
Saarland University
Faculty of Mathematics and Computer Science

Gödel’s Theorem
Without Tears

Essential Incompleteness in
Synthetic Computability

Bachelor’s Thesis

Author
Benjamin Peters

Supervisor
Prof. Dr. Gert Smolka

Advisor
Dominik Kirst

Reviewers
Prof. Dr. Gert Smolka

Prof. Dr. Markus Bläser

Submitted: 13th June 2022

iii

Eidesstattliche Erklärung

Ich erkläre hiermit an Eides statt, dass ich die vorliegende Arbeit selbstständig verfasst
und keine anderen als die angegebenen Quellen und Hilfsmittel verwendet habe.

Statement in Lieu of an Oath

I hereby confirm that I have written this thesis on my own and that I have not used any
other media or materials than the ones referred to in this thesis.

Einverständniserklärung

Ich bin damit einverstanden, dass meine (bestandene) Arbeit in beiden Versionen in die
Bibliothek der Informatik aufgenommen und damit veröffentlicht wird.

Declaration of Consent

I agree to make both versions of my thesis (with a passing grade) accessible to the public
by having them added to the library of the Computer Science Department.

Saarbrücken, 13th June, 2022

Abstract

Gödel published his groundbreaking first incompleteness theorem in 1931, stating that a
large class of formal logics admits independent sentences which are neither provable nor
refutable. This result, in conjunction with his second incompleteness theorem, established
the impossibility of resolving Hilbert’s program, which proposed a possible path towards
a single formal system unifying all of mathematics. Gödel’s incompleteness result was
strengthened further by Rosser in 1936 regarding the conditions imposed on the formal
systems.

Computability theory, which also originated in the 1930s, was quickly applied to formal
logics by Turing, Kleene, and others to yield incompleteness results similar in strength to
Gödel’s original theorem, but weaker than Rosser’s strengthening. These proofs have
become folklore in computer science. Kleene later found a stronger proof of incompleteness
using computability theory, yielding an incompleteness result as strong as Rosser’s, which
is, however, much lesser-known than the folklore proof.

In this thesis, we work in constructive type theory to reformulate Kleene’s incompleteness
results abstractly in the setting of synthetic computability theory, assuming a form
of Church’s thesis which internalises the fact that all functions in such a setting are
computable. This extremely succinct reformulation showcases the simplicity of the
computational argument while staying formally entirely precise, a combination hard to
achieve in typical textbook presentations. As an application, we instantiate the abstract
result to first-order logic to derive essential incompleteness of Robinson arithmetic.

This thesis is accompanied by a Coq mechanisation including all mentioned results and
based on existing libraries of undecidability proofs and first-order logic.

Acknowledgements

First and foremost, I want to thank my advisor, Dominik Kirst, for his advice and
support over the course of this project. I am immensely thankful for him giving me the
opportunity to work on this exciting project, and providing me with a perfect balance
between independence and additional support, as well as numerous hours of fruitful
discussions and helpful feedback.

I also would like to thank Professor Smolka for allowing me to write my Bachelor’s
thesis at his group, as well as for introducing me to computational logic through his
lectures.

I thank Marc Hermes for being a great person to share an office with, and him as well as
Johannes Hostert for their repeated support with Coq and first-order logic.

In addition, I thank Arthur Correnson, Marc Hermes, Nico Mansion, and Niklas Mück
for proof-reading this thesis.

Finally, I want to express my gratitude towards Professor Smolka and Professor Bläser
for reviewing this thesis.

Contents

1 Introduction 1
1.1 Contributions . 3
1.2 Outline . 3

2 Computational Type Theory 5
2.1 Constructive Type Theory . 5
2.2 Synthetic Computability Theory . 6

2.2.1 Basic Synthetic Notions . 7
2.2.2 Partial Functions . 7
2.2.3 Church’s Thesis . 8

3 Abstract and Synthetic Incompleteness 13
3.1 Abstract Formal Systems . 13
3.2 Folklore Proof Using Soundness . 14

3.2.1 Anonymous Incompleteness . 15
3.2.2 Informative Incompleteness . 15

3.3 Strengthened Proof Using Consistency . 16
3.4 Conclusion . 17

4 First-Order Logic 19
4.1 Syntax . 19
4.2 Semantics . 21
4.3 Natural Deduction . 22
4.4 Robinson and Peano Arithmetic . 23
4.5 Arithmetical Hierarchy . 23
4.6 Completeness . 25
4.7 Formal Systems . 26

5 Incompleteness of First-Order Logic 29
5.1 Weak representability . 29
5.2 Rosser’s Trick for Gödel’s Incompleteness Proof 30
5.3 Strong Separability of Disjoint Predicates 31

5.3.1 Illustrative Proof Using Completeness 32
5.4 Main Results . 33

6 Further Representability Results 35
6.1 Improved Strong Separability . 35
6.2 Strong Representability . 36
6.3 Church’s Thesis for Robinson Arithmetic 36

x Contents

7 Conclusion 39
7.1 Discussion . 39
7.2 Mechanization . 39
7.3 Related Work . 40
7.4 Future Work . 42

Bibliography 43

1 Introduction

In 1931, Gödel [18] published his seminal first incompleteness theorem, stating that the
Principia Mathematica (PM), an early formal logic by Whitehead and Russel attempting
to unify the foundations of mathematics [36], and a related class of formal logics are
incomplete. In particular, he showed how to construct sentences that neither provable
nor refutable in these formal logics and all their effective and sound1 extensions, that is,
extensions that only show true sentences and have enumerable provability. Such sentences
are called independent.

Gödel also presents his second incompleteness theorem in the same paper, stating that
those formal logics additionally cannot show their own consistency. These results disrupted
the mathematical community by showing that there cannot be a single unifying foundation
for all of mathematics, which was commonly assumed up until that point. In fact, Gödel
discovered both incompleteness theorems while attempting to contribute to Hilbert’s
program, which proposed a path towards such a unifying foundation, after earlier attempts
suffered from paradoxes and inconsistencies [69]. Over time, however, dealing with formal
systems of different strengths became an important part of investigating the foundations
of mathematics, averting the foundational crisis feared by many mathematicians in the
1930s.

Gödel’s incompleteness results have been (and are still) interpreted in philosophy in a
wide variety of ways [50] and have often been exposed to a general audience through
popular-scientific interpretations.2 Gödel’s actual incompleteness proof, however, is both
technical and difficult to understand intuitively, and has been misinterpreted in popular
culture, by philosophers, and mathematicians [17].

A modern computer scientist’s view on incompleteness is typically completely different
from the one gained through Gödel’s proof. Incompleteness of effective, sound, and
powerful enough formal logics, such as PM, can be regarded as following directly from the
undecidability of the halting problem. Kleene published the idea to apply computability
theory to show incompleteness in 1936 [27] and later continued working on this ap-
proach [28]. A similar proof idea was also mentioned by Turing in 1936 [65] in his seminal
work on the undecidability of the Entscheidungsproblem. Post claimed to have discovered
similar abstract incompleteness results in 1921, even before computability theory was
developed in the 1930s, although they were only published in 1941 [49].3 The core ideas
of Kleene’s proofs are easy to explain compactly and are easy to understand just using
one of the most rudimentary results from computability theory, the undecidability of the
halting problem. Today his proof can essentially be regarded as folklore.

1Gödel also showed this for ω-consistent extensions, a weaker, less semantic assumption.
2See, for example, https://youtu.be/HeQX2HjkcNo, as well as [22, 59].
3See also [60].

https://youtu.be/HeQX2HjkcNo

2 Introduction

In 1936, a few years after Gödel published his results, Rosser [54] found a way, known
today as Rosser’s trick, to enhance Gödel’s proof to yield incompleteness even of consistent
but unsound and effective extensions, that is, extensions that cannot derive an internal
contradiction, but may still show false sentences, and have enumerable provability.

Kleene’s early result is close in strength to Gödel’s, and therefore weaker than the one
obtained by Rosser. Additionally, Kleene’s folklore proof does not explicitly construct
an independent sentence. Unfortunately, Rosser’s modification of Gödel’s proof cannot
directly be applied to Kleene’s proof.

Nevertheless, Kleene later improved upon his approach in 1951 [29], showing results that
can be considered even more general than the one gained from the Gödel-Rosser proof.
Kleene’s strengthened result only requires slightly more computability theory and yields
the same form of incompleteness for PM as the Gödel-Rosser proof. Interestingly, to
instantiate Kleene’s strengthened result to first-order logic just using the assumptions
from the weaker proof, Rosser’s trick can be applied. Kleene’s improved approach to
incompleteness is much lesser-known than one might expect, despite its much more
abstract (and therefore general) approach.4 Kleene features both proofs prominently in
his books [30, 31].

Actually formalising Gödel’s first incompleteness theorem completely is hard. Both
showing that the formal logic in question can represent its own provability and using
this fact to obtain an independent sentence is tedious. Mechanisations of Gödel’s first
incompleteness theorem have long been used to benchmark both the power of certain
proof assistants or theorem provers, as well as computer-assisted proofs in general [55,
43, 20, 46, 47, 48, 25]. Most mechanisations we know of are based on the Gödel-Rosser
approach.

Even when approaching incompleteness using computability theory, however, formalisation
and particularly mechanisation remain difficult, since one still has to deal with the details
of a concrete model of computation, such as Turing machines or µ-recursive functions.
Using a shortcut via synthetic computability theory [51, 4, 13], pioneered by Richman in
his seminal paper “Church’s Thesis Without Tears” [51], Kirst and Hermes [25] recently
formalised Kleene’s folklore proof of incompleteness without these difficulties. By using
the calculus of inductive constructions (CIC) [7, 45] as their meta-logic, underlying the
Coq proof assistant [63], arguments related to computability can be simplified greatly. In
particular, in a constructive logic such as CIC, only computable functions can be defined.
Therefore quantifiers can be interpreted as only ranging over computable functions. This
makes it possible to define properties like decidability and enumerability synthetically,
that is, without referring to a specific model of computation.

Additionally, in CIC we can assume axioms such as Church’s thesis [34, 64, 10, 12],
internalising the notion that all functions are computable, allowing us to explore even
more computability theory without referring to a model of computation. We assume
Church’s thesis to allow us to formalise and mechanise Kleene’s form of incompleteness

4In fact, we were made aware of these results by an e-mail by Anatoly Vorobey on the Foundations
of Mathematics mailing list [67] asking for references to these proofs, referencing both a blog post by
Scott Aaronson [2] as well as an anonymous Stackexchange reply [1], all of which mentioned how little
known this result is.

1.1. Contributions 3

in different strengths in synthetic computability, culminating in essential incompleteness
both of abstract formal systems and of first-order arithmetic.

1.1 Contributions

This thesis’s contributions consist of four main parts:

• We re-examine Kleene’s incompleteness results from a modern perspective by
interpreting them abstractly using synthetic computability theory, while additionally
obtaining analogous undecidability results, improving upon and extending the
results by Kirst and Hermes [25]. In particular, we attempt to give an intuitive but
precise reformulation of Kleene’s proofs using synthetic computability theory.

• We instantiate these results to a mechanised representation of first-order logic with
the axiomatisation of Robinson’s Q by using Rosser’s trick, building upon existing
work on the DPRM theorem by Larchey-Wendling and Forster [35] to obtain the
required representability assumptions.

• By applying Rosser’s trick in a more general setting we obtain a form of Church’s
thesis for Robinson arithmetic under the assumption of Church’s thesis for µ-
recursive functions, as well as other representability properties.

• We give a full mechanisation of the incompleteness results using the Coq proof
assistant, assuming different forms of Church’s thesis. In particular, we are able to
mechanise the abstract incompleteness proof in its strongest form in only around
150 lines of code, since the synthetic approach abstracts away the tedious parts of
the proof, such as Gödelisations and computability proofs. All mechanised theorems
are linked with the digital version of this thesis.

1.2 Outline

In Chapter 2, we first introduce the basics of the calculus of inductive constructions
(CIC), and give some preliminary definitions and proofs in synthetic computability theory.
Then we formalise an abstract version of Kleene’s approach to incompleteness in different
strengths in Chapter 3. After introducing a formalisation of first-order logic in CIC
in Chapter 4, we instantiate the abstract incompleteness results to first-order logic
with the axiomatisation of Robinson arithmetic Q in Chapter 5 and show additional
representability theorems for Q in Chapter 6. We conclude this thesis in Chapter 7 by
discussing the mechanisation as well as related and future work.

2 Computational Type Theory

The results in this thesis are formalized and largely mechanised in the framework of
the calculus of inductive constructions (CIC) [7, 45] as implemented by the Coq proof
assistant [63]. CIC is a constructive type theory and features both an impredicative
universe of propositions as well as a countably infinite hierarchy of computational types
universes.

We begin by outlining the basics of CIC. We then introduce synthetic computability and,
in particular, Church’s thesis, and show some basic results from computability theory.
Finally, we introduce µ-recursive functions as a model of computation as well as their
variant of Church’s thesis.

2.1 Constructive Type Theory

We write x : X to denote that x is of type X. CIC distinguishes between a hierarchy
of predicative type universes T1 : T2 : . . . and an impredicative universe of propositions
P ⊂ T1. We will omit the indices of type universes for readability.

CIC supports defining types in T and P inductively. While inductive types in T may
contain computational information, this does not hold for inductive types in P. In
particular, elimination of inductively constructed values from P into T is only allowed in
heavily restricted cases, preventing us from extracting any information from proofs.

