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Gödel’s First Incompleteness Theorem

Theorem

Any effective, consistent, and sufficiently powerful formal logic is incomplete.

We consider proofs of

incompleteness à la Gödel (1931)

that are
abstract à la Popescu and Traytel (2019)

computational à la Kleene (1936), Turing (1936), Post (1941)

synthetic à la Kirst and Hermes (2021)

strong à la Rosser (1936), Kleene (1951, c.f. 1952)

machine-checked à la O’Connor (2005), Paulson (2014), and many others
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computational à la Kleene (1936), Turing (1936), Post (1941)
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strong à la Rosser (1936), Kleene (1951, c.f. 1952)
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computational à la Kleene (1936), Turing (1936), Post (1941)

synthetic à la Kirst and Hermes (2021)
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that are
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Approaches to Incompleteness

early: assuming soundness

strengthened: assuming consistency2

rec. insep. predicatesRosser’s trick

Kleene’s approach

Gödel: assuming ω-consistency

Rosser: assuming consistency

Rosser’s trick Gödel-Rosser approach

2We found out about these results through an e-mail by Anatoly Vorobey on the Foundations of
Mathematics mailing list.
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We factorised Kleene’s incompleteness proofs into two parts:

1. Concise abstract core using synthetic computability

2. Instantiation of these abstract proofs to first-order logic using Rosser’s trick

4 / 24



Abstract incompleteness proofs
Kleene’s early incompleteness result
Improving Kleene’s early result
Kleene’s strengthened incompleteness result

Instantiation to first-order Robinson arithmetic

5 / 24



Synthetic Computability3

We work in CIC, where all functions can be considered computable.

Definition

A predicate P : X → Prop is

▶ decidable if ∃f : X → B. Px ↔ fx = true.

▶ semi-decidable if ∃f : X → N → B.∀x. Px ↔ ∃k. fxk = true.

3Richman 1983; Bauer 2006.
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Formal Systems

Definition (Formal system)

F = (S,¬,⊢) is a formal system if:

▶ S : Type is a discrete type of sentences

▶ ¬ : S → S is a negation function

▶ ⊢ : S → Prop is a semi-decidable provability predicate

▶ F is consistent: ∀s.¬(F ⊢ s ∧ F ⊢ ¬s)
F is complete if ∀s.F ⊢ s ∨ F ⊢ ¬s.

Many common formal logics are formal systems in this sense:

▶ first-order logic over a consistent and effective axiomatisation

▶ CIC

▶ . . .
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Decidable Formal Systems

Lemma

There is a partial function dF : S ⇀ B separating provability from refutability:

∀s. (dF s▷ true ↔ F ⊢ s) ∧ (dF s▷ false ↔ F ⊢ ¬s)

If F is complete, dF is total.

Corollary

Any complete formal system is decidable.
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Kleene’s Early Incompleteness Proof 4,5

Theorem

Let F be complete and weakly represent P : N → Prop, i.e., there is an r : N → S s.t.:

∀x. Px ↔ F ⊢ rx

Then P is decidable.

Thus, if P is undecidable, F is incomplete.

4Kleene 1936; Turing 1936.
5As mechanised by Kirst and Hermes (2022).
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Abstract incompleteness proofs
Kleene’s early incompleteness result
Improving Kleene’s early result
Kleene’s strengthened incompleteness result

Instantiation to first-order Robinson arithmetic
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Church’s Thesis7

Axiom (EPF6)

There is a function θ : N → N ⇀ B such that:

∀f : N ⇀ B. ∃c. f ≡ θc

Definition (Self-halting problem)

The self-halting problem is defined as:

H := λx. ∃b. θxx▷ b

5Kreisel 1967; Troelstra and van Dalen 1988.
6Richman 1983; Forster 2022.
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Self-halting problem

Fact

Partial functions f : N ⇀ B agreeing with the halting problem H := λx. ∃b. θxx▷ b:

∀x. x ∈ H ↔ fx▷ true,

diverge on some input c, i.e., ∀b. fc⋫ b.

Proof.

Consider g : N ⇀ B,

gx :=

{
false if fx▷ true

undefined otherwise.

Let c be the code of g. We have fc▷ true ↔ fc▷ false.
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Strengthening the Early Incompleteness Proof 8

Theorem

Assume F weakly represents H, i.e., there is an r : N → S s.t.: ∀x. x ∈ H ↔ F ⊢ rx
Then F has an independent sentence rc:

F ⊬ rc ∧ F ⊬ ¬rc

Proof.

dF ◦ r : N ⇀ B agrees with the halting problem:

∀x. dF (rx)▷ true ↔ F ⊢ rx ↔ x ∈ H,

and therefore diverges on some input c. Thus, rc is independent in F .

