
Gödel’s Theorem Without Tears1

Essential Incompleteness in Synthetic Computability

22nd June, 2022
TYPES 2022

Benjamin Peters Dominik Kirst

computer science

saarland
university

1Abstract title: “Strong, Synthetic, and Computational Proofs of Gödel’s First Incompleteness Theorem”
1 / 24



Gödel’s First Incompleteness Theorem

Theorem

Any effective, consistent, and sufficiently powerful formal logic is incomplete.

We consider proofs of

incompleteness à la Gödel (1931)

that are
abstract à la Popescu and Traytel (2019)

computational à la Kleene (1936), Turing (1936), Post (1941)

synthetic à la Kirst and Hermes (2021)

strong à la Rosser (1936), Kleene (1951, c.f. 1952)

machine-checked à la O’Connor (2005), Paulson (2014), and many others

2 / 24



Gödel’s First Incompleteness Theorem

Theorem

Any effective, consistent, and sufficiently powerful formal logic is incomplete.

We consider proofs of

incompleteness à la Gödel (1931)

that are
abstract à la Popescu and Traytel (2019)

computational à la Kleene (1936), Turing (1936), Post (1941)

synthetic à la Kirst and Hermes (2021)

strong à la Rosser (1936), Kleene (1951, c.f. 1952)

machine-checked à la O’Connor (2005), Paulson (2014), and many others

2 / 24



Gödel’s First Incompleteness Theorem

Theorem

Any effective, consistent, and sufficiently powerful formal logic is incomplete.

We consider proofs of

incompleteness à la Gödel (1931)

that are
abstract à la Popescu and Traytel (2019)

computational à la Kleene (1936), Turing (1936), Post (1941)

synthetic à la Kirst and Hermes (2021)

strong à la Rosser (1936), Kleene (1951, c.f. 1952)

machine-checked à la O’Connor (2005), Paulson (2014), and many others

2 / 24



Gödel’s First Incompleteness Theorem

Theorem

Any effective, consistent, and sufficiently powerful formal logic is incomplete.

We consider proofs of

incompleteness à la Gödel (1931)

that are
abstract à la Popescu and Traytel (2019)

computational à la Kleene (1936), Turing (1936), Post (1941)

synthetic à la Kirst and Hermes (2021)

strong à la Rosser (1936), Kleene (1951, c.f. 1952)

machine-checked à la O’Connor (2005), Paulson (2014), and many others

2 / 24



Gödel’s First Incompleteness Theorem

Theorem

Any effective, consistent, and sufficiently powerful formal logic is incomplete.

We consider proofs of

incompleteness à la Gödel (1931)

that are
abstract à la Popescu and Traytel (2019)

computational à la Kleene (1936), Turing (1936), Post (1941)

synthetic à la Kirst and Hermes (2021)

strong à la Rosser (1936), Kleene (1951, c.f. 1952)

machine-checked à la O’Connor (2005), Paulson (2014), and many others

2 / 24



Gödel’s First Incompleteness Theorem

Theorem

Any effective, consistent, and sufficiently powerful formal logic is incomplete.

We consider proofs of

incompleteness à la Gödel (1931)

that are
abstract à la Popescu and Traytel (2019)

computational à la Kleene (1936), Turing (1936), Post (1941)

synthetic à la Kirst and Hermes (2021)

strong à la Rosser (1936), Kleene (1951, c.f. 1952)

machine-checked à la O’Connor (2005), Paulson (2014), and many others

2 / 24



Gödel’s First Incompleteness Theorem

Theorem

Any effective, consistent, and sufficiently powerful formal logic is incomplete.

We consider proofs of

incompleteness à la Gödel (1931)

that are
abstract à la Popescu and Traytel (2019)

computational à la Kleene (1936), Turing (1936), Post (1941)

synthetic à la Kirst and Hermes (2021)

strong à la Rosser (1936), Kleene (1951, c.f. 1952)

machine-checked à la O’Connor (2005), Paulson (2014), and many others

2 / 24



Approaches to Incompleteness

early: assuming soundness

strengthened: assuming consistency2

rec. insep. predicatesRosser’s trick

Kleene’s approach

Gödel: assuming ω-consistency

Rosser: assuming consistency

Rosser’s trick Gödel-Rosser approach

2We found out about these results through an e-mail by Anatoly Vorobey on the Foundations of
Mathematics mailing list.

3 / 24



Approaches to Incompleteness

early: assuming soundness

strengthened: assuming consistency2

rec. insep. predicatesRosser’s trick Kleene’s approach

Gödel: assuming ω-consistency

Rosser: assuming consistency

Rosser’s trick Gödel-Rosser approach

2We found out about these results through an e-mail by Anatoly Vorobey on the Foundations of
Mathematics mailing list.

3 / 24



Approaches to Incompleteness

early: assuming soundness

strengthened: assuming consistency2

rec. insep. predicatesRosser’s trick Kleene’s approach

Gödel: assuming ω-consistency

Rosser: assuming consistency

Rosser’s trick Gödel-Rosser approach

2We found out about these results through an e-mail by Anatoly Vorobey on the Foundations of
Mathematics mailing list.