Dependent function types ∀x : X.U , where U may refer to x, are primitive in CIC. Non-
dependent function types A→ B are defined using dependent function types ∀x : X.B,
where x does not occur in B. We write λx : X. v to denote a function of type ∀x : X.U
(or its non-dependent counterpart). Such functions can be defined by strict structural
recursion, which guarantees that all functions terminate.

We give definitions of some basic inductive types used throughout this thesis and the
accompanying mechanisation.

• The type of natural numbers:

N : T ::= 0 : N | S : N → N

We write 1 for S 0, 2 for S S 0, and so on. Addition +, subtraction −, and
multiplication · are defined recursively.

• The type of Booleans:

B : T ::= tt : B | ff : B

We write !b for Boolean negation.

6 Computational Type Theory

• The type of pairs:

product(X,Y : T) : T ::= pair : X → Y → productX Y

We write X × Y for productX Y and (x, y) for pairx y.

• The type of dependent pairs:

sig(X : T)(p : X → T) : T ::= ex : ∀(x : X). px→ sigX p

We write Σx. px for sigX p and (x, y)p for sig p x y. Note that, given p : X → P,
a dependent pair Σx. px can also be interpreted as a (computationally accessible)
value x together with a proof of a property px.

• The option type:

O(X : T) : T ::= Some : X → O(X) | None : O(X)

We write ⌜x⌝ for Somex.

• The type of lists:

L(X : T) : T ::= nil : L(X) | cons : X → L(X) → L(X)

We write x :: L or L, x for consxL, and define a membership predicate x ∈ L
recursively.

• The type of vectors:

V(X : T, n : N) : T ::= nil : VX0 | cons : X → VXn→ VX(Sn)

We overload the notations for lists and use them for vectors as well.

Many typical logical operators and constants, that is, falsity ⊥, truth ⊤, conjunction ∧,
disjunction ∨, and existentials ∃x. px, are defined inductively in P. Negation is defined as
¬P := P → ⊥, and equivalence A ↔ B is defined as (A→ B) ∧ (B → A). Universal
quantification is represented by dependent function types, and implication is represented
by non-dependent function types.

The logic induced by these operators is intuitionistic, that is, in particular, the law of
excluded middle LEM := ∀(P : P). P ∨ ¬P is independent. It may, however, be assumed
to obtain a classical logic.

We represent predicates on a type X as functions X → P. We also write x ∈ P for Px.
The complement of a predicate is defined by P := λx.¬Px. Given predicates P1 and P2

on X, P1 is a sub-predicate of P2 if P1 ⊆ P2 := ∀x. P1 x → P2 x, and P1 and P2 are
disjoint if ∀x.¬(P1 x ∧ P2 x).

2.2 Synthetic Computability Theory

Without assuming certain additional axioms, all functions that can be defined in a
constructive logic such as CIC are computable. Therefore all quantifiers ranging over

2.2. Synthetic Computability Theory 7

functions can be interpreted as only ranging over computable functions, which allows us
to formulate concepts from computability theory without referring to a concrete model of
computation. This makes formalising and especially mechanising results in computability
theory much easier than in a typical textbook setting. This approach to computability
theory is called synthetic computability theory [51, 4].

2.2.1 Basic Synthetic Notions

We succinctly define some rudimentary notions from computability theory in CIC, as
presented in [13].

Definition 2.1. A predicate P : X → P is decidable if there is a function f : X → B, a
decider of P , such that:

∀x. Px ↔ fx = tt

If there is no such function, P is undecidable. P is enumerable if there is a function
f : N → O(X), an enumerator of P , such that:

∀x. Px ↔ ∃k. fk = ⌜x⌝

P is co-enumerable if P is enumerable. A type X : T is enumerable if the predicate
λ(x : X).⊤ is enumerable.

Definition 2.2 (Discreteness). A type X is discrete if the predicate λ(x1, x2) : (X ×
X). x1 = x2 is decidable.

Lemma 2.3. Any decidable predicate P : X → P on an enumerable type is both enumer-
able and co-enumerable.

Proof. Let f : X → B be a decider of P and let g : N → O(X) be an enumerator of P .
Define functions h1, h2 : N → O(X) as follows:

h1n :=

{
⌜x⌝ if gn = ⌜x⌝ and fx = tt

None otherwise

h2n :=

{
⌜x⌝ if gn = ⌜x⌝ and fx = ff

None otherwise

Then h1 is an enumerator and h2 is a co-enumerator of P .

Note that analogous proofs for concrete models of computations, particularly for Turing
machines, are often considerably harder, since defining functions in such models and
showing their correctness formally tends to be very tedious.

2.2.2 Partial Functions

All functions we can define within our type theory are total. We do, however, also need
to consider partial functions, which we represent using step-indices as a form of “fuel” for
the computation.

https://www.ps.uni-saarland.de/~peters/bachelor/documentation/Undecidability.Synthetic.Definitions.html#decidable
https://www.ps.uni-saarland.de/~peters/bachelor/documentation/Undecidability.Synthetic.DecidabilityFacts.html#discrete
https://www.ps.uni-saarland.de/~peters/bachelor/documentation/Undecidability.Synthetic.EnumerabilityFacts.html#dec_count_enum

8 Computational Type Theory

Definition 2.4 (Partial functions). A partial value p : PartY is a step-indexed func-
tion p : N → O(Y) which is agnostic to the step-index, that is:

∀k1k2y1y2. p k1 = ⌜y1⌝ → p k2 = ⌜y2⌝ → y1 = y2

We write p▷ y if ∃k. p k = ⌜y⌝. A partial function f : X ⇀ Y is a function f : X →
PartY . A partial function is total if ∀x.∃y. fx▷ y.

Remark 2.5. Partial values can also be defined to be monotonic with respect to the
step-index, that is:

∀k1k2y. p k1 = ⌜y⌝ → k2 ≥ k1 → p k2 = ⌜y⌝

It is easy to show that any monotonic partial value is agnostic. The converse direction is
not generally true. Nevertheless, given an agnostic partial value p : PartY it is possible
to find a monotonic partial value p′ : PartY such that ∀y. p▷ y ↔ p′▷ y.

It is not obvious how to obtain a function from a total partial function, that is, a
partial function that is additionally total, since it is not generally possible to extract
a computable witness from existentiality proofs. In particular, we cannot eliminate a
proposition, such as ∃y. fx▷ y, into a type, such as Σx. fx▷ y. In CIC, however, it is
possible to work around this for decidable predicates on enumerable types by doing a
form of bounded search.

Lemma 2.6. Let P : X → P be a decidable predicate on an enumerable type X. Then
∃x. Px implies Σx. Px.

Proof. See [38].

In general, enumerability of the predicate suffices.

Lemma 2.7. Let X,Y : T and f : X ⇀ Y be a total partial function. There is a function
g : X → Y such that:

∀xy. fx▷ y ↔ gx = y

Proof. Let p : PartY such that ∃y. p▷ y. It suffices to show Σy. p▷ y. We have

∃k.∃y. pk = ⌜y⌝,

to which we can apply Lemma 2.6, since ∃y. pk = ⌜y⌝ is decidable.

Using this result we will, from now on, identify partial total partial functions with
functions.

2.2.3 Church’s Thesis

While synthetic computability suffices to formalize some aspects of computability the-
ory, it is not powerful enough to, for example, give common negative results, such as
undecidability of the halting problem. This is because it is consistent to assume certain

https://www.ps.uni-saarland.de/~peters/bachelor/documentation/Undecidability.FOL.Incompleteness.utils.html#part
https://www.ps.uni-saarland.de/~peters/bachelor/documentation/Undecidability.FOL.Incompleteness.utils.html#mu
https://www.ps.uni-saarland.de/~peters/bachelor/documentation/Undecidability.FOL.Incompleteness.utils.html#totalise

2.2. Synthetic Computability Theory 9

non-constructive axioms, such as the axiom of choice [68, 10], in CIC, which contradicts
such undecidability results.

To work around these limitations, we assume different variations of the axiom of “Church’s
thesis” [34, 64], internalising the fact that all functions are computable by stating that
some function is universal for all functions of a certain type. This universal function
can either be abstract (that is, existentially quantified) or be an interpreter of an
at least Turing-complete model of computation. While this form of Church’s thesis
is compatible with LEM (and therefore with classical reasoning) because of the split
between impredicative and predicative universes, some consistent axioms, such as the
axiom of choice, destroy the computational interpretation of functions and are therefore
incompatible with Church’s thesis.

Definition 2.8 (Enumerability of partial functions (EPF)). Let X be a type. A
function θ : N → (N⇀ X) is universal for all partial functions N⇀ X if:

∀f : N⇀ X.∃c.∀xy. fx▷ y ↔ θcx▷ y

We define the axiom “enumerability of partial functions”, written EPFX , as follows: There
exists5 a function θ that is universal for all partial functions to X. We only consider
EPFN and EPFB in this thesis.

Given a partial function f : N⇀ X, we call the witness obtained by EPFX the code of f .

This form of Church’s thesis is due to Richman [51] and was applied to CIC by For-
ster [12, 11], who also gives arguments for its consistency.

Lemma 2.9. EPFN implies EPFB.

Proof. A partial function f : N⇀ B can be easily represented as a function f : N⇀ N
by choosing an invertible embedding from B to N.

The converse also holds [10]. It is, however, more difficult to show.

Assuming EPFB, we can now show that the halting problem for θ is undecidable. In
particular, our proof is informative: Given any (not necessarily total) partial function
agreeing with the halting problem whenever it halts, we construct an input on which it
diverges.

Definition 2.10 (Halting problem). Assume EPFB. The self-halting problem (for B)
is defined as

H := λx. ∃y. θxx▷ y.

Lemma 2.11. Assume EPFB. Let f : N⇀ B be a partial function such that:

∀x. fx▷ tt ↔ x ∈ H

There is some input x such that ∀b. fx⋫ b.
5This existential quantifier can be represented using either ∃ or Σ. Both variants are consistent,

although the former suffices for our purposes since all of our main results are propositions.

https://www.ps.uni-saarland.de/~peters/bachelor/documentation/Undecidability.FOL.Incompleteness.churchs_thesis.html#is_universal
https://www.ps.uni-saarland.de/~peters/bachelor/documentation/Undecidability.FOL.Incompleteness.churchs_thesis.html#ct_nat_bool
https://www.ps.uni-saarland.de/~peters/bachelor/documentation/Undecidability.FOL.Incompleteness.churchs_thesis.html#special_halting
https://www.ps.uni-saarland.de/~peters/bachelor/documentation/Undecidability.FOL.Incompleteness.churchs_thesis.html#special_halting_diverge

10 Computational Type Theory

Proof. Choose

g : N⇀ B, gx :=

{
tt if fx▷ff

undefined if fx▷ tt or fx diverges

and let c be the code of g. We have

fc▷ff ↔ gc▷ tt ↔ (∃y. gc▷ y) ↔ (∃y. θcc▷ y) ↔ c ∈ H ↔ fc▷ tt

Therefore ∀b. fc⋫ b.

Corollary 2.12 (H is undecidable). Assuming EPFB, H is undecidable.

Proof. Let f : N → B be a function deciding H. The induced total partial function
f : N ⇀ B obviously agrees with H and must therefore diverge on an input, which
contradicts totality.

We will now consider another problem from computability theory: recursively inseparable
sets, which were originally considered by Kleene [29]. We will follow the same approach as
for the halting problem, giving an informative divergence proof to show the non-existence
of a total function.

Definition 2.13. A partial function f : N⇀ B recursively separates two disjoint predic-
ates P1, P2 : N → P if:

P1x → fx▷ tt P2x → fx▷ff

A total function f : N → B recursively separates P1 and P2 if its induced partial function
does so. If there is no total function recursively separating P1 and P2, they are recursively
inseparable.

Lemma 2.14. Assume EPFB. Given any function f : N⇀ B that recursively separates
P1 := λx. θxx▷ tt and P2 := λx. θxx▷ff , there is some c such that ∀b. fc⋫ b.

Proof. Choose

g : N⇀ N, g x :=

{
!fx if fx is defined
undefined otherwise

and let c be the code of g. We have

fc▷ tt ↔ gc▷ff ↔ θcc▷ff ↔ P2 x → fc▷ff

and
fc▷ff ↔ gc▷ tt ↔ θcc▷ tt ↔ P1 x → fc▷ tt

Therefore, ∀b. fc⋫ b.

Corollary 2.15. Assuming EPFB, P1 := λx. θxx▷ tt and P2 := λx. θxx▷ff are recurs-
ively inseparable.

https://www.ps.uni-saarland.de/~peters/bachelor/documentation/Undecidability.FOL.Incompleteness.churchs_thesis.html#special_halting_undec
https://www.ps.uni-saarland.de/~peters/bachelor/documentation/Undecidability.FOL.Incompleteness.churchs_thesis.html#recursively_separates
https://www.ps.uni-saarland.de/~peters/bachelor/documentation/Undecidability.FOL.Incompleteness.churchs_thesis.html#recursively_separating_diverge
https://www.ps.uni-saarland.de/~peters/bachelor/documentation/Undecidability.FOL.Incompleteness.churchs_thesis.html#no_recursively_separating

2.2. Synthetic Computability Theory 11

To apply these results to a concrete model of computation, we assume an interpreter
for this model to be universal for all partial functions. We use µ-recursive functions
as our machine model, as described in [35]. However, any Turing-complete model of
computation would suffice. Details on how µ-recursive functions are represented in CIC
and implemented in Coq are not important for this thesis as we largely rely on existing
results.

