
FR 4.7 Allgemeine Linguistik
Universität des Saarlandes

A declarative grammar formalism
for dependency grammar

Diplomarbeit

Angefertigt unter der Leitung von
Prof. Dr. Manfred Pinkal,

Dr. Denys Duchier and Dr. Joachim Niehren

Ralph Debusmann

23.11.2001

1

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst und keine anderen
als die angegebenen Quellen und Hilfsmittel verwendet habe.

Saarbrücken, den 23.11.2001.

Ralph Debusmann

2

Abstract

Beginning with the groundbreaking work of Chomsky in the 1950s, syntactians have
concentrated mostly on the English language. But English is not a typical natural
language: in particular, its word order is very rigid, as opposed to most other
languages which exhibit freer word order. The phrase structure-based approach
employed for the analysis of English runs into severe problems when confronted
with freer word order languages.

Aside from the mainstream, linguists in Eastern Europe and Japan have pursued
an approach to syntax which seemed better suited for the analysis of freer word
order languages: dependency grammar. The key asset of dependency grammar
is that it allows for a clean separation of syntactic dependency and surface word
order. Unfortunately, none of the frameworks for dependency grammar has really
caught on. We suggest two reasons for their failure: a) many of the dependency-
based frameworks lack proper formalization and, perhaps surprisingly, b) most of
them lack a realistic and workable account of word order.

In this thesis, we try to remedy these problems in the setting of a constraint-based
approach to dependency grammar based on (Duchier 1999). We present a new
account of word order for dependency grammar couched in a declarative gram-
matical formalism called Topological Dependency Grammar (TDG). TDG allows
to cleanly separate the two levels of syntactic dependency and surface word order,
which greatly facilitates the conception of grammars for freer word order languages.
In addition, we can efficiently parse with TDG grammars: using a reduction de-
scribed in (Duchier 2000), we achieved an efficient parser implementation using
modern constraint programming techniques.

3

Acknowledgements

I would like to thank my professor Manfred Pinkal for having created with profes-
sor Gert Smolka and the other members of the CHORUS team a great research
environment. Here, I was not only given the opportunity to work within a very re-
search environment but also the chance to work on a subject which, at first glance,
looks a little ‘off-topic’ in a project mostly concerned with semantics.

I would like to thank my supervisors Denys Duchier and Joachim Niehren, who
helped me getting interested in the subject in the first place and gave me excellent
advice whenever I needed it. I would also like to thank Denys for reading through
countless drafts and for staying up all night for doing so when the thesis grew
larger.

I am deeply grateful to Geert-Jan Kruijff for reading through several drafts of this
thesis and providing me with extensive and extremely helpful comments. Also, a
big thank you goes to Alexander Koller for advice on a lot of issues, not only with
respect to the thesis itself.

I would like to thank my fellows and colleagues at Saarland University for anything:
Carsten Brockmann, Mario Cattaneo, Christopher Dege, Amit Dubey, Markus Egg,
Katrin Erk, Gerd Fliedner, Malte Gabsdil, Tilman Jäger, Karel Oliva, Christian
Korthals, Andrea Kowalski, Ivana Kruijff-Korbayova, CJ Rupp, Joachim Sauer,
Christoph Stahl, Kristina Striegnitz and Stefan Thater. This list is not supposed
to be exhaustive.

Finally, thanks to my family for all their support. Without them, of course, I
wouldn’t even be here, let alone be able to write a thesis about dependency gram-
mar.