3 / 24



Approaches to Incompleteness

early: assuming soundness

strengthened: assuming consistency2

rec. insep. predicatesRosser’s trick Kleene’s approach

Gödel: assuming ω-consistency

Rosser: assuming consistency

Rosser’s trick Gödel-Rosser approach

2We found out about these results through an e-mail by Anatoly Vorobey on the Foundations of
Mathematics mailing list.

3 / 24



Approaches to Incompleteness

early: assuming soundness

strengthened: assuming consistency2

rec. insep. predicatesRosser’s trick Kleene’s approach

Gödel: assuming ω-consistency

Rosser: assuming consistency

Rosser’s trick Gödel-Rosser approach

2We found out about these results through an e-mail by Anatoly Vorobey on the Foundations of
Mathematics mailing list.

3 / 24



Approaches to Incompleteness

early: assuming soundness

strengthened: assuming consistency2

rec. insep. predicatesRosser’s trick Kleene’s approach

Gödel: assuming ω-consistency

Rosser: assuming consistency

Rosser’s trick Gödel-Rosser approach

2We found out about these results through an e-mail by Anatoly Vorobey on the Foundations of
Mathematics mailing list.

3 / 24



We factorised Kleene’s incompleteness proofs into two parts:

1. Concise abstract core using synthetic computability

2. Instantiation of these abstract proofs to first-order logic using Rosser’s trick

4 / 24



Abstract incompleteness proofs
Kleene’s early incompleteness result
Improving Kleene’s early result
Kleene’s strengthened incompleteness result

Instantiation to first-order Robinson arithmetic

5 / 24



Synthetic Computability3

We work in CIC, where all functions can be considered computable.

Definition

A predicate P : X → Prop is

▶ decidable if ∃f : X → B. Px ↔ fx = true.

▶ semi-decidable if ∃f : X → N → B.∀x. Px ↔ ∃k. fxk = true.

3Richman 1983; Bauer 2006.
6 / 24



Synthetic Computability3

We work in CIC, where all functions can be considered computable.

Definition

A predicate P : X → Prop is

▶ decidable if ∃f : X → B. Px ↔ fx = true.

▶ semi-decidable if ∃f : X → N → B.∀x. Px ↔ ∃k. fxk = true.

3Richman 1983; Bauer 2006.
6 / 24



Synthetic Computability3

We work in CIC, where all functions can be considered computable.

Definition

A predicate P : X → Prop is

▶ decidable if ∃f : X → B. Px ↔ fx = true.

▶ semi-decidable if ∃f : X → N → B.∀x. Px ↔ ∃k. fxk = true.

3Richman 1983; Bauer 2006.
6 / 24



Formal Systems

Definition (Formal system)

F = (S,¬,⊢) is a formal system if:

▶ S : Type is a discrete type of sentences

▶ ¬ : S → S is a negation function

▶ ⊢ : S → Prop is a semi-decidable provability predicate

▶ F is consistent: ∀s.¬(F ⊢ s ∧ F ⊢ ¬s)
F is complete if ∀s.F ⊢ s ∨ F ⊢ ¬s.

Many common formal logics are formal systems in this sense:

▶ first-order logic over a consistent and effective axiomatisation

▶ CIC

▶ . . .

7 / 24



Formal Systems

Definition (Formal system)

F = (S,¬,⊢) is a formal system if:

▶ S : Type is a discrete type of sentences

▶ ¬ : S → S is a negation function

▶ ⊢ : S → Prop is a semi-decidable provability predicate

▶ F is consistent: ∀s.¬(F ⊢ s ∧ F ⊢ ¬s)
F is complete if ∀s.F ⊢ s ∨ F ⊢ ¬s.

Many common formal logics are formal systems in this sense:

▶ first-order logic over a consistent and effective axiomatisation

▶ CIC

▶ . . .

7 / 24



Formal Systems

Definition (Formal system)

F = (S,¬,⊢) is a formal system if:

▶ S : Type is a discrete type of sentences

▶ ¬ : S → S is a negation function

▶ ⊢ : S → Prop is a semi-decidable provability predicate

▶ F is consistent: ∀s.¬(F ⊢ s ∧ F ⊢ ¬s)
F is complete if ∀s.F ⊢ s ∨ F ⊢ ¬s.

Many common formal logics are formal systems in this sense:

▶ first-order logic over a consistent and effective axiomatisation

▶ CIC

▶ . . .

7 / 24



Formal Systems

Definition (Formal system)

F = (S,¬,⊢) is a formal system if:

▶ S : Type is a discrete type of sentences

▶ ¬ : S → S is a negation function

▶ ⊢ : S → Prop is a semi-decidable provability predicate

▶ F is consistent: ∀s.¬(F ⊢ s ∧ F ⊢ ¬s)

F is complete if ∀s.F ⊢ s ∨ F ⊢ ¬s.

Many common formal logics are formal systems in this sense:

▶ first-order logic over a consistent and effective axiomatisation

▶ CIC

▶ . . .

