
Topological Dependency Analysis of the Dutch Verb Cluster

Denys Duchier
Programming Systems Lab
Universität des Saarlandes

Postfach 15 11 50
D-66041 Saarbrücken, Germany

duchier@ps.uni-sb.de

Ralph Debusmann
Computational Linguistics
Universität des Saarlandes

Postfach 15 11 50
D-66041 Saarbrücken, Germany

rade@coli.uni-sb.de

Paper ID: P0315

Keywords: dependency grammar, linear precedence, Dutch verb cluster, cross-serial
dependencies

Contact Author: Denys Duchier

Under consideration for other conferences (specify)? no

Abstract

Topological Dependency Grammar (TDG) is a new lexicalized formalism where word
order phenomena arise from the interaction of a non-ordered syntax tree with a
projective topological tree, both related by an emancipation mechanism. TDG proved
capable of an elegant account of German word-order phenomena. We apply it now to
the modelization of word-order variation in the Dutch verb cluster and further extend it
with an ordering principle that correctly accounts for the ordering of elements in the
Mittelfeld.

Topological Dependency Analysis of the Dutch Verb Cluster

Paper ID: P0315

Abstract

Topological Dependency Grammar
(TDG) is a new lexicalized formal-
ism where word order phenomena arise
from the interaction of a non-ordered
syntax tree with a projective topologi-
cal tree, both related by an emancipa-
tion mechanism. TDG proved capable
of an elegant account of German word-
order phenomena. We apply it now to
the modelization of word-order varia-
tion in the Dutch verb cluster and fur-
ther extend it with an ordering princi-
ple that correctly accounts for the or-
dering of elements in the Mittelfeld.

1 Introduction

Topological Dependency Grammar (henceforth
TDG) is a lexicalized grammar formalism
proposed by Duchier and Debusmann (2001)
where licensed analyses emerge from the in-
teractions of a non-ordered tree of syn-
tactic dependencies with a corresponding
projective tree of topological dependencies,
both related by an emancipation mechanism.
Gerdes and Kahane (2001) independently sug-
gested a similar approach but with a repre-
sentation of topology based on phrase struc-
ture rather than immediate dependency. TDG
proved capable of an elegant account of many
word order phenomena in German (Debus-
mann, 2001).

In the present article, we examine word or-
der in Dutch subordinate clauses and develop a
TDG account which addresses the phenomena
of cross-serial dependencies, verb-raising, infini-
tivus pro participio, inversion, full and partial
extraposition. We also outline how to accom-
modate some dialectal variations. While TDG
had so far not paid special attention to word
order within the Mittelfeld, this issue must be

addressed in Dutch: we propose a simple or-
dering principle which achieves an effect simi-
lar to the argument composition mechanism of
van Noord and Bouma (1996).

2 TDG Framework

In this section, we introduce the TDG frame-
work informally using our simple Dutch gram-
mar for illustration. The formal foundations can
be found in (Duchier, 2001). The full lexicon as-
sumed for this article is summarized in Table 1.

A TDG analysis consists of two trees, the ID
tree and the LP tree, which are formed from
the same set of nodes (one for each word of the
input) but different sets of edges.

The ID tree is a non-ordered tree of syntac-
tic dependencies where edges are labeled with
grammatical rolections such as subj for subject
or obj for object.

(dat) Jan probeert het boek te lezen

sub
j

de
t

obj te

vinf

For the purpose of this article, the set R of
grammatical roles is simply:

R = {subj, iobj, obj, vbse, vprt, vinf, vinf, vinf, te, det}

corresponding respectively to subject, indirect
object, direct object, bare infinitive, past par-
ticiple, stripped infinitive, infinitive, saturated
infinitive,1 te particle, and determiner. In the
ID tree, we say that a node is the syntactic head
of its immediate daughters.

1vinf, vinf, and vinf respectively model te-infinitives
whose arguments must all be raised, may optionally be
raised, or must not be raised. Bare infinitives (vbse)
behave like vinf-infinitives: their arguments must also be
raised.

1

The LP tree is a tree of topological depen-
dencies. It is ordered and projective, and both
nodes and edges are labeled by fields such as mf

for Mittelfeld.