8Kleene 1952.
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Going from Soundness to Consistency
▶ Consider weak representability:

∀x. Px ↔ F ⊢ rx

Definition (Extensions)

A formal system F ′ is an extension of F , if

∀s.F ⊢ s → F ′ ⊢ s

▶ Only transfers along extensions with F ⊢ rx → Px, i.e., sound extensions
▶ Can we do better?

Definition (Strong Separability)

F strongly separates two predicates P1, P2 if there is an r : N → S s.t.:

∀x. P1 x → F ⊢ rx ∧ P2 x → F ⊢ ¬rx
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Abstract incompleteness proofs
Kleene’s early incompleteness result
Improving Kleene’s early result
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Instantiation to first-order Robinson arithmetic
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Recursively Inseparable Predicates

Theorem

Consider the following predicates:

Itrue := λx. θxx▷ true Ifalse := λx. θxx▷ false

They are recursively inseparable, i.e., any partial function f : N ⇀ B s.t.

∀x. (x ∈ Itrue → fx▷ true) ∧ (x ∈ Ifalse → fx▷ false)

diverges on some input.

16 / 24



Kleene’s Improved Incompleteness Proof 9

Theorem

Assume F strongly separates Itrue and Ifalse, i.e., there is an r : N → S s.t.:

∀x. x ∈ Itrue → F ⊢ rx ∧ x ∈ Ifalse → F ⊢ ¬rx

F has an independent sentence rc:

F ⊬ rc ∧ F ⊬ ¬rc

Proof.

dF ◦ r : N ⇀ B recursively separates Itrue and Ifalse, and therefore diverges on some
input c. Therefore, rc is independent in F .

9Kleene 1951, c.f. Kleene 1952.
17 / 24



Kleene’s Improved Incompleteness Proof 9

Theorem

Assume F strongly separates Itrue and Ifalse, i.e., there is an r : N → S s.t.:

∀x. x ∈ Itrue → F ⊢ rx ∧ x ∈ Ifalse → F ⊢ ¬rx

F has an independent sentence rc:

F ⊬ rc ∧ F ⊬ ¬rc

Proof.

dF ◦ r : N ⇀ B recursively separates Itrue and Ifalse, and therefore diverges on some
input c. Therefore, rc is independent in F .

9Kleene 1951, c.f. Kleene 1952.
17 / 24



Kleene’s Improved Incompleteness Proof 9

Theorem

Assume F strongly separates Itrue and Ifalse, i.e., there is an r : N → S s.t.:

∀x. x ∈ Itrue → F ⊢ rx ∧ x ∈ Ifalse → F ⊢ ¬rx

Any (consistent) extension F ′ of F has an independent sentence rc:

F ′ ⊬ rc ∧ F ′ ⊬ ¬rc

Proof.

dF ′ ◦ r : N ⇀ B recursively separates Itrue and Ifalse, and therefore diverges on some
input c. Therefore, rc is independent in F ′.

9Kleene 1951, c.f. Kleene 1952.
17 / 24



Abstract incompleteness proofs
Kleene’s early incompleteness result
Improving Kleene’s early result
Kleene’s strengthened incompleteness result

Instantiation to first-order Robinson arithmetic

18 / 24



Instantiating the Incompleteness Proofs

From now on: Assume θ in EPF to be an interpreter for µ-recursive functions

Lemma

Q′ ⊊ Q weakly represents any semi-decidable predicate P : N → Prop using a φ ∈ Σ1:

∀x. Px ↔ Q′ ⊢ φ(x)

Proof.

See Kirst and Hermes (2022), relying on a mechanisation of the DPRM theorem by
Larchey-Wendling and Forster (2022).

Goal: Show that Robinson arithmetic is strong enough to strongly separate any pair of
semi-decidable and disjoint predicates.
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Rosser’s Trick for Strong Separability

Lemma (Strong Separability)

Q strongly separates any pair of semi-decidable and disjoint predicates P1, P2, i.e.,
there is some Φ s.t.:

∀x. P1 x → Q ⊢ Φ(x) ∧ P2 x → Q ⊢ ¬Φ(x)

Proof.