Definition 2.16. Let θµ : N → N ⇀ N be an interpreter for µ-recursive functions
encoded as natural numbers.6

We define the axiom “EPF for µ-recursive functions”, written EPFµN, as follows: The
interpreter of µ-recursive functions θµ is universal for all partial functions.

Lemma 2.17. Assuming EPFµN, if a predicate P : N → P is enumerable, it is also
µ-enumerable, that is, there is some c such that:

∀x. Px ↔ ∃y. θµ cx▷ y

The converse of this statement holds as well.

Lemma 2.18. EPFµN implies EPFN.

Note that our definition of enumerability by a µ-recursive function is closer to a notion
of semi-decidability. Both notions are, however, equivalent, since N is enumerable.

6In the mechanisation, µ-recursive functions are represented as an indexed inductive type R. To
obtain suitable conversions between R and N, we use Lemma 2.6 as well as enumerability and discreteness
of R, which were shown by Johannes Hostert. His mechanisation of these facts is distributed along with
the mechanisation of the rest of our work.

https://www.ps.uni-saarland.de/~peters/bachelor/documentation/Undecidability.FOL.Incompleteness.dprm.html#CTmu
https://www.ps.uni-saarland.de/~peters/bachelor/documentation/Undecidability.FOL.Incompleteness.dprm.html#mu_semi_decidable_enumerable
https://www.ps.uni-saarland.de/~peters/bachelor/documentation/Undecidability.FOL.Incompleteness.dprm.html#CTmu

3 Abstract and Synthetic Incompleteness

In this chapter, we give an intuitive but precise abstract reformulation of the abstract
incompleteness proofs by Kleene, as he describes them in his books [30, 31]. To obtain
these results without referring to a concrete model of computation we use synthetic
computability theory and assume a form of Church’s thesis.

Our abstract representation of formal systems attempts to be as simple as possible while
still being able to capture the essence of Kleene’s incompleteness proofs. In particular,
we do not model semantic properties such as soundness (c.f. [25]), or any but the most
fundamental syntactic properties (c.f. [48]).

Formalising Kleene’s folklore incompleteness proof using the halting problem for this
notion of formal system turns out to be easy, but only yields a weaker incompleteness
result than the original Gödel-Rosser proof of incompleteness. In particular, it requires
a representability property usually only fulfilled by sound formal logics as well as their
sound extensions.

We additionally give another, later incompleteness proof also due to Kleene of essen-
tial incompleteness of certain formal systems, that is, incompleteness of all consistent
extensions.

We first introduce a notion of abstract formal systems and show that provability is
decidable in complete formal systems. We then present a proof of undecidability, incom-
pleteness, and the existence of an independent sentence under the assumptions of weak
representability of the halting problem and EPFB, following Kleene’s folklore proof.

Afterwards we give the strengthened versions of these proofs following Kleene’s improved
approach, yielding essential undecidability and essential incompleteness, as well as the
existence of independent sentences in all consistent extensions. This approach assumes
strong separability of two recursively inseparable predicates and EPFB.

3.1 Abstract Formal Systems

We introduce an abstract notion of formal systems and show that in complete formal
systems, provability is decidable.

Definition 3.1 (Formal systems). A formal system FS = (S,¬,⊢FS) consists of a
type of logical sentences S : T, a negation function ¬ : S → S and a provability predicate
⊢FS : S → P fulfilling the following properties:

• S is discrete.

• ⊢FS is enumerable.

https://www.ps.uni-saarland.de/~peters/bachelor/documentation/Undecidability.FOL.Incompleteness.formal_systems.html#FS

14 Abstract and Synthetic Incompleteness

• FS is consistent: ∀s.¬(⊢FS s ∧ ⊢FS ¬s)

We write FS ⊢ s for ⊢FS s. FS is complete if:

∀s.FS ⊢ s ∨ FS ⊢ ¬s

A formal system that is not complete is incomplete. A formal system is decidable if its
provability predicate is decidable. A sentence s is independent in FS if:

FS ⊬ s ∧ FS ⊬ ¬s

Typically, formal logics with a form of negation are formal systems in this sense. In
particular, we show that a particular natural deduction system for first-order logic over
any enumerable and consistent axiomatisation is a formal system in Chapter 4.

We do not consider ω-consistency or (variants of) soundness abstractly since they either
require a notion of quantification or a notion of semantic truth, respectively. Both would
complicate the definition of formal systems considerably and are not required for our
main results, but could be used to generalise the undecidability and incompleteness proofs
using the halting problem.

Definition 3.2 (Extensions). Let FS = (S,¬,⊢FS) and FS′ = (S,¬,⊢FS′) be two
formal systems only differing in their provability predicates. We say that FS′ is an
extension of FS if

∀s.FS ⊢ s → FS′ ⊢ s.

A formal system of which all extensions are incomplete is essentially incomplete.

Note that if a sentence is independent in an extension of a formal system, it is also
independent in the formal system itself.

Fact 3.3 (Decidability). Any complete formal system is decidable.

Proof. Let f : S ⇀ B be a partial function, that, given a sentence s, enumerates all
provable sentences, checks whether they are s or ¬s and returns tt or ff respectively.
Note that even without completeness, f fulfils:

∀s. fs▷ tt ↔ FS ⊢ s
∀s. fs▷ff ↔ FS ⊢ ¬s

By completeness, f is total, and therefore decides provability (see Lemma 2.7).

3.2 Folklore Proof Using Soundness

We present the well-known folklore proof of incompleteness.

Definition 3.4 (Weak representability). Let FS = (S,¬,⊢) be a formal system and
P : X → P be a predicate. A representation function r : X → S weakly represents P if

∀x. Px ↔ FS ⊢ rx.

In this case we say that FS weakly represents P or that P is weakly representable in FS.

https://www.ps.uni-saarland.de/~peters/bachelor/documentation/Undecidability.FOL.Incompleteness.formal_systems.html#extension
https://www.ps.uni-saarland.de/~peters/bachelor/documentation/Undecidability.FOL.Incompleteness.formal_systems.html#complete_decidable
https://www.ps.uni-saarland.de/~peters/bachelor/documentation/Undecidability.FOL.Incompleteness.formal_systems.html#weakly_represents

3.2. Folklore Proof Using Soundness 15

Remark 3.5. Note that even if a formal system represents P , its extensions do not
have to, since a (consistent) formal system might still show false statements, that is, it
might be unsound. Weak representability only preserves along sound extensions, which we
cannot express using our abstract representation of formal systems.

In particular, assume r weakly represents P in FS. Let x be such that ¬Px and therefore
FS ⊬ rx. An extension FS′ of FS might show FS′ ⊢ rx, and therefore r might not weakly
represent P in FS.

Even showing weak representability properties of formal systems is usually done using
forms of soundness to show the direction from right to left.

A representation function r weakly representing a predicate P can be understood as a
many-one reduction from P to provability, which motivates the following result:

Lemma 3.6 (Decidability). A predicate weakly representable in a decidable formal
system is decidable.

3.2.1 Anonymous Incompleteness

The results shown until now trivially yield undecidability and incompleteness of formal
systems weakly representing H.

Fact 3.7 (Undecidability). Assuming EPFB, any formal system that weakly represents
the self-halting problem H is undecidable.

Proof. By Lemma 3.6 and Corollary 2.12.

Fact 3.8 (Anonymous incompleteness). Assuming EPFB, any formal system that
weakly represents the self-halting problem H is incomplete.

Proof. By Lemma 3.6, Fact 3.3, and Corollary 2.12.

The incompleteness result shown by Kirst and Hermes [25] is very similar to this one,
except that instead of showing that completeness implies falsity, they show that complete-
ness yields a decider for the halting problem of a Turing complete model of computation,
which does not yield falsity without assuming, for example, EPFµN. They do, however,
consider an abstract notion of formal systems that incorporates soundness, and are
therefore able to abstractly consider incompleteness up to sound extensions.

3.2.2 Informative Incompleteness

The most obvious way to strengthen Fact 3.8 is to explicitly construct an independent
sentence. To do this, we use the informative version of the undecidability of the halting
problem.

Theorem 3.9 (Informative incompleteness). Assume EPFB. Let FS = (S,¬,⊢) be
a formal system and r : N → S be a representation function that weakly represents the
self-halting problem H. There is some c such that rc is independent in FS.

https://www.ps.uni-saarland.de/~peters/bachelor/documentation/Undecidability.FOL.Incompleteness.abstract_incompleteness.html#weakly_representable_decidable
https://www.ps.uni-saarland.de/~peters/bachelor/documentation/Undecidability.FOL.Incompleteness.abstract_incompleteness.html#halt_undecidability
https://www.ps.uni-saarland.de/~peters/bachelor/documentation/Undecidability.FOL.Incompleteness.abstract_incompleteness.html#halt_incompleteness'
https://www.ps.uni-saarland.de/~peters/bachelor/documentation/Undecidability.FOL.Incompleteness.abstract_incompleteness.html#halt_incompleteness

16 Abstract and Synthetic Incompleteness

Proof. Let f be the partial function f : S ⇀ B constructed in the proof of Fact 3.3.
Consider the function g : N⇀ B defined by gx := f(rx). It fulfils

∀x. gx▷ tt ↔ Hx.

By Lemma 2.11 there is an input c on which g diverges, and therefore FS ⊬ rc and
FS ⊬ ¬rc.

3.3 Strengthened Proof Using Consistency

As explained earlier, to obtain incompleteness for unsound but consistent formal systems
we need a different form of representability.

Definition 3.10 (Strong separability). Let FS = (S,¬,⊢) be a formal system, X : T,
and P1, P2 : X → P. A representation function r : X → S strongly separates P1 and P2 if

∀x. P1 x → FS ⊢ rx ∧ P2 x → FS ⊢ ¬rx.

In this case we say that FS strongly separates P1 and P2 or that P1 and P2 are strongly
separable in FS.

As opposed to weak representability, strong separability is preserved along all extensions
of formal systems. In particular, we do not pose any restrictions on the provability of rx
if ¬P1 x and ¬P2 x.

Lemma 3.11. If a formal system strongly separates two predicates, all its extensions do
as well.

Weak representability and strong separability are otherwise difficult to compare. Strong
separability is stronger in the sense that it gives us refutability and not just “positive”
provability. It is, however, possible to show the following facts:

• If a complete formal system weakly represents a predicate P1, it also strongly
separates P1 and P2 if P1 and P2 are disjoint.

• If a formal system strongly separates a predicate P and its complement P , it also
weakly represents P .7

Assuming strong separability of two recursively inseparable predicates, we obtain unde-
cidability and incompleteness.

Fact 3.12. Assuming EPFB, any formal system FS = (S,¬,⊢) that strongly separates

P1 := λx. θxx▷ tt P2 := λx. θxx▷ff

is undecidable.
7It even strongly represents P as defined in Section 6.2, which can be seen by generalising Lemma 6.2

to arbitrary formal systems.

https://www.ps.uni-saarland.de/~peters/bachelor/documentation/Undecidability.FOL.Incompleteness.formal_systems.html#strongly_separates
https://www.ps.uni-saarland.de/~peters/bachelor/documentation/Undecidability.FOL.Incompleteness.abstract_incompleteness.html#strong_separability_extension
https://www.ps.uni-saarland.de/~peters/bachelor/documentation/Undecidability.FOL.Incompleteness.abstract_incompleteness.html#insep_undecidability

3.4. Conclusion 17

Proof. Let r be the representation function strongly separating P1 and P2. Let f : N → B
be the function that, given x, decides whether FS ⊢ rx. Now, f recursively separates P1

and P2, which contradicts Corollary 2.15.

Theorem 3.13. Assume EPFB. Let FS = (S,¬,⊢) be a formal system and r : N → S
be a representation function that strongly separates the following predicates:

P1 := λx. θxx▷ tt P2 := λx. θxx▷ff

There is some c such that rc is independent in FS.

Proof. Let f be the partial function f : S ⇀ B constructed in the proof of Fact 3.3.
Consider the function g : N⇀ B defined by gx := f(rx). It recursively separates P1 and
P2. We can construct an input c on which it diverges by Lemma 2.14, and therefore
FS ⊬ rc and FS ⊬ ¬rc.

Corollary 3.14 (Essential incompleteness). Assume EPFB. Let FS = (S,¬,⊢) be a
formal system and r : N → S be a representation function that strongly separates the
following predicates:

P1 := λx. θxx▷ tt P2 := λx. θxx▷ff

For any extension of FS there is some c such that rc is independent in the extension,
that is, FS is essentially incomplete. Any extension of FS is undecidable.

3.4 Conclusion

There are multiple advantages of Kleene’s over Gödel’s approach to incompleteness:

• Kleene’s results are more general, or rather, much easier to formulate abstractly.

• Kleene’s result also yields essential undecidability as an intermediate step.

• Kleene’s approach is easier to understand intuitively. Everything can be shown
using only basic tools from computability theory.

• Kleene’s results are much easier to formalize (and mechanize) abstractly without
resorting to hand-waving computability or provability assumptions by working in
synthetic computability.

