Gödel's Theorem Without Tears ${ }^{1}$

Essential Incompleteness in Synthetic Computability

$22^{\text {nd }}$ June, 2022
TYPES 2022

[^0]
Gödel's First Incompleteness Theorem

Theorem

Any effective, consistent, and sufficiently powerful formal logic is incomplete.

Gödel's First Incompleteness Theorem

Theorem

Any effective, consistent, and sufficiently powerful formal logic is incomplete.

We consider proofs of
incompleteness à la Gödel (1931)

Gödel's First Incompleteness Theorem

Theorem

Any effective, consistent, and sufficiently powerful formal logic is incomplete.

We consider proofs of incompleteness à la Gödel (1931)
that are
abstract à la Popescu and Traytel (2019)

Gödel's First Incompleteness Theorem

Theorem

Any effective, consistent, and sufficiently powerful formal logic is incomplete.

We consider proofs of incompleteness à la Gödel (1931)
that are

$$
\begin{array}{cl}
\text { abstract } & \text { à la Popescu and Traytel (2019) } \\
\text { computational } & \text { à la Kleene (1936), Turing (1936), Post (1941) }
\end{array}
$$

Gödel's First Incompleteness Theorem

Theorem

Any effective, consistent, and sufficiently powerful formal logic is incomplete.

We consider proofs of incompleteness à la Gödel (1931)
that are

$$
\begin{array}{cl}
\text { abstract } & \text { à la Popescu and Traytel (2019) } \\
\text { computational } & \text { à la Kleene (1936), Turing (1936), Post (1941) } \\
\text { synthetic } & \text { à la Kirst and Hermes (2021) }
\end{array}
$$

Gödel's First Incompleteness Theorem

Theorem

Any effective, consistent, and sufficiently powerful formal logic is incomplete.

We consider proofs of incompleteness à la Gödel (1931)
that are

abstract	à la Popescu and Traytel (2019)
computational	à la Kleene (1936), Turing (1936), Post (1941)
synthetic	à la Kirst and Hermes (2021)
strong	à la Rosser (1936), Kleene (1951, c.f. 1952)

Gödel's First Incompleteness Theorem

Theorem

Any effective, consistent, and sufficiently powerful formal logic is incomplete.

We consider proofs of

> incompleteness à la Gödel (1931)
that are

abstract	à la Popescu and Traytel (2019)
computational	à la Kleene (1936), Turing (1936), Post (1941)
synthetic	à la Kirst and Hermes (2021)
strong	à la Rosser (1936), Kleene (1951, c.f. 1952)
machine-checked	à la O'Connor (2005), Paulson (2014), and many others

Approaches to Incompleteness

Gödel: assuming ω-consistency
Gödel-Rosser approach

Approaches to Incompleteness

early: assuming soundness

Kleene's approach

Gödel: assuming ω-consistency
Gödel-Rosser approach

Approaches to Incompleteness

early: assuming soundness

Kleene's approach

Gödel: assuming ω-consistency
Rosser's trick

Gödel-Rosser approach
Rosser: assuming consistency

Approaches to Incompleteness

early: assuming soundness
rec. insep. predicates

Kleene's approach
strengthened: assuming consistency ${ }^{2}$

Gödel: assuming ω-consistency
Rosser's trick

Rosser: assuming consistency

Gödel-Rosser approach

Approaches to Incompleteness

early: assuming soundness
\rightarrow Rosser's trick $\$ rec. insep. predicates

Kleene's approach
strengthened: assuming consistency ${ }^{2}$

Gödel: assuming ω-consistency

- Rosser's trick

Gödel-Rosser approach
Rosser: assuming consistency

Approaches to Incompleteness

Gödel: assuming ω-consistency

- Rosser's trick

Gödel-Rosser approach
Rosser: assuming consistency

[^1]We factorised Kleene's incompleteness proofs into two parts:

1. Concise abstract core using synthetic computability
2. Instantiation of these abstract proofs to first-order logic using Rosser's trick

Abstract incompleteness proofs Kleene's early incompleteness result Improving Kleene's early result Kleene's strengthened incompleteness result

Instantiation to first-order Robinson arithmetic

Synthetic Computability ${ }^{3}$

We work in CIC, where all functions can be considered computable.

Synthetic Computability ${ }^{3}$

We work in CIC, where all functions can be considered computable.

Definition

A predicate $P: X \rightarrow \mathbb{P r o p}$ is

- decidable if $\exists f: X \rightarrow \mathbb{B} . P x \leftrightarrow f x=$ true.

[^2]
Synthetic Computability ${ }^{3}$

We work in CIC, where all functions can be considered computable.

Definition

A predicate $P: X \rightarrow \mathbb{P r o p}$ is

- decidable if $\exists f: X \rightarrow \mathbb{B} . P x \leftrightarrow f x=$ true.
- semi-decidable if $\exists f: X \rightarrow \mathbb{N} \rightarrow \mathbb{B} . \forall x . P x \leftrightarrow \exists k . f x k=$ true.

