound consistent, and sufficiently powerful formal logic is incomplete.

- Has been mechanised often ${ }^{3}$

[^3]
Gödel's First Incompleteness Theorem

Gödel-Rosser incompleteness theorem ${ }^{2}$
Any effective, sound consistent, and sufficiently powerful formal logic is incomplete.

- Has been mechanised often ${ }^{3}$
- We present Kleene's folklore and strengthened incompleteness proofs using computability theory abstractly

[^4]
Gödel's First Incompleteness Theorem

Gödel-Rosser incompleteness theorem ${ }^{2}$
Any effective, sound consistent, and sufficiently powerful formal logic is incomplete.

- Has been mechanised often ${ }^{3}$
- We present Kleene's folklore and strengthened incompleteness proofs using computability theory abstractly
- We formalise them in the setting of synthetic computability theory, avoiding low-level manipulations

[^5]
Gödel's First Incompleteness Theorem

Gödel-Rosser incompleteness theorem ${ }^{2}$
Any effective, sound consistent, and sufficiently powerful formal logic is incomplete.

- Has been mechanised often ${ }^{3}$
- We present Kleene's folklore and strengthened incompleteness proofs using computability theory abstractly
- We formalise them in the setting of synthetic computability theory, avoiding low-level manipulations
- We instantiate these results to first-order Robinson arithmetic

[^6]
Gödel's First Incompleteness Theorem

Gödel-Rosser incompleteness theorem ${ }^{2}$
Any effective, sound consistent, and sufficiently powerful formal logic is incomplete.

- Has been mechanised often ${ }^{3}$
- We present Kleene's folklore and strengthened incompleteness proofs using computability theory abstractly
- We formalise them in the setting of synthetic computability theory, avoiding low-level manipulations
- We instantiate these results to first-order Robinson arithmetic
- All results have been mechanised in Coq ${ }^{4}$

[^7]
Abstract Incompleteness Proofs

Instantiation to first-order Robinson arithmetic

Synthetic Computability ${ }^{5}$

We work in CIC, where we can consider the function space to only contain computable functions

[^8]
Synthetic Computability ${ }^{5}$

We work in CIC, where we can consider the function space to only contain computable functions

Definition

A predicate $P: X \rightarrow \mathbb{P}$ is

- enumerable if $\exists f: \mathbb{N} \rightarrow \mathcal{O}(X) . P x \leftrightarrow \exists k . f k=\ulcorner x\urcorner$.

[^9]
Synthetic Computability ${ }^{5}$

We work in CIC, where we can consider the function space to only contain computable functions

Definition

A predicate $P: X \rightarrow \mathbb{P}$ is

- enumerable if $\exists f: \mathbb{N} \rightarrow \mathcal{O}(X) . P x \leftrightarrow \exists k . f k=\ulcorner x\urcorner$.
- decidable if $\exists f: X \rightarrow \mathbb{B} . P x \leftrightarrow f x=t t$.

[^10]
Formal Systems

Definition (Formal system)
$\mathcal{F}=(S, \neg, \vdash)$ is a formal system if:

- $S: \mathbb{T}$ is a discrete type of sentences

Formal Systems

> Definition (Formal system)
> $\mathcal{F}=(S, \neg, \vdash)$ is a formal system if:
> $\neg S: \mathbb{T}$ is a discrete type of sentences
> $\neg \neg S \rightarrow S$ is a negation function

Formal Systems

$$
\begin{aligned}
& \text { Definition (Formal system) } \\
& \mathcal{F}=(S, \neg, \vdash) \text { is a formal system if: } \\
& \text { - } S: \mathbb{T} \text { is a discrete type of sentences } \\
& \text { - } \neg: S \rightarrow S \text { is a negation function } \\
& -\vdash: S \rightarrow \mathbb{P} \text { is an enumerable provability predicate }
\end{aligned}
$$

Formal Systems

Definition (Formal system)
$\mathcal{F}=(S, \neg, \vdash)$ is a formal system if:

- $S: \mathbb{T}$ is a discrete type of sentences
- $\neg: S \rightarrow S$ is a negation function
- $\vdash: S \rightarrow \mathbb{P}$ is an enumerable provability predicate
- \mathcal{F} is consistent: $\forall s . \neg(\mathcal{F} \vdash s \wedge \mathcal{F} \vdash \neg s)$

Formal Systems

Definition (Formal system)
$\mathcal{F}=(S, \neg, \vdash)$ is a formal system if:

- $S: \mathbb{T}$ is a discrete type of sentences
- $\neg: S \rightarrow S$ is a negation function
- $\vdash: S \rightarrow \mathbb{P}$ is an enumerable provability predicate
- \mathcal{F} is consistent: $\forall s . \neg(\mathcal{F} \vdash s \wedge \mathcal{F} \vdash \neg s)$
\mathcal{F} is complete if $\forall s . \mathcal{F} \vdash s \vee \mathcal{F} \vdash \neg s$.