However, Kleene’s strengthened result does lose some elegance in comparison to the
folklore proof, especially when viewed in conjunction with the instantiation and the proof
of strong separability in Chapter 5.

https://www.ps.uni-saarland.de/~peters/bachelor/documentation/Undecidability.FOL.Incompleteness.abstract_incompleteness.html#insep_incompleteness
https://www.ps.uni-saarland.de/~peters/bachelor/documentation/Undecidability.FOL.Incompleteness.abstract_incompleteness.html#insep_essential_incompleteness

4 First-Order Logic

In Chapter 3, we described an abstract approach to incompleteness of formal systems.
Our next goal is to instantiate it to first-order logic [66], in particular to first-order logic
over the axiomatisation of Robinson arithmetic [53]. Most of our definitions of first-order
logic and related notions are part of a larger effort to mechanise first-order logic in the
Coq proof assistant [26, 25]. They are also part of the Coq library of undecidability
proofs [16].

Most of the definitions presented here are standard and can be skipped by a reader familiar
with first-order logic. The embedding into constructive type theory is natural.

We first define syntax, semantics, and syntactic provability of first-order logic and show
the soundness of our deduction system. We then define the theories of Robinson arithmetic
(or Robinson’s Q) as well as Heyting and Peano arithmetic, and show them sound with
respect to the standard model of natural numbers. We then give definitions for the
first level of the arithmetical hierarchy and show some of their properties, in particular
Σ1-completeness. We define the axiom of completeness for first-order logic and show
some facts for working with it. Finally, we instantiate the abstract formal systems from
Chapter 3 to first-order logic.

4.1 Syntax

We represent formulas and terms as inductive types. Typically, the syntax of first-order
logic is parametrized over a signature, that is, two finite types of function and predicates
symbols respectively, as well as their arities. Our definition immediately instantiates it
to the signature of Peano arithmetic. Its function symbols are 0, σ,+, and · with arities
of 0, 1, 2, and 2 respectively, and its only predicate symbol is = with arity 2.

Definition 4.1 (Syntax). Let V := N be the type of variables. The types of terms T
and formulas F are defined inductively by:

t, s : T ::= x | 0 | σt | t+ s | t · s x ∈ V
φ,ψ : F ::= ⊥ | φ ∧ ψ | φ ∨ ψ | φ→ ψ | ∀x. φ | ∃x. φ | t = s x ∈ V

We define the following derived notions:

¬φ := φ→ ⊥
φ↔ ψ := (φ→ ψ) ∧ (ψ → φ)

https://www.ps.uni-saarland.de/~peters/bachelor/documentation/Undecidability.FOL.Util.Syntax.html#form

20 First-Order Logic

We also define an embedding of natural numbers into terms:

· : N → T
0 := 0

Sn := σn

Terms of the form n for some n are called numerals.

Definition 4.2. A variable x is bound in a formula φ if it only occurs in subexpressions
of φ of the form ∃x. ψ or ∀x. ψ. If x is not bound in φ, we say x occurs freely in x. A
formula is closed if it only contains bound variables.

On paper, we assume that all bound and free variables are pairwise different in any
mathematical context, that is, a definition, proof, etc. This is also known as the
Barendregt convention [3]. If a formula violates the Barendregt convention, its bound
variables can be consistently renamed such that it does. This convention greatly simplifies
working with quantifiers and substitutions.

Since it is not clear how to assume the Barendregt convention when mechanising, we
represent variables using de Bruijn indices [9] in that case. While allowing us to deal with
variables formally, it makes formulas much harder to read. We do not consider lemmas
on substitutions in this thesis, even though they become crucial during mechanisation,
particularly when dealing with statements on quantifiers.

Definition 4.3 (Environment). An environment on T is a function ρ : V → T . We
define updates ρ[x 7→ v] as follows:

(ρ[x 7→ v]) y := v if x = y

(ρ[x 7→ v]) y := ρy if x ̸= y

Definition 4.4. Parallel substitution on formulas ·[·] : F → (V → T) → F as well as
terms ·[·] : T → (V → T) → T is defined as follows:

⊥[ρ] := ⊥
(φ ∧ ψ)[ρ] := φ[ρ] ∧ ψ[ρ]
(φ ∨ ψ)[ρ] := φ[ρ] ∨ ψ[ρ]
(φ→ ψ)[ρ] := φ[ρ] → ψ[ρ]

(∀x. φ)[ρ] := ∀x. φ[ρ[x 7→ x]]

(∃x. φ)[ρ] := ∃x. φ[ρ[x 7→ x]]

(t = s)[ρ] := t[ρ] = s[ρ]

0[ρ] := 0

(σt)[ρ] := σt[ρ]

(t+ s)[ρ] := t[ρ] + s[ρ]

(t · s)[ρ] := t[ρ] · s[ρ]

Single-point substitution is defined as φ[x 7→ t] := φ[id[x 7→ t]]. Given a formula φ with
one free variable x or two free variables x, y, respectively, we write φ(a) := φ[x 7→ b] or
φ(a, b) := φ[x 7→ a][y 7→ b] for substituting in terms a or a and b. We define t(a) for
terms t analogously.

https://www.ps.uni-saarland.de/~peters/bachelor/documentation/Undecidability.FOL.Util.FullTarski.html#env
https://www.ps.uni-saarland.de/~peters/bachelor/documentation/Undecidability.FOL.Util.Syntax.html#subst_form

4.2. Semantics 21

4.2 Semantics

We use standard Tarski semantics for first-order logic [62]. This means that every formula
is assigned a meaning in P by interpreting the logical connectives as their meta-level
counterparts in type theory, and equality as well as terms using a so-called model.

Definition 4.5 (Model). A model M consists of a carrier type D and interpretations
of the function and predicate symbols:

0M : D

σM : D → D

+M , ·M : D → D → D

=M : D → D → P

We will use M to refer to the carrier D as well as the model itself.

Definition 4.6 (Axiomatisation). An axiomatisation T : F → P is a predicate on
formulas. It is enumerable if T is enumerable.

Definition 4.7 (Tarski semantics). A model M satisfies a formula φ in an environ-
ment ρ : V →M if M ⊨ρ φ with ⊨ defined inductively by:

M ⊨ρ ⊥ := ⊥
M ⊨ρ φ ∧ ψ := (M ⊨ρ φ) ∧ (M ⊨ρ ψ)

M ⊨ρ φ ∨ ψ := (M ⊨ρ φ) ∨ (M ⊨ρ ψ)

M ⊨ρ φ→ ψ := (M ⊨ρ φ) → (M ⊨ρ ψ)

M ⊨ρ ∃x. φ := ∃y.M ⊨ρ[x 7→y] φ

M ⊨ρ ∀x. φ := ∀y.M ⊨ρ[x 7→y] φ

M ⊨ρ t = s := JtKρ =M JsKρ

JxKρ := ρx

J0Kρ := 0M

JσtKρ := σM JtKρ
Jt+ sKρ := JtKρ +M JsKρ
Jt · sKρ := JtKρ ·M JsKρ

Let T be an axiomatisation. We write:

M ⊨ φ := ∀ρ.M ⊨ρ φ

M ⊨ T := ∀φ ∈ T.M ⊨ φ

T ⊨ φ := ∀M ⊨ T.M ⊨ φ

A model is extensional if for any x, y ∈M we have x =M y ↔ x = y.

Note that without additional assumptions ⊨ yields intuitionistic first-order semantics since
our meta-logic is intuitionistic. We obtain classical semantics when assuming LEM.

Definition 4.8 (Standard model). The standard model N has the type N as its carrier
and the canonical meta-level interpretations of 0, σ,+, ·, and =.

Definition 4.9. An axiomatisation T is sound (with respect to the standard model) if
N ⊨ T .

It is possible to differentiate between classically and intuitionistically sound axiomatisa-
tions. We will, however, only work with theories that are both classically and intuition-
istically sound.

https://www.ps.uni-saarland.de/~peters/bachelor/documentation/Undecidability.FOL.Util.FullTarski.html#interp
https://www.ps.uni-saarland.de/~peters/bachelor/documentation/Undecidability.FOL.Util.FullTarski.html#sat
https://www.ps.uni-saarland.de/~peters/bachelor/documentation/Undecidability.FOL.Util.FA_facts.html#interp_nat

22 First-Order Logic

4.3 Natural Deduction

While Tarski semantics give us a notion of correctness of formulas, they do not give us a
computationally useful notion of provability. We use a natural deduction calculus to fill
this gap.

Definition 4.10 (Provability). Provability Γ ⊢ φ for Γ : L(F), φ : F is defined induct-
ively by:

φ ∈ Γ

Γ ⊢ φ
Γ ⊢ ⊥
Γ ⊢ φ

Γ, φ ⊢ ψ
Γ ⊢ φ→ ψ

Γ ⊢ φ→ ψ Γ ⊢ φ
Γ ⊢ ψ

Γ ⊢ φ Γ ⊢ ψ
Γ ⊢ φ ∧ ψ

Γ ⊢ φ ∧ ψ
Γ ⊢ φ

Γ ⊢ φ ∧ ψ
Γ ⊢ ψ

Γ ⊢ φ
Γ ⊢ φ ∨ ψ

Γ ⊢ ψ
Γ ⊢ φ ∨ ψ

Γ ⊢ φ ∨ ψ Γ, φ ⊢ χ Γ, ψ ⊢ χ
Γ ⊢ χ

Γ ⊢ φ
Γ ⊢ ∀x. φ

Γ ⊢ ∀x. φ
Γ ⊢ φ[x 7→ t]

Γ ⊢ φ[x 7→ t]

Γ ⊢ ∃x. φ
Γ ⊢ ∃x. φ Γ, φ ⊢ ψ

Γ ⊢ ψ

We do not spell out restrictions on variable occurrences for the rules on quantifiers, fully
relying on the Barendregt convention. We can only do this since Γ is a finite context.
To work with potentially infinite axiomatisations T we define T ⊨ φ as ∃Γ. (∀φ ∈ Γ. φ ∈
T) ∧ Γ ⊨ φ.

Lemma 4.11 (Soundness). We have for any axiomatisation T :

T ⊢ φ → T ⊨ φ

Proof. By induction on the derivation of T ⊢ φ.

Note that we use soundness to refer to a property of axiomatisations or to a property of
this deduction system.

Definition 4.12 (Consistency). An axiomatisation T is consistent if T ⊬ ⊥.

Definition 4.13 (ω-consistency). An axiomatisation T is ω-consistent if for any for-
mula φ we have either T ⊬ ∃k. φ(k) or ∃x. T ⊬ ¬φ(x).

Note that any sound axiomatisation is ω-consistent, and that any ω-consistent axiomat-
isation is consistent.

Definition 4.14. Let T be an axiomatisation. We use T c to refer to the classical closure
of the axiomatisation, that is, T with all instances of Peirce’s law ((φ → ψ) → φ) → φ.

The mechanisation treats classical provability by presenting two different versions of the
deduction system, separated by a binary flag.

Lemma 4.15. Let T be an axiomatisation. Assuming LEM, if T is sound, T c is also
sound.

https://www.ps.uni-saarland.de/~peters/bachelor/documentation/Undecidability.FOL.Util.FullDeduction.html#prv
https://www.ps.uni-saarland.de/~peters/bachelor/documentation/Undecidability.FOL.Util.FullDeduction_facts.html#soundness
https://www.ps.uni-saarland.de/~peters/bachelor/documentation/Undecidability.FOL.Util.FullDeduction_facts.html#soundness_class

4.4. Robinson and Peano Arithmetic 23

4.4 Robinson and Peano Arithmetic

The usual axiomatisation of natural numbers in first-order logic is Heyting arithmetic, or
its classical version, Peano arithmetic. We mostly work with a simpler axiomatisation
called Robinson arithmetic [53], which is finite but much weaker than Heyting arithmetic.
In particular, it does not include induction.

Definition 4.16 (Robinson arithmetic). The axiomatisation of Robinson arithmetic
(or Robinson’s Q) consists of the following axioms:

(ER) ∀x. x = x

(ES) ∀xy. x = y → y = x

(ET) ∀xyz. x = y → y = z → x = z

(CS) ∀xy. x = y → σx = σy

(CA) ∀xyzw. x = y → z = w → x+ z = y + w

(CM) ∀xyzw. x = y → z = w → x · z = y · w

(AZ) ∀x. 0 + x = x

(AR) ∀xy. (σx) + y = σ(x+ y)

(MZ) ∀x. 0 · x = 0

(MR) ∀xy. (σx) · y = y + x · y
(ZS) ∀x. 0 ̸= σx

(CD) ∀x. x = 0 ∨ (∃y. x = σy)

(SI) ∀xy. σx = σy → x = y

In the mechanisation, Robinson arithmetic is usually represented as a finite context
Q′ : L(F) and only converted to the respective axiomatisation λφ. φ ∈ QL when neces-
sary.

Definition 4.17 (Peano arithmetic). The axiomatisation of Heyting arithmetic HA
consists of the axioms of Robinson arithmetic except (CD) but including all instances of
the induction scheme:

(Iφ) φ(0) → (∀x. φ(x) → φ(σx)) → ∀x. φ(x)

The axiomatisation of Peano arithmetic PA is the classical closure HAc.

Note that HA subsumes Q (and PA subsumes Qc) because (CD) can easily be derived
using the induction schemes.

Many properties that hold in Peano or Heyting arithmetic cannot be shown with Robinson
arithmetic. In particular, this holds for commutativity and associativity of addition or
multiplication. While this can already be regarded as a form of incompleteness, we will
also show incompleteness of consistent and enumerable extensions T ⊇ Q, which may
contain these properties as axioms.

Lemma 4.18. Q and HA are sound.

Corollary 4.19 (Consistency). Q and HA are consistent, that is, Q ⊬ ⊥ and HA ⊬ ⊥.