[^3]
Formal Systems

Definition (Formal system)

$\mathcal{F}=(S, \neg, \vdash)$ is a formal system if:

- S : Type is a discrete type of sentences

Formal Systems

Definition (Formal system)

$\mathcal{F}=(S, \neg, \vdash)$ is a formal system if:

- S : Type is a discrete type of sentences
- $\neg: S \rightarrow S$ is a negation function

Formal Systems

Definition (Formal system)

$\mathcal{F}=(S, \neg, \vdash)$ is a formal system if:

- S : Type is a discrete type of sentences
- $\neg: S \rightarrow S$ is a negation function
$-\vdash: S \rightarrow \mathbb{P r o p}$ is a semi-decidable provability predicate

Formal Systems

Definition (Formal system)

$\mathcal{F}=(S, \neg, \vdash)$ is a formal system if:

- S : Type is a discrete type of sentences
- $\neg: S \rightarrow S$ is a negation function
$-\vdash: S \rightarrow \mathbb{P r o p}$ is a semi-decidable provability predicate
- \mathcal{F} is consistent: $\forall s . \neg(\mathcal{F} \vdash s \wedge \mathcal{F} \vdash \neg s)$

Formal Systems

Definition (Formal system)

$\mathcal{F}=(S, \neg, \vdash)$ is a formal system if:

- S : Type is a discrete type of sentences
- $\neg: S \rightarrow S$ is a negation function
$-\vdash: S \rightarrow \mathbb{P r o p}$ is a semi-decidable provability predicate
- \mathcal{F} is consistent: $\forall s . \neg(\mathcal{F} \vdash s \wedge \mathcal{F} \vdash \neg s)$
\mathcal{F} is complete if $\forall s . \mathcal{F} \vdash s \vee \mathcal{F} \vdash \neg s$.

Formal Systems

Definition (Formal system)

$\mathcal{F}=(S, \neg, \vdash)$ is a formal system if:

- S : Type is a discrete type of sentences
- $\neg: S \rightarrow S$ is a negation function
$-\vdash: S \rightarrow \mathbb{P r o p}$ is a semi-decidable provability predicate
- \mathcal{F} is consistent: $\forall s . \neg(\mathcal{F} \vdash s \wedge \mathcal{F} \vdash \neg s)$
\mathcal{F} is complete if $\forall s . \mathcal{F} \vdash s \vee \mathcal{F} \vdash \neg s$.
Many common formal logics are formal systems in this sense:
- first-order logic over a consistent and effective axiomatisation
- CIC

Decidable Formal Systems

Lemma

There is a partial function $d_{\mathcal{F}}: S \rightharpoonup \mathbb{B}$ separating provability from refutability:

$$
\forall s .\left(d_{\mathcal{F}} s \triangleright \text { true } \leftrightarrow \mathcal{F} \vdash s\right) \wedge\left(d_{\mathcal{F}} s \triangleright \text { false } \leftrightarrow \mathcal{F} \vdash \neg s\right)
$$

If \mathcal{F} is complete, $d_{\mathcal{F}}$ is total.

Decidable Formal Systems

Lemma

There is a partial function $d_{\mathcal{F}}: S \rightharpoonup \mathbb{B}$ separating provability from refutability:

$$
\forall s .\left(d_{\mathcal{F}} s \triangleright \text { true } \leftrightarrow \mathcal{F} \vdash s\right) \wedge\left(d_{\mathcal{F}} s \triangleright \text { false } \leftrightarrow \mathcal{F} \vdash \neg s\right)
$$

If \mathcal{F} is complete, $d_{\mathcal{F}}$ is total.

Corollary

Any complete formal system is decidable.

Kleene's Early Incompleteness Proof ${ }^{4,5}$

Theorem

Let \mathcal{F} be complete and weakly represent $P: \mathbb{N} \rightarrow \mathbb{P r o p}$, i.e., there is an $r: \mathbb{N} \rightarrow S$ s.t.:

$$
\forall x . P x \leftrightarrow \mathcal{F} \vdash r x
$$

Then P is decidable.

[^4]
Kleene's Early Incompleteness Proof ${ }^{4,5}$

Theorem

Let \mathcal{F} be complete and weakly represent $P: \mathbb{N} \rightarrow \mathbb{P r o p}$, i.e., there is an $r: \mathbb{N} \rightarrow S$ s.t.:

$$
\forall x . P x \leftrightarrow \mathcal{F} \vdash r x
$$

Then P is decidable. Thus, if P is undecidable, \mathcal{F} is incomplete.

[^5]Abstract incompleteness proofs Kleene's early incompleteness result Improving Kleene's early result Kleene's strengthened incompleteness result

Instantiation to first-order Robinson arithmetic

Church's Thesis ${ }^{7}$

Axiom (EPF ${ }^{6}$)

There is a function $\theta: \mathbb{N} \rightarrow \mathbb{N} \rightharpoonup \mathbb{B}$ such that:

$$
\forall f: \mathbb{N} \rightharpoonup \mathbb{B} . \exists c . f \equiv \theta c
$$

${ }^{5}$ Kreisel 1967; Troelstra and van Dalen 1988.
${ }^{6}$ Richman 1983; Forster 2022.