Formal Systems

Definition (Formal system)

$\mathcal{F}=(S, \neg, \vdash)$ is a formal system if:

- $S: \mathbb{T}$ is a discrete type of sentences
- $\neg: S \rightarrow S$ is a negation function
- $\vdash: S \rightarrow \mathbb{P}$ is an enumerable provability predicate
- \mathcal{F} is consistent: $\forall s . \neg(\mathcal{F} \vdash s \wedge \mathcal{F} \vdash \neg s)$
\mathcal{F} is complete if $\forall s . \mathcal{F} \vdash s \vee \mathcal{F} \vdash \neg s$.
First-order logic over a consistent and enumerable axiomatisation is a formal system in this sense

Decidable Formal Systems

Lemma

There is a partial function $d_{\mathcal{F}}: S \rightharpoonup \mathbb{B}$ separating provability from refutability:

$$
\forall s .\left(d_{\mathcal{F}} s \triangleright t t \leftrightarrow \mathcal{F} \vdash s\right) \wedge\left(d_{\mathcal{F}} s \triangleright f f \leftrightarrow \mathcal{F} \vdash \neg s\right)
$$

If \mathcal{F} is complete, $d_{\mathcal{F}}$ is total.

Decidable Formal Systems

Lemma

There is a partial function $d_{\mathcal{F}}: S \rightharpoonup \mathbb{B}$ separating provability from refutability:

$$
\forall s .\left(d_{\mathcal{F}} s \triangleright t t \leftrightarrow \mathcal{F} \vdash s\right) \wedge\left(d_{\mathcal{F}} s \triangleright f f \leftrightarrow \mathcal{F} \vdash \neg s\right)
$$

If \mathcal{F} is complete, $d_{\mathcal{F}}$ is total.

Corollary

Any complete formal system is decidable.

Kleene's Folklore Incompleteness Proof ${ }^{6,7}$

Theorem

Let \mathcal{F} be complete and weakly represent $P: \mathbb{N} \rightarrow \mathbb{P}$, i.e., there is an $r: \mathbb{N} \rightarrow S$ s.t.:

$$
\forall x . P x \leftrightarrow \mathcal{F} \vdash r x
$$

Then P is decidable.
${ }^{6}$ Kleene 1936; Turing 1936.
${ }^{7}$ As mechanised by Kirst and Hermes 2021.

Kleene's Folklore Incompleteness Proof ${ }^{6,7}$

Theorem

Let \mathcal{F} be complete and weakly represent $P: \mathbb{N} \rightarrow \mathbb{P}$, i.e., there is an $r: \mathbb{N} \rightarrow S$ s.t.:

$$
\forall x . P x \leftrightarrow \mathcal{F} \vdash r x
$$

Then P is decidable. Thus, if P is undecidable, \mathcal{F} is incomplete.

[^11]
Church's Thesis ${ }^{9}$

Axiom (EPF ${ }^{8}$)

There is a function $\theta: \mathbb{N} \rightarrow \mathbb{N} \rightharpoonup \mathbb{B}$ such that:

$$
\forall f: \mathbb{N} \rightharpoonup \mathbb{B} . \exists c . f \equiv \theta c
$$

${ }^{8}$ Richman 1983; Forster 2022.
${ }^{9}$ Kreisel 1967; Troelstra and van Dalen 1988.

Church's Thesis ${ }^{9}$

Axiom (EPF ${ }^{8}$)

There is a function $\theta: \mathbb{N} \rightarrow \mathbb{N} \rightharpoonup \mathbb{B}$ such that:

$$
\forall f: \mathbb{N} \rightharpoonup \mathbb{B} . \exists c . f \equiv \theta c
$$

Definition (Self-halting problem)
The self-halting problem is defined as:

$$
\mathcal{H}:=\lambda x . \exists b . \theta x x \triangleright b
$$

[^12]
Self-halting problem

Fact

Partial functions $f: \mathbb{N} \rightharpoonup \mathbb{B}$ agreeing with the halting problem $\mathcal{H}:=\lambda x$. $\exists b . \theta x x \triangleright b$:

$$
\forall x . x \in \mathcal{H} \leftrightarrow f x \triangleright t t,
$$

diverge on some input c, i.e., $\forall b . f c \not \subset b$.