7 / 24



Formal Systems

Definition (Formal system)

F = (S,¬,⊢) is a formal system if:

▶ S : Type is a discrete type of sentences

▶ ¬ : S → S is a negation function

▶ ⊢ : S → Prop is a semi-decidable provability predicate

▶ F is consistent: ∀s.¬(F ⊢ s ∧ F ⊢ ¬s)
F is complete if ∀s.F ⊢ s ∨ F ⊢ ¬s.

Many common formal logics are formal systems in this sense:

▶ first-order logic over a consistent and effective axiomatisation

▶ CIC

▶ . . .

7 / 24



Formal Systems

Definition (Formal system)

F = (S,¬,⊢) is a formal system if:

▶ S : Type is a discrete type of sentences

▶ ¬ : S → S is a negation function

▶ ⊢ : S → Prop is a semi-decidable provability predicate

▶ F is consistent: ∀s.¬(F ⊢ s ∧ F ⊢ ¬s)
F is complete if ∀s.F ⊢ s ∨ F ⊢ ¬s.

Many common formal logics are formal systems in this sense:

▶ first-order logic over a consistent and effective axiomatisation

▶ CIC

▶ . . .

7 / 24



Decidable Formal Systems

Lemma

There is a partial function dF : S ⇀ B separating provability from refutability:

∀s. (dF s▷ true ↔ F ⊢ s) ∧ (dF s▷ false ↔ F ⊢ ¬s)

If F is complete, dF is total.

Corollary

Any complete formal system is decidable.

8 / 24



Decidable Formal Systems

Lemma

There is a partial function dF : S ⇀ B separating provability from refutability:

∀s. (dF s▷ true ↔ F ⊢ s) ∧ (dF s▷ false ↔ F ⊢ ¬s)

If F is complete, dF is total.

Corollary

Any complete formal system is decidable.

8 / 24



Kleene’s Early Incompleteness Proof 4,5

Theorem

Let F be complete and weakly represent P : N → Prop, i.e., there is an r : N → S s.t.:

∀x. Px ↔ F ⊢ rx

Then P is decidable.

Thus, if P is undecidable, F is incomplete.

4Kleene 1936; Turing 1936.
5As mechanised by Kirst and Hermes (2022).

9 / 24



Kleene’s Early Incompleteness Proof 4,5

Theorem

Let F be complete and weakly represent P : N → Prop, i.e., there is an r : N → S s.t.:

∀x. Px ↔ F ⊢ rx

Then P is decidable. Thus, if P is undecidable, F is incomplete.

4Kleene 1936; Turing 1936.
5As mechanised by Kirst and Hermes (2022).

9 / 24



Abstract incompleteness proofs
Kleene’s early incompleteness result
Improving Kleene’s early result
Kleene’s strengthened incompleteness result

Instantiation to first-order Robinson arithmetic

10 / 24



Church’s Thesis7

Axiom (EPF6)

There is a function θ : N → N ⇀ B such that:

∀f : N ⇀ B. ∃c. f ≡ θc

Definition (Self-halting problem)

The self-halting problem is defined as:

H := λx. ∃b. θxx▷ b

5Kreisel 1967; Troelstra and van Dalen 1988.
6Richman 1983; Forster 2022.

11 / 24



Church’s Thesis7

Axiom (EPF6)

There is a function θ : N → N ⇀ B such that:

∀f : N ⇀ B. ∃c. f ≡ θc

Definition (Self-halting problem)

The self-halting problem is defined as:

H := λx. ∃b. θxx▷ b

5Kreisel 1967; Troelstra and van Dalen 1988.
6Richman 1983; Forster 2022.

11 / 24



Self-halting problem

Fact

Partial functions f : N ⇀ B agreeing with the halting problem H := λx. ∃b. θxx▷ b:

∀x. x ∈ H ↔ fx▷ true,

diverge on some input c, i.e., ∀b. fc⋫ b.

Proof.

Consider g : N ⇀ B,

gx :=

{
false if fx▷ true

undefined otherwise.

Let c be the code of g. We have fc▷ true ↔ fc▷ false.

12 / 24



Self-halting problem

Fact

Partial functions f : N ⇀ B agreeing with the halting problem H := λx. ∃b. θxx▷ b:

∀x. x ∈ H ↔ fx▷ true,

diverge on some input c, i.e., ∀b. fc⋫ b.

Proof.

Consider g : N ⇀ B,

gx :=

{
false if fx▷ true

undefined otherwise.

Let c be the code of g. We have fc▷ true ↔ fc▷ false.

12 / 24



Strengthening the Early Incompleteness Proof 8

Theorem

Assume F weakly represents H, i.e., there is an r : N → S s.t.: ∀x. x ∈ H ↔ F ⊢ rx
Then F has an independent sentence rc:

F ⊬ rc ∧ F ⊬ ¬rc

Proof.

dF ◦ r : N ⇀ B agrees with the halting problem:

∀x. dF (rx)▷ true ↔ F ⊢ rx ↔ x ∈ H,

and therefore diverges on some input c. Thus, rc is independent in F .