(dat) Jan probeert het boek te lezen

n
v

n
n v

v

mf

df

mf pf

vrf

In the LP tree, we say that a node is the topo-
logical host of its immediate daughters, and that
the daughters are guests of their host. For this
reason we call the set FG of edge labels guest
fields and the set FH of node labels host fields.

FG = {df,mf, vrf, vlf, pf} FH = {n, v}

df is the determiner field, mf the Mittelfeld, vrf

the verbal right field (canonical position of ver-
bal arguments), vlf the verbal left field (inverted
verbal arguments), and pf the particle field (for
te). The set F = FG] FH of fields is totally
ordered:

df ≺ n ≺ mf ≺ vlf ≺ pf ≺ v ≺ vrf

To be admissible, the LP tree must be well-
ordered, i.e. locally for each node, the order of
its outgoing edges must respect the order on
their labels. Thus:

(1) dat Jan probeert het boek te lezen

(2) *dat Jan probeert te het boek lezen

(1) is well-ordered, but (2) is not because it vi-
olates the order mf ≺ pf locally on lezen. Fur-
ther, the assignment of a host field to a node
determines how it must be placed with respect
to its guests and their recursive topological de-
pendents. Thus, in our example, the order
mf ≺ v ≺ vrf mandates the linearization:

[Jan] ≺ probeert ≺ [het boek te lezen]

For an analysis to be admissible, the shape of
the LP tree must be derived from the ID tree’s
by a flattening process of emancipation called
climbing : a node (and its subtree) may migrate

upwards in search of a topological host. Thus,
in our example, het boek may also climb up to
the finite verb probeert :

(dat) Jan het boek probeert te lezen

n
n

n
v

v
v

mf

df

mf

pf

vrf

A TDG analysis is further constrained by an
assignment of lexical entries to nodes. Given a
set L of labels, we write ΠL for the set of label
patterns π that can be formed according to the
following abstract syntax:

π ::= ` | `∗ | `? ∀` ∈ L

Patterns are used for subcategorization con-
straints: ` means precisely one edge labeled `,
`∗ means 0 or more `-edges, and `? at most 1
`-edge. A lexical entry has the signature:

catid : 2R

subcatid : 2ΠR

catlp : 2FG

subcatlp : 2ΠFG

hcatlp : 2FH

blocks : 2R

For example, one lexical entry for kussen is:

catid : {vinf}
subcatid : {obj, te}

catlp : {vrf}
subcatlp : {mf∗, pf}

hcatlp : {v}
blocks : R

It simultaneously constrains the ID tree, the
LP tree, and the emancipation relationship be-
tween them. subcatid constrains the outgoing
edges of the node in the ID tree, while catid re-
stricts its incoming edge. We say that kussen
ID-subcategorizes for obj and te: the node in
the ID tree must have precisely one obj and one
te outgoing edge and no other. Symmetrically,
we say that it ID-categorizes for vinf: if an in-
coming edge exists, it must be labeled with vinf.
Similarly, we say that it LP-subcategorizes for
mf∗ and pf: the node in the LP tree must have
0 or more mf edges, 1 pf edge, and no other.
It LP-categorizes for vrf: if an incoming edge

2

exists in the LP tree, it must be labeled vrf;
in other words, the lexical entry mandates that
kussen land in the right verbal field. hcatlp in-
dicates that the node must be assigned “host”
label v. Now consider an entry for gekust :

catid : {vprt}
subcatid : {obj}

catlp : {vlf, vrf}
subcatlp : ∅

hcatlp : {v}
blocks : ∅

It LP-categorizes for either vlf or vrf,2 meaning
that it may either land in the right verbal field,
or be subject to inversion and land in the left
verbal field. Notice that it ID-subcategorizes for
obj, but does not LP-subcategorize for mf∗ thus
forcing its object argument to “climb” in search
of a host offering a Mittelfeld.

Finally, the emancipation mechanism is also
subject to lexical constraints. The blocks fea-
ture of a lexical entry is a set of grammati-
cal roles for which this node acts as a barrier.
For example, the entry for kussen above blocks
all grammatical roles (because this is an en-
try for a saturated kussen as attested by the
fact that it ID-categorizes for vinf). The entry
for gekust blocks no role, while the entries for
moeten block all verbal roles.