Self-halting problem

Fact

Partial functions $f: \mathbb{N} \rightharpoonup \mathbb{B}$ agreeing with the halting problem $\mathcal{H}:=\lambda x$. $\exists b . \theta x x \triangleright b$:

$$
\forall x . x \in \mathcal{H} \leftrightarrow f x \triangleright t t
$$

diverge on some input c, i.e., $\forall b . f c \not \subset b$.

Proof.

Consider $g: \mathbb{N} \rightharpoonup \mathbb{B}$,

$$
g x:= \begin{cases}f f & \text { if } f x \triangleright t t \\ \text { undefined } & \text { otherwise }\end{cases}
$$

Let c be the code of g. We have $f c \triangleright t t \leftrightarrow f c \triangleright f f$.

Strengthening the Folklore Proof ${ }^{10}$

Theorem

Assume \mathcal{F} weakly represents \mathcal{H}, i.e., there is an $r: \mathbb{N} \rightarrow S$ s.t.: $\forall x . x \in \mathcal{H} \leftrightarrow \mathcal{F} \vdash r x$ Then \mathcal{F} has an independent sentence $r c$:

$$
\mathcal{F} \nvdash r c \wedge \mathcal{F} \nvdash \neg r c
$$

[^13]
Strengthening the Folklore Proof ${ }^{10}$

Theorem

Assume \mathcal{F} weakly represents \mathcal{H}, i.e., there is an $r: \mathbb{N} \rightarrow S$ s.t.: $\forall x . x \in \mathcal{H} \leftrightarrow \mathcal{F} \vdash r x$ Then \mathcal{F} has an independent sentence $r c$:

$$
\mathcal{F} \nvdash r c \wedge \mathcal{F} \nvdash \neg r c
$$

Proof.

$h:=d_{\mathcal{F}} \circ r: \mathbb{N} \rightharpoonup \mathbb{B}$ agrees with the halting problem:

$$
\forall x . d_{\mathcal{F}}(r x) \triangleright t t \leftrightarrow \mathcal{F} \vdash r x \leftrightarrow x \in \mathcal{H}
$$

and therefore diverges on some input c. Thus $r c$ is independent in \mathcal{F}.

[^14]
Going from Soundness to Consistency

- Consider weak representability:

$$
\forall x . P x \leftrightarrow \mathcal{F} \vdash r x
$$

Going from Soundness to Consistency

- Consider weak representability:

$$
\forall x . P x \leftrightarrow \mathcal{F} \vdash r x
$$

Definition

A formal system \mathcal{F}^{\prime} is an extension of \mathcal{F}, if

$$
\forall s . \mathcal{F} \vdash s \rightarrow \mathcal{F}^{\prime} \vdash s
$$

Going from Soundness to Consistency

- Consider weak representability:

$$
\forall x . P x \leftrightarrow \mathcal{F} \vdash r x
$$

Definition

A formal system \mathcal{F}^{\prime} is an extension of \mathcal{F}, if

$$
\forall s . \mathcal{F} \vdash s \rightarrow \mathcal{F}^{\prime} \vdash s
$$

- Only transfers along extensions that preserve $\mathcal{F} \vdash r x \rightarrow P x$, i.e., sound extensions

Going from Soundness to Consistency

- Consider weak representability:

$$
\forall x . P x \leftrightarrow \mathcal{F} \vdash r x
$$

Definition

A formal system \mathcal{F}^{\prime} is an extension of \mathcal{F}, if

$$
\forall s . \mathcal{F} \vdash s \rightarrow \mathcal{F}^{\prime} \vdash s
$$

- Only transfers along extensions that preserve $\mathcal{F} \vdash r x \rightarrow P x$, i.e., sound extensions
- Can we do better?

Recursively Inseparable Predicates

Theorem

Consider the following predicates:

$$
\mathcal{I}_{t t}:=\lambda x . \theta x x \triangleright t t \quad \mathcal{I}_{f f}:=\lambda x . \theta x x \triangleright f f
$$

They are recursively inseparable, i.e., any partial function $f: \mathbb{N} \rightharpoonup \mathbb{B}$ s.t.

$$
\forall x .\left(x \in \mathcal{I}_{t t} \rightarrow f x \triangleright t t\right) \quad \wedge \quad\left(x \in \mathcal{I}_{f f} \rightarrow f x \triangleright f f\right)
$$

diverges on some input.