Church's Thesis ${ }^{7}$

Axiom (EPF ${ }^{6}$)

There is a function $\theta: \mathbb{N} \rightarrow \mathbb{N} \rightharpoonup \mathbb{B}$ such that:

$$
\forall f: \mathbb{N} \rightharpoonup \mathbb{B} . \exists c . f \equiv \theta c
$$

Definition (Self-halting problem)

The self-halting problem is defined as:

$$
\mathcal{H}:=\lambda x . \exists b . \theta x x \triangleright b
$$

[^6]
Self-halting problem

Fact

Partial functions $f: \mathbb{N} \rightharpoonup \mathbb{B}$ agreeing with the halting problem $\mathcal{H}:=\lambda x$. $\exists b . \theta x x \triangleright b$:

$$
\forall x . x \in \mathcal{H} \leftrightarrow f x \triangleright \text { true }
$$

diverge on some input c, i.e., $\forall b . f c \ngtr b$.

Self-halting problem

Fact

Partial functions $f: \mathbb{N} \rightharpoonup \mathbb{B}$ agreeing with the halting problem $\mathcal{H}:=\lambda x . \exists b . \theta x x \triangleright b$:

$$
\forall x . x \in \mathcal{H} \leftrightarrow f x \triangleright \text { true }
$$

diverge on some input c, i.e., $\forall b . f c \not \subset b$.

Proof.

Consider $g: \mathbb{N} \rightharpoonup \mathbb{B}$,

$$
g x:= \begin{cases}\text { false } & \text { if } f x \triangleright \text { true } \\ \text { undefined } & \text { otherwise } .\end{cases}
$$

Let c be the code of g. We have $f c \triangleright$ true $\leftrightarrow f c \triangleright$ false.

Strengthening the Early Incompleteness Proof ${ }^{8}$

Theorem

Assume \mathcal{F} weakly represents \mathcal{H}, i.e., there is an $r: \mathbb{N} \rightarrow S$ s.t.: $\forall x . x \in \mathcal{H} \leftrightarrow \mathcal{F} \vdash r x$ Then \mathcal{F} has an independent sentence $r c$:

$$
\mathcal{F} \nvdash r c \wedge \mathcal{F} \nvdash \neg r c
$$

[^7]
Strengthening the Early Incompleteness Proof ${ }^{8}$

Theorem

Assume \mathcal{F} weakly represents \mathcal{H}, i.e., there is an $r: \mathbb{N} \rightarrow S$ s.t.: $\forall x . x \in \mathcal{H} \leftrightarrow \mathcal{F} \vdash r x$ Then \mathcal{F} has an independent sentence $r c$:

$$
\mathcal{F} \nvdash r c \wedge \mathcal{F} \nvdash \neg r c
$$

Proof.

$d_{\mathcal{F}} \circ r: \mathbb{N} \rightharpoonup \mathbb{B}$ agrees with the halting problem:

$$
\forall x . d_{\mathcal{F}}(r x) \triangleright \text { true } \leftrightarrow \mathcal{F} \vdash r x \leftrightarrow x \in \mathcal{H}
$$

and therefore diverges on some input c. Thus, $r c$ is independent in \mathcal{F}.

[^8]
Going from Soundness to Consistency

- Consider weak representability:

$$
\forall x . P x \leftrightarrow \mathcal{F} \vdash r x
$$

Going from Soundness to Consistency

- Consider weak representability:

$$
\forall x . P x \leftrightarrow \mathcal{F} \vdash r x
$$

Definition (Extensions)

A formal system \mathcal{F}^{\prime} is an extension of \mathcal{F}, if

$$
\forall s . \mathcal{F} \vdash s \rightarrow \mathcal{F}^{\prime} \vdash s
$$

Going from Soundness to Consistency

- Consider weak representability:

$$
\forall x . P x \leftrightarrow \mathcal{F} \vdash r x
$$

Definition (Extensions)

A formal system \mathcal{F}^{\prime} is an extension of \mathcal{F}, if

$$
\forall s . \mathcal{F} \vdash s \rightarrow \mathcal{F}^{\prime} \vdash s
$$

- Only transfers along extensions with $\mathcal{F} \vdash r x \rightarrow P x$, i.e., sound extensions

Going from Soundness to Consistency

- Consider weak representability:

$$
\forall x . P x \leftrightarrow \mathcal{F} \vdash r x
$$

Definition (Extensions)

A formal system \mathcal{F}^{\prime} is an extension of \mathcal{F}, if

$$
\forall s . \mathcal{F} \vdash s \rightarrow \mathcal{F}^{\prime} \vdash s
$$

- Only transfers along extensions with $\mathcal{F} \vdash r x \rightarrow P x$, i.e., sound extensions
- Can we do better?

Going from Soundness to Consistency

- Consider weak representability:

$$
\forall x . P x \leftrightarrow \mathcal{F} \vdash r x
$$

Definition (Extensions)

A formal system \mathcal{F}^{\prime} is an extension of \mathcal{F}, if

$$
\forall s . \mathcal{F} \vdash s \rightarrow \mathcal{F}^{\prime} \vdash s
$$

- Only transfers along extensions with $\mathcal{F} \vdash r x \rightarrow P x$, i.e., sound extensions
- Can we do better?