4.5 Arithmetical Hierarchy

In Chapter 5 we will mostly deal with Σ1-formulas [5] due to a property called Σ1-
completeness. We show Q-decidability of formulas only containing bounded quantifiers
and completeness of Σ1-formulas.

https://www.ps.uni-saarland.de/~peters/bachelor/documentation/Undecidability.FOL.PA.html#Qeq
https://www.ps.uni-saarland.de/~peters/bachelor/documentation/Undecidability.FOL.PA.html#PAeq
https://www.ps.uni-saarland.de/~peters/bachelor/documentation/Undecidability.FOL.Util.FA_facts.html#nat_is_Q_model

24 First-Order Logic

Definition 4.20 (∆0-formulas). Let T be an axiomatisation. A formula φ is T-
decidable if T ⊢ φ[ρ] ∨ T ⊢ ¬φ[ρ] for any substitution ρ such that φ[ρ] is closed.

If φ is Q-decidable we say that φ is ∆0 or a ∆0-formula, also written φ ∈ ∆0.

Note that a formula that is Q-decidable is also Qc-decidable.

Definition 4.21. We define two derived comparison operators for first-order formulas
as follows:

x ≤ y := ∃z. y = x+ z

x ≤′ y := ∃z. y = z + x

We need two versions of comparisons to accommodate to the absence of commutativity
in Q.

Lemma 4.22. For any closed term t there is an n : N such that:

Q ⊢ t = n

Proof. By induction on t.

Fact 4.23. The following formulas are ∆0:

1. propositional formulas (including falsity),

2. equations a = b, where a and b are terms,

3. bounded quantifiers ∀x ≤ y. φ, ∃x ≤ y. φ or ∃x ≤′ y. φ, where y is a variable other
than x, and φ ∈ ∆0.

Proof. 1. Trivial.

2. By applying Lemma 4.22 to a and b and induction on either numeral.

3. Bounded quantifiers can be shown equivalent to finite conjunction or disjunction,
which can be shown Q-decidable. The actual proof is, from a technical perspective,
by far the most challenging presented in this thesis, requiring many lemmas on
equality, addition, and comparisons, such as, for terms a, b, c, formulas φ, and
natural numbers t:

a) Q ⊢ a = b → c(a) = w(b)

b) Q ⊢ a = b → φ(a) → φ(b)

c) Q ⊢ ∀x. x+ 0 = t → x = t

d) Q ⊢ t+ 0 = t

e) Q ⊢ ∀x. x ≤ 0 → x = 0

f) Q ⊢ ∀x. x ≤′ 0 → x = 0

g) Q ⊢ ∀x. x = t ∨ x ̸= t

h) Q ⊢ ∀xy. x+ S y = S t ↔ x+ y = t

i) Q ⊢ ∀x. x ≤ t → x ≤ S t

j) Q ⊢ ∀x. x ≤′ t → x ≤′ S t

k) Q ⊢ t ≤ t

l) Q ⊢ t ≤′ t

m) Q ⊢ ∀x. x ≤ S t → x ̸= S t → x ≤ t

n) Q ⊢ ∀x. x ≤′ S t → x ̸= S t → x ≤′ t

They are shown directly or by induction on a formula, term, or numeral involved.
Note that some of these, such as c), e), and f), are obvious using completeness (see
Section 4.6) by Lemma 4.32.

https://www.ps.uni-saarland.de/~peters/bachelor/documentation/Undecidability.FOL.Incompleteness.qdec.html#Qdec
https://www.ps.uni-saarland.de/~peters/bachelor/documentation/Undecidability.FOL.Incompleteness.fol.html#pless
https://www.ps.uni-saarland.de/~peters/bachelor/documentation/Undecidability.FOL.Incompleteness.fol.html#closed_term_is_num
https://www.ps.uni-saarland.de/~peters/bachelor/documentation/Undecidability.FOL.Incompleteness.qdec.html#Qdec_subst

4.6. Completeness 25

Definition 4.24. A formula is Σ1 if it is of the form ∃m1,m2, . . . ,mn. ψ where ψ ∈ ∆0.
A formula is Π1 if it is of the form ∀m1,m2, . . . ,mn. ψ where ψ ∈ ∆0.

These definitions of ∆0, Σ1, and Π1 correspond to those by Mostowski [40] up to his
presentation of provability. ∆0 can also be defined purely syntactically, just as Σ1 and Π1,
as done by Mück [41]. We believe that both definitions are equivalent up to equivalence
in Q.

Lemma 4.25 (∃ compression). For any formula φ ∈ Σ1 there is a formula ψ ∈ ∆0

such that:
Q ⊢ φ↔ ∃m.ψ

Proof. It suffices to show that we can compress two existential quantifiers, that is, for
any φ ∈ ∆0:

∃ψ ∈ ∆0.Q ⊢ (∃xy. φ(x, y)) ↔ ∃z. ψ(z)

Choose:
ψ(z) := ∃x ≤ z.∃y ≤′ z. φ(x, y)

The rest of this proof is done formally in Q. The direction from right to left is trivial.
Let x, y be such that φ(x, y). Choose z := x+ y. Both bounds can easily be shown since
our use of ≤′ accommodates the absence of commutativity.

Fact 4.26 (Σ1-completeness). Let φ ∈ Σ1 be a closed formula. N ⊨ φ implies Q ⊢ φ.

Proof. By Lemma 4.25 we can assume φ = ∃m.ψ for some ψ ∈ ∆0. We obtain m ∈ N
and N ⊨ ψ(m) by soundness. By the definition of ∆0 and soundness, Q ⊢ ψ(m) must
hold.

Note that the converse holds by soundness.

Corollary 4.27 (Σ1-witnesses). Witnesses for closed Σ1-formulas are always stand-
ard, that is, for any formula φ ∈ Σ1 with a single free variable x:

Q ⊢ ∃x. φ(x) → ∃n.Q ⊢ φ(n)

Proof. By extracting a witness in N using soundness and reestablishing the formula
using Σ1-completeness.

4.6 Completeness

Completeness is a property of first-order logic that is not directly related to incompleteness.
For classical first-order logic it states that if a formula is true in every model, it is
provable. It is, however, not provable in our constructive meta-logic without additional
assumptions [33, 14]. We will therefore consider it as an axiom.

We use it to explain results in Chapter 5 from a semantical perspective. It is not required
as an assumption for our main results.

https://www.ps.uni-saarland.de/~peters/bachelor/documentation/Undecidability.FOL.Incompleteness.qdec.html#Sigma1
https://www.ps.uni-saarland.de/~peters/bachelor/documentation/Undecidability.FOL.Incompleteness.qdec.html#Sigma1_compression
https://www.ps.uni-saarland.de/~peters/bachelor/documentation/Undecidability.FOL.Incompleteness.qdec.html#Sigma1_completeness
https://www.ps.uni-saarland.de/~peters/bachelor/documentation/Undecidability.FOL.Incompleteness.qdec.html#Sigma1_witness

26 First-Order Logic

Definition 4.28 (Completeness). The axiom of completeness for Q is defined as fol-
lows: For any formula φ, we have Qc ⊢ φ if and only if M ⊨ φ for every extensional
model M ⊨ Qc.

Note that this formulation of completeness entails the assumption of classical soundness.
We formulate completeness for extensional models to simplify the mechanisation, since
extensionality allows us to use the Coq rewriting mechanism. Completeness does not
hold for Q in place of Qc when using Tarski semantics.

The following results and definitions are not directly related to completeness but will be
helpful in proofs using completeness.

Lemma 4.29 (Absoluteness). Let φ ∈ ∆0 be closed and M1,M2 ⊨ Qc be models.
Then M1 ⊨ φ→M2 ⊨ φ.

Proof. Assume M1 ⊨ φ. We distinguish two cases:

1. If Q ⊢ φ, we obtain M2 ⊨ φ by soundness.

2. If Q ⊢ ¬φ, we obtain M1 ⊨ ¬φ by soundness, which contradicts the assumption.

Definition 4.30. Let M be a model. We define a comparison operator inside models:

x ≤M y := ∃z. x+ z = y

Definition 4.31. Let M ⊨ Qc be a model and x ∈M . We call x standard if there is a
number n ∈ N such that x = JnK.

Lemma 4.32. Let M ⊨ Qc be an extensional model, x, y ∈M , and n ∈ N. The following
hold:

1. x is standard if and only if σx is standard.

2. x+ y is standard if and only if x and y are standard.

3. If x ≤M y and y is standard, x is also standard.

4. If x is non-standard, then JnK ≤M x.

Note that Lemma 4.32 also holds for non-extensional models. This would, however,
prevent us from using Coq’s rewriting mechanism during mechanisation, considerably
complicating the proof.

4.7 Formal Systems

To conclude this chapter we instantiate the abstract formalism of formal systems from
Chapter 3 to first-order logic.

Lemma 4.33. Let T be an enumerable and consistent axiomatisation. Let

FST := (F ,¬, λφ. T ⊢ φ).

FST is a formal system. If T ′ ⊇ T is a consistent and enumerable extension, FS′T is an
extension of FST .

https://www.ps.uni-saarland.de/~peters/bachelor/documentation/Undecidability.FOL.Incompleteness.completeness.html#completeness
https://www.ps.uni-saarland.de/~peters/bachelor/documentation/Undecidability.FOL.Incompleteness.completeness.html#Qdec_absoluteness
https://www.ps.uni-saarland.de/~peters/bachelor/documentation/Undecidability.FOL.Incompleteness.fol.html#mless
https://www.ps.uni-saarland.de/~peters/bachelor/documentation/Undecidability.FOL.Incompleteness.completeness.html#standard
https://www.ps.uni-saarland.de/~peters/bachelor/documentation/Undecidability.FOL.Incompleteness.completeness.html#standard_succ
https://www.ps.uni-saarland.de/~peters/bachelor/documentation/Undecidability.FOL.Incompleteness.fol_incompleteness.html#fol_fs

4.7. Formal Systems 27

Definition 4.34. Completeness, weak representability and strong separability of an
enumerable axiomatisation T are defined as in the induced formal system FST . In our
case, the representation functions will always be of the form λx. φ(x) where φ is a formula
with a single free variable. We say T weakly Σ1-represents or strongly Σ1-separates if
additionally φ ∈ Σ1.

5 Incompleteness of First-Order Logic

We are now almost ready to instantiate the abstract incompleteness results from Chapter 3
to the formalism of first-order logic, giving us essential incompleteness of Robinson
arithmetic. This is one of the main results of this thesis, along with the abstract
incompleteness proofs. At this point, we are only missing strong separability of disjoint
and enumerable predicates in Q.

We use Rosser’s trick to show that Robinson arithmetic strongly separates all disjoint
and weakly Σ1-representable predicates. Rosser’s trick was used by Rosser [54] to weaken
the preconditions of Gödel’s original incompleteness proof [18].

Obtaining weak representability of (synthetically) enumerable predicates is not possible
when only assuming a form of Church’s thesis for an unspecified model of computation
θ. Instead, we first show that Q weakly represents µ-enumerable predicates using an
existing mechanisation of the DPRM theorem by Larchey-Wendling and Forster [35] and
assume EPFµN, making µ-enumerability and (synthetic) enumerability coincide.

We first show weak representability of µ-enumerable predicates using prior results. Then
we explain the original Gödel-Rosser proof of incompleteness with a particular focus on
the usage of Rosser’s trick, which we then use to establish strong separability of disjoint
and weakly representable predicates. Finally, we use these results to instantiate the
abstract incompleteness and undecidability proofs from Chapter 3.

5.1 Weak representability

Weak representability of µ-enumerable predicates in Robinson arithmetic has already
been mechanised by Kirst and Hermes [25], building upon work by Larchey-Wendling
and Forster [35] mechanising the DPRM theorem [52, 8, 39]. We use a slightly simpler
approach to this result by using Σ1-completeness of Robinson arithmetic.

Theorem 5.1. Let P be a µ-enumerable predicate. There is a formula φ ∈ Σ1 that
weakly represents P in Q.

Proof. Using results on the DPRM theorem by Larchey-Wendling and Forster [35].
Diophantine equations with existentially quantified parameters can easily be embedded
into first-order logic. Weak representability follows by soundness and Σ1-completeness.

Kirst and Hermes [25] do, however, show a slightly more general result, giving weak
representability in an even weaker axiomatisation than Robinson’s Q.

Corollary 5.2. Assuming EPFµN, any enumerable predicate is weakly representable.

https://www.ps.uni-saarland.de/~peters/bachelor/documentation/Undecidability.FOL.Incompleteness.fol_incompleteness.html#Q_weak_repr
https://www.ps.uni-saarland.de/~peters/bachelor/documentation/Undecidability.FOL.Incompleteness.fol_incompleteness.html#Q_weak_repr

30 Incompleteness of First-Order Logic

Proof. By Lemma 2.17.

This result can be used to instantiate the weaker abstract proofs of incompleteness.

Fact 5.3. Assuming EPFµN, provability in Q is undecidable.

Proof. By Fact 3.7 and Theorem 5.1.

Fact 5.4. Assuming EPFµN, there is an independent Σ1-sentence in Q.

Proof. By Theorems 3.9 and 5.1.

Note that these results can also be obtained for all enumerable and sound (or even just
ω-consistent, like Gödel’s original result) extensions of Q, since such an extensions are,
in particular, sound for Σ1-formulas.

We have not mechanised these statements since they are subsumed by the results in
Section 5.4.