Kleene's Improved Incompleteness Proof ${ }^{11}$

Theorem

Assume \mathcal{F} strongly separates $\mathcal{I}_{t t}$ and $\mathcal{I}_{f f}$, i.e., there is an $r: \mathbb{N} \rightarrow S$ s.t.:

$$
\forall x . x \in \mathcal{I}_{t t} \rightarrow \mathcal{F} \vdash r x \quad \wedge \quad x \in \mathcal{I}_{f f} \rightarrow \mathcal{F} \vdash \neg r x
$$

\mathcal{F} has an independent sentence $r c$:

$$
\mathcal{F} \nvdash r c \wedge \mathcal{F} \nvdash \neg r c
$$

[^15]
Kleene's Improved Incompleteness Proof ${ }^{11}$

Theorem

Assume \mathcal{F} strongly separates $\mathcal{I}_{t t}$ and $\mathcal{I}_{f f}$, i.e., there is an $r: \mathbb{N} \rightarrow S$ s.t.:

$$
\forall x . x \in \mathcal{I}_{t t} \rightarrow \mathcal{F} \vdash r x \quad \wedge \quad x \in \mathcal{I}_{f f} \rightarrow \mathcal{F} \vdash \neg r x
$$

\mathcal{F} has an independent sentence $r c$:

$$
\mathcal{F} \nvdash r c \wedge \mathcal{F} \nvdash \neg r c
$$

Proof.

$h:=d_{\mathcal{F}} \circ r: \mathbb{N} \rightharpoonup \mathbb{B}$ recursively separates $\mathcal{I}_{t t}$ and $\mathcal{I}_{f f}$, and therefore diverges on some input c. Therefore, $r c$ is independent in \mathcal{F}.

[^16]
Kleene's Improved Incompleteness Proof ${ }^{11}$

Theorem

Assume \mathcal{F} strongly separates $\mathcal{I}_{t t}$ and $\mathcal{I}_{f f}$, i.e., there is an $r: \mathbb{N} \rightarrow S$ s.t.:

$$
\forall x . x \in \mathcal{I}_{t t} \rightarrow \mathcal{F} \vdash r x \quad \wedge \quad x \in \mathcal{I}_{f f} \rightarrow \mathcal{F} \vdash \neg r x
$$

Any (consistent) extension \mathcal{F}^{\prime} of \mathcal{F} has an independent sentence $r c$:

$$
\mathcal{F}^{\prime} \nvdash r c \wedge \mathcal{F}^{\prime} \nvdash \neg r c
$$

Proof.

$h:=d_{\mathcal{F}^{\prime}} \circ r: \mathbb{N} \rightharpoonup \mathbb{B}$ recursively separates $\mathcal{I}_{t t}$ and $\mathcal{I}_{f f}$, and therefore diverges on some input c. Therefore, $r c$ is independent in \mathcal{F}^{\prime}.

[^17]
Abstract Incompleteness Proofs

Instantiation to first-order Robinson arithmetic

Instantiating the Incompleteness Proofs

From now on: Assume θ in EPF to be an interpreter for μ-recursive functions

[^18]
Instantiating the Incompleteness Proofs

From now on: Assume θ in EPF to be an interpreter for μ-recursive functions

Lemma

FA 12 weakly represents any enumerable predicate $P: \mathbb{N} \rightarrow \mathbb{P}$ using a Σ_{1}-formula φ :

$$
\forall x . P x \leftrightarrow \mathrm{FA} \vdash \varphi(\bar{x})
$$

Proof.

See Kirst and Hermes 2021, relying on a mechanisation of the DPRM theorem by Larchey-Wendling and Forster 2022.

[^19]
Instantiating the Incompleteness Proofs

From now on: Assume θ in EPF to be an interpreter for μ-recursive functions

Lemma

FA ${ }^{12}$ weakly represents any enumerable predicate $P: \mathbb{N} \rightarrow \mathbb{P}$ using a Σ_{1}-formula φ :

$$
\forall x . P x \leftrightarrow \mathrm{FA} \vdash \varphi(\bar{x})
$$

Proof.

See Kirst and Hermes 2021, relying on a mechanisation of the DPRM theorem by Larchey-Wendling and Forster 2022.

Goal: Show that Robinson arithmetic is strong enough to strongly separate any pair of enumerable and disjoint predicates.

