Gödel's Theorem Without Tears¹

Essential Incompleteness in Synthetic Computability

22nd June. 2022 **TYPES 2022**

Benjamin Peters Dominik Kirst

COMPUTER SCIENCE

¹Abstract title: "Strong, Synthetic, and Computational Proofs of Gödel's First Incompleteness Theorem"

Theorem

Any effective, consistent, and sufficiently powerful formal logic is incomplete.

Theorem

Any effective, consistent, and sufficiently powerful formal logic is incomplete.

We consider proofs of

incompleteness à la Gödel (1931)

Theorem

Any effective, consistent, and sufficiently powerful formal logic is incomplete.

We consider proofs of

incompleteness à la Gödel (1931)

that are

abstract à la Popescu and Traytel (2019)

Theorem

Any effective, consistent, and sufficiently powerful formal logic is incomplete.

We consider proofs of incompleteness à la Gödel (1931) that are abstract à la Popescu and Traytel (2019) computational à la Kleene (1936), Turing (1936), Post (1941)

Theorem

Any effective, consistent, and sufficiently powerful formal logic is incomplete.

We consider proofs of incompleteness à la Gödel (1931) that are abstract à la Popescu and Traytel (2019) computational à la Kleene (1936), Turing (1936)

omputationalà la Kleene (1936), Turing (1936), Post (1941)syntheticà la Kirst and Hermes (2021)

Theorem

Any effective, consistent, and sufficiently powerful formal logic is incomplete.

We consider proofs of

incompleteness à la Gödel (1931)

that are

abstract	à la Popescu and Traytel (2019)	
computational	à la Kleene (1936), Turing (1936), Post (1941)	
synthetic	à la Kirst and Hermes (2021)	
strong	à la Rosser (1936), Kleene (1951, c.f. 1952)	

Theorem

Any effective, consistent, and sufficiently powerful formal logic is incomplete.

We consider proofs of

incompleteness à la Gödel (1931)

that are

abstract	à la Popescu and Traytel (2019)	
computational	à la Kleene (1936), Turing (1936), Post (1941)	
synthetic	à la Kirst and Hermes (2021)	
strong	à la Rosser (1936), Kleene (1951, c.f. 1952)	
machine-checked	à la O'Connor (2005), Paulson (2014), and many others	

Gödel: assuming ω -consistency

Gödel-Rosser approach

Gödel: assuming ω-consistency Göα

Gödel-Rosser approach


```
Gödel: assuming \omega-consistencyGödelRosser's trickGödelRosser: assuming consistencyGödel
```

Gödel-Rosser approach

Gödel: assuming ω -consistency	
Rosser's trick	Gödel-Rosser approach
Rosser: assuming consistency	

²We found out about these results through an e-mail by Anatoly Vorobey on the Foundations of Mathematics mailing list.

We factorised Kleene's incompleteness proofs into two parts:

- 1. Concise abstract core using synthetic computability
- 2. Instantiation of these abstract proofs to first-order logic using Rosser's trick

Abstract incompleteness proofs

Kleene's early incompleteness result Improving Kleene's early result Kleene's strengthened incompleteness result

Instantiation to first-order Robinson arithmetic

Synthetic Computability³

We work in CIC, where all functions can be considered computable.

³Richman 1983; Bauer 2006.

We work in CIC, where all functions can be considered computable.

Definition

A predicate $P: X \to \mathbb{P}rop$ is

• decidable if
$$\exists f: X \to \mathbb{B}$$
. $Px \leftrightarrow fx =$ true.

³Richman 1983; Bauer 2006.

We work in CIC, where all functions can be considered computable.

Definition

A predicate $P: X \to \mathbb{P}rop$ is

• decidable if
$$\exists f: X \to \mathbb{B}$$
. $Px \leftrightarrow fx =$ true.

▶ semi-decidable if $\exists f: X \to \mathbb{N} \to \mathbb{B}$. $\forall x. Px \leftrightarrow \exists k. fxk = true$.

³Richman 1983; Bauer 2006.