5.2 Rosser’s Trick for Gödel’s Incompleteness Proof

We give a rough summary of Gödel’s approach to his first incompleteness theorem based
on [50] and show how Rosser strengthened this result to point out the parallels between
Kleene’s and the Gödel-Rosser approach to incompleteness.

Let T ⊇ Q be an enumerable and ω-consistent extension of Q. Gödel first arithmetises
the deduction system, that is, he constructs a formula Prf with two free variables such
that for any formula φ:

• If n is a Gödelisation of a proof of φ in T , then T ⊢ Prf(⌜φ⌝, n).

• If n is not a Gödelisation of a proof of φ in T , then T ⊢ ¬Prf(⌜φ⌝, n).

We use ⌜·⌝ to refer to a Gödelisation of formulas. The choice of Gödelisation is not
important, as long as it is “easy” to compute.

Next he defines a provability relation Prov(x) := ∃k.Prf(x, k) that fulfils:

T ⊢ φ → T ⊢ Prov(⌜φ⌝) (5.1)

Using the so-called “diagonal lemma” he then constructs a formula GT such that:

T ⊢ GT ↔ ¬Prov(⌜GT ⌝) (5.2)

Informally, GT states its own unprovability. Therefore, GT is independent in T be-
cause:

• T ⊬ GT : Assume T ⊢ GT . We can show T ⊢ Prov(⌜GT ⌝) by (5.1) and T ⊢
¬Prov(⌜GT ⌝) by (5.2), which contradicts consistency. We do not need ω-consistency
for this case.

5.3. Strong Separability of Disjoint Predicates 31

• T ⊬ ¬GT : Assume T ⊢ ¬GT . By consistency, there is no proof of GT , and therefore
∀k. T ⊢ ¬Prf(⌜GT ⌝, k). However, we also have T ⊢ Prov(⌜GT ⌝) by (5.2), which
contradicts ω-consistency of T .

It is also possible to show T ⊢ Prov(⌜φ⌝) → T ⊢ φ using ω-consistency.

Rosser gave a proof that consistency suffices for the existence of an independent sentence
by using a modified provability relation:

Prov′(x) := ∃k.Prf(x, k) ∧ ∀k′ ≤ k.¬Prf(x,neg(x))

The function neg negates a Gödelised formula. It is easy to define only using addition
and multiplication when using a suitable Gödelisation.

While it is still possible to show that

T ⊢ φ → T ⊢ Prov′(⌜φ⌝), (5.3)

we also obtain
T ⊢ ¬φ → T ⊢ ¬Prov′(⌜φ⌝). (5.4)

That is, Prov′ strongly separates the provable from the refutable formulas. The proofs
of these properties are similar to the ones presented in Fact 5.6. By using the diagonal
lemma to obtain a formula RT such that

T ⊢ RT ↔ ¬Prov′(⌜φ⌝), (5.5)

we can show independence of RT :

• T ⊬ RT : Analogous to T ⊬ GT .

• T ⊬ ¬RT : We have T ⊢ Prov′(⌜RT ⌝) by (5.5) and T ⊢ ¬Prov′(⌜RT ⌝) by (5.4),
which contradicts consistency.

This proof just needs consistency (as opposed to ω-consistency), and therefore yields
incompleteness of all enumerable and consistent extensions of Q, since they also represent
Prf as required.

5.3 Strong Separability of Disjoint Predicates

Rosser’s trick cannot just be applied to provability, but all existentially representable
predicates. We use it to give a proof of strong separability of disjoint and weakly
Σ1-representable predicates, based on [5].

Lemma 5.5 (Decidability of ≤). Let x ∈ N. Then

Q ⊢ ∀y. x ≤ y ∨ y ≤ x

Proof. By meta-level induction on x and object-level case distinction on y in the successor
case.

https://www.ps.uni-saarland.de/~peters/bachelor/documentation/Undecidability.FOL.Incompleteness.repr.html#Qdec_le

32 Incompleteness of First-Order Logic

Fact 5.6 (Rosser’s trick). Let P1, P2 : N → P be disjoint and weakly Σ1-representable
predicates. P1 and P2 are also strongly Σ1-separable, that is, there is a formula φ1 such
that:

P1 x → Q ⊢ φ1(x) (5.6)
P2 x → Q ⊢ ¬φ1(x) (5.7)

Proof. We additionally construct a formula φ2 that strongly separates P2 and P1:

P2 x → Q ⊢ φ2(x) (5.8)
P1 x → Q ⊢ ¬φ2(x) (5.9)

Using Lemma 4.25, let ψ1, ψ2 ∈ ∆0 be such that:

P1 x ↔ Q ⊢ ∃k. ψ1(x, k) (5.10)
P2 x ↔ Q ⊢ ∃k. ψ2(x, k) (5.11)

Choose:

φ1(x) := ∃k. ψ1(x, k) ∧ ∀k′ ≤ k.¬ψ2(x, k
′)

φ2(x) := ∃k. ψ2(x, k) ∧ ∀k′ ≤ k.¬ψ1(x, k
′)

Now, φ1 and φ2 fulfil (5.6) through (5.9):

(5.6) Let x : N be such that P1 x. By (5.10) and soundness we have a k ∈ N such that
N ⊨ ψ1(x, k). By Σ1-completeness it suffices to show N ⊨ φ1(x, k). By choosing k,
the first conjunct is trivial. For the second one, let k′ ≤ k be such that N ⊨ ψ2(x, k′).
By Σ1-completeness and (5.11) we have P2 x, which contradicts disjointness.

(5.8) Analogous to (5.6).

(5.7) Let x : N be such that P2 x. By (5.8) we have Q ⊢ φ2(x) and by Corollary 4.27 we
have a k2 : N such that Q ⊢ ψ2(x, k2) ∧ ∀k′2 ≤ k2.¬ψ1(x, k

′
2). The rest of this proof

is done formally in Q. Assume a k1 such that ψ1(x, k1) and ∀k′1 ≤ k1.¬ψ2(x, k
′
1).

We are done by doing a case distinction on whether k2 ≤ k1 or k1 ≤ k2 using
Lemma 5.5 and instantiating one of the quantified assumptions.

(5.9) Analogous to (5.7).

Corollary 5.7. Assuming EPFµN, any two disjoint and enumerable predicates are strongly
Σ1-separable.

5.3.1 Illustrative Proof Using Completeness

We give a semantic interpretation of the proof of Fact 5.6 assuming (the axiom of)
completeness, based on [44]. It gives a different perspective on the results from the
last section. In particular, we give another proof of (5.9) for Qc instead of Q, since
completeness only applies to classical theories:

https://www.ps.uni-saarland.de/~peters/bachelor/documentation/Undecidability.FOL.Incompleteness.repr.html#weak_strong

5.4. Main Results 33

Proof (Alternate proof of (5.9)). Assume P1 x for some x : N. By P1 x and Corol-
lary 4.27, we have a k1 : N such that Qc ⊢ ψ1(x, k1) and therefore N ⊨ ψ1(x, k1) by
soundness.

Let M ⊨ Qc be a model. By completeness, it suffices to assume M ⊨ ψ2(x, k2) and
∀k′ ≤ k2.¬(M ⊨ ψ2(x, k

′)) for some k2 :M and derive a contradiction.

Now, k2 must be non-standard, because otherwise we would have M ⊨ ψ1(x, k1) and
therefore N ⊨ ψ2(x, k2) by absoluteness, which yields a contradiction by Σ1-completeness,
weak representability, and disjointness of P1 and P2.

Therefore k1 ≤ k2 by Lemma 4.32, with which we can instantiate the bounded quantifier
and obtain a contradiction.

Semantic proofs tend to be easier to find and easier to understand intuitively. Unfor-
tunately, translating semantic into purely syntactic proofs to avoid the assumption of
completeness is sometimes difficult. Particularly in this case, the semantic proof is very
different from the syntactic one.

5.4 Main Results

We can now use the stronger abstract incompleteness results to show essential unde-
cidability and incompleteness of first-order logic over the axiomatisation of Robinson
arithmetic.

Theorem 5.8 (Essential undecidability). Assuming EPFµN, provability in Q and all
its consistent extensions T ⊇ Q is undecidable, that is, Q is essentially undecidable.

Proof. By Corollaries 3.14 and 5.7. In particular, λx. θxx ▷ b is enumerable for any
b : B. We obtain EPFB by Lemmas 2.9 and 2.18.

Theorem 5.9 (Essential incompleteness). Assuming EPFµN, Q and all its consistent
extensions T ⊇ Q have an independent and closed Σ1 formula, that is, Q is essentially
incomplete.

Proof. Analogous to Theorem 5.8.

Note that both theorems could be shown without assuming EPFµN because it is admissible,
that is, all functions it is instantiated with can, in principle, directly be implemented using
µ-recursive functions. This would, however, require proving the abstract incompleteness
results from Chapter 3 for µ-recursive functions and first-order logic, which is not the
goal of this thesis.

We can also obtain incompleteness of Qc by showing Qc is consistent. We cannot show
this immediately because it is not sound without the assumption of LEM. One way to
show this is to use a Friedman translation (c.f. [21]) to show that consistency of Qc is
equivalent to consistency of Q.

https://www.ps.uni-saarland.de/~peters/bachelor/documentation/Undecidability.FOL.Incompleteness.completeness.html#DR1
https://www.ps.uni-saarland.de/~peters/bachelor/documentation/Undecidability.FOL.Incompleteness.fol_incompleteness.html#Q_undecidable
https://www.ps.uni-saarland.de/~peters/bachelor/documentation/Undecidability.FOL.Incompleteness.fol_incompleteness.html#Q_incomplete

6 Further Representability Results

We can not only use Rosser’s trick to obtain strong separability, but also other, more
powerful representability results. Some of them have, for example, been assumed and
used by Hermes and Kirst [21].

In this chapter we strengthen the statement of strong separability slightly, give a proof
of strong representability of decidable predicates, and derive a form of Church’s thesis
for Robinson’s Q from EPFµN.

Note that we have not yet mechanised the results in this chapter. We expect their
mechanisation to be tedious, but not difficult.

6.1 Improved Strong Separability

We improve on the statement of Fact 5.6 by finding additional properties of the formulas
φ1 and φ2 constructed during the proof.

Fact 6.1. Let P1, P2 : N → P be disjoint and weakly Σ1-representable predicates. There
are formulas φ1, φ2 ∈ Σ1 such that:

• P1 and P2 are weakly represented by φ1 and φ2, respectively:

P1 x ↔ Q ⊢ φ1(x) (6.1)
P2 x ↔ Q ⊢ φ2(x) (6.2)

• P1 and P2 are strongly separated by φ1, that is, in addition:

P1 x → Q ⊢ ¬φ2(x) (6.3)

• P2 and P1 are strongly separated by φ2, that is, in addition:

P2 x → Q ⊢ ¬φ1(x) (6.4)

• φ1 and φ2 can be shown disjoint internally by HA:

HA ⊢ ∀x.¬(φ1(x) ∧ φ2(x)) (6.5)

Proof. The proofs of (6.1) through (6.4) are by Fact 5.6 or obvious by the definitions of
φ1 and φ2. We show (6.5) by first showing that HA ⊢ ∀xy. x ≤ y ∨ y ≤ x by object-level
induction on x and then instantiating one of the bounded quantifiers in the assumptions
to derive a contradiction. We do not know of a way to show (6.5) in Q, in particular
since Q ⊬ ∀xy. x ≤ y ∨ y ≤ x can be shown by giving an appropriate model.

The deep disjointness property (6.5) was assumed by [21].

36 Further Representability Results

6.2 Strong Representability

While enumerable predicates correspond exactly to weakly representable predicates,
decidable (or rather, enumerable and co-enumerable) predicates correspond exactly
to strongly representable predicates. Furthermore, strong representability of decidable
predicates is a corollary of strong separability of disjoint and enumerable predicates.

Lemma 6.2. Let P be a predicate and P as well as P be weakly Σ1-representable. There
is a formula φ ∈ Σ1 (or φ ∈ Π1) that strongly represents P , that is:

Px → Q ⊢ φ(x) ¬Px → Q ⊢ ¬φ(x)

Proof. For φ ∈ Σ1, apply Fact 5.6 to P and P . For φ ∈ Π1, apply it to P and P
instead, negate the resulting Σ1-formula and obtain an equivalent Π1-formula by using
that Q ⊢ (¬∃x. ψ(x)) ↔ ∀x.¬ψ(x) for any formula ψ.

Note that any formula strongly representing a definite predicate P , that is, ∀x. Px∨¬Px,
is Q-decidable. Note that any decidable predicate is definite.

Corollary 6.3. Assuming EPFµN, any enumerable and co-enumerable (and particularly
any decidable) predicate is strongly representable.

6.3 Church’s Thesis for Robinson Arithmetic

To work with computability theory and accompanying representability theorems in first-
order logic synthetically, a form of Church’s thesis for Robinson arithmetic is desirable.
For instance, a formulation for total functions was assumed in [21]. We give a proof of
a form of Church’s thesis for Q (CTQ

N) for both total and partial functions, assuming
EPFµN.

To do this we first need to show a form of bounded binary quantification to be Q-
decidable.

Lemma 6.4. Let φ be Q-decidable. Binary bounded quantifiers ∀xy. x+ y ≤ z → φ,
where z is a variable other than x and y, are Q-decidable.

Proof. Similar to Fact 4.23, particularly case 3.