[^20]
Path Towards Rosser's Trick

folklore: assuming soundness
rec. insep. predicates strong separability

Kleene's approach
strengthened: assuming consistency

Path Towards Rosser's Trick

folklore: assuming soundness rec. insep. predicates strong separability

Kleene's approach
strengthened: assuming consistency

Gödel: assuming ω-consistency
Gödel-Rosser approach

Path Towards Rosser's Trick

folklore: assuming soundness rec. insep. predicates strong separability

Kleene's approach
strengthened: assuming consistency

Gödel: assuming ω-consistency
Rosser's trick

Gödel-Rosser approach

Rosser: assuming consistency

Path Towards Rosser's Trick

Rosser's Trick for Strong Separability

Let P_{1}, P_{2} be enumerable and disjoint predicates, and $\varphi_{1}, \varphi_{2} \in \Delta_{0}$ such that:

$$
P_{1} x \leftrightarrow \mathrm{Q} \vdash \exists k . \varphi_{1}(\bar{x}, k) \quad P_{2} x \leftrightarrow \mathrm{Q} \vdash \exists l . \varphi_{2}(\bar{x}, l)
$$

Rosser's Trick for Strong Separability

Let P_{1}, P_{2} be enumerable and disjoint predicates, and $\varphi_{1}, \varphi_{2} \in \Delta_{0}$ such that:

$$
P_{1} x \leftrightarrow \mathrm{Q} \vdash \exists k . \varphi_{1}(\bar{x}, k) \quad P_{2} x \leftrightarrow \mathrm{Q} \vdash \exists l . \varphi_{2}(\bar{x}, l)
$$

We want to find Φ_{1} such that for all x :

$$
P_{1} x \rightarrow \mathrm{Q} \vdash \exists k . \Phi_{1}(\bar{x}, k) \quad P_{2} x \rightarrow \mathrm{Q} \vdash \neg \exists k . \Phi_{1}(\bar{x}, k)
$$

Rosser's Trick for Strong Separability

Let P_{1}, P_{2} be enumerable and disjoint predicates, and $\varphi_{1}, \varphi_{2} \in \Delta_{0}$ such that:

$$
P_{1} x \leftrightarrow \mathrm{Q} \vdash \exists k . \varphi_{1}(\bar{x}, k) \quad P_{2} x \leftrightarrow \mathrm{Q} \vdash \exists l . \varphi_{2}(\bar{x}, l)
$$

We want to find Φ_{1} such that for all x :

$$
P_{1} x \rightarrow \mathrm{Q} \vdash \exists k . \Phi_{1}(\bar{x}, k) \quad \quad P_{2} x \rightarrow \mathrm{Q} \vdash \neg \exists k . \Phi_{1}(\bar{x}, k)
$$

Rosser's Trick for Strong Separability

Let P_{1}, P_{2} be enumerable and disjoint predicates, and $\varphi_{1}, \varphi_{2} \in \Delta_{0}$ such that:

$$
P_{1} x \leftrightarrow \mathrm{Q} \vdash \exists k . \varphi_{1}(\bar{x}, k) \quad P_{2} x \leftrightarrow \mathrm{Q} \vdash \exists l . \varphi_{2}(\bar{x}, l)
$$

We want to find Φ_{1} such that for all x :

$$
P_{1} x \rightarrow \mathrm{Q} \vdash \exists k . \Phi_{1}(\bar{x}, k) \quad \quad P_{2} x \rightarrow \mathrm{Q} \vdash \neg \exists k . \Phi_{1}(\bar{x}, k)
$$

Rosser's Trick for Strong Separability

Let P_{1}, P_{2} be enumerable and disjoint predicates, and $\varphi_{1}, \varphi_{2} \in \Delta_{0}$ such that:

$$
P_{1} x \leftrightarrow \mathrm{Q} \vdash \exists k . \varphi_{1}(\bar{x}, k) \quad P_{2} x \leftrightarrow \mathrm{Q} \vdash \exists l . \varphi_{2}(\bar{x}, l)
$$

We want to find Φ_{1} such that for all x :

$$
P_{1} x \rightarrow \mathrm{Q} \vdash \exists k . \Phi_{1}(\bar{x}, k) \quad P_{2} x \rightarrow \mathrm{Q} \vdash \neg \exists k . \Phi_{1}(\bar{x}, k)
$$

$$
\Phi_{1}(x, k):=\varphi_{1}(x, k) \wedge \forall k^{\prime} \leq k . \neg \varphi_{2}\left(x, k^{\prime}\right)
$$