- $\mathcal{F} = (S, \neg, \vdash)$ is a formal system if:
 - $S : \mathbb{T}ype$ is a discrete type of sentences

- $\mathcal{F} = (S, \neg, \vdash)$ is a formal system if:
 - $S : \mathbb{T}ype$ is a discrete type of sentences
 - $\blacktriangleright \ \neg: S \to S$ is a negation function

- $\mathcal{F} = (S, \neg, \vdash)$ is a formal system if:
 - $S : \mathbb{T}ype$ is a discrete type of sentences
 - $\blacktriangleright \ \neg: S \to S$ is a negation function
 - $\blacktriangleright \ \vdash : S \rightarrow \mathbb{P} \mathrm{rop}$ is a semi-decidable provability predicate

- $\mathcal{F} = (S, \neg, \vdash)$ is a formal system if:
 - $S : \mathbb{T}ype$ is a discrete type of sentences
 - $\blacktriangleright \ \neg: S \to S$ is a negation function
 - $\blacktriangleright \ \vdash : S \rightarrow \mathbb{P} \mathrm{rop}$ is a semi-decidable provability predicate
 - \mathcal{F} is consistent: $\forall s. \neg (\mathcal{F} \vdash s \land \mathcal{F} \vdash \neg s)$

Definition (Formal system)

- $\mathcal{F} = (S, \neg, \vdash)$ is a formal system if:
 - $S : \mathbb{T}ype$ is a discrete type of sentences
 - $\blacktriangleright \ \neg: S \to S$ is a negation function
 - $\blacktriangleright \ \vdash : S \rightarrow \mathbb{P} \mathrm{rop}$ is a semi-decidable provability predicate

•
$$\mathcal{F}$$
 is consistent: $\forall s. \neg (\mathcal{F} \vdash s \land \mathcal{F} \vdash \neg s)$

 \mathcal{F} is complete if $\forall s. \mathcal{F} \vdash s \lor \mathcal{F} \vdash \neg s$.

Definition (Formal system)

- $\mathcal{F} = (S, \neg, \vdash)$ is a formal system if:
 - $S : \mathbb{T}ype$ is a discrete type of sentences
 - $\blacktriangleright \ \neg: S \to S$ is a negation function
 - $\blacktriangleright \ \vdash : S \rightarrow \mathbb{P} \mathrm{rop}$ is a semi-decidable provability predicate

•
$$\mathcal{F}$$
 is consistent: $\forall s. \neg (\mathcal{F} \vdash s \land \mathcal{F} \vdash \neg s)$

$$\mathcal{F}$$
 is complete if $\forall s. \mathcal{F} \vdash s \lor \mathcal{F} \vdash \neg s$.

Many common formal logics are formal systems in this sense:

- ▶ first-order logic over a consistent and effective axiomatisation
- CIC

Decidable Formal Systems

Lemma

There is a partial function $d_{\mathcal{F}}: S \rightarrow \mathbb{B}$ separating provability from refutability:

```
\forall s. \ (d_{\mathcal{F}} \, s \rhd \mathsf{true} \ \leftrightarrow \ \mathcal{F} \vdash s) \land (d_{\mathcal{F}} \, s \rhd \mathsf{false} \ \leftrightarrow \ \mathcal{F} \vdash \neg s)
```

If \mathcal{F} is complete, $d_{\mathcal{F}}$ is total.

Decidable Formal Systems

Lemma

There is a partial function $d_{\mathcal{F}}: S \rightarrow \mathbb{B}$ separating provability from refutability:

```
\forall s. (d_{\mathcal{F}} s \triangleright \mathsf{true} \leftrightarrow \mathcal{F} \vdash s) \land (d_{\mathcal{F}} s \triangleright \mathsf{false} \leftrightarrow \mathcal{F} \vdash \neg s)
```

If \mathcal{F} is complete, $d_{\mathcal{F}}$ is total.

Corollary

Any complete formal system is decidable.

Kleene's Early Incompleteness Proof^{4,5}

Theorem

Let \mathcal{F} be complete and weakly represent $P: \mathbb{N} \to \mathbb{P}$ rop, i.e., there is an $r: \mathbb{N} \to S$ s.t.:

 $\forall x. Px \leftrightarrow \mathcal{F} \vdash rx$

Then P is decidable.

⁴Kleene 1936; Turing 1936.

⁵As mechanised by Kirst and Hermes (2022).

Kleene's Early Incompleteness Proof^{4,5}

Theorem

Let \mathcal{F} be complete and weakly represent $P: \mathbb{N} \to \mathbb{P}$ rop, i.e., there is an $r: \mathbb{N} \to S$ s.t.:

 $\forall x. Px \leftrightarrow \mathcal{F} \vdash rx$

Then P is decidable. Thus, if P is undecidable, \mathcal{F} is incomplete.

⁴Kleene 1936; Turing 1936.

⁵As mechanised by Kirst and Hermes (2022).

Abstract incompleteness proofs

Kleene's early incompleteness result Improving Kleene's early result Kleene's strengthened incompleteness result

Instantiation to first-order Robinson arithmetic

Church's Thesis⁷

Axiom (EPF⁶)

There is a function $\theta : \mathbb{N} \to \mathbb{N} \to \mathbb{B}$ such that:

$$\forall f: \mathbb{N} \to \mathbb{B}. \exists c. f \equiv \theta c$$

⁵Kreisel 1967; Troelstra and van Dalen 1988. ⁶Richman 1983; Forster 2022.

