Next: LinkingAbove, Previous: In2, Up: Principles list
principle.linking12BelowStartEnd
D1, D2, D3
Start: vec(label(D1) set(label(D2)))End: vec(label(D1) set(label(D2)))
Start: ^.D3.entry.startEnd: ^.D3.entry.end
Linking12BelowStartEnd (priority 100)
This principle assumes that the Graph principle (Graph) is used
on dimensions D1 and D2.1
This principle is from the family of linking principles.
For all edges from v to v' labeled l on D1,
it stipulates the constraints:
Start(l) is not empty, then on D2,
v' must be the daughter, or the daughter of the daughter of
v, and the outgoing edge of v must be labeled by a label
in Start(l)
End(l) is not empty, then on D2,
v' must be the daughter, or the daughter of the daughter of
v, and the incoming edge of v' must be in
End(l)
Start(l) and End(l) specify the direction,
distance, startpoint and endpoint of the path from v to
v' on D2.
Here is the definition of the Linking12BelowStartEnd
constraint functor:
%% Copyright 2001-2008
%% by Ralph Debusmann <rade@ps.uni-sb.de> (Saarland University) and
%% Denys Duchier <duchier@ps.uni-sb.de> (LIFO, Orleans) and
%% Jorge Marques Pelizzoni <jpeliz@icmc.usp.br> (ICMC, Sao Paulo) and
%% Jochen Setz <info@jochensetz.de> (Saarland University)
%%
functor
import
% System(show)
Helpers(checkModel) at 'Helpers.ozf'
Opti(isIn) at 'Opti.ozf'
export
Constraint
define
proc {Constraint Nodes G Principle FD FS Select}
DVA2DIDA = Principle.dVA2DIDA
ArgRecProc = Principle.argRecProc
%%
D1DIDA = {DVA2DIDA 'D1'}
D2DIDA = {DVA2DIDA 'D2'}
DIDA2LabelLat = G.dIDA2LabelLat
D1LabelLat = {DIDA2LabelLat D1DIDA}
D2LabelLat = {DIDA2LabelLat D2DIDA}
D1LAs = D1LabelLat.constants
D2LAs = D2LabelLat.constants
in
if {Helpers.checkModel 'Linking12BelowStartEnd.oz' Nodes
[D1DIDA#daughtersL
D2DIDA#daughters
D2DIDA#daughtersL
D2DIDA#mothers
D2DIDA#mothersL]} then
D2DaughtersMs = {Map Nodes
fun {$ Node} Node.D2DIDA.model.daughters end}
D2MothersMs = {Map Nodes
fun {$ Node} Node.D2DIDA.model.mothers end}
in
for Node1 in Nodes do
for Node2 in Nodes do
for LA in D1LAs do
if {Not {Opti.isIn Node2.index Node1.D1DIDA.model.daughtersL.LA}=='out'} then
local
%% Linking 12Below and Startpoint
%% m -l->1 d =>
%% Start(l) neq emptyset =>
%% m -Start(l)->2 ->?2 d
StartLALMRec =
{ArgRecProc 'Start' o('^': Node1)}
StartLM = StartLALMRec.LA
%%
Node1D2DaughtersLMs =
{Map D2LAs
fun {$ LA} Node1.D2DIDA.model.daughtersL.LA end}
Node1D2Daughters1M =
{Select.union Node1D2DaughtersLMs StartLM}
Node1D2Daughters2M =
{Select.union D2DaughtersMs Node1D2Daughters1M}
Node1D2Daughters12M =
{FS.union Node1D2Daughters1M Node1D2Daughters2M}
in
{FD.impl
{FS.reified.include Node2.index Node1.D1DIDA.model.daughtersL.LA}
{FD.impl
{FD.nega {FS.reified.equal StartLM FS.value.empty}}
{FS.reified.include Node2.index Node1D2Daughters12M}} 1}
end
%%
local
%% Linking 12Below and Endpoint
%% m -l->1 d =>
%% End(l) neq emptyset =>
%% m ->?2 -End(l)->2 d
EndLALMRec =
{ArgRecProc 'End' o('^': Node1)}
EndLM = EndLALMRec.LA
%%
Node2D2MothersLMs =
{Map D2LAs
fun {$ LA} Node2.D2DIDA.model.mothersL.LA end}
Node2D2Mothers1M =
{Select.union Node2D2MothersLMs EndLM}
Node2D2Mothers2M =
{Select.union D2MothersMs Node2D2Mothers1M}
Node2D2Mothers12M =
{FS.union Node2D2Mothers1M Node2D2Mothers2M}
in
{FD.impl
{FS.reified.include Node2.index Node1.D1DIDA.model.daughtersL.LA}
{FD.impl
{FD.nega {FS.reified.equal EndLM FS.value.empty}}
{FS.reified.include Node1.index Node2D2Mothers12M}} 1}
end
end
end
end
end
end
end
end