8Kleene 1952.
13 / 24



Strengthening the Early Incompleteness Proof 8

Theorem

Assume F weakly represents H, i.e., there is an r : N → S s.t.: ∀x. x ∈ H ↔ F ⊢ rx
Then F has an independent sentence rc:

F ⊬ rc ∧ F ⊬ ¬rc

Proof.

dF ◦ r : N ⇀ B agrees with the halting problem:

∀x. dF (rx)▷ true ↔ F ⊢ rx ↔ x ∈ H,

and therefore diverges on some input c. Thus, rc is independent in F .

8Kleene 1952.
13 / 24



Going from Soundness to Consistency
▶ Consider weak representability:

∀x. Px ↔ F ⊢ rx

Definition (Extensions)

A formal system F ′ is an extension of F , if

∀s.F ⊢ s → F ′ ⊢ s

▶ Only transfers along extensions with F ⊢ rx → Px, i.e., sound extensions
▶ Can we do better?

Definition (Strong Separability)

F strongly separates two predicates P1, P2 if there is an r : N → S s.t.:

∀x. P1 x → F ⊢ rx ∧ P2 x → F ⊢ ¬rx

14 / 24



Going from Soundness to Consistency
▶ Consider weak representability:

∀x. Px ↔ F ⊢ rx

Definition (Extensions)

A formal system F ′ is an extension of F , if

∀s.F ⊢ s → F ′ ⊢ s

▶ Only transfers along extensions with F ⊢ rx → Px, i.e., sound extensions
▶ Can we do better?

Definition (Strong Separability)

F strongly separates two predicates P1, P2 if there is an r : N → S s.t.:

∀x. P1 x → F ⊢ rx ∧ P2 x → F ⊢ ¬rx

14 / 24



Going from Soundness to Consistency
▶ Consider weak representability:

∀x. Px ↔ F ⊢ rx

Definition (Extensions)

A formal system F ′ is an extension of F , if

∀s.F ⊢ s → F ′ ⊢ s

▶ Only transfers along extensions with F ⊢ rx → Px, i.e., sound extensions

▶ Can we do better?

Definition (Strong Separability)

F strongly separates two predicates P1, P2 if there is an r : N → S s.t.:

∀x. P1 x → F ⊢ rx ∧ P2 x → F ⊢ ¬rx

14 / 24



Going from Soundness to Consistency
▶ Consider weak representability:

∀x. Px ↔ F ⊢ rx

Definition (Extensions)

A formal system F ′ is an extension of F , if

∀s.F ⊢ s → F ′ ⊢ s

▶ Only transfers along extensions with F ⊢ rx → Px, i.e., sound extensions
▶ Can we do better?

Definition (Strong Separability)

F strongly separates two predicates P1, P2 if there is an r : N → S s.t.:

∀x. P1 x → F ⊢ rx ∧ P2 x → F ⊢ ¬rx

14 / 24



Going from Soundness to Consistency
▶ Consider weak representability:

∀x. Px ↔ F ⊢ rx

Definition (Extensions)

A formal system F ′ is an extension of F , if

∀s.F ⊢ s → F ′ ⊢ s

▶ Only transfers along extensions with F ⊢ rx → Px, i.e., sound extensions
▶ Can we do better?

Definition (Strong Separability)

F strongly separates two predicates P1, P2 if there is an r : N → S s.t.:

∀x. P1 x → F ⊢ rx ∧ P2 x → F ⊢ ¬rx

14 / 24



Abstract incompleteness proofs
Kleene’s early incompleteness result
Improving Kleene’s early result
Kleene’s strengthened incompleteness result

Instantiation to first-order Robinson arithmetic

15 / 24



Recursively Inseparable Predicates

Theorem

Consider the following predicates:

Itrue := λx. θxx▷ true Ifalse := λx. θxx▷ false

They are recursively inseparable, i.e., any partial function f : N ⇀ B s.t.

∀x. (x ∈ Itrue → fx▷ true) ∧ (x ∈ Ifalse → fx▷ false)

diverges on some input.

16 / 24



Kleene’s Improved Incompleteness Proof 9

Theorem

Assume F strongly separates Itrue and Ifalse, i.e., there is an r : N → S s.t.:

∀x. x ∈ Itrue → F ⊢ rx ∧ x ∈ Ifalse → F ⊢ ¬rx

F has an independent sentence rc:

F ⊬ rc ∧ F ⊬ ¬rc

Proof.

dF ◦ r : N ⇀ B recursively separates Itrue and Ifalse, and therefore diverges on some
input c. Therefore, rc is independent in F .

9Kleene 1951, c.f. Kleene 1952.
17 / 24



Kleene’s Improved Incompleteness Proof 9

Theorem

Assume F strongly separates Itrue and Ifalse, i.e., there is an r : N → S s.t.:

∀x. x ∈ Itrue → F ⊢ rx ∧ x ∈ Ifalse → F ⊢ ¬rx

F has an independent sentence rc:

F ⊬ rc ∧ F ⊬ ¬rc

Proof.

dF ◦ r : N ⇀ B recursively separates Itrue and Ifalse, and therefore diverges on some
input c. Therefore, rc is independent in F .