Rosser's Trick for Strong Separability

Let P_{1}, P_{2} be enumerable and disjoint predicates, and $\varphi_{1}, \varphi_{2} \in \Delta_{0}$ such that:

$$
P_{1} x \leftrightarrow \mathrm{Q} \vdash \exists k . \varphi_{1}(\bar{x}, k) \quad P_{2} x \leftrightarrow \mathrm{Q} \vdash \exists l . \varphi_{2}(\bar{x}, l)
$$

We want to find Φ_{1} such that for all x :

$$
P_{1} x \rightarrow \mathrm{Q} \vdash \exists k . \Phi_{1}(\bar{x}, k) \quad P_{2} x \rightarrow \mathrm{Q} \vdash \neg \exists k . \Phi_{1}(\bar{x}, k)
$$

$$
\Phi_{1}(x, k):=\varphi_{1}(x, k) \wedge \forall k^{\prime} \leq k . \neg \varphi_{2}\left(x, k^{\prime}\right)
$$

Rosser's Trick for Strong Separability

Let P_{1}, P_{2} be enumerable and disjoint predicates, and $\varphi_{1}, \varphi_{2} \in \Delta_{0}$ such that:

$$
P_{1} x \leftrightarrow \mathrm{Q} \vdash \exists k . \varphi_{1}(\bar{x}, k) \quad P_{2} x \leftrightarrow \mathrm{Q} \vdash \exists l . \varphi_{2}(\bar{x}, l)
$$

We want to find Φ_{1} such that for all x :

$$
P_{1} x \rightarrow \mathrm{Q} \vdash \exists k . \Phi_{1}(\bar{x}, k) \quad \quad P_{2} x \rightarrow \mathrm{Q} \vdash \neg \exists k . \Phi_{1}(\bar{x}, k)
$$

$$
\Phi_{1}(x, k):=\varphi_{1}(x, k) \wedge \forall k^{\prime} \leq k . \neg \varphi_{2}\left(x, k^{\prime}\right)
$$

Rosser's Trick for Strong Separability

Let P_{1}, P_{2} be enumerable and disjoint predicates, and $\varphi_{1}, \varphi_{2} \in \Delta_{0}$ such that:

$$
P_{1} x \leftrightarrow \mathrm{Q} \vdash \exists k . \varphi_{1}(\bar{x}, k) \quad P_{2} x \leftrightarrow \mathrm{Q} \vdash \exists l . \varphi_{2}(\bar{x}, l)
$$

We want to find Φ_{1} such that for all x :

$$
P_{1} x \rightarrow \mathrm{Q} \vdash \exists k . \Phi_{1}(\bar{x}, k) \quad P_{2} x \rightarrow \mathrm{Q} \vdash \neg \exists k . \Phi_{1}(\bar{x}, k)
$$

$$
\Phi_{1}(x, k):=\varphi_{1}(x, k) \wedge \forall k^{\prime} \leq k . \neg \varphi_{2}\left(x, k^{\prime}\right)
$$

Rosser's Trick for Strong Separability

Let P_{1}, P_{2} be enumerable and disjoint predicates, and $\varphi_{1}, \varphi_{2} \in \Delta_{0}$ such that:

$$
P_{1} x \leftrightarrow \mathrm{Q} \vdash \exists k . \varphi_{1}(\bar{x}, k) \quad P_{2} x \leftrightarrow \mathrm{Q} \vdash \exists l . \varphi_{2}(\bar{x}, l)
$$

We want to find Φ_{1} such that for all x :

$$
P_{1} x \rightarrow \mathrm{Q} \vdash \exists k . \Phi_{1}(\bar{x}, k) \quad \quad P_{2} x \rightarrow \mathrm{Q} \vdash \neg \exists k . \Phi_{1}(\bar{x}, k)
$$

l

$$
\Phi_{1}(x, k):=\varphi_{1}(x, k) \wedge \forall k^{\prime} \leq k . \neg \varphi_{2}\left(x, k^{\prime}\right)
$$

Instantiating the Strengthened Incompleteness Proof

Theorem

Robinson arithmetic is essentially incomplete.
$\forall T \supseteq$ Q. T enumerable $\rightarrow T \nvdash \perp \rightarrow \quad \exists \varphi . T \nvdash \varphi \wedge T \nvdash \neg \varphi$

Instantiating the Strengthened Incompleteness Proof

Theorem

Robinson arithmetic is essentially incomplete.
$\begin{array}{ccc}\forall T \supseteq \mathrm{Q} . & T \text { enumerable } \rightarrow T \nvdash \perp \rightarrow & \exists \varphi . T \nvdash \varphi \wedge T \nvdash \neg \varphi \\ \forall T \supseteq \text { Q. } \quad T \text { enumerable } \rightarrow \mathbb{N} \vDash T \rightarrow & (\forall \varphi . T \vdash \varphi \vee T \vdash \neg \varphi) \rightarrow \mathcal{H}_{\mathrm{TM}} \text { decidable }\end{array}$