3 The Dutch Verb Cluster

We restrict our attention to non-finite com-
plementation in verb-final sentences and dis-
tinguish three classes of verbs taking verbal
complements: verb-raising verbs, partial ex-
traposition verbs, and full extraposition verbs.
Verb-raising verbs ID-subcategorize for vbse or
vinf, i.e. verbal complements whose arguments
must climb. Partial extraposition verbs ID-
subcategorize for vinf, i.e. verbal complements
whose arguments may climb. Full extraposi-
tion verbs ID-subcategorize for vinf, i.e. sat-
urated verbal complements whose arguments
consequently must not climb.

3.1 Verb-raising Verbs

In the ANS (the standard Dutch grammar), this
class of verbs is called obligatory group form-

2The interpretation of catid and catlp is disjunctive.

ing. In fact, group forming is the character-
istic property of verb-raising verbs: they force
their governed verbs to raise their non-verbal
complements into the Mittelfeld, leading to the
formation of a contiguous group of verbs called
verb cluster. The class of verb-raising verbs
includes auxiliaries, modals, perception verbs,
causatives, certain raising and control-verbs like
proberen (to try) and the verb helpen (to help).
Here is an example featuring the modal moet,
leading to the formation of the verb cluster moet
kussen:

(3) (dat)
(that)

Jan
Jan

Marie
Marie

moet
must

kussen
kiss

“(that) Jan must kiss Marie”

The TDG analysis of (3) is:

(dat) Jan Marie moet kussen

subj

obj

vbse

(dat) Jan Marie moet kussen

n n
v

v

mf mf vrf

In our grammar, verb-raisers ID-subcategorize
for either vbse (bare infinitive) or vinf (te-
infinitive). moet for instance ID-subcategorizes
for vbse:3

(4)

moet 7→

[

subcatid : {subj, vbse}
subcatlp : {mf∗, vlf?, vrf?}

]

kussen in turn ID-categorizes for vbse. It ID-
subcategorizes for obj while LP-subcategorizing
for no field, thus forcing the object to climb up:

(5) kussen 7→

catid : {vbse}
subcatid : {obj}

catlp : {vlf, vrf}
subcatlp : ∅

With this lexical entry for verbs governed by
verb-raisers, we correctly exclude sentences as

3In the following, we present only partial lexical en-
tries containing only the relevant information for the con-
text. For the full lexical entries cf. Table 1.

3

in (6) below where the object Marie has not
climbed into the Mittelfeld but stayed within
the verb cluster moet kussen:

(6) *dat Jan moet Marie kussen

3.1.1 Infinitivus pro participio-effect

If governed by the hebben-auxiliary, verb-
raisers must show infinitival rather than past
participle inflection. This is called the Infini-
tivus pro participio-effect (IPP-effect).

(7) (dat)
(that)

Piet
Piet

Jan
Jan

Marie
Marie

heeft
has

zien
see(inf)

kussen
kiss

“that Piet has seen Jan kiss Marie”

(8) *(dat)
(that)

Piet
Piet

Jan
Jan

Marie
Marie

heeft
has

gezien
seen(part)

kussen
kiss

“that Piet has seen Jan kiss Marie”

In our grammar, verb-raisers ID-categorizing
for vprt must always show infinitival inflection.
Therefore we exclude (8) by not including a lexi-
cal entry for gezien as a verb-raiser at all. How-
ever, as zien is ambiguous between a verb-raiser
and a transitive main verb, we do add a lexical
entry for the past participle gezien:

(9) gezien 7→

[

catid : {vprt}
subcatid : {obj}

]

Notice that (9) only ID-subcategorizes for obj,
i.e. it is a transitive verb having no verbal com-
plement. Having this lexical entry, we cover e.g.
the following sentence:

(10) (dat)
(that)

Jan
Jan

Marie
Marie

heeft
has

gezien
seen(part)

“that Jan has seen Marie”

3.1.2 Inversion of Finite Verb-raisers

The standard order among verbs in the Dutch
verb cluster prescribes that verbal governors
precede their verbal complements.4 However,
some verbs permit a phenomenon called inver-
sion where the governor follows its verbal com-
plement rather than preceding it. (11) shows an
example of inversion, where, in contrast to (3),
moet follows its verbal complement kussen:

4This is precisely the mirror image of the order in the
German verb cluster where typically verbal governors
follow their verbal complements.