Church's Thesis⁷

Axiom (EPF⁶)

There is a function $\theta : \mathbb{N} \to \mathbb{N} \rightharpoonup \mathbb{B}$ such that:

$$\forall f: \mathbb{N} \to \mathbb{B}. \exists c. f \equiv \theta c$$

Definition (Self-halting problem)

The self-halting problem is defined as:

 $\mathcal{H} := \lambda x. \exists b. \, \theta x x \triangleright b$

⁵Kreisel 1967; Troelstra and van Dalen 1988.
⁶Richman 1983; Forster 2022.

Self-halting problem

Fact

Partial functions $f : \mathbb{N} \to \mathbb{B}$ agreeing with the halting problem $\mathcal{H} := \lambda x. \exists b. \theta xx \triangleright b$:

```
\forall x. \, x \in \mathcal{H} \ \leftrightarrow \ fx \rhd \mathsf{true},
```

diverge on some input c, i.e., $\forall b. fc \not > b$.

Self-halting problem

Fact

Partial functions $f : \mathbb{N} \to \mathbb{B}$ agreeing with the halting problem $\mathcal{H} := \lambda x. \exists b. \theta xx \triangleright b$:

```
\forall x. \, x \in \mathcal{H} \; \leftrightarrow \; fx \rhd \mathsf{true},
```

diverge on some input c, i.e., $\forall b. fc \not > b$.

Proof.

Consider $g: \mathbb{N} \rightarrow \mathbb{B}$,

$$x := \begin{cases} false & \text{if } fx \triangleright true \\ undefined & otherwise. \end{cases}$$

Let c be the code of g. We have $fc \triangleright$ true $\leftrightarrow fc \triangleright$ false.

g

Strengthening the Early Incompleteness Proof⁸

Theorem

Assume \mathcal{F} weakly represents \mathcal{H} , i.e., there is an $r: \mathbb{N} \to S$ s.t.: $\forall x. x \in \mathcal{H} \leftrightarrow \mathcal{F} \vdash rx$ Then \mathcal{F} has an independent sentence rc:

 $\mathcal{F} \nvDash rc \land \mathcal{F} \nvDash \neg rc$

Strengthening the Early Incompleteness Proof⁸

Theorem

Assume \mathcal{F} weakly represents \mathcal{H} , i.e., there is an $r: \mathbb{N} \to S$ s.t.: $\forall x. x \in \mathcal{H} \leftrightarrow \mathcal{F} \vdash rx$ Then \mathcal{F} has an independent sentence rc:

$$\mathcal{F} \nvDash rc \land \mathcal{F} \nvDash \neg rc$$

Proof.

 $d_{\mathcal{F}} \circ r: \mathbb{N} \rightharpoonup \mathbb{B}$ agrees with the halting problem:

$$\forall x. d_{\mathcal{F}}(rx) \triangleright \mathsf{true} \leftrightarrow \mathcal{F} \vdash rx \leftrightarrow x \in \mathcal{H},$$

and therefore diverges on some input c. Thus, rc is independent in \mathcal{F} .

⁸Kleene 1952.
Consider weak representability:

 $\forall x. Px \leftrightarrow \mathcal{F} \vdash rx$

Consider weak representability:

 $\forall x. Px \leftrightarrow \mathcal{F} \vdash rx$

Definition (Extensions)

A formal system \mathcal{F}' is an extension of $\mathcal{F},$ if

$$\forall s. \mathcal{F} \vdash s \rightarrow \mathcal{F}' \vdash s$$

Consider weak representability:

 $\forall x. Px \leftrightarrow \mathcal{F} \vdash rx$

Definition (Extensions)

A formal system \mathcal{F}' is an extension of $\mathcal{F},$ if

$$\forall s. \mathcal{F} \vdash s \rightarrow \mathcal{F}' \vdash s$$

▶ Only transfers along extensions with $\mathcal{F} \vdash rx \rightarrow Px$, i.e., sound extensions

Consider weak representability:

 $\forall x. Px \leftrightarrow \mathcal{F} \vdash rx$

Definition (Extensions)

A formal system \mathcal{F}' is an extension of $\mathcal{F},$ if

$$\forall s. \mathcal{F} \vdash s \rightarrow \mathcal{F}' \vdash s$$

▶ Only transfers along extensions with $\mathcal{F} \vdash rx \rightarrow Px$, i.e., sound extensions ▶ Can we do better?