Definition (Strong Separability)

\mathcal{F} strongly separates two predicates P_{1}, P_{2} if there is an $r: \mathbb{N} \rightarrow S$ s.t.:

$$
\forall x . P_{1} x \rightarrow \mathcal{F} \vdash r x \quad \wedge \quad P_{2} x \rightarrow \mathcal{F} \vdash \neg r x
$$

Abstract incompleteness proofs Kleene's early incompleteness result Improving Kleene's early result
Kleene's strengthened incompleteness result

Instantiation to first-order Robinson arithmetic

Recursively Inseparable Predicates

Theorem

Consider the following predicates:

$$
\mathcal{I}_{\text {true }}:=\lambda x . \theta x x \triangleright \text { true } \quad \mathcal{I}_{\text {false }}:=\lambda x . \theta x x \triangleright \text { false }
$$

They are recursively inseparable, i.e., any partial function $f: \mathbb{N} \rightharpoonup \mathbb{B}$ s.t.

$$
\forall x .\left(x \in \mathcal{I}_{\text {true }} \rightarrow f x \triangleright \text { true }\right) \quad \wedge \quad\left(x \in \mathcal{I}_{\text {false }} \rightarrow f x \triangleright \text { false }\right)
$$

diverges on some input.

Kleene's Improved Incompleteness Proof ${ }^{9}$

Theorem

Assume \mathcal{F} strongly separates $\mathcal{I}_{\text {true }}$ and $\mathcal{I}_{\text {false }}$, i.e., there is an $r: \mathbb{N} \rightarrow S$ s.t.:

$$
\forall x . x \in \mathcal{I}_{\text {true }} \rightarrow \mathcal{F} \vdash r x \quad \wedge \quad x \in \mathcal{I}_{\text {false }} \rightarrow \mathcal{F} \vdash \neg r x
$$

\mathcal{F} has an independent sentence $r c$:

$$
\mathcal{F} \nvdash r c \wedge \mathcal{F} \nvdash \neg r c
$$

[^9]
Kleene's Improved Incompleteness Proof ${ }^{9}$

Theorem

Assume \mathcal{F} strongly separates $\mathcal{I}_{\text {true }}$ and $\mathcal{I}_{\text {false }}$, i.e., there is an $r: \mathbb{N} \rightarrow S$ s.t.:

$$
\forall x . x \in \mathcal{I}_{\text {true }} \rightarrow \mathcal{F} \vdash r x \quad \wedge \quad x \in \mathcal{I}_{\text {false }} \rightarrow \mathcal{F} \vdash \neg r x
$$

\mathcal{F} has an independent sentence $r c$:

$$
\mathcal{F} \nvdash r c \wedge \mathcal{F} \nvdash \neg r c
$$

Proof.

$d_{\mathcal{F}} \circ r: \mathbb{N} \rightharpoonup \mathbb{B}$ recursively separates $\mathcal{I}_{\text {true }}$ and $\mathcal{I}_{\text {false }}$, and therefore diverges on some input c. Therefore, $r c$ is independent in \mathcal{F}.

[^10]
Kleene's Improved Incompleteness Proof ${ }^{9}$

Theorem

Assume \mathcal{F} strongly separates $\mathcal{I}_{\text {true }}$ and $\mathcal{I}_{\text {false }}$, i.e., there is an $r: \mathbb{N} \rightarrow S$ s.t.:

$$
\forall x . x \in \mathcal{I}_{\text {true }} \rightarrow \mathcal{F} \vdash r x \quad \wedge \quad x \in \mathcal{I}_{\text {false }} \rightarrow \mathcal{F} \vdash \neg r x
$$

Any (consistent) extension \mathcal{F}^{\prime} of \mathcal{F} has an independent sentence $r c$:

$$
\mathcal{F}^{\prime} \nvdash r c \wedge \mathcal{F}^{\prime} \nvdash \neg r c
$$

Proof.

$d_{\mathcal{F}^{\prime}} \circ r: \mathbb{N} \rightharpoonup \mathbb{B}$ recursively separates $\mathcal{I}_{\text {true }}$ and $\mathcal{I}_{\text {false }}$, and therefore diverges on some input c. Therefore, $r c$ is independent in \mathcal{F}^{\prime}.

[^11]
Abstract incompleteness proofs Kleene's early incompleteness result Improving Kleene's early result Kleene's strengthened incompleteness result

Instantiation to first-order Robinson arithmetic

Instantiating the Incompleteness Proofs

From now on: Assume θ in EPF to be an interpreter for μ-recursive functions

Instantiating the Incompleteness Proofs

From now on: Assume θ in EPF to be an interpreter for μ-recursive functions

Lemma

$\mathrm{Q}^{\prime} \subsetneq \mathrm{Q}$ weakly represents any semi-decidable predicate $P: \mathbb{N} \rightarrow \mathbb{P r o p}$ using a $\varphi \in \Sigma_{1}$:

$$
\forall x . P x \leftrightarrow \mathrm{Q}^{\prime} \vdash \varphi(\bar{x})
$$

Proof.

See Kirst and Hermes (2022), relying on a mechanisation of the DPRM theorem by Larchey-Wendling and Forster (2022).

Instantiating the Incompleteness Proofs

From now on: Assume θ in EPF to be an interpreter for μ-recursive functions

Lemma

$\mathrm{Q}^{\prime} \subsetneq \mathrm{Q}$ weakly represents any semi-decidable predicate $P: \mathbb{N} \rightarrow \mathbb{P r o p}$ using a $\varphi \in \Sigma_{1}$:

$$
\forall x . P x \leftrightarrow \mathrm{Q}^{\prime} \vdash \varphi(\bar{x})
$$

Proof.