9Kleene 1951, c.f. Kleene 1952.
17 / 24



Kleene’s Improved Incompleteness Proof 9

Theorem

Assume F strongly separates Itrue and Ifalse, i.e., there is an r : N → S s.t.:

∀x. x ∈ Itrue → F ⊢ rx ∧ x ∈ Ifalse → F ⊢ ¬rx

Any (consistent) extension F ′ of F has an independent sentence rc:

F ′ ⊬ rc ∧ F ′ ⊬ ¬rc

Proof.

dF ′ ◦ r : N ⇀ B recursively separates Itrue and Ifalse, and therefore diverges on some
input c. Therefore, rc is independent in F ′.

9Kleene 1951, c.f. Kleene 1952.
17 / 24



Abstract incompleteness proofs
Kleene’s early incompleteness result
Improving Kleene’s early result
Kleene’s strengthened incompleteness result

Instantiation to first-order Robinson arithmetic

18 / 24



Instantiating the Incompleteness Proofs

From now on: Assume θ in EPF to be an interpreter for µ-recursive functions

Lemma

Q′ ⊊ Q weakly represents any semi-decidable predicate P : N → Prop using a φ ∈ Σ1:

∀x. Px ↔ Q′ ⊢ φ(x)

Proof.

See Kirst and Hermes (2022), relying on a mechanisation of the DPRM theorem by
Larchey-Wendling and Forster (2022).

Goal: Show that Robinson arithmetic is strong enough to strongly separate any pair of
semi-decidable and disjoint predicates.

19 / 24



Instantiating the Incompleteness Proofs

From now on: Assume θ in EPF to be an interpreter for µ-recursive functions

Lemma

Q′ ⊊ Q weakly represents any semi-decidable predicate P : N → Prop using a φ ∈ Σ1:

∀x. Px ↔ Q′ ⊢ φ(x)

Proof.

See Kirst and Hermes (2022), relying on a mechanisation of the DPRM theorem by
Larchey-Wendling and Forster (2022).

Goal: Show that Robinson arithmetic is strong enough to strongly separate any pair of
semi-decidable and disjoint predicates.

19 / 24



Instantiating the Incompleteness Proofs

From now on: Assume θ in EPF to be an interpreter for µ-recursive functions

Lemma

Q′ ⊊ Q weakly represents any semi-decidable predicate P : N → Prop using a φ ∈ Σ1:

∀x. Px ↔ Q′ ⊢ φ(x)

Proof.

See Kirst and Hermes (2022), relying on a mechanisation of the DPRM theorem by
Larchey-Wendling and Forster (2022).

Goal: Show that Robinson arithmetic is strong enough to strongly separate any pair of
semi-decidable and disjoint predicates.

19 / 24



Rosser’s Trick for Strong Separability

Lemma (Strong Separability)

Q strongly separates any pair of semi-decidable and disjoint predicates P1, P2, i.e.,
there is some Φ s.t.:

∀x. P1 x → Q ⊢ Φ(x) ∧ P2 x → Q ⊢ ¬Φ(x)

Proof.

Let φ1, φ2 be s.t. for any x:

P1 x ↔ Q ⊢ ∃k. φ1(x, k)

P2 x ↔ Q ⊢ ∃k. φ2(x, k)

Choose:

Φ(x) := ∃k. φ1(x, k) ∧ ∀k′ ≤ k.¬φ2(x, k)

20 / 24



Rosser’s Trick for Strong Separability

Lemma (Strong Separability)

Q strongly separates any pair of semi-decidable and disjoint predicates P1, P2, i.e.,
there is some Φ s.t.:

∀x. P1 x → Q ⊢ Φ(x) ∧ P2 x → Q ⊢ ¬Φ(x)

Proof.

Let φ1, φ2 be s.t. for any x:

P1 x ↔ Q ⊢ ∃k. φ1(x, k)

P2 x ↔ Q ⊢ ∃k. φ2(x, k)

Choose:

Φ(x) := ∃k. φ1(x, k) ∧ ∀k′ ≤ k.¬φ2(x, k)

20 / 24



Rosser’s Trick for Strong Separability

Lemma (Strong Separability)

Q strongly separates any pair of semi-decidable and disjoint predicates P1, P2, i.e.,
there is some Φ s.t.:

∀x. P1 x → Q ⊢ Φ(x) ∧ P2 x → Q ⊢ ¬Φ(x)

Proof.

Let φ1, φ2 be s.t. for any x:

P1 x ↔ Q ⊢ ∃k. φ1(x, k)

P2 x ↔ Q ⊢ ∃k. φ2(x, k)

Choose:

Φ(x) := ∃k. φ1(x, k) ∧ ∀k′ ≤ k.¬φ2(x, k)

20 / 24



Instantiating the Strengthened Incompleteness Proof

Theorem

Robinson arithmetic is essentially incomplete.

∀T ⊇ Q. T semi-decidable → T ⊬ ⊥ → ∃φ. T ⊬ φ ∧ T ⊬ ¬φ

Statement shown by Kirst and Hermes (2022):

∀T ⊇ Q. T semi-decidable → N ⊨ T → (∀φ. T ⊢ φ ∨ T ⊢ ¬φ) → HTM decidable

21 / 24



Instantiating the Strengthened Incompleteness Proof

Theorem

Robinson arithmetic is essentially incomplete.