Consider weak representability:

 $\forall x. Px \leftrightarrow \mathcal{F} \vdash rx$

Definition (Extensions)

A formal system \mathcal{F}' is an extension of $\mathcal{F},$ if

$$\forall s. \mathcal{F} \vdash s \rightarrow \mathcal{F}' \vdash s$$

▶ Only transfers along extensions with $\mathcal{F} \vdash rx \rightarrow Px$, i.e., sound extensions ▶ Can we do better?

Definition (Strong Separability)

 \mathcal{F} strongly separates two predicates P_1, P_2 if there is an $r: \mathbb{N} \to S$ s.t.:

$$\forall x. P_1 x \rightarrow \mathcal{F} \vdash rx \land P_2 x \rightarrow \mathcal{F} \vdash \neg rx$$

Abstract incompleteness proofs

Kleene's early incompleteness result Improving Kleene's early result Kleene's strengthened incompleteness result

Instantiation to first-order Robinson arithmetic

Recursively Inseparable Predicates

Theorem

Consider the following predicates:

$$\mathcal{I}_{\mathsf{true}} := \lambda x. \, \theta xx \triangleright \mathsf{true} \qquad \mathcal{I}_{\mathsf{false}} := \lambda x. \, \theta xx \triangleright \mathsf{false}$$

They are recursively inseparable, i.e., any partial function $f: \mathbb{N} \rightarrow \mathbb{B}$ s.t.

$$\forall x. (x \in \mathcal{I}_{\mathsf{true}} \to fx \triangleright \mathsf{true}) \land (x \in \mathcal{I}_{\mathsf{false}} \to fx \triangleright \mathsf{false})$$

diverges on some input.

Kleene's Improved Incompleteness Proof⁹

Theorem

Assume \mathcal{F} strongly separates \mathcal{I}_{true} and \mathcal{I}_{false} , i.e., there is an $r : \mathbb{N} \to S$ s.t.:

$$\forall x. \, x \in \mathcal{I}_{\mathsf{true}} \ \rightarrow \ \mathcal{F} \vdash rx \quad \land \quad x \in \mathcal{I}_{\mathsf{false}} \ \rightarrow \ \mathcal{F} \vdash \neg rx$$

 \mathcal{F} has an independent sentence rc:

 $\mathcal{F} \nvDash rc \land \mathcal{F} \nvDash \neg rc$

⁹Kleene 1951, c.f. Kleene 1952.

Kleene's Improved Incompleteness Proof⁹

Theorem

Assume \mathcal{F} strongly separates \mathcal{I}_{true} and \mathcal{I}_{false} , i.e., there is an $r: \mathbb{N} \to S$ s.t.:

$$\forall x. x \in \mathcal{I}_{\mathsf{true}} \ \rightarrow \ \mathcal{F} \vdash rx \quad \land \quad x \in \mathcal{I}_{\mathsf{false}} \ \rightarrow \ \mathcal{F} \vdash \neg rx$$

 ${\cal F}$ has an independent sentence rc:

$$\mathcal{F} \nvDash rc \land \mathcal{F} \nvDash \neg rc$$

Proof.

 $d_{\mathcal{F}} \circ r : \mathbb{N} \to \mathbb{B}$ recursively separates \mathcal{I}_{true} and \mathcal{I}_{false} , and therefore diverges on some input c. Therefore, rc is independent in \mathcal{F} .

⁹Kleene 1951, c.f. Kleene 1952.

Kleene's Improved Incompleteness Proof⁹

Theorem

Assume \mathcal{F} strongly separates \mathcal{I}_{true} and \mathcal{I}_{false} , i.e., there is an $r: \mathbb{N} \to S$ s.t.:

$$\forall x. \ x \in \mathcal{I}_{\mathsf{true}} \ \rightarrow \ \mathcal{F} \vdash rx \quad \land \quad x \in \mathcal{I}_{\mathsf{false}} \ \rightarrow \ \mathcal{F} \vdash \neg rx$$

Any (consistent) extension \mathcal{F}' of \mathcal{F} has an independent sentence rc:

$$\mathcal{F}' \nvDash rc \land \mathcal{F}' \nvDash \neg rc$$

Proof.

 $d_{\mathcal{F}'} \circ r : \mathbb{N} \to \mathbb{B}$ recursively separates \mathcal{I}_{true} and \mathcal{I}_{false} , and therefore diverges on some input c. Therefore, rc is independent in \mathcal{F}' .

⁹Kleene 1951, c.f. Kleene 1952.