(11) (dat)
(that)

Jan
Jan

Marie
Marie

kussen
kiss

moet
must

“(that) Jan must kiss Marie”

Lexical entries (4) and (5) for moet and kussen
already take inversion into account: moet LP-
subcategorizes for both vlf and vrf, thus allow-
ing verbal complements to land either to its left
or to its right. Since kussen LP-categorizes for
both vlf and vrf, it can land either to the left or
to the right of its host. In the LP tree for (11)
below, it lands in the vlf to the left of moet :

(dat) Jan Marie kussen moet

n n v
v

mf mf vlf

Of all the finite verb-raising verbs, only aux-
iliaries and modals permit inversion. Here is
an example of inversion featuring the auxiliary
heeft :

(12) (dat)
(that)

Jan
Jan

Marie
Marie

gekust
kissed

heeft
has

“(that) Jan has kissed Marie”

No other finite verb-raisers permit inversion, as
shown in the following examples featuring the
verb-raiser ziet :

(13) (dat)
(that)

Piet
Piet

Jan
Jan

Marie
Marie

ziet
sees

kussen
kiss

“(that) Piet sees that Jan kisses Marie”

(14)*dat Piet Jan Marie kussen ziet

We exclude sentences like (14) as follows: all
verb-raisers which do not permit inversion only
LP-subcategorize for vrf but not for vlf. Hence,
verbal complements can only land to the right of
those verbs but not to the left. This is reflected
in the following lexical entry for ziet :

(15) ziet 7→

[

subcatid : {subj, obj, vbse}
subcatlp : {mf∗, vrf?}

]

Inversion is disallowed if the governed verb is
itself a verb-raiser. This requirement effectively
rules out recursive inversion. In the following
examples, the verbal complement of moet is the
verb-raiser hebben:5

5In examples involving more than two verbs we use
indices to indicate the depth of embedding and use bold-
face to indicate the two verbs involved in inversion.

4

(16) (dat)
(that)

Jan
Jan

Marie
Marie

moet1

must
hebben2

have
gekust3
kissed

“(that) Jan must have kissed Marie.”

(17)*(dat) Jan Marie hebben2 gekust3 moet1

(18)*(dat) Jan Marie hebben2 moet1 gekust3

We exclude (17) and (18) by stipulating that
non-finite verb-raisers can only land to the right
of their governors, i.e. they LP-categorize only
for vrf but not for vlf. For instance, here is the
lexical entry for hebben:

(19) hebben 7→

[
catlp : {vrf}

subcatlp : {vrf?}
blocks : ∅

]

3.1.3 Inversion of Non-finite
Verb-raisers

Non-finite auxiliaries also permit inversion.
We give an example below where the verbal
complement gekust of hebben is inverted and
placed at the left periphery of the verb cluster:

(20) (dat)
(that)

Jan
Jan

Marie
Marie

gekust3

kissed
moet1
must

hebben2

have
“(that) Jan must have kissed Marie.”

Here is the TDG analysis of the sentence:

(dat) Jan Marie gekust moet hebben

subj

ob
j

vprt

vbse

(dat) Jan Marie gekust moet hebben

n n v
v

v

mf mf vlf
vrf

Except for auxiliaries, all other verb-raising
verbs do not permit inversion if in non-finite
form. An example is the non-finite modal
moeten:

(21) (dat)
(that)

Jan
Jan

Marie
Marie

heeft1
has

moeten2

moeten
kussen3

kiss
“(that) Jan has had to kiss Marie.”

(22)*(dat) Jan Marie kussen3 heeft1 moeten2

We exclude (22) using barriers: we stipulate
that non-finite verb-raising verbs which do not
permit inversion (such as the modal moeten)
block all verbal roles VRoles = {vbse, vprt, vinf,

vinf, vinf}:

(23) moeten 7→

[
catlp : {vrf}

subcatlp : {vrf?}
blocks : VRoles

]

Thus, while in (20) gekust climbed through
hebben up to the finite verb moet, in (22) kussen
would have to climb through moeten up to heeft.
But this is ruled out by the fact that moeten
blocks all verbal roles.