∀T ⊇ Q. T semi-decidable → T ⊬ ⊥ → ∃φ. T ⊬ φ ∧ T ⊬ ¬φ

Statement shown by Kirst and Hermes (2022):

∀T ⊇ Q. T semi-decidable → N ⊨ T → (∀φ. T ⊢ φ ∨ T ⊢ ¬φ) → HTM decidable

21 / 24



Summary

▶ Gave abstract incompleteness proofs due to Kleene in different strengths,
reformulated and consolidated in synthetic computability
▶ Assuming weak representability, using the halting problem
▶ Assuming strong separability, using recursively inseparable predicates
▶ Mechanised in only about 450 stand-alone lines of Coq, 200 for the strongest result

▶ Instantiated those proofs to first-order Robinson arithmetic using Rosser’s trick
▶ Relying on libraries of undecidability10 and first-order logic11 and the first-order

proofmode by Koch12

▶ Mechanised in around 2200 lines of Coq

▶ Check our our development:

https://github.com/uds-psl/coq-synthetic-incompleteness/tree/types2022

10Forster et al. 2020, notably including Larchey-Wendling and Forster 2022.
11Kirst, Hostert, et al. 2022.
12C.f. Hostert, Koch, and Kirst 2021.

22 / 24

https://github.com/uds-psl/coq-synthetic-incompleteness/tree/types2022


Summary

▶ Gave abstract incompleteness proofs due to Kleene in different strengths,
reformulated and consolidated in synthetic computability
▶ Assuming weak representability, using the halting problem
▶ Assuming strong separability, using recursively inseparable predicates
▶ Mechanised in only about 450 stand-alone lines of Coq, 200 for the strongest result

▶ Instantiated those proofs to first-order Robinson arithmetic using Rosser’s trick
▶ Relying on libraries of undecidability10 and first-order logic11 and the first-order

proofmode by Koch12

▶ Mechanised in around 2200 lines of Coq

▶ Check our our development:

https://github.com/uds-psl/coq-synthetic-incompleteness/tree/types2022

10Forster et al. 2020, notably including Larchey-Wendling and Forster 2022.
11Kirst, Hostert, et al. 2022.
12C.f. Hostert, Koch, and Kirst 2021.

22 / 24

https://github.com/uds-psl/coq-synthetic-incompleteness/tree/types2022


Future Work

▶ Church’s thesis for Robinson arithmetic

▶ Do abstract proofs for a concrete model of computation

▶ Avoid DPRM as dependency

▶ Gödel’s second incompleteness theorem

23 / 24



Future Work

▶ Church’s thesis for Robinson arithmetic

▶ Do abstract proofs for a concrete model of computation

▶ Avoid DPRM as dependency

▶ Gödel’s second incompleteness theorem

23 / 24



Future Work

▶ Church’s thesis for Robinson arithmetic

▶ Do abstract proofs for a concrete model of computation

▶ Avoid DPRM as dependency

▶ Gödel’s second incompleteness theorem

23 / 24



Future Work

▶ Church’s thesis for Robinson arithmetic

▶ Do abstract proofs for a concrete model of computation

▶ Avoid DPRM as dependency

▶ Gödel’s second incompleteness theorem

23 / 24



Gödel’s First Incompleteness Theorem

Theorem

Any effective, consistent, and sufficiently powerful formal logic is incomplete.

We consider proofs of

incompleteness à la Gödel (1931)

that are
abstract à la Popescu and Traytel (2019)

computational à la Kleene (1936), Turing (1936), Post (1941)

synthetic à la Kirst and Hermes (2021)

strong à la Rosser (1936), Kleene (1951, c.f. 1952)

machine-checked à la O’Connor (2005), Paulson (2014), and many others

24 / 24



References I

Aaronson, Scott (July 21, 2011). Rosser’s theorem via Turing machines.
Shtetl-Optimized. URL: https://scottaaronson.blog/?p=710 (visited on
02/28/2022).
Bauer, Andrej (2006). “First Steps in Synthetic Computability Theory”. In:
Electronic Notes in Theoretical Computer Science 155, pp. 5–31.
Forster, Yannick (2022). “Parametric Church’s Thesis: Synthetic Computability
Without Choice”. In: International Symposium on Logical Foundations of
Computer Science, pp. 70–89.
Forster, Yannick et al. (2020). “A Coq Library of Undecidable Problems”. In:
CoqPL 2020 The Sixth International Workshop on Coq for Programming
Languages.
Gödel, Kurt (1931). “Über Formal Unentscheidbare Sätze der Principa
Mathematica und Verwandter Systeme I”. In: Monatshefte für Mathematik und
Physik 38, pp. 173–198.

25 / 24

https://scottaaronson.blog/?p=710


References II

Harrison, John (2009). Handbook of Practical Logic and Automated Reasoning.
Cambridge University Press.
Hostert, Johannes, Mark Koch, and Dominik Kirst (2021). “A Toolbox for
Mechanised First-Order Logic”. In: The Coq Workshop. Vol. 2021.
Kirst, Dominik and Marc Hermes (2021). “Synthetic Undecidability and
Incompleteness of First-Order Axiom Systems in Coq”. In: ITP 2021.
— (2022). “Synthetic Undecidability and Incompleteness of First-Order Axiom
Systems in Coq: Extended Version”. unpublished.
Kirst, Dominik, Johannes Hostert, et al. (2022). “A Coq Library for Mechanised
First-Order Logic”. In: The Coq Workshop.
Kleene, Stephen C. (1936). “General Recursive Functions of Natural Numbers”. In:
Mathematische Annalen 112, pp. 727–742.
— (1943). “Recursive Predicates and Quantifiers”. In: Transactions of the
American Mathematical Society 53, pp. 41–73.