Abstract incompleteness proofs

Kleene's early incompleteness result Improving Kleene's early result Kleene's strengthened incompleteness result

Instantiation to first-order Robinson arithmetic

Instantiating the Incompleteness Proofs

From now on: Assume θ in EPF to be an interpreter for μ -recursive functions

Instantiating the Incompleteness Proofs

From now on: Assume θ in EPF to be an interpreter for $\mu\text{-recursive functions}$

$\mathrm{Q}' \subsetneq \mathrm{Q}$ weakly represents any semi-decidable predicate $P: \mathbb{N} \to \mathbb{P}\mathrm{rop}$ using a $\varphi \in \Sigma_1$:

 $\forall x. Px \leftrightarrow \mathbf{Q'} \vdash \varphi(\overline{x})$

Proof.

Lemma

See Kirst and Hermes (2022), relying on a mechanisation of the DPRM theorem by Larchey-Wendling and Forster (2022).

Instantiating the Incompleteness Proofs

From now on: Assume θ in EPF to be an interpreter for $\mu\text{-recursive functions}$

 $Q' \subsetneq Q$ weakly represents any semi-decidable predicate $P : \mathbb{N} \to \mathbb{P}rop$ using a $\varphi \in \Sigma_1$:

 $\forall x. Px \leftrightarrow \mathbf{Q'} \vdash \varphi(\overline{x})$

Proof.

Lemma

See Kirst and Hermes (2022), relying on a mechanisation of the DPRM theorem by Larchey-Wendling and Forster (2022).

Goal: Show that Robinson arithmetic is strong enough to strongly separate any pair of semi-decidable and disjoint predicates.

Lemma (Strong Separability)

 ${\bf Q}$ strongly separates any pair of semi-decidable and disjoint predicates P_1,P_2 , i.e., there is some Φ s.t.:

$$\forall x. P_1 x \rightarrow \mathbf{Q} \vdash \Phi(\overline{x}) \quad \land \quad P_2 x \rightarrow \mathbf{Q} \vdash \neg \Phi(\overline{x})$$

Lemma (Strong Separability)

 ${\bf Q}$ strongly separates any pair of semi-decidable and disjoint predicates $P_1,P_2,$ i.e., there is some Φ s.t.:

$$\forall x. P_1 x \rightarrow \mathbf{Q} \vdash \Phi(\overline{x}) \quad \land \quad P_2 x \rightarrow \mathbf{Q} \vdash \neg \Phi(\overline{x})$$

Proof.

Let φ_1, φ_2 be s.t. for any x:

$$P_1 x \leftrightarrow \mathbf{Q} \vdash \exists k. \varphi_1(\overline{x}, k)$$
$$P_2 x \leftrightarrow \mathbf{Q} \vdash \exists k. \varphi_2(\overline{x}, k)$$

Lemma (Strong Separability)

 ${\bf Q}$ strongly separates any pair of semi-decidable and disjoint predicates $P_1,P_2,$ i.e., there is some Φ s.t.:

$$\forall x. P_1 x \rightarrow \mathbf{Q} \vdash \Phi(\overline{x}) \quad \land \quad P_2 x \rightarrow \mathbf{Q} \vdash \neg \Phi(\overline{x})$$

Proof.

Let φ_1, φ_2 be s.t. for any x:

$$P_1 x \leftrightarrow \mathbf{Q} \vdash \exists k. \varphi_1(\overline{x}, k) P_2 x \leftrightarrow \mathbf{Q} \vdash \exists k. \varphi_2(\overline{x}, k)$$

Choose:

$$\Phi(x) := \exists k. \, \varphi_1(x,k) \land \forall k' \le k. \, \neg \varphi_2(x,k)$$

Instantiating the Strengthened Incompleteness Proof

Theorem

Robinson arithmetic is essentially incomplete.

 $\forall T \supseteq \mathbf{Q}. \quad T \text{ semi-decidable } \rightarrow \quad T \nvDash \bot \rightarrow \quad \exists \varphi. \, T \nvDash \varphi \land T \nvDash \neg \varphi$

Instantiating the Strengthened Incompleteness Proof

Theorem

Robinson arithmetic is essentially incomplete.

 $\forall T \supseteq \mathbf{Q}. \quad T \text{ semi-decidable } \rightarrow \quad T \nvDash \bot \rightarrow \quad \exists \varphi. \, T \nvDash \varphi \wedge T \nvDash \neg \varphi$

Statement shown by Kirst and Hermes (2022):

 $\forall T \supseteq Q. \ T \text{ semi-decidable } \rightarrow \mathbb{N} \vDash T \ \rightarrow \ (\forall \varphi. \ T \vdash \varphi \lor T \vdash \neg \varphi) \ \rightarrow \ \mathcal{H}_{\mathrm{TM}} \text{ decidable}$

Summary

- Gave abstract incompleteness proofs due to Kleene in different strengths, reformulated and consolidated in synthetic computability
 - Assuming weak representability, using the halting problem
 - Assuming strong separability, using recursively inseparable predicates
 - Mechanised in only about 450 stand-alone lines of Coq, 200 for the strongest result

¹⁰Forster et al. 2020, notably including Larchey-Wendling and Forster 2022.
¹¹Kirst, Hostert, et al. 2022.
¹²C.f. Hostert, Koch, and Kirst 2021.