See Kirst and Hermes (2022), relying on a mechanisation of the DPRM theorem by Larchey-Wendling and Forster (2022).

Goal: Show that Robinson arithmetic is strong enough to strongly separate any pair of semi-decidable and disjoint predicates.

Rosser's Trick for Strong Separability

Lemma (Strong Separability)
Q strongly separates any pair of semi-decidable and disjoint predicates P_{1}, P_{2}, i.e., there is some Φ s.t.:

$$
\forall x . P_{1} x \rightarrow \mathrm{Q} \vdash \Phi(\bar{x}) \quad \wedge \quad P_{2} x \rightarrow \mathrm{Q} \vdash \neg \Phi(\bar{x})
$$

Rosser's Trick for Strong Separability

Lemma (Strong Separability)

Q strongly separates any pair of semi-decidable and disjoint predicates P_{1}, P_{2}, i.e., there is some Φ s.t.:

$$
\forall x . P_{1} x \rightarrow \mathrm{Q} \vdash \Phi(\bar{x}) \quad \wedge \quad P_{2} x \rightarrow \mathrm{Q} \vdash \neg \Phi(\bar{x})
$$

Proof.

Let φ_{1}, φ_{2} be s.t. for any x :

$$
\begin{aligned}
& P_{1} x \leftrightarrow \mathrm{Q} \vdash \exists k . \varphi_{1}(\bar{x}, k) \\
& P_{2} x \leftrightarrow \mathrm{Q} \vdash \exists k . \varphi_{2}(\bar{x}, k)
\end{aligned}
$$

Rosser's Trick for Strong Separability

Lemma (Strong Separability)

Q strongly separates any pair of semi-decidable and disjoint predicates P_{1}, P_{2}, i.e., there is some Φ s.t.:

$$
\forall x . P_{1} x \rightarrow \mathrm{Q} \vdash \Phi(\bar{x}) \quad \wedge \quad P_{2} x \rightarrow \mathrm{Q} \vdash \neg \Phi(\bar{x})
$$

Proof.

Let φ_{1}, φ_{2} be s.t. for any x :

$$
\begin{aligned}
& P_{1} x \leftrightarrow \mathrm{Q} \vdash \exists k . \varphi_{1}(\bar{x}, k) \\
& P_{2} x \leftrightarrow \mathrm{Q} \vdash \exists k . \varphi_{2}(\bar{x}, k)
\end{aligned}
$$

Choose:

$$
\Phi(x):=\exists k . \varphi_{1}(x, k) \wedge \forall k^{\prime} \leq k . \neg \varphi_{2}(x, k)
$$

Instantiating the Strengthened Incompleteness Proof

Theorem

Robinson arithmetic is essentially incomplete.

$$
\forall T \supseteq \text { Q. } \quad T \text { semi-decidable } \rightarrow T \nvdash \perp \rightarrow \exists \varphi . T \nvdash \varphi \wedge T \nvdash \neg \varphi
$$

Instantiating the Strengthened Incompleteness Proof

Theorem

Robinson arithmetic is essentially incomplete.

$$
\forall T \supseteq \text { Q. } \quad T \text { semi-decidable } \rightarrow T \nvdash \perp \rightarrow \exists \varphi . T \nvdash \varphi \wedge T \nvdash \neg \varphi
$$

Statement shown by Kirst and Hermes (2022):
$\forall T \supseteq$ Q. T semi-decidable $\rightarrow \mathbb{N} \vDash T \rightarrow(\forall \varphi . T \vdash \varphi \vee T \vdash \neg \varphi) \rightarrow \mathcal{H}_{\mathrm{TM}}$ decidable

Summary

- Gave abstract incompleteness proofs due to Kleene in different strengths, reformulated and consolidated in synthetic computability
- Assuming weak representability, using the halting problem
- Assuming strong separability, using recursively inseparable predicates
- Mechanised in only about 450 stand-alone lines of Coq, 200 for the strongest result

[^12]
Summary

- Gave abstract incompleteness proofs due to Kleene in different strengths, reformulated and consolidated in synthetic computability
- Assuming weak representability, using the halting problem
- Assuming strong separability, using recursively inseparable predicates
- Mechanised in only about 450 stand-alone lines of Coq, 200 for the strongest result
- Instantiated those proofs to first-order Robinson arithmetic using Rosser's trick
- Relying on libraries of undecidability ${ }^{10}$ and first-order logic ${ }^{11}$ and the first-order proofmode by Koch ${ }^{12}$
- Mechanised in around 2200 lines of Coq
- Check our our development:
https://github.com/uds-psl/coq-synthetic-incompleteness/tree/types2022

[^13]
Future Work

- Church's thesis for Robinson arithmetic

Future Work

- Church's thesis for Robinson arithmetic
- Do abstract proofs for a concrete model of computation

Future Work

- Church's thesis for Robinson arithmetic
- Do abstract proofs for a concrete model of computation
- Avoid DPRM as dependency

Future Work

- Church's thesis for Robinson arithmetic
- Do abstract proofs for a concrete model of computation
- Avoid DPRM as dependency
- Gödel's second incompleteness theorem

Gödel's First Incompleteness Theorem

Theorem

Any effective, consistent, and sufficiently powerful formal logic is incomplete.