Summary

- Gave abstract incompleteness proofs due to Kleene in different strengths, reformulated in synthetic computability
- Assuming weak representability, using the halting problem
- Assuming strong separability, using recursively inseparable predicates
- Mechanised in only about 450 stand-alone lines of Coq, 200 for the strongest result

[^21]
Summary

- Gave abstract incompleteness proofs due to Kleene in different strengths, reformulated in synthetic computability
- Assuming weak representability, using the halting problem
- Assuming strong separability, using recursively inseparable predicates
- Mechanised in only about 450 stand-alone lines of Coq, 200 for the strongest result
- Instantiated those proofs to first-order Robinson arithmetic using Rosser's trick
- Relying on libraries of undecidability ${ }^{13}$ and first-order $\operatorname{logic}{ }^{14}$
- Mechanised in around 2200 lines of Coq

[^22]
Summary

- Gave abstract incompleteness proofs due to Kleene in different strengths, reformulated in synthetic computability
- Assuming weak representability, using the halting problem
- Assuming strong separability, using recursively inseparable predicates
- Mechanised in only about 450 stand-alone lines of Coq, 200 for the strongest result
- Instantiated those proofs to first-order Robinson arithmetic using Rosser's trick
- Relying on libraries of undecidability ${ }^{13}$ and first-order $\operatorname{logic}{ }^{14}$
- Mechanised in around 2200 lines of Coq
- Future Work:
- Church's thesis for Robinson arithmetic
- Avoid DPRM
- Gödel's second incompleteness theorem

[^23]
References I

(https://math.stackexchange.com/users/21820/user21820), user21820 (Dec. 31, 2021). Computability Viewpoint of Godel/Rosser's Incompleteness Theorem. Mathematics Stack Exchange. URL: https://math.stackexchange.com/q/2486349 (visited on 03/22/2022).
囦 Aaronson, Scott (July 21, 2011). Rosser's theorem via Turing machines. Shtetl-Optimized. URL: https://scottaaronson.blog/?p=710 (visited on 02/28/2022).
(Bauer, Andrej (2006). "First Steps in Synthetic Computability Theory". In: Electronic Notes in Theoretical Computer Science 155, pp. 5-31.
Forster, Yannick (2022). "Parametric Church's Thesis: Synthetic Computability Without Choice". In: International Symposium on Logical Foundations of Computer Science, pp. 70-89.

References II

國 Forster，Yannick et al．（2020）．＂A Coq Library of Undecidable Problems＂．In： CoqPL 2020 The Sixth International Workshop on Coq for Programming Languages．
或 Harrison，John（2009）．Handbook of Practical Logic and Automated Reasoning． Cambridge University Press．
E Kirst，Dominik and Marc Hermes（2021）．＂Synthetic Undecidability and Incompleteness of First－Order Axiom Systems in Coq＂．In：ITP 2021.
围 Kirst，Dominik，Johannes Hostert，et al．（2022）．＂A Coq Library for Mechanised First－Order Logic＂．In：The Coq Workshop．
Kleene，Stephen C．（1936）．＂General Recursive Functions of Natural Numbers＂．In： Mathematische Annalen 112，pp．727－742．
－（1951）．＂A Symmetric Form of Gödel＇s theorem＂．In：The Journal of Symbolic Logic 16．2，p． 147.
－（1952）．Introduction to Metamathematics．North Holland．

References III

Kleene，Stephen C．（1967）．Mathematical Logic．Dover Publications．
國 Kreisel，Georg（1967）．＂Mathematical Logic＂．In：Journal of Symbolic Logic 32．3， pp．419－420．
图 Larchey－Wendling，Dominique and Yannick Forster（2022）．＂Hilbert＇s Tenth Problem in Coq（Extended Version）＂．In：Logical Methods in Computer Science 18.
國 O＇Connor，Russell（2005）．＂Essential Incompleteness of Arithmetic Verified by Coq＂．In：Theorem Proving in Higher Order Logics，pp．245－260．
E Paulson，Lawrence C．（2014）．＂A Machine－Assisted Proof of Gödel＇s Incompleteness Theorems for the Theory of Hereditarily Finite Sets＂．In：The Review of Symbolic Logic 7．3，pp．484－498．
囯 Popescu，Andrei and Dmitriy Traytel（2019）．＂A Formally Verified Abstract Account of Gödel＇s Incompleteness Theorems＂．In：Automated Deduction－CADE 27．Springer International Publishing，pp．442－461．