Summary

- Gave abstract incompleteness proofs due to Kleene in different strengths, reformulated and consolidated in synthetic computability
 - Assuming weak representability, using the halting problem
 - Assuming strong separability, using recursively inseparable predicates
 - Mechanised in only about 450 stand-alone lines of Coq, 200 for the strongest result
- Instantiated those proofs to first-order Robinson arithmetic using Rosser's trick
 - Relying on libraries of undecidability¹⁰ and first-order logic¹¹ and the first-order proofmode by Koch¹²
 - Mechanised in around 2200 lines of Coq
- Check our our development:

https://github.com/uds-psl/coq-synthetic-incompleteness/tree/types2022

¹⁰Forster et al. 2020, notably including Larchey-Wendling and Forster 2022.

¹¹Kirst, Hostert, et al. 2022.

¹²C.f. Hostert, Koch, and Kirst 2021.

Church's thesis for Robinson arithmetic

- Church's thesis for Robinson arithmetic
- Do abstract proofs for a concrete model of computation

- Church's thesis for Robinson arithmetic
- Do abstract proofs for a concrete model of computation
- Avoid DPRM as dependency

- Church's thesis for Robinson arithmetic
- Do abstract proofs for a concrete model of computation
- Avoid DPRM as dependency
- Gödel's second incompleteness theorem

Gödel's First Incompleteness Theorem

Theorem

Any effective, consistent, and sufficiently powerful formal logic is incomplete.

We consider proofs of

incompleteness à la Gödel (1931)

that are

abstract	à la Popescu and Traytel (2019)
computational	à la Kleene (1936), Turing (1936), Post (1941)
synthetic	à la Kirst and Hermes (2021)
strong	à la Rosser (1936), Kleene (1951, c.f. 1952)
machine-checked	à la O'Connor (2005), Paulson (2014), and many others

References I

- Aaronson, Scott (July 21, 2011). Rosser's theorem via Turing machines. Shtetl-Optimized. URL: https://scottaaronson.blog/?p=710 (visited on 02/28/2022).
- Bauer, Andrej (2006). "First Steps in Synthetic Computability Theory". In: *Electronic Notes in Theoretical Computer Science* 155, pp. 5–31.
- Forster, Yannick (2022). "Parametric Church's Thesis: Synthetic Computability Without Choice". In: International Symposium on Logical Foundations of Computer Science, pp. 70–89.
- Forster, Yannick et al. (2020). "A Coq Library of Undecidable Problems". In: CoqPL 2020 The Sixth International Workshop on Coq for Programming Languages.
- Gödel, Kurt (1931). "Über Formal Unentscheidbare Sätze der Principa Mathematica und Verwandter Systeme I". In: Monatshefte für Mathematik und Physik 38, pp. 173–198.

References II

- Harrison, John (2009). Handbook of Practical Logic and Automated Reasoning. Cambridge University Press.
- Hostert, Johannes, Mark Koch, and Dominik Kirst (2021). "A Toolbox for Mechanised First-Order Logic". In: The Coq Workshop. Vol. 2021.
- Kirst, Dominik and Marc Hermes (2021). "Synthetic Undecidability and Incompleteness of First-Order Axiom Systems in Coq". In: *ITP 2021*.
- (2022). "Synthetic Undecidability and Incompleteness of First-Order Axiom Systems in Coq: Extended Version". unpublished.
- Kirst, Dominik, Johannes Hostert, et al. (2022). "A Coq Library for Mechanised First-Order Logic". In: *The Coq Workshop*.
- Kleene, Stephen C. (1936). "General Recursive Functions of Natural Numbers". In: *Mathematische Annalen* 112, pp. 727–742.
- (1943). "Recursive Predicates and Quantifiers". In: Transactions of the American Mathematical Society 53, pp. 41–73.