We consider proofs of

> incompleteness à la Gödel (1931)
that are

abstract	à la Popescu and Traytel (2019)
computational	à la Kleene (1936), Turing (1936), Post (1941)
synthetic	à la Kirst and Hermes (2021)
strong	à la Rosser (1936), Kleene (1951, c.f. 1952)
machine-checked	à la O'Connor (2005), Paulson (2014), and many others

References I

(Aaronson, Scott (July 21, 2011). Rosser's theorem via Turing machines. Shtetl-Optimized. URL: https://scottaaronson.blog/?p=710 (visited on 02/28/2022).
Bauer, Andrej (2006). "First Steps in Synthetic Computability Theory". In: Electronic Notes in Theoretical Computer Science 155, pp. 5-31.
國 Forster, Yannick (2022). "Parametric Church's Thesis: Synthetic Computability Without Choice". In: International Symposium on Logical Foundations of Computer Science, pp. 70-89.
國 Forster, Yannick et al. (2020). "A Coq Library of Undecidable Problems". In: CoqPL 2020 The Sixth International Workshop on Coq for Programming Languages.
EGödel, Kurt (1931). "Über Formal Unentscheidbare Sätze der Principa Mathematica und Verwandter Systeme I". In: Monatshefte für Mathematik und Physik 38, pp. 173-198.

References II

围 Harrison，John（2009）．Handbook of Practical Logic and Automated Reasoning． Cambridge University Press．
（1）Hostert，Johannes，Mark Koch，and Dominik Kirst（2021）．＂A Toolbox for Mechanised First－Order Logic＂．In：The Coq Workshop．Vol． 2021.
E Kirst，Dominik and Marc Hermes（2021）．＂Synthetic Undecidability and Incompleteness of First－Order Axiom Systems in Coq＂．In：ITP 2021.
－（2022）．＂Synthetic Undecidability and Incompleteness of First－Order Axiom Systems in Coq：Extended Version＂．unpublished．
围 Kirst，Dominik，Johannes Hostert，et al．（2022）．＂A Coq Library for Mechanised First－Order Logic＂．In：The Coq Workshop．
國 Kleene，Stephen C．（1936）．＂General Recursive Functions of Natural Numbers＂．In： Mathematische Annalen 112，pp．727－742．
－（1943）．＂Recursive Predicates and Quantifiers＂．In：Transactions of the American Mathematical Society 53，pp．41－73．

References III

（1951）．＂A Symmetric Form of Gödel＇s theorem＂．In：The Journal of Symbolic Logic 16．2，p． 147.
－（1952）．Introduction to Metamathematics．North Holland．
－（1967）．Mathematical Logic．Dover Publications．
國 Kreisel，Georg（1967）．＂Mathematical Logic＂．In：Journal of Symbolic Logic 32．3， pp．419－420．
围 Larchey－Wendling，Dominique and Yannick Forster（2022）．＂Hilbert＇s Tenth Problem in Coq（Extended Version）＂．In：Logical Methods in Computer Science 18.
（ O＇Connor，Russell（2005）．＂Essential Incompleteness of Arithmetic Verified by Coq＂．In：Theorem Proving in Higher Order Logics，pp．245－260．
國 Paulson，Lawrence C．（2014）．＂A Machine－Assisted Proof of Gödel＇s Incompleteness Theorems for the Theory of Hereditarily Finite Sets＂．In：The Review of Symbolic Logic 7．3，pp．484－498．
－（June 2015）．＂A Mechanised Proof of Gödel＇s Incompleteness Theorems Using Nominal Isabelle＂．In：Journal of Automated Reasoning 55，pp．1－37．

References IV

围 Popescu，Andrei and Dmitriy Traytel（2019）．＂A Formally Verified Abstract Account of Gödel＇s Incompleteness Theorems＂．In：Automated Deduction－CADE 27．Springer International Publishing，pp．442－461．
國 Post，Emil L．（1941）．＂Absolutely Unsolvable Problems and Relatively Undecidable Propositions－Acount of an Anticipation＂．In：Springer，pp．375－441．
圊 Richman，Fred（1983）．＂Church＇s Thesis Without Tears＂．In：The Journal of Symbolic Logic 48．3，pp．797－803．
國 Rosser，Barkley（1936）．＂Extensions of Some Theorems of Gödel and Church＂．In： Journal of Symbolic Logic 1．3，pp．87－91．
E Shankar，Natarajan（1994）．Metamathematics，Machines and Gödel＇s Proof． Cambridge Tracts in Theoretical Computer Science．Cambridge University Press．
囯 Troelstra，Anne S．and Dirk van Dalen（1988）．Constructivism in Mathematics，Vol 1．ISSN．Elsevier Science．

References V

回 Turing，Alan M．（1936）．＂On Computable Numbers，with an Application to the Entscheidungsproblem＂．In：Proceedings of the London Mathematical Society 2．42， pp．230－265．
专 user21820（Dec．31，2021）．Computability Viewpoint of Godel／Rosser＇s Incompleteness Theorem．Mathematics Stack Exchange．URL： https：／／math．stackexchange．com／q／2486349（visited on 03／22／2022）．
围 Vorobey，Anatoly（2022）．First Incompleteness via Computation：an Explicit Construction．Foundations of Mathematics mailing list．URL： https：／／cs．nyu．edu／pipermail／fom／2021－September／022872．html（visited on $02 / 21 / 2022$ ）．