References IV

－Richman，Fred（1983）．＂Church＇s Thesis Without Tears＂．In：The Journal of Symbolic Logic 48．3，pp．797－803．
國 Shankar，Natarajan（1994）．Metamathematics，Machines and Gödel＇s Proof． Cambridge Tracts in Theoretical Computer Science．Cambridge University Press．
围 Troelstra，Anne S．and Dirk van Dalen（1988）．Constructivism in Mathematics，Vol 1．ISSN．Elsevier Science．
國 Turing，Alan M．（1936）．＂On Computable Numbers，with an Application to the Entscheidungsproblem＂．In：Proceedings of the London Mathematical Society 2．42， pp．230－265．

Church's thesis

$$
\forall f: \mathbb{N} \rightharpoonup \mathbb{N} . \exists \varphi \in \Sigma_{1} . \forall x y . f x \triangleright y \leftrightarrow Q \vdash \forall y^{\prime} . \varphi\left(\bar{x}, y^{\prime}\right) \leftrightarrow y=y^{\prime}
$$

[^0]: ${ }^{1}$ Abstract title: "Strong, Synthetic, and Computational Proofs of Gödel's First Incompleteness Theorem"

[^1]: ${ }^{2}$ Gödel 1931.

[^2]: ${ }^{2}$ Gödel 1931; Rosser 1936.

[^3]: ${ }^{2}$ Gödel 1931; Rosser 1936.
 ${ }^{3}$ Shankar 1994; O'Connor 2005; Harrison 2009; Paulson 2014; Popescu and Traytel 2019.

[^4]: ${ }^{2}$ Gödel 1931; Rosser 1936.
 ${ }^{3}$ Shankar 1994; O'Connor 2005; Harrison 2009; Paulson 2014; Popescu and Traytel 2019.

[^5]: ${ }^{2}$ Gödel 1931; Rosser 1936.
 ${ }^{3}$ Shankar 1994; O'Connor 2005; Harrison 2009; Paulson 2014; Popescu and Traytel 2019.

[^6]: ${ }^{2}$ Gödel 1931; Rosser 1936.
 ${ }^{3}$ Shankar 1994; O'Connor 2005; Harrison 2009; Paulson 2014; Popescu and Traytel 2019.

[^7]: ${ }^{2}$ Gödel 1931; Rosser 1936.
 ${ }^{3}$ Shankar 1994; O'Connor 2005; Harrison 2009; Paulson 2014; Popescu and Traytel 2019.
 ${ }^{4}$ https://github.com/uds-psl/coq-synthetic-incompleteness/tree/bachelor

[^8]: ${ }^{5}$ Richman 1983; Bauer 2006.

[^9]: ${ }^{5}$ Richman 1983; Bauer 2006.

[^10]: ${ }^{5}$ Richman 1983; Bauer 2006.

[^11]: ${ }^{6}$ Kleene 1936; Turing 1936.
 ${ }^{7}$ As mechanised by Kirst and Hermes 2021.

[^12]: ${ }^{8}$ Richman 1983; Forster 2022.
 ${ }^{9}$ Kreisel 1967; Troelstra and van Dalen 1988.

[^13]: ${ }^{10}$ Kleene 1952.

[^14]: ${ }^{10}$ Kleene 1952.

[^15]: ${ }^{11}$ Kleene 1951, c.f. Kleene 1952; Kleene 1967

[^16]: ${ }^{11}$ Kleene 1951, c.f. Kleene 1952; Kleene 1967

[^17]: ${ }^{11}$ Kleene 1951, c.f. Kleene 1952; Kleene 1967

[^18]: ${ }^{12} \mathrm{~A}$ subset of Robinson arithmetic.

[^19]: ${ }^{12} \mathrm{~A}$ subset of Robinson arithmetic.

[^20]: ${ }^{12} \mathrm{~A}$ subset of Robinson arithmetic.

[^21]: ${ }^{13}$ Forster et al. 2020.
 ${ }^{14}$ Kirst, Hostert, et al. 2022.

[^22]: ${ }^{13}$ Forster et al. 2020.
 ${ }^{14}$ Kirst, Hostert, et al. 2022.

[^23]: ${ }^{13}$ Forster et al. 2020.
 ${ }^{14}$ Kirst, Hostert, et al. 2022.