Fact 6.5. Let f : N⇀ N be a partial function such that the graph of f , that is, {(x, y) |
fx▷ y}, is weakly Σ1-representable.8 There is a φ ∈ Σ1 such that:

fx▷ y → Q ⊢ ∀y′. φ(x, y′) ↔ y′ = y

Proof. By Lemma 4.25, let ψ ∈ ∆0 be such that:

fx▷ y ↔ Q ⊢ ∃k. ψ(x, y, k)
8Weak representability can be generalised to predicates of arbitrary arity by using a pairing function

6.3. Church’s Thesis for Robinson Arithmetic 37

Choose

Φ(x, y, k) := ψ(x, y, k) ∧ ∀y′k′. y′ + k′ ≤ y + k → ψ(x, y′, k′) → y′ = y

φ(x, y) := ∃k.Φ(x, y, k).

Assume fx▷ y. The proof of Q ⊢ y′ = y → ∀y′. φ(x, y′) is similar to the proofs of (5.6)
and (5.8) in Fact 5.6.

The rest of this proof is done formally in Q, except when stated otherwise. Assume y′, k′

such that Φ(x, y′, k′). By fx▷ y and the direction from right to left we also have φ(x, y)
and therefore by Corollary 4.27 a k ∈ N such that Φ(x, y, k). We are done by doing a
case distinction on whether y + k ≤ y′ + k′ or y′ + k′ ≤ y + k using Lemma 5.5.

Corollary 6.6 (Church’s thesis for Q (CTQ
N)). Let f : N⇀ N be a partial function.

Assuming EPFµN, there is a formula φ ∈ Σ1 such that:

fx▷ y → Q ⊢ ∀y′. φ(x, y′) ↔ y′ = y

Proof. The graph of a partial function is synthetically enumerable and therefore weakly
Σ1-representable by Corollary 5.2.

The converse of this statement, that is, CTQ
N implies EPFµN, also appears to hold. CTQ

N
appears to be practical and powerful way to unify representability properties of Q. In par-
ticular, assuming CTQ

N , it is possible to show weak and strong representability of decidable
and enumerable predicates respectively (c.f. [21]), as well as strong separability.

It can also be useful to consider Church’s thesis only for total functions, leading to the
following simplified form:

Corollary 6.7. Let f : N → N. Assuming EPFµN, there is a formula φ ∈ Σ1 such that:

Q ⊢ ∀y′. φ(x, y′) ↔ y′ = fx

This alternative form of CTQ
N was also assumed by [21].

7 Conclusion

In this thesis we first gave abstract incompleteness proofs in different strengths for
abstract formal systems with a negation function, following Kleene. The strongest version
states essential incompleteness (and, by a related proof, essential undecidability) of formal
systems strongly separating certain enumerable and disjoint predicates.

Secondly, we instantiated our results to first-order logic over the axiomatisation of
Robinson arithmetic. We used a mechanisation of the DPRM theorem to obtain weak
representability of enumerable predicates in Robinson’s Q and then used Rosser’s trick
to show strong separability of disjoint and enumerable predicates.

Lastly we used strong separability and Rosser’s trick to obtain other, more powerful
representability results.

7.1 Discussion

The different variants of incompleteness theorems we considered throughout this thesis
can be classified along two axes: The strength of the result (anonymous incompleteness or
an independent sentence), and the strength of the assumptions (soundness or consistency).
Both our main abstract and instantiated incompleteness results are of the strongest type,
that is, they assume consistency and construct an independent sentence.

7.2 Mechanization

The mechanisation9 consists of two main parts: The abstract incompleteness proofs
and their instantiation to first-order logic. The former consists of only around 400
lines of code, which can be reduced to around 150 when only considering the strongest
incompleteness proofs, while the latter adds around 2250 lines of code. The development
is based on the Coq library of undecidability proofs (CLUP) [16], from which additional
code, particularly on synthetic computability, first-order logic, and the DPRM theorem,
is used.

Mechanising and working with partial functions and Church’s thesis is straightforward.
The paper proofs, however, tend to follow a slightly different structure than their mech-
anised counterparts, in particular when dealing with equivalences, such as in Lemma 2.11.
Additionally, definitions of partial functions in Coq, as for example in Fact 3.3, tend to
be slightly unnatural since they have to propagate step-indices explicitly when using

9The accompanying mechanisation can be accessed at https://github.com/uds-psl/coq-synthetic-
incompleteness/tree/bachelor.

https://github.com/uds-psl/coq-synthetic-incompleteness/tree/bachelor
https://github.com/uds-psl/coq-synthetic-incompleteness/tree/bachelor

40 Conclusion

other step-indexed functions or enumerators. This could be avoided by using the abstract
interface by Forster [11]. Otherwise, the mechanisation of Chapters 2 and 3 is notably
unremarkable.

Mechanising the instantiation to first-order logic, however, was a lot more work. We
build upon an existing mechanisation of first-order logic by Kirst et al. [26] that includes
most fundamental definitions and lemmas for working with first-order logic. As opposed
to the definitions presented in this text, it defines formulas and terms to be quantified
over a signature, that is, types of predicate and function symbols and their corresponding
arities, explicitly defines classical provability as a part of the deduction system, and uses
de Bruijn indices instead of explicit naming. While the former two differences did not
affect the mechanisation other than requiring some boilerplate code, the latter repeatedly
caused us problems. Mechanising structures that include binders, such as predicate logic
or programming languages, is well known to be much more tedious than dealing with
them on paper, where many lemmas on and properties of substitutions are largely glossed
over. On paper we avoided much of this by explicitly working with the Barendregt
convention.

Notably, a lot of work (almost half of the mechanisation of the instantiation, by lines of
code) went into mechanising Q-decidability of bounded quantification and Σ1-completeness
due to the technicality of these results.

We relied heavily on the first-order proof mode for Coq by Koch, as described in [23],
allowing us to use tactics similar to the ones included with Coq to show statements
within first-order logic. The proof mode also provides translations between a de Bruijn
representation of logical formulas and a named representation, which greatly improves
the ergonomics of working with first-order logic. This project would have been much
more tedious if we did not have the proof mode available.

7.3 Related Work

Mechanisations of Gödel’s incompleteness theorems. The earliest mechanisation
of Gödel’s first incompleteness theorem was developed by Shankar in 1994 [55] using
Nqthm [6], also called the Boyer-Moore theorem prover, a proof assistant based on Lisp.
He does not mechanise incompleteness of arithmetic, but of a finite set theory, which
simplifies encoding recursive structures, such as formulas and proofs, immensely. His
development consists of around 20 000 lines of code. A mechanisation of incompleteness
of first-order arithmetic, based on an axiomatisation similar to Robinson arithmetic, was
first developed by O’Connor in 2005 [43] using Coq, consisting of almost 44 000 lines
of code. Another mechanisation of incompleteness of arithmetic using HOL Light [19]
was developed by Harrison in 2009 [20]. More recently, both of Gödel’s incompleteness
theorems were mechanised by Paulson in 2014 [46, 47] in around 12 000 lines of Isabelle [42]
code. He showed incompleteness of a finite set theory slightly different from the one used
by Shankar. To our knowledge, he was the first to give a complete mechanisation of
Gödel’s second incompleteness theorem, relying on a proof by Swierczkowski [61].

None of the mechanisations mentioned above used Kleene’s approach to incompleteness.
However, for example O’Connor used representability of primitive recursive functions as

7.3. Related Work 41

an intermediate step to show weak representability of first-order provability, similar to
Gödel’s original proof.

Working with set theory instead of arithmetic considerably simplifies representing recursive
structures within the logic itself, such as provability. We did not consider such problems
in this thesis since we relied on a mechanisation of the DPRM theorem to obtain
representability results.

Popescu and Traytel [48] mechanised incompleteness using the Gödel-Rosser approach
abstractly in 2019 based on a much more complex notion of formal systems than ours,
additionally incorporating substitutions, soundness, arithmetic, and more.

A weaker form of incompleteness for a subset of Robinson arithmetic in Coq was mech-
anised by Kirst and Hermes in 2021 [25], using Kleene’s folklore proof and the DPRM
theorem. Their result differs from ours in two ways: First, they do not obtain essential
incompleteness since they rely on Kleene’s early folklore proof using the halting problem
(see Fact 3.8). Instead, they give an abstract notion of formal systems incorporating
soundness, and use it to deduce incompleteness of all sound extensions of their axio-
matisation. Secondly, their development does not deduce falsity from the assumption of
incompleteness, instead constructing a decider for the halting problem of Turing machines,
which also prevents them from constructing an independent sentence. This can, however,
be considered a form of contradiction in synthetic computability theory.

Kirst and Hermes also mechanised an analogous incompleteness statement for a finite
set theory by deriving undecidability using a reduction from the Post correspondence
problem.

Synthetic computability theory. The basic principles of synthetic computability
theory [51, 4] were first applied to CIC by Forster et al. [13]. A treatment of Church’s
thesis [34, 64] to enhance the expressivity and applicability of synthetic computability
theory in CIC was developed by Forster [10, 12, 11].

The first proof of the DPRM theorem was finished in 1970 by Matiyasevitch [39] and
mechanised by Larchey-Wendling and Forster [35], which is used as a source problem for
undecidability proofs in the Coq library of undecidability proofs (CLUP) [16]. CLUP
also contains a mechanised development of first-order logic [26].

Different approaches to Gödel’s incompleteness theorems. The Gödel-Rosser
approach to incompleteness was developed in the 1930s, primarily by Gödel [18] and
Rosser [54]. Kleene presented his approach to incompleteness prominently in both of his
books [30, 31], as well as multiple papers [27, 28, 29]. Turing mentioned similar ideas to
show incompleteness in his seminal paper on the Entscheidungsproblem [65].

Different proofs of Gödel’s first incompleteness theorem, among some abstract ones, have
been considered by Smullyan [57, 58]. In particular, he also considers the strengthened
version of Kleene’s proof we considered in Chapter 3 abstractly, although with a slightly
more complex notion of formal system.

42 Conclusion

Another attempt to formalise Gödel’s incompleteness results “without (too many) tears”
was developed by [56].

Our approach to incompleteness of arithmetic shares similarities with work by Beklem-
ishev [5], who argues using an implicit model of computation. Another account of Gödel’s
incompleteness theorem was developed partially independently by Post [49].

7.4 Future Work

We have not yet mechanised the results from Chapter 6. We expect their mechanisation to
be tedious but not difficult. Additionally, there might be other interesting representability
properties we have not yet shown, particularly weak Π1-representability of co-enumerable
predicates.

We have not considered the conditions under which Rosser’s trick is applicable abstractly.
Doing this could simplify future instantiations of the stronger abstract incompleteness
results, as long as the abstraction is sufficiently simple.

Our instantiation to first-order logic with Robinson’s Q currently relies on a mechanisation
of the DPRM theorem. The DPRM theorem, however, is a much stronger statement
than we actually require, and is considerably harder to show. Using our mechanisation of
Σ1-completeness it appears feasible to mechanise weak representability of µ-enumerable
predicates for our first-order logic directly by first finding formulas that weakly define,
that is, a semantic notion analogous to weak representability, µ-enumerable predicates in
the standard model. Similar approaches to have been taken by [43, 46].

While the first-order proof mode [23] was already very helpful in mechanising our results,
it does not yet compare to its primary inspiration, the Iris10 proof mode [32], in particular
in regards to conversions between naming schemes, error messages, and reliability.

In Chapter 6, we showed that EPFµN implies Church’s thesis for Q. We expect the converse
to be provable as well by first showing that, given any partial function “captured” by Q,
its graph is µ-enumerable, which suffices for its µ-computability. Mechanising this fact,
however, appears to be challenging because we would have to implement our first-order
logic, that is, substitution, enumerability of provable formulas, etc., using µ-recursive
functions. Automatic extractions of such functions for first-order logic, specifically into a
lambda calculus, have already been investigated by Forster, Kirst and Wehr [14] using a
tool by Forster and Kunze [15].

Our approach to mechanising Gödel’s first incompleteness theorem does not immediately
apply to Gödel’s second incompleteness theorem as well, preventing us from mechanising
it using our approach. In particular, it requires even deeper representability properties
which, to our knowledge, cannot easily be obtained without inspecting their respective
formulas explicitly, which we were able to avoid by using Rosser’s trick. One small
set of representability properties sufficient is known as the Hilbert-Bernays derivability
conditions [37]. An abstract explanation of Gödel’s second incompleteness theorem using
computability theory could lead to a solution to this problem.

10A higher-order, shallowly embedded separation logic framework for Coq [24].

Bibliography

[1] user21820 (https://math.stackexchange.com/users/21820/user21820). Com-
putability viewpoint of Godel/Rosser’s incompleteness theorem. Mathematics Stack
Exchange. 31st Dec. 2021. url: https://math.stackexchange.com/q/2486349
(visited on 22nd Mar. 2022).

[2] Scott Aaronson. Rosser’s theorem via Turing machines. Shtetl-Optimized. 21st July
2011. url: https://scottaaronson.blog/?p=710 (visited on 28th Feb. 2022).

[3] Henk Barendregt. The Lambda Calculus: Its Syntax and Semantics. Studies in
Logic and the Foundations of Mathematics 103. North-Holland, 1981.

[4] Andrej Bauer. “First steps in synthetic computability theory”. In: Electronic Notes
in Theoretical Computer Science 155 (2006), pp. 5–31.

[5] Lev Beklemishev. “Gödel incompleteness theorems and the limits of their applicab-
ility. I”. In: Russian Mathematical Surveys 65 (2011), p. 857.