3.1.4 Dialectal Variation

In example (20), the inverted verb gekust
moves to the left periphery of the verb-cluster.
However, in some Dutch dialects (including
Flemish) it is also possible to place the inverted
verb directly to the left of its governor:

(24)?(dat) Jan Marie moet gekust hebben

In our TDG analysis, we can account for this
form of dialectal variation as follows. For stan-
dard Dutch, we assume the lexical entry (19) for
hebben which only offers vrf. For dialects such
as Flemish, we employ a modified lexical entry
which more leniently offers both vlf and vrf:

(25) hebben 7→

[
catlp : {vrf}

subcatlp : {vlf?, vrf?}
blocks : ∅

]

3.2 Partial extraposition verbs

Partial extraposition verbs give rise to the so-
called third construction. They exhibit prop-
erties similar to verb-raising verbs (den Besten
and Rutten, 1989), but with a crucial difference:
they do not force their governed verbs to raise
their non-verbal arguments. As a result, both
of the examples below are grammatical:

(26) (dat)
(that)

Jan
Jan

Marie
Marie

probeert
tries

te
to

kussen
kiss

“that Jan tries to kiss Marie”

(27) (dat) Jan probeert Marie te kussen

In (26), the object Marie of kussen climbs up
into the Mittelfeld of the finite verb, just like
in the earlier verb-raising example (3). In (27)

5

however, Marie does not climb up into the Mit-
telfeld but stays directly to the left of kussen.

Here is a TDG analysis of (27):

(dat) Jan probeert Marie te kussen

sub
j

obj te

vinf

(dat) Jan probeert Marie te kussen

n
v

n v
v

mf

mf pf

vrf

We model partial extraposition as follows: (a)
partial extraposition verbs ID-subcategorize for
vinf and (b) verbs ID-categorizing for vinf do
LP-subcategorize for mf. The latter is in con-
trast to words ID-categorizing for vbse and vinf

as kussen in (5). Here are lexical entries for
probeert and kussen (ID-categorizing for vinf):

(28) probeert 7→

[

subcatid : {subj, vinf}
subcatlp : {mf∗, vrf?}

]

(29) kussen 7→

catid : {vinf}
subcatid : {obj, te}

catlp : {vrf}
subcatlp : {mf∗, pf}

blocks : {te}

Notice that verbs ID-categorizing for vinf can
only land to the right of their governors: they
LP-categorize only for vrf. Also, they block no
role, which allows their arguments to climb up
(26).

3.3 Full extraposition verbs

The third class of verbs taking verbal comple-
ments are full extraposition verbs. They ID-
subcategorize for a fully saturated vp, i.e. no
arguments of the governed verb may climb into
the Mittelfeld of the finite verb, which explains
the ungrammaticality of (31):

(30) (dat)
(that)

Piet
Piet

Jan
Jan

dwingt
forces

Marie
Marie

te
to

kussen
kiss

“that Piet forces Jan to kiss Marie”

(31)*(dat) Piet Jan Marie dwingt te kussen

We model this phenomenon similar to how we
modeled partial extraposition: (a) full extrapo-
sition verbs ID-subcategorize for vinf and (b)
verbs ID-categorizing for vinf LP-subcategorize
for mf. In addition, we require that verbs ID-
categorizing for vinf block all roles. Thus, no ar-
gument of the governed verb can climb up. This
idea is reflected in the lexical entries for dwingt
and kussen (ID-categorizing for vinf) below:

(32)

dwingt 7→

[

subcatid : {subj, obj, vinf}
subcatlp : {mf∗, vrf?}

]

(33) kussen 7→

catid : {vinf}
subcatid : {obj, te}

catlp : {vrf}
subcatlp : {mf∗, pf}

blocks : R

Notice in particular that (33) blocks all roles,
contrary to (29).

3.4 The Two Sides of proberen

The word proberen is a special case: if governed
by the perfect auxiliary hebben, it is ambiguous
between being a partial extraposition verb or
a verb-raiser. In the following two examples,
proberen (in its past participle form geprobeert)
acts as a partial extraposition verb:

(34) (dat)
(that)

Jan
Jan

Marie
Marie

heeft
has

geprobeert
tried(part)

te
to

kussen
kiss

“that Piet has tried to kiss Marie”

(35) (dat) Jan heeft geprobeert Marie te kussen

However in the two examples below, proberen
acts as a verb-raising verb:

(36) (dat) Jan Marie heeft proberen te kussen

(37)*(dat) Jan heeft proberen Marie te kussen

There are two indications that proberen is a
verb-raising rather than a partial extraposition
verb here: (a) it shows infinitival inflection al-
though being the past participle complement of
heeft (IPP-effect) and (b) sentence (37), where
Marie does not climb up into the Mittelfeld, is
ungrammatical.