Church's Thesis

$$
\forall f: \mathbb{N} \rightharpoonup \mathbb{N} . \exists \varphi \in \Sigma_{1} . \forall x y . f x \triangleright y \leftrightarrow \mathrm{Q} \vdash \forall y^{\prime} . \varphi\left(\bar{x}, y^{\prime}\right) \leftrightarrow y=y^{\prime}
$$

Rosser's Trick for Strong Separability

Let P_{1}, P_{2} be semi-decidable and disjoint predicates, and $\varphi_{1}, \varphi_{2} \in \Delta_{0}$ such that:

$$
P_{1} x \leftrightarrow \mathrm{Q} \vdash \exists k . \varphi_{1}(\bar{x}, k) \quad P_{2} x \leftrightarrow \mathrm{Q} \vdash \exists l . \varphi_{2}(\bar{x}, l)
$$

Rosser's Trick for Strong Separability

Let P_{1}, P_{2} be semi-decidable and disjoint predicates, and $\varphi_{1}, \varphi_{2} \in \Delta_{0}$ such that:

$$
P_{1} x \leftrightarrow \mathrm{Q} \vdash \exists k . \varphi_{1}(\bar{x}, k) \quad P_{2} x \leftrightarrow \mathrm{Q} \vdash \exists l . \varphi_{2}(\bar{x}, l)
$$

We want to find Φ_{1} such that for all x :

$$
P_{1} x \rightarrow \mathrm{Q} \vdash \exists k . \Phi_{1}(\bar{x}, k) \quad P_{2} x \rightarrow \mathrm{Q} \vdash \neg \exists k . \Phi_{1}(\bar{x}, k)
$$

Rosser's Trick for Strong Separability

Let P_{1}, P_{2} be semi-decidable and disjoint predicates, and $\varphi_{1}, \varphi_{2} \in \Delta_{0}$ such that:

$$
P_{1} x \leftrightarrow \mathrm{Q} \vdash \exists k . \varphi_{1}(\bar{x}, k) \quad P_{2} x \leftrightarrow \mathrm{Q} \vdash \exists l . \varphi_{2}(\bar{x}, l)
$$

We want to find Φ_{1} such that for all x :

$$
P_{1} x \rightarrow \mathrm{Q} \vdash \exists k . \Phi_{1}(\bar{x}, k) \quad P_{2} x \rightarrow \mathrm{Q} \vdash \neg \exists k . \Phi_{1}(\bar{x}, k)
$$

Rosser's Trick for Strong Separability

Let P_{1}, P_{2} be semi-decidable and disjoint predicates, and $\varphi_{1}, \varphi_{2} \in \Delta_{0}$ such that:

$$
P_{1} x \leftrightarrow \mathrm{Q} \vdash \exists k . \varphi_{1}(\bar{x}, k) \quad P_{2} x \leftrightarrow \mathrm{Q} \vdash \exists l . \varphi_{2}(\bar{x}, l)
$$

We want to find Φ_{1} such that for all x :

$$
P_{1} x \rightarrow \mathrm{Q} \vdash \exists k . \Phi_{1}(\bar{x}, k) \quad P_{2} x \rightarrow \mathrm{Q} \vdash \neg \exists k . \Phi_{1}(\bar{x}, k)
$$

\[

\]

Rosser's Trick for Strong Separability

Let P_{1}, P_{2} be semi-decidable and disjoint predicates, and $\varphi_{1}, \varphi_{2} \in \Delta_{0}$ such that:

$$
P_{1} x \leftrightarrow \mathrm{Q} \vdash \exists k . \varphi_{1}(\bar{x}, k) \quad P_{2} x \leftrightarrow \mathrm{Q} \vdash \exists l . \varphi_{2}(\bar{x}, l)
$$

We want to find Φ_{1} such that for all x :

$$
P_{1} x \rightarrow \mathrm{Q} \vdash \exists k . \Phi_{1}(\bar{x}, k) \quad P_{2} x \rightarrow \mathrm{Q} \vdash \neg \exists k . \Phi_{1}(\bar{x}, k)
$$

\[

\]

$$
\Phi_{1}(x, k):=\varphi_{1}(x, k) \wedge \forall k^{\prime} \leq k . \neg \varphi_{2}\left(x, k^{\prime}\right)
$$

Rosser's Trick for Strong Separability

Let P_{1}, P_{2} be semi-decidable and disjoint predicates, and $\varphi_{1}, \varphi_{2} \in \Delta_{0}$ such that:

$$
P_{1} x \leftrightarrow \mathrm{Q} \vdash \exists k . \varphi_{1}(\bar{x}, k) \quad P_{2} x \leftrightarrow \mathrm{Q} \vdash \exists l . \varphi_{2}(\bar{x}, l)
$$