[6] Robert S. Boyer, Matt Kaufmann and J S. Moore. “The Boyer-Moore theorem prover
and its interactive enhancement”. In: Computers & Mathematics with Applications
29.2 (1995), pp. 27–62.

[7] Thierry Coquand and Gérard Huet. “The calculus of constructions”. In: Information
and Computation 76.2 (1988), pp. 95–120.

[8] Martin Davis, Hilary Putnam and Julia Robinson. “The decision problem for
exponential Diophantine equations”. In: Annals of Mathematics (1961), pp. 425–
436.

[9] Nicolaas G. de Bruijn. “Lambda calculus notation with nameless dummies, a tool for
automatic formula manipulation, with application to the Church-Rosser theorem”.
In: Indagationes Mathematicae (Proceedings). Vol. 75. 5, pp. 381–392.

[10] Yannick Forster. “Church’s thesis and related axioms in Coq’s type theory”. In:
29th EACSL Annual Conference on Computer Science Logic (CSL 2021). Vol. 183.
Leibniz International Proceedings in Informatics (LIPIcs). 2021, 21:1–21:19.

[11] Yannick Forster. “Computability in Constructive Type Theory”. PhD thesis. Saar-
land University, 2021. doi: 10.22028/D291-35758.

[12] Yannick Forster. “Parametric Church’s thesis: synthetic computability without
choice”. In: International Symposium on Logical Foundations of Computer Science.
2022, pp. 70–89.

[13] Yannick Forster, Dominik Kirst and Gert Smolka. “On synthetic undecidability in
Coq, with an application to the Entscheidungsproblem”. In: Proceedings of the 8th
ACM SIGPLAN International Conference on Certified Programs and Proofs. 2019,
pp. 38–51.

https://math.stackexchange.com/users/21820/user21820
https://math.stackexchange.com/q/2486349
https://scottaaronson.blog/?p=710
https://doi.org/10.22028/D291-35758

44 Bibliography

[14] Yannick Forster, Dominik Kirst and Dominik Wehr. “Completeness theorems for
first-order logic analysed in constructive type theory (extended version)”. In: Logical
Foundations of Computer Science. Springer, 2020, pp. 47–74.

[15] Yannick Forster and Fabian Kunze. “A certifying extraction with time bounds from
Coq to call-by-value lambda calculus”. In: 10th International Conference on Inter-
active Theorem Proving (ITP 2019). Vol. 141. Leibniz International Proceedings
in Informatics (LIPIcs). Schloss Dagstuhl–Leibniz-Zentrum für Informatik, 2019,
17:1–17:19.

[16] Yannick Forster et al. “A Coq library of undecidable problems”. In: CoqPL 2020
The Sixth International Workshop on Coq for Programming Languages. 2020.

[17] Torkel Franzén. Gödel’s Theorem: An Incomplete Guide to its Use and Abuse. Ak
Peters Series. Taylor & Francis, 2005.

[18] Kurt Gödel. “Über Formal Unentscheidbare Sätze der Principa Mathematica und
Verwandter Systeme I”. In: Monatshefte für Mathematik und Physik 38 (1931),
pp. 173–198.

[19] John Harrison. “HOL Light: a tutorial introduction”. In: Formal Methods in
Computer-Aided Design. Springer Berlin Heidelberg, 1996, pp. 265–269.

[20] John Harrison. Handbook of Practical Logic and Automated Reasoning. Cambridge
University Press, 2009.

[21] Marc Hermes and Dominik Kirst. “An analysis of Tennenbaum’s theorem in con-
structive type theory”. In: 7th International Conference on Formal Structures for
Computation and Deduction. 2022.

[22] Douglas R. Hofstadter. Gödel, Escher, Bach: an Eternal Golden Braid. Basic Books
Inc., 1979.

[23] Johannes Hostert, Mark Koch and Dominik Kirst. “A toolbox for mechanised
first-order logic”. In: The Coq Workshop. Vol. 2021. 2021.

[24] Ralf Jung et al. “Iris from the ground up: a modular foundation for higher-order
concurrent separation logic”. In: Journal of Functional Programming 28 (2018).

[25] Dominik Kirst and Marc Hermes. “Synthetic undecidability and incompleteness of
first-order axiom systems in Coq”. In: ITP 2021. 2021.

[26] Dominik Kirst et al. “A Coq library for mechanised first-order logic”. In: The Coq
Workshop. 2022.

[27] Stephen C. Kleene. “General recursive functions of natural numbers”. In: Mathem-
atische Annalen 112 (1936), pp. 727–742.

[28] Stephen C. Kleene. “Recursive predicates and quantifiers”. In: Transactions of the
American Mathematical Society 53 (1943), pp. 41–73.

[29] Stephen C. Kleene. “A symmetric form of Gödel’s theorem”. In: The Journal of
Symbolic Logic 16.2 (1951), p. 147.

[30] Stephen C. Kleene. Introduction to Metamathematics. North Holland, 1952.

[31] Stephen C. Kleene. Mathematical Logic. Dover Publications, 1967.

45

[32] Robbert Krebbers, Amin Timany and Lars Birkedal. “Interactive proofs in higher-
order concurrent separation logic”. In: Proceedings of the 44th ACM SIGPLAN
Symposium on Principles of Programming Languages. 2017, pp. 205–217.

[33] Georg Kreisel. “On weak completeness of intuitionistic predicate logic”. In: The
Journal of Symbolic Logic 27.2 (1962), pp. 139–158.

[34] Georg Kreisel. “Mathematical logic”. In: Journal of Symbolic Logic 32.3 (1967),
pp. 419–420.

[35] Dominique Larchey-Wendling and Yannick Forster. “Hilbert’s tenth problem in
Coq (extended version)”. In: Logical Methods in Computer Science 18 (2022).

[36] Bernard Linsky and Andrew David Irvine. “Principia mathematica”. In: The Stan-
ford Encyclopedia of Philosophy. Spring 2022 Edition. Metaphysics Research Lab,
Stanford University, 2022.

[37] Martin H. Löb. “Solution of a problem of Leon Henkin”. In: Journal of Symbolic
Logic 20.2 (1955), pp. 115–118.

[38] Yevgeniy Makarov and Jean-François Monin. The Coq standard library. Library
Coq.Logic.ConstructiveEpsilon. url: https://coq.inria.fr/library/Coq.
Logic.ConstructiveEpsilon.html (visited on 13th May 2022).

[39] Yuri V. Matijasevič. “Enumerable sets are Diophantine”. In: Soviet Mathematics:
Doklady 11 (1970), pp. 354–357.

[40] Andrzej Mostowski. “On definable sets of positive integers”. In: Fundamenta Math-
ematicae 34.1 (1947), pp. 81–112.

[41] Niklas Mück. “The Arithmetical Hierarchy, Oracle Computability, and Post’s
Theorem in Synthetic Computability”. Unsubmitted. Bachelor’s thesis. Saarland
University, 2022. url: https://ps.uni-saarland.de/~mueck/bachelor/thesis.
pdf.

[42] Tobias Nipkow, Lawrence C. Paulson and Markus Wenzel. Isabelle/HOL: A Proof
Assistant for Higher-Order Logic. Vol. 2283. Springer Science & Business Media,
2002.

[43] Russell O’Connor. “Essential incompleteness of arithmetic verified by Coq”. In:
Theorem Proving in Higher Order Logics (2005), pp. 245–260.

[44] Sebastian Oberhoff. How does one prove that Peano arithmetic can represent all
partially computable functions? Mathematics Stack Exchange. 7th Feb. 2020. url:
https://math.stackexchange.com/q/3538168 (visited on 24th May 2022).

[45] Christine Paulin-Mohring. “Inductive definitions in the system Coq rules and
properties”. In: Typed Lambda Calculi and Applications. Springer, 1993, pp. 328–
345.

[46] Lawrence C. Paulson. “A machine-assisted proof of Gödel’s incompleteness theorems
for the theory of hereditarily finite sets”. In: The Review of Symbolic Logic 7.3
(2014), pp. 484–498.

[47] Lawrence C. Paulson. “A mechanised proof of Gödel’s incompleteness theorems
using nominal Isabelle”. In: Journal of Automated Reasoning 55 (June 2015), pp. 1–
37.

https://coq.inria.fr/library/Coq.Logic.ConstructiveEpsilon.html
https://coq.inria.fr/library/Coq.Logic.ConstructiveEpsilon.html
https://ps.uni-saarland.de/~mueck/bachelor/thesis.pdf
https://ps.uni-saarland.de/~mueck/bachelor/thesis.pdf
https://math.stackexchange.com/q/3538168

46 Bibliography

[48] Andrei Popescu and Dmitriy Traytel. “A formally verified abstract account of
Gödel’s incompleteness theorems”. In: Automated Deduction – CADE 27. Springer
International Publishing, 2019, pp. 442–461.

[49] Emil L. Post and Darvis Martin. “Absolutely unsolvable problems and relatively
undecidable propositions – acount of an anticipation”. In: Solvability, Provability,
Definability: The Collected Works of Emil L. Post. Springer, 1994, pp. 375–441.

[50] Panu Raatikainen. “Gödel’s incompleteness theorems”. In: The Stanford Encyc-
lopedia of Philosophy. Spring 2022 Edition. Metaphysics Research Lab, Stanford
University, 2022.

[51] Fred Richman. “Church’s thesis without tears”. In: The Journal of Symbolic Logic
48.3 (1983), pp. 797–803.

[52] Julia Robinson. “Existential definability in arithmetic”. In: Transactions of the
American Mathematical Society 72.3 (1952), pp. 437–449.

[53] Raphael Robinson. “An essentially undecidable axiom system”. In: Proceedings of
the International Congress of Mathematics. 1950, pp. 729–730.

[54] Barkley Rosser. “Extensions of some theorems of Gödel and Church”. In: Journal
of Symbolic Logic 1.3 (1936), pp. 87–91.

[55] Natarajan Shankar. Metamathematics, Machines and Gödel’s Proof. Cambridge
Tracts in Theoretical Computer Science. Cambridge University Press, 1994.

[56] Peter Smith. Gödel Without (Too Many) Tears. Logic Matters, 2021.

[57] Raymond M. Smullyan. Gödel’s Incompleteness Theorems. Oxford University Press,
1992.

[58] Raymond M. Smullyan. Diagonalization and Self-Reference. Clarendon Press, 1994.

[59] Raymond M. Smullyan. The Godelian Puzzle Book: Puzzles, Paradoxes and Proofs.
Dover Publications, 2013.

[60] John Stillwell. “Emil Post and his anticipation of Gödel and Turing”. In: Mathematics
Magazine 77.1 (2004), pp. 3–14.

[61] Stanislaw Swierczkowski. “Finite sets and Gödel’s incompleteness theorems”. In:
Dissertationes Mathematicae 422 (2003), pp. 1–58.

[62] Alfred Tarski. “The concept of truth in formalized languages”. In: Logic, Semantics,
Metamathematics. Oxford University Press, 1936, pp. 152–278.

[63] The Coq Development Team. The Coq proof assistant. Jan. 2022. doi: 10.5281/
zenodo.5846982.

[64] Anne S. Troelstra and Dirk van Dalen. Constructivism in Mathematics, Vol 1. ISSN.
Elsevier Science, 1988.

[65] Alan M. Turing. “On computable numbers, with an application to the Entscheidung-
sproblem”. In: Proceedings of the London Mathematical Society 2.42 (1936), pp. 230–
265.

[66] Dirk van Dalen. Logic and Structure. Fourth Edition. Springer, 2008.

https://doi.org/10.5281/zenodo.5846982
https://doi.org/10.5281/zenodo.5846982

47

[67] Anatoly Vorobey. First incompleteness via computation: an explicit construction.
Foundations of Mathematics mailing list. url: https://cs.nyu.edu/pipermail/
fom/2021-September/022872.html (visited on 21st Feb. 2022).

[68] Benjamin Werner. “Sets in types, types in sets”. In: International Symposium on
Theoretical Aspects of Computer Software. Springer, 1997, pp. 530–546.

[69] Richard Zach. “Hilbert’s program”. In: The Stanford Encyclopedia of Philosophy.
Fall 2019 Edition. Metaphysics Research Lab, Stanford University, 2019.

https://cs.nyu.edu/pipermail/fom/2021-September/022872.html
https://cs.nyu.edu/pipermail/fom/2021-September/022872.html

	Introduction
	Contributions
	Outline

	Computational Type Theory
	Constructive Type Theory
	Synthetic Computability Theory
	Basic Synthetic Notions
	Partial Functions
	Church's Thesis

	Abstract and Synthetic Incompleteness
	Abstract Formal Systems
	Folklore Proof Using Soundness
	Anonymous Incompleteness
	Informative Incompleteness

	Strengthened Proof Using Consistency
	Conclusion

	First-Order Logic
	Syntax
	Semantics
	Natural Deduction
	Robinson and Peano Arithmetic
	Arithmetical Hierarchy
	Completeness
	Formal Systems

	Incompleteness of First-Order Logic
	Weak representability
	Rosser's Trick for Gödel's Incompleteness Proof
	Strong Separability of Disjoint Predicates
	Illustrative Proof Using Completeness

	Main Results

	Further Representability Results
	Improved Strong Separability
	Strong Representability
	Church's Thesis for Robinson Arithmetic

	Conclusion
	Discussion
	Mechanization
	Related Work
	Future Work

	Bibliography