References III

- Kleene, Stephen C. (1951). "A Symmetric Form of Gödel's theorem". In: *The Journal of Symbolic Logic* 16.2, p. 147.
- **—** (1952). Introduction to Metamathematics. North Holland.
- (1967). Mathematical Logic. Dover Publications.
- Kreisel, Georg (1967). "Mathematical Logic". In: *Journal of Symbolic Logic* 32.3, pp. 419–420.
- Larchey-Wendling, Dominique and Yannick Forster (2022). "Hilbert's Tenth Problem in Coq (Extended Version)". In: *Logical Methods in Computer Science* 18.
- O'Connor, Russell (2005). "Essential Incompleteness of Arithmetic Verified by Coq". In: *Theorem Proving in Higher Order Logics*, pp. 245–260.
- Paulson, Lawrence C. (2014). "A Machine-Assisted Proof of Gödel's Incompleteness Theorems for the Theory of Hereditarily Finite Sets". In: The Review of Symbolic Logic 7.3, pp. 484–498.
- (June 2015). "A Mechanised Proof of Gödel's Incompleteness Theorems Using Nominal Isabelle". In: *Journal of Automated Reasoning* 55, pp. 1–37.

References IV

- Popescu, Andrei and Dmitriy Traytel (2019). "A Formally Verified Abstract Account of Gödel's Incompleteness Theorems". In: Automated Deduction – CADE 27. Springer International Publishing, pp. 442–461.
- Post, Emil L. (1941). "Absolutely Unsolvable Problems and Relatively Undecidable Propositions – Acount of an Anticipation". In: Springer, pp. 375–441.
- Richman, Fred (1983). "Church's Thesis Without Tears". In: *The Journal of Symbolic Logic* 48.3, pp. 797–803.
- Rosser, Barkley (1936). "Extensions of Some Theorems of Gödel and Church". In: Journal of Symbolic Logic 1.3, pp. 87–91.
- Shankar, Natarajan (1994). Metamathematics, Machines and Gödel's Proof. Cambridge Tracts in Theoretical Computer Science. Cambridge University Press.
- Troelstra, Anne S. and Dirk van Dalen (1988). Constructivism in Mathematics, Vol
 - 1. ISSN. Elsevier Science.

References V

- Turing, Alan M. (1936). "On Computable Numbers, with an Application to the Entscheidungsproblem". In: Proceedings of the London Mathematical Society 2.42, pp. 230–265.
- user21820 (Dec. 31, 2021). Computability Viewpoint of Godel/Rosser's Incompleteness Theorem. Mathematics Stack Exchange. URL: https://math.stackexchange.com/q/2486349 (visited on 03/22/2022).
 Vorobey, Anatoly (2022). First Incompleteness via Computation: an Explicit Construction. Foundations of Mathematics mailing list. URL: https://cs.nyu.edu/pipermail/fom/2021-September/022872.html (visited on 02/21/2022).

Church's Thesis

$$\forall f: \mathbb{N} \to \mathbb{N}. \exists \varphi \in \Sigma_1. \forall xy. fx \triangleright y \iff \mathbf{Q} \vdash \forall y'. \varphi(\overline{x}, y') \iff y = y'$$

Let P_1, P_2 be semi-decidable and disjoint predicates, and $\varphi_1, \varphi_2 \in \Delta_0$ such that:

$$P_1 x \leftrightarrow \mathbf{Q} \vdash \exists k. \, \varphi_1(\overline{x}, k) \qquad P_2 x \leftrightarrow \mathbf{Q} \vdash \exists l. \, \varphi_2(\overline{x}, l)$$

Let P_1, P_2 be semi-decidable and disjoint predicates, and $\varphi_1, \varphi_2 \in \Delta_0$ such that:

$$P_1 x \leftrightarrow \mathbf{Q} \vdash \exists k. \, \varphi_1(\overline{x}, k) \qquad P_2 x \leftrightarrow \mathbf{Q} \vdash \exists l. \, \varphi_2(\overline{x}, l)$$

We want to find Φ_1 such that for all x:

$$P_1 x \rightarrow \mathbf{Q} \vdash \exists k. \, \Phi_1(\overline{x}, k) \qquad P_2 x \rightarrow \mathbf{Q} \vdash \neg \exists k. \, \Phi_1(\overline{x}, k)$$

Let P_1, P_2 be semi-decidable and disjoint predicates, and $\varphi_1, \varphi_2 \in \Delta_0$ such that:

$$P_1 x \leftrightarrow \mathbf{Q} \vdash \exists k. \, \varphi_1(\overline{x}, k) \qquad P_2 x \leftrightarrow \mathbf{Q} \vdash \exists l. \, \varphi_2(\overline{x}, l)$$