We want to find Φ_{1} such that for all x :

$$
P_{1} x \rightarrow \mathrm{Q} \vdash \exists k . \Phi_{1}(\bar{x}, k) \quad \quad P_{2} x \rightarrow \mathrm{Q} \vdash \neg \exists k . \Phi_{1}(\bar{x}, k)
$$

$$
\Phi_{1}(x, k):=\varphi_{1}(x, k) \wedge \forall k^{\prime} \leq k . \neg \varphi_{2}\left(x, k^{\prime}\right)
$$

Rosser's Trick for Strong Separability

Let P_{1}, P_{2} be semi-decidable and disjoint predicates, and $\varphi_{1}, \varphi_{2} \in \Delta_{0}$ such that:

$$
P_{1} x \leftrightarrow \mathrm{Q} \vdash \exists k . \varphi_{1}(\bar{x}, k) \quad P_{2} x \leftrightarrow \mathrm{Q} \vdash \exists l . \varphi_{2}(\bar{x}, l)
$$

We want to find Φ_{1} such that for all x :

$$
P_{1} x \rightarrow \mathrm{Q} \vdash \exists k . \Phi_{1}(\bar{x}, k) \quad \quad P_{2} x \rightarrow \mathrm{Q} \vdash \neg \exists k . \Phi_{1}(\bar{x}, k)
$$

$$
\Phi_{1}(x, k):=\varphi_{1}(x, k) \wedge \forall k^{\prime} \leq k . \neg \varphi_{2}\left(x, k^{\prime}\right)
$$

Rosser's Trick for Strong Separability

Let P_{1}, P_{2} be semi-decidable and disjoint predicates, and $\varphi_{1}, \varphi_{2} \in \Delta_{0}$ such that:

$$
P_{1} x \leftrightarrow \mathrm{Q} \vdash \exists k . \varphi_{1}(\bar{x}, k) \quad P_{2} x \leftrightarrow \mathrm{Q} \vdash \exists l . \varphi_{2}(\bar{x}, l)
$$

We want to find Φ_{1} such that for all x :

$$
P_{1} x \rightarrow \mathrm{Q} \vdash \exists k . \Phi_{1}(\bar{x}, k)
$$

$$
P_{2} x \rightarrow \mathrm{Q} \vdash \neg \exists k . \Phi_{1}(\bar{x}, k)
$$

$$
\Phi_{1}(x, k):=\varphi_{1}(x, k) \wedge \forall k^{\prime} \leq k . \neg \varphi_{2}\left(x, k^{\prime}\right)
$$

Rosser's Trick for Strong Separability

Let P_{1}, P_{2} be semi-decidable and disjoint predicates, and $\varphi_{1}, \varphi_{2} \in \Delta_{0}$ such that:

$$
P_{1} x \leftrightarrow \mathrm{Q} \vdash \exists k . \varphi_{1}(\bar{x}, k) \quad P_{2} x \leftrightarrow \mathrm{Q} \vdash \exists l . \varphi_{2}(\bar{x}, l)
$$

We want to find Φ_{1} such that for all x :

$$
P_{1} x \rightarrow \mathrm{Q} \vdash \exists k . \Phi_{1}(\bar{x}, k) \quad P_{2} x \rightarrow \mathrm{Q} \vdash \neg \exists k . \Phi_{1}(\bar{x}, k)
$$

$$
\Phi_{1}(x, k):=\varphi_{1}(x, k) \wedge \forall k^{\prime} \leq k . \neg \varphi_{2}\left(x, k^{\prime}\right)
$$

[^0]: ${ }^{1}$ Abstract title: "Strong, Synthetic, and Computational Proofs of Gödel's First Incompleteness Theorem"

[^1]: ${ }^{2}$ We found out about these results through an e-mail by Anatoly Vorobey on the Foundations of Mathematics mailing list.

[^2]: ${ }^{3}$ Richman 1983; Bauer 2006.

[^3]: ${ }^{3}$ Richman 1983; Bauer 2006.

[^4]: ${ }^{4}$ Kleene 1936; Turing 1936.
 ${ }^{5}$ As mechanised by Kirst and Hermes (2022).

[^5]: ${ }^{4}$ Kleene 1936; Turing 1936.
 ${ }^{5}$ As mechanised by Kirst and Hermes (2022).

[^6]: ${ }^{5}$ Kreisel 1967; Troelstra and van Dalen 1988.
 ${ }^{6}$ Richman 1983; Forster 2022.

[^7]: ${ }^{8}$ Kleene 1952.

[^8]: ${ }^{8}$ Kleene 1952.

[^9]: ${ }^{9}$ Kleene 1951, c.f. Kleene 1952.

[^10]: ${ }^{9}$ Kleene 1951, c.f. Kleene 1952.

[^11]: ${ }^{9}$ Kleene 1951, c.f. Kleene 1952.

[^12]: ${ }^{10}$ Forster et al. 2020, notably including Larchey-Wendling and Forster 2022.
 ${ }^{11}$ Kirst, Hostert, et al. 2022.
 ${ }^{12}$ C.f. Hostert, Koch, and Kirst 2021.

[^13]: ${ }^{10}$ Forster et al. 2020, notably including Larchey-Wendling and Forster 2022.
 ${ }^{11}$ Kirst, Hostert, et al. 2022.
 ${ }^{12}$ C.f. Hostert, Koch, and Kirst 2021.