We capture proberen’s ambivalent behaviour
by letting geprobeerd ID-subcategorize for vte

and proberen for vte:

6

(38) geprobeerd 7→

[

catid : {vprt}
subcatid : {vte}

]

(39) proberen 7→

[

catid : {vprt}
subcatid : {vte}

]

4 Order in the Mittelfeld

Little overt inflection remains in Dutch and
word order tends to follow obliqueness, i.e.
subj ≺ iobj ≺ obj:

(40) dat Jan
︸︷︷︸

subj

Marie
︸ ︷︷ ︸

iobj

het boek
︸ ︷︷ ︸

obj

probeert te geven

“that Piet tries to give the book to Marie”

It is tempting to postulate that the Mittelfeld
can be partitioned into a sequence of sub-
fields, each one dedicated to a specific degree of
obliqueness. However, verb-raisers demonstrate
that this simplistic explanation does not suffice:

(41) dat Piet
︸︷︷︸

subj1

Jan
︸︷︷︸

obj1

Marie
︸ ︷︷ ︸

iobj2

het boek
︸ ︷︷ ︸

obj2

ziet1 geven2

“that Piet sees Jan give the book to Marie”

In (41) the indirect object Marie of the embed-
ded verb geven is raised to a position that fol-
lows the direct object Jan of the main verb ziet.
However a pattern emerges: the arguments of
the same verb are ordered among themselves
according to obliqueness, but the raised argu-
ments of geven follow the arguments of its gov-
ernor ziet. The pattern continues to hold with
additional levels of embedding:

(42) dat ze
︸︷︷︸

subj1

Piet
︸︷︷︸

obj1

Jan
︸︷︷︸

obj2

Marie
︸ ︷︷ ︸

iobj3

het boek
︸ ︷︷ ︸

obj3

laat1 zien2

geven3

“that she lets Piet see Jan give the book to
Marie”

and suggested the “cross-serial dependency
principle”, whereby the order of the raised ar-
guments of embedded verbs follows the order of
their governors in the verb cluster, thus giving
rise to patterns of the form ABCABC. How-
ever, this principle fails in the presence of inver-
sion:

(43) dat Jan1 het boek2 wil1 lezen2

(44) dat Jan1 het boek2 lezen2 wil1
“that Jan wants to read the book”

A common way to repair the principle is to state
that the primary order of raised arguments is
determined not by the linear order of their gov-
ernors in the verb cluster, but by their nest-
ing order in the syntactic structure. This is the
essence of Hinrichs and Nakasawa’s (1989) argu-
ment composition technique. We are thus led to
formulate for TDG a similar ordering principle:

Principle. Elements of the Mittelfeld are or-
dered first according to the relative depth of
their respective governors in the dependency
tree, and second according to the obliqueness
of their grammatical function.

5 Related work

The HPSG accounts of Dutch word order pro-
posed by Rentier (1994), Kathol (1996), and van
Noord and Bouma (1996; 1998) all make use of
Hinrichs and Nakazawa’s technique of argument
composition.

Rentier does not address inversion nor order
of arguments in the Mittelfeld. Kathol properly
handles inversion. Van Noord and Bouma cover
the greatest number of phenomena. They cor-
rectly account for all cases of inversion, full and
partial extraposition, and address order of the
non-verbal arguments in the Mittelfeld. In con-
trast to Rentier and Kathol, Bouma and van
Noord assume a flat syntactic analysis where
all verbs and non-verbal arguments are directly
dominated by the s-node. They order the argu-
ments in the Mittelfeld based on (a) their degree
of nesting in the verb cluster and (b) their de-
gree of obliqueness.

6 Conclusion

We proposed a TDG analysis of word-order vari-
ations in the verb cluster of Dutch verb-final
sentences. Our account addresses the phenom-
ena of cross-serial dependencies, verb-raising,
infinitivus pro participio, inversion, partial and
full extraposition. Furthermore, in order to
properly model the order of elements in the Mit-
telfeld, we formulated a simple ordering princi-
ple based first on the embedding depth of verbal
governors in the dependency tree, and second on
obliqueness.

