Next: PL, Previous: OrderWithCuts, Up: Principles list
principle.out
D
Out: valency(label(D))
Out: _.D.entry.out
Out (priority 130)
This principle assumes that the Graph principle (Graph) is used
on dimension D.
The Out argument variable defines the set of possible
outgoing edge labels.
Its default value is lexicalized by the lexical entry feature
out on D.
It stipulates for all nodes v that:
The Out principle is symmetric to the In1 principle (In1), and is now mostly superseded by the Valency principle (Valency1).
Here is the definition of the Out constraint functor:
%% Copyright 2001-2008
%% by Ralph Debusmann <rade@ps.uni-sb.de> (Saarland University) and
%% Denys Duchier <duchier@ps.uni-sb.de> (LIFO, Orleans) and
%% Jorge Marques Pelizzoni <jpeliz@icmc.usp.br> (ICMC, Sao Paulo) and
%% Jochen Setz <info@jochensetz.de> (Saarland University)
%%
functor
import
% System(show)
Helpers(checkModel) at 'Helpers.ozf'
export
Constraint
prepare
RecordForAllInd = Record.forAllInd
define
proc {Constraint Nodes G Principle FD FS Select}
DVA2DIDA = Principle.dVA2DIDA
ArgRecProc = Principle.argRecProc
%%
DIDA = {DVA2DIDA 'D'}
in
%% check features
if {Helpers.checkModel 'Out.oz' Nodes
[DIDA#daughtersL]} then
for Node in Nodes do
LAOutMRec = {ArgRecProc 'Out' o('_': Node)}
in
{RecordForAllInd LAOutMRec
proc {$ LA OutM}
%% |daughterset_l(v)| in out_l(v)
CardDaughtersLD = {FS.card Node.DIDA.model.daughtersL.LA}
in
{FS.include CardDaughtersLD OutM}
end}
end
end
end
end