26 / 24



References III

Kleene, Stephen C. (1951). “A Symmetric Form of Gödel’s theorem”. In: The
Journal of Symbolic Logic 16.2, p. 147.
— (1952). Introduction to Metamathematics. North Holland.

— (1967). Mathematical Logic. Dover Publications.

Kreisel, Georg (1967). “Mathematical Logic”. In: Journal of Symbolic Logic 32.3,
pp. 419–420.
Larchey-Wendling, Dominique and Yannick Forster (2022). “Hilbert’s Tenth
Problem in Coq (Extended Version)”. In: Logical Methods in Computer Science 18.
O’Connor, Russell (2005). “Essential Incompleteness of Arithmetic Verified by
Coq”. In: Theorem Proving in Higher Order Logics, pp. 245–260.
Paulson, Lawrence C. (2014). “A Machine-Assisted Proof of Gödel’s
Incompleteness Theorems for the Theory of Hereditarily Finite Sets”. In: The
Review of Symbolic Logic 7.3, pp. 484–498.
— (June 2015). “A Mechanised Proof of Gödel’s Incompleteness Theorems Using
Nominal Isabelle”. In: Journal of Automated Reasoning 55, pp. 1–37.

27 / 24



References IV

Popescu, Andrei and Dmitriy Traytel (2019). “A Formally Verified Abstract
Account of Gödel’s Incompleteness Theorems”. In: Automated Deduction – CADE
27. Springer International Publishing, pp. 442–461.
Post, Emil L. (1941). “Absolutely Unsolvable Problems and Relatively Undecidable
Propositions – Acount of an Anticipation”. In: Springer, pp. 375–441.
Richman, Fred (1983). “Church’s Thesis Without Tears”. In: The Journal of
Symbolic Logic 48.3, pp. 797–803.
Rosser, Barkley (1936). “Extensions of Some Theorems of Gödel and Church”. In:
Journal of Symbolic Logic 1.3, pp. 87–91.
Shankar, Natarajan (1994). Metamathematics, Machines and Gödel’s Proof.
Cambridge Tracts in Theoretical Computer Science. Cambridge University Press.
Troelstra, Anne S. and Dirk van Dalen (1988). Constructivism in Mathematics, Vol
1. ISSN. Elsevier Science.

28 / 24



References V

Turing, Alan M. (1936). “On Computable Numbers, with an Application to the
Entscheidungsproblem”. In: Proceedings of the London Mathematical Society 2.42,
pp. 230–265.
user21820 (Dec. 31, 2021). Computability Viewpoint of Godel/Rosser’s
Incompleteness Theorem. Mathematics Stack Exchange. URL:
https://math.stackexchange.com/q/2486349 (visited on 03/22/2022).
Vorobey, Anatoly (2022). First Incompleteness via Computation: an Explicit
Construction. Foundations of Mathematics mailing list. URL:
https://cs.nyu.edu/pipermail/fom/2021-September/022872.html (visited
on 02/21/2022).

29 / 24

https://math.stackexchange.com/q/2486349
https://cs.nyu.edu/pipermail/fom/2021-September/022872.html


Church’s Thesis

∀f : N ⇀ N.∃φ ∈ Σ1.∀xy. fx▷ y ↔ Q ⊢ ∀y′. φ(x, y′) ↔ y = y′

30 / 24



Rosser’s Trick for Strong Separability

Let P1, P2 be semi-decidable and disjoint predicates, and φ1, φ2 ∈ ∆0 such that:

P1 x ↔ Q ⊢ ∃k. φ1(x, k) P2 x ↔ Q ⊢ ∃l. φ2(x, l)

We want to find Φ1 such that for all x:

P1 x → Q ⊢ ∃k.Φ1(x, k) P2 x → Q ⊢ ¬∃k.Φ1(x, k)

φ1(x,−) ✓
k

φ2(x,−) ✓

l

✓
k

Φ1(x, k) := φ1(x, k) ∧ ∀k′ ≤ k.¬φ2(x, k
′)

31 / 24



Rosser’s Trick for Strong Separability

Let P1, P2 be semi-decidable and disjoint predicates, and φ1, φ2 ∈ ∆0 such that:

P1 x ↔ Q ⊢ ∃k. φ1(x, k) P2 x ↔ Q ⊢ ∃l. φ2(x, l)

We want to find Φ1 such that for all x:

P1 x → Q ⊢ ∃k.Φ1(x, k) P2 x → Q ⊢ ¬∃k.Φ1(x, k)

φ1(x,−) ✓
k

φ2(x,−) ✓

l

✓
k

Φ1(x, k) := φ1(x, k) ∧ ∀k′ ≤ k.¬φ2(x, k
′)