Let φ1, φ2 be s.t. for any x:

P1 x ↔ Q ⊢ ∃k. φ1(x, k)

P2 x ↔ Q ⊢ ∃k. φ2(x, k)

Choose:

Φ(x) := ∃k. φ1(x, k) ∧ ∀k′ ≤ k.¬φ2(x, k)
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Instantiating the Strengthened Incompleteness Proof

Theorem

Robinson arithmetic is essentially incomplete.

∀T ⊇ Q. T semi-decidable → T ⊬ ⊥ → ∃φ. T ⊬ φ ∧ T ⊬ ¬φ

Statement shown by Kirst and Hermes (2022):

∀T ⊇ Q. T semi-decidable → N ⊨ T → (∀φ. T ⊢ φ ∨ T ⊢ ¬φ) → HTM decidable

21 / 24
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Summary

▶ Gave abstract incompleteness proofs due to Kleene in different strengths,
reformulated and consolidated in synthetic computability
▶ Assuming weak representability, using the halting problem
▶ Assuming strong separability, using recursively inseparable predicates
▶ Mechanised in only about 450 stand-alone lines of Coq, 200 for the strongest result

▶ Instantiated those proofs to first-order Robinson arithmetic using Rosser’s trick
▶ Relying on libraries of undecidability10 and first-order logic11 and the first-order

proofmode by Koch12

▶ Mechanised in around 2200 lines of Coq

▶ Check our our development:

https://github.com/uds-psl/coq-synthetic-incompleteness/tree/types2022

10Forster et al. 2020, notably including Larchey-Wendling and Forster 2022.
11Kirst, Hostert, et al. 2022.
12C.f. Hostert, Koch, and Kirst 2021.
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▶ Assuming strong separability, using recursively inseparable predicates
▶ Mechanised in only about 450 stand-alone lines of Coq, 200 for the strongest result

▶ Instantiated those proofs to first-order Robinson arithmetic using Rosser’s trick
▶ Relying on libraries of undecidability10 and first-order logic11 and the first-order

proofmode by Koch12

▶ Mechanised in around 2200 lines of Coq

▶ Check our our development:

https://github.com/uds-psl/coq-synthetic-incompleteness/tree/types2022

10Forster et al. 2020, notably including Larchey-Wendling and Forster 2022.
11Kirst, Hostert, et al. 2022.
12C.f. Hostert, Koch, and Kirst 2021.
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Future Work

▶ Church’s thesis for Robinson arithmetic

▶ Do abstract proofs for a concrete model of computation

▶ Avoid DPRM as dependency

▶ Gödel’s second incompleteness theorem
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Gödel’s First Incompleteness Theorem

Theorem

Any effective, consistent, and sufficiently powerful formal logic is incomplete.

We consider proofs of

incompleteness à la Gödel (1931)

that are
abstract à la Popescu and Traytel (2019)

computational à la Kleene (1936), Turing (1936), Post (1941)

synthetic à la Kirst and Hermes (2021)

strong à la Rosser (1936), Kleene (1951, c.f. 1952)

machine-checked à la O’Connor (2005), Paulson (2014), and many others

24 / 24



References I

Aaronson, Scott (July 21, 2011). Rosser’s theorem via Turing machines.
Shtetl-Optimized. URL: https://scottaaronson.blog/?p=710 (visited on
02/28/2022).
Bauer, Andrej (2006). “First Steps in Synthetic Computability Theory”. In:
Electronic Notes in Theoretical Computer Science 155, pp. 5–31.
Forster, Yannick (2022). “Parametric Church’s Thesis: Synthetic Computability
Without Choice”. In: International Symposium on Logical Foundations of
Computer Science, pp. 70–89.
Forster, Yannick et al. (2020). “A Coq Library of Undecidable Problems”. In:
CoqPL 2020 The Sixth International Workshop on Coq for Programming
Languages.
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Church’s Thesis

∀f : N ⇀ N.∃φ ∈ Σ1.∀xy. fx▷ y ↔ Q ⊢ ∀y′. φ(x, y′) ↔ y = y′
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Rosser’s Trick for Strong Separability

Let P1, P2 be semi-decidable and disjoint predicates, and φ1, φ2 ∈ ∆0 such that:

P1 x ↔ Q ⊢ ∃k. φ1(x, k) P2 x ↔ Q ⊢ ∃l. φ2(x, l)

We want to find Φ1 such that for all x:

P1 x → Q ⊢ ∃k.Φ1(x, k) P2 x → Q ⊢ ¬∃k.Φ1(x, k)

φ1(x,−) ✓
k

φ2(x,−) ✓

l

✓
k

Φ1(x, k) := φ1(x, k) ∧ ∀k′ ≤ k.¬φ2(x, k
′)
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