We want to find Φ_1 such that for all x:

$$P_1 x \rightarrow \mathbf{Q} \vdash \exists k. \, \Phi_1(\overline{x}, k) \qquad \qquad P_2 x \rightarrow \mathbf{Q} \vdash \neg \exists k. \, \Phi_1(\overline{x}, k)$$

$$\varphi_1(x,-)$$

Let P_1, P_2 be semi-decidable and disjoint predicates, and $\varphi_1, \varphi_2 \in \Delta_0$ such that:

$$P_1 x \leftrightarrow \mathbf{Q} \vdash \exists k. \varphi_1(\overline{x}, k) \qquad P_2 x \leftrightarrow \mathbf{Q} \vdash \exists l. \varphi_2(\overline{x}, l)$$

We want to find Φ_1 such that for all x:

$$P_1 x \rightarrow \mathbf{Q} \vdash \exists k. \, \Phi_1(\overline{x}, k) \qquad \qquad P_2 x \rightarrow \mathbf{Q} \vdash \neg \exists k. \, \Phi_1(\overline{x}, k)$$

Let P_1, P_2 be semi-decidable and disjoint predicates, and $\varphi_1, \varphi_2 \in \Delta_0$ such that:

$$P_1 x \leftrightarrow \mathbf{Q} \vdash \exists k. \varphi_1(\overline{x}, k) \qquad P_2 x \leftrightarrow \mathbf{Q} \vdash \exists l. \varphi_2(\overline{x}, l)$$

We want to find Φ_1 such that for all x:

$$P_1 x \rightarrow \mathbf{Q} \vdash \exists k. \, \Phi_1(\overline{x}, k) \qquad P_2 x \rightarrow \mathbf{Q} \vdash \neg \exists k. \, \Phi_1(\overline{x}, k)$$

$$\Phi_1(x,k) := \varphi_1(x,k) \land \forall k' \le k. \neg \varphi_2(x,k')$$

Let P_1, P_2 be semi-decidable and disjoint predicates, and $\varphi_1, \varphi_2 \in \Delta_0$ such that:

$$P_1 x \leftrightarrow \mathbf{Q} \vdash \exists k. \, \varphi_1(\overline{x}, k) \qquad P_2 x \leftrightarrow \mathbf{Q} \vdash \exists l. \, \varphi_2(\overline{x}, l)$$

We want to find Φ_1 such that for all x:

 $P_1 x \rightarrow \mathbf{Q} \vdash \exists k. \, \Phi_1(\overline{x}, k) \qquad \qquad P_2 x \rightarrow \mathbf{Q} \vdash \neg \exists k. \, \Phi_1(\overline{x}, k)$

Let P_1, P_2 be semi-decidable and disjoint predicates, and $\varphi_1, \varphi_2 \in \Delta_0$ such that:

$$P_1 x \leftrightarrow \mathbf{Q} \vdash \exists k. \, \varphi_1(\overline{x}, k) \qquad P_2 x \leftrightarrow \mathbf{Q} \vdash \exists l. \, \varphi_2(\overline{x}, l)$$

We want to find Φ_1 such that for all x:

 $P_1 x \rightarrow \mathbf{Q} \vdash \exists k. \, \Phi_1(\overline{x}, k) \qquad \qquad P_2 x \rightarrow \mathbf{Q} \vdash \neg \exists k. \, \Phi_1(\overline{x}, k)$

Let P_1, P_2 be semi-decidable and disjoint predicates, and $\varphi_1, \varphi_2 \in \Delta_0$ such that:

$$P_1 x \leftrightarrow \mathbf{Q} \vdash \exists k. \, \varphi_1(\overline{x}, k) \qquad P_2 x \leftrightarrow \mathbf{Q} \vdash \exists l. \, \varphi_2(\overline{x}, l)$$

We want to find Φ_1 such that for all x:

 $P_1 x \ \rightarrow \ \mathbf{Q} \vdash \exists k. \ \Phi_1(\overline{x}, k) \qquad \qquad P_2 x \ \rightarrow \ \mathbf{Q} \vdash \neg \exists k. \ \Phi_1(\overline{x}, k)$

Let P_1, P_2 be semi-decidable and disjoint predicates, and $\varphi_1, \varphi_2 \in \Delta_0$ such that:

$$P_1 x \leftrightarrow \mathbf{Q} \vdash \exists k. \, \varphi_1(\overline{x}, k) \qquad P_2 x \leftrightarrow \mathbf{Q} \vdash \exists l. \, \varphi_2(\overline{x}, l)$$

We want to find Φ_1 such that for all x:

 $P_1 x \ \rightarrow \ \mathbf{Q} \vdash \exists k. \ \Phi_1(\overline{x}, k) \qquad \qquad P_2 x \ \rightarrow \ \mathbf{Q} \vdash \neg \exists k. \ \Phi_1(\overline{x}, k)$

