Next: LinkingBelow, Previous: LinkingAboveStart, Up: Principles list
principle.linkingAboveStartEnd
D1, D2, D3
Start: vec(label(D1) set(label(D2)))End: vec(label(D1)
set(label(D2)))
Start: ^.D3.entry.startEnd: ^.D3.entry.end
LinkingAboveStartEnd (priority 100)
This principle assumes that the Graph principle (Graph) is used
on dimensions D1 and D2.1
This principle is from the family of linking principles.
For all edges from v to v' labeled l on D1,
it stipulates the constraints:
Start(l) is not empty, then on D2,
v' must be above an edge into v labeled by a label in
Start(l)
End(l) is not empty, then on D2,
v' must be above v, and the outgoing edge of v'
must be in End(l)
Start(l) and End(l) specify the direction,
startpoint and endpoint of the path from v to v' on
D2.
Here is the definition of the LinkingAboveStartEnd
constraint functor:
%% Copyright 2001-2008
%% by Ralph Debusmann <rade@ps.uni-sb.de> (Saarland University) and
%% Denys Duchier <duchier@ps.uni-sb.de> (LIFO, Orleans) and
%% Jorge Marques Pelizzoni <jpeliz@icmc.usp.br> (ICMC, Sao Paulo) and
%% Jochen Setz <info@jochensetz.de> (Saarland University)
%%
functor
import
% System(show)
Helpers(checkModel) at 'Helpers.ozf'
Opti(isIn) at 'Opti.ozf'
export
Constraint
define
proc {Constraint Nodes G Principle FD FS Select}
DVA2DIDA = Principle.dVA2DIDA
ArgRecProc = Principle.argRecProc
%%
D1DIDA = {DVA2DIDA 'D1'}
D2DIDA = {DVA2DIDA 'D2'}
DIDA2LabelLat = G.dIDA2LabelLat
D1LabelLat = {DIDA2LabelLat D1DIDA}
D2LabelLat = {DIDA2LabelLat D2DIDA}
D1LAs = D1LabelLat.constants
D2LAs = D2LabelLat.constants
in
if {Helpers.checkModel 'LinkingAboveStartEnd.oz' Nodes
[D1DIDA#daughtersL
D2DIDA#upL
D2DIDA#downL]} then
for Node1 in Nodes do
for Node2 in Nodes do
for LA in D1LAs do
if {Not {Opti.isIn Node2.index Node1.D1DIDA.model.daughtersL.LA}=='out'} then
local
%% Linking Above and Startpoint
%% m -l->1 d =>
%% Start(l) neq emptyset =>
%% d ->*2 -Start(l)->2 m
StartLALMRec =
{ArgRecProc 'Start' o('^': Node1)}
StartLM = StartLALMRec.LA
%%
Node1D2UpLMs =
{Map D2LAs
fun {$ LA} Node1.D2DIDA.model.upL.LA end}
Node1D2UpLM =
{Select.union Node1D2UpLMs StartLM}
in
{FD.impl
{FS.reified.include Node2.index Node1.D1DIDA.model.daughtersL.LA}
{FD.impl
{FD.nega {FS.reified.equal StartLM FS.value.empty}}
{FS.reified.include Node2.index Node1D2UpLM}} 1}
end
%%
local
%% Linking Above and Endpoint
%% m -l->1 d =>
%% End(l) neq emptyset =>
%% d -End(l)->2 ->*2 m
EndLALMRec =
{ArgRecProc 'End' o('^': Node1)}
EndLM = EndLALMRec.LA
%%
Node2D2DownLMs =
{Map D2LAs
fun {$ LA} Node2.D2DIDA.model.downL.LA end}
Node2D2DownLM =
{Select.union Node2D2DownLMs EndLM}
in
{FD.impl
{FS.reified.include Node2.index Node1.D1DIDA.model.daughtersL.LA}
{FD.impl
{FD.nega {FS.reified.equal EndLM FS.value.empty}}
{FS.reified.include Node1.index Node2D2DownLM}} 1}
end
end
end
end
end
end
end
end