7

catid subcatid catlp hcatlp subcatlp blocks

te {te} ∅ {pf} {v} ∅ ∅
het {det} ∅ {df} {n} ∅ ∅
boek {subj, iobj, obj} {det} {mf} {n} {df?} {det}
Piet {subj, iobj, obj} ∅ {mf} {n} ∅ ∅
heeft ∅ {subj, vprt} ∅ {v} {mf∗, vlf?, vrf?} R
moet ∅ {subj, vbse} ∅ {v} {mf∗, vlf?, vrf?} R
ziet ∅ {subj, obj, vbse} ∅ {v} {mf∗, vrf?} R

dwingt ∅ {subj, obj, vinf} ∅ {v} {mf∗, vrf?} R
probeert ∅ {subj, vinf} ∅ {v} {mf∗, vrf?} R
hebben {vbse} {vprt} {vrf} {v} {vrf?} ∅
moeten {vbse} {vbse} {vrf} {v} {vrf?} VRoles
moeten {vprt} {vbse} {vrf} {v} {vrf?} VRoles
zien {vbse} {obj, vbse} {vrf} {v} {vrf?} VRoles
zien {vprt} {obj, vbse} {vrf} {v} {vrf?} VRoles
zien {vbse} {obj} {vlf, vrf} {v} ∅ ∅

gezien {vprt} {obj} {vlf, vrf} {v} ∅ ∅
proberen {vprt} {vinf} {vrf} {v} {vrf?} ∅

geprobeerd {vprt} {vinf} {vlf, vrf} {v} {mf∗, vrf?} ∅
kussen {vbse} {obj} {vlf, vrf} {v} ∅ ∅
kussen {vinf} {obj, te} {vrf} {v} {pf} {te}
kussen {vinf} {obj, te} {vrf} {v} {mf∗, pf} R
kussen {vinf} {obj, te} {vrf} {v} {mf∗, pf} {te}
gekust {vprt} {obj} {vlf, vrf} {v} ∅ ∅

Table 1: The lexicon

A property of TDG is that valid analyses
can be characterized as the solutions of a con-
straint satisfaction problem amenable to effi-
cient processing through constraint propagation
(Duchier, 2001). A grammar development envi-
ronment including an efficient constraint-based
is publicly available,6 and a Dutch grammar
written in this environment, covering all of the
phenomena mentioned in this article, was used
to prepare this article.

References

Gosse Bouma and Gertjan van Noord. 1998. Word
order constraints on verb clusters in german and
dutch. In Complex Predicates in Nonderivational
Syntax. Academic Press.

Ralph Debusmann. 2001. A declarative grammar
formalism for dependency grammar. Master’s
thesis, University of Saarland.

Hans den Besten and Jean Rutten. 1989. On Verb
Raising, Extraposition, and Free Word Oorder in
Dutch. In Sentential Complementation and the
Lexicon. Dordrecht.

6http://www.ps.uni-sb.de/~duchier/mogul/info/
duchier/coli/dg.html

Denys Duchier and Ralph Debusmann. 2001. Topo-
logical dependency trees: A constraint-based ac-
count of linear precedence. In 39th Annual Meet-
ing of the Association for Computational Linguis-
tics (ACL 2001), Toulouse/FRA.

Denys Duchier. 2001. Lexicalized syntax and
topology for non-projective dependency grammar.
In Eighth Meeting on Mathematics of Language,
Helsinki/FIN.

Kim Gerdes and Sylvain Kahane. 2001. Word order
in german: A formal dependency grammar using
a topological hierarchy. In 39th Annual Meeting
of the Association for Computational Linguistics
(ACL 2001), Toulouse/FRA.

Erhard Hinrichs and Tsuneko Nakazawa. 1989.
Flipped out: Aux in German. In Papers from
the 25th Meeting of the Chicago Linguistic Soci-
ety, pages 193–202, Chicago/IL.

Andreas Kathol. 1996. Order variability in german
and dutch verb clusters. In Computational Lin-
guistics in The Netherlands 1995.

Gerrit M. Rentier. 1994. A lexicalist approach to
dutch cross dependencies. In Papers from the 30th
Regional Meeting of the Chicago Linguistic Soci-
ety, pages 376–390.

Gertjan van Noord and Gosse Bouma. 1996. Dutch
verb clustering without verb clusters. In Specify-
ing Syntactic Structures. CSLI Publications.

8