31 / 24



Rosser’s Trick for Strong Separability

Let P1, P2 be semi-decidable and disjoint predicates, and φ1, φ2 ∈ ∆0 such that:

P1 x ↔ Q ⊢ ∃k. φ1(x, k) P2 x ↔ Q ⊢ ∃l. φ2(x, l)

We want to find Φ1 such that for all x:

P1 x → Q ⊢ ∃k.Φ1(x, k) P2 x → Q ⊢ ¬∃k.Φ1(x, k)

φ1(x,−) ✓
k

φ2(x,−) ✓

l

✓
k

Φ1(x, k) := φ1(x, k) ∧ ∀k′ ≤ k.¬φ2(x, k
′)

31 / 24



Rosser’s Trick for Strong Separability

Let P1, P2 be semi-decidable and disjoint predicates, and φ1, φ2 ∈ ∆0 such that:

P1 x ↔ Q ⊢ ∃k. φ1(x, k) P2 x ↔ Q ⊢ ∃l. φ2(x, l)

We want to find Φ1 such that for all x:

P1 x → Q ⊢ ∃k.Φ1(x, k) P2 x → Q ⊢ ¬∃k.Φ1(x, k)

φ1(x,−) ✓
k

φ2(x,−) ✓

l

✓
k

Φ1(x, k) := φ1(x, k) ∧ ∀k′ ≤ k.¬φ2(x, k
′)

31 / 24



Rosser’s Trick for Strong Separability

Let P1, P2 be semi-decidable and disjoint predicates, and φ1, φ2 ∈ ∆0 such that:

P1 x ↔ Q ⊢ ∃k. φ1(x, k) P2 x ↔ Q ⊢ ∃l. φ2(x, l)

We want to find Φ1 such that for all x:

P1 x → Q ⊢ ∃k.Φ1(x, k) P2 x → Q ⊢ ¬∃k.Φ1(x, k)

φ1(x,−) ✓
k

φ2(x,−) ✓

l

✓
k

Φ1(x, k) := φ1(x, k) ∧ ∀k′ ≤ k.¬φ2(x, k
′)

31 / 24



Rosser’s Trick for Strong Separability

Let P1, P2 be semi-decidable and disjoint predicates, and φ1, φ2 ∈ ∆0 such that:

P1 x ↔ Q ⊢ ∃k. φ1(x, k) P2 x ↔ Q ⊢ ∃l. φ2(x, l)

We want to find Φ1 such that for all x:

P1 x → Q ⊢ ∃k.Φ1(x, k) P2 x → Q ⊢ ¬∃k.Φ1(x, k)

φ1(x,−) ✓
k

φ2(x,−) ✓

l

✓
k

Φ1(x, k) := φ1(x, k) ∧ ∀k′ ≤ k.¬φ2(x, k
′)

31 / 24



Rosser’s Trick for Strong Separability

Let P1, P2 be semi-decidable and disjoint predicates, and φ1, φ2 ∈ ∆0 such that:

P1 x ↔ Q ⊢ ∃k. φ1(x, k) P2 x ↔ Q ⊢ ∃l. φ2(x, l)

We want to find Φ1 such that for all x:

P1 x → Q ⊢ ∃k.Φ1(x, k) P2 x → Q ⊢ ¬∃k.Φ1(x, k)

φ1(x,−) ✓
k

φ2(x,−) ✓

l

✓
k

Φ1(x, k) := φ1(x, k) ∧ ∀k′ ≤ k.¬φ2(x, k
′)

31 / 24



Rosser’s Trick for Strong Separability

Let P1, P2 be semi-decidable and disjoint predicates, and φ1, φ2 ∈ ∆0 such that:

P1 x ↔ Q ⊢ ∃k. φ1(x, k) P2 x ↔ Q ⊢ ∃l. φ2(x, l)

We want to find Φ1 such that for all x:

P1 x → Q ⊢ ∃k.Φ1(x, k) P2 x → Q ⊢ ¬∃k.Φ1(x, k)

φ1(x,−) ✓
k

φ2(x,−) ✓

l

✓
k

Φ1(x, k) := φ1(x, k) ∧ ∀k′ ≤ k.¬φ2(x, k
′)

31 / 24



Rosser’s Trick for Strong Separability

Let P1, P2 be semi-decidable and disjoint predicates, and φ1, φ2 ∈ ∆0 such that:

P1 x ↔ Q ⊢ ∃k. φ1(x, k) P2 x ↔ Q ⊢ ∃l. φ2(x, l)

We want to find Φ1 such that for all x:

P1 x → Q ⊢ ∃k.Φ1(x, k) P2 x → Q ⊢ ¬∃k.Φ1(x, k)

φ1(x,−) ✓
k

φ2(x,−) ✓

l

✓
k

Φ1(x, k) := φ1(x, k) ∧ ∀k′ ≤ k.¬φ2(x, k
′)

31 / 24


	Abstract incompleteness proofs
	Kleene's early incompleteness result
	Improving Kleene's early result
	Kleene's strengthened incompleteness result

	Instantiation to first-order Robinson arithmetic
	Appendix
	References