Contents

1 Introduction 7

1.1 Word order variation . 7

1.2 Dependency grammar . 9

1.3 Topological Fields Theory . 12

1.4 Topological Dependency Grammar 14

1.5 Overview . 16

2 ID analyses 18

2.1 ID trees . 18

2.2 ID principles . 19

2.3 Examples . 23

2.4 Summary . 25

3 Approaches to linear precedence 26

3.1 Reape . 26

3.2 Kathol . 36

3.3 Bröker . 37

3.4 Gerdes and Kahane . 41

3.5 Summary . 46

4 LP analyses 48

4

CONTENTS 5

4.1 LP trees . 48

4.2 LP principles . 50

4.3 Examples . 54

4.4 Summary . 57

5 ID/LP analyses 59

5.1 ID/LP principles . 59

5.2 Summary . 68

6 ID/LP Lexicon 69

6.1 Lexical type hierarchy . 69

6.2 Lattice types . 71

6.3 Lexical attributes . 72

6.4 Example . 74

6.5 Summary . 75

7 German grammar fragment 76

7.1 ID part . 76

7.2 LP part . 85

7.3 Lexical entries . 103

7.4 Summary . 105

8 Phenomena 106

8.1 Scrambling . 106

8.2 VP dislocation . 107

8.3 Auxiliary flip . 113

8.4 Relative clauses . 121

8.5 Summary . 125

CONTENTS 6

9 Formalization 126

9.1 TDG grammar . 126

9.2 ID principles . 127

9.3 LP principles . 131

9.4 ID/LP principles . 134

9.5 Summary . 136

10 Implementation 137

10.1 Parser . 137

10.2 Concrete grammar specification language 138

10.3 Graphical user interface . 150

10.4 Summary . 156

11 Conclusions and future work 157

11.1 Summary . 157

11.2 Future work . 158

A Additions to the grammar fragment 162

A.1 Coherence and incoherence . 162

A.2 Separable verb prefixes . 165

A.3 Agreement . 168

A.4 Relative clause principle . 171

Bibliography 175

Index 180

Chapter 1

Introduction

In this thesis, we develop a declarative grammar formalism for dependency gram-
mar. Contrary to most other dependency-based proposals, our formalism also
includes a concise account of surface word order. Our proposal makes use of a
notion of tree flattening to derive the licensed linearizations, similar to approaches
in both the paradigm of phrase structure grammar (PSG) (e.g. Reape 1994) and
dependency grammar (DG) (e.g. Kahane, Nasr & Rambow 1998). In addition to
tree flattening, we employ the notion of topological fields (Höhle 1986) to achieve
a finer-grained description of word order variation. The coupling of a flattened
tree structure amenable to linearization and concepts from topological fields the-
ory positions our approach very close to recent dependency-based proposals by
Bröker (1999) and Gerdes & Kahane (2001). One important benefit over these
and other approaches is, however, that our formalism was from the start informed
by considerations of a computational nature. As a result, its formalization can be
transformed into an efficient parser implementation using a reduction described in
(Duchier 2000).

1.1 Word order variation

Word order in English is rather fixed, or rigid in the sense of Steele (1978). It
exhibits only a limited degree of word order variation, similar to artificial languages
such as programming languages. For that reason it is sufficient to employ for the
analysis of English devices which are also used for the interpretation of artificial
languages, such as context-free grammar (CFG).

Contrary to English, most other natural languages exhibit fairly free word order.

7

CHAPTER 1. INTRODUCTION 8

Especially morphologically richer languages such as Finnish and the Slavic lan-
guages show a high degree of word order variation. We call them free word order
languages. Morphologically less rich languages such as Dutch and German still
exhibit a fair amount of word order variation but not quite as much. Following
Steele (1978) again, we call them mixed word order languages.1 Notice that we will
often refer to mixed and free word order as freer word order from now on.

Traditional phrase structure grammars are not adequate for the analysis of freer
word order languages: they cannot express generalizations about word order varia-
tion but need to enumerate the possible linearizations instead. If immediate dom-
inance (ID) and linear precedence (LP) are separated as in Generalized Phrase
Structure Grammar (GPSG) (Gazdar, Klein, Pullum & Sag 1985) or Head-driven
Phrase Structure Grammar (HPSG) (Pollard & Sag 1994), these approaches still
run into problems when confronted with long-distance dependencies and discontin-
uous constituents.

The ‘failure’ of phrase structure grammar to account for languages with freer word
order has inspired grammarians in Europe and also in Japan to seek other ways for
the syntactic analysis of these languages, dependency grammar being one of them.
The main difference is, as Venneman (1977) puts it, that PSG follows a horizontal
organization principle, whereas DG follows a vertical organization principle. PSGs
divide sentences into substrings, while DGs distinguish between heads and depen-
dents and define no constraints on linearization. Only through additional principles
such as projectivity (Lecerf 1960), (Hays 1964), (Gaifman 1965), (Robinson 1970)
can DGs account for restrictions on possible linearizations.

DG is not the only approach that enables to account for freer word order lan-
guages. For Categorial Grammar (CG), Bach (1981) introduced the head-wrapping-
operation to deal with discontinous constructions, and Ades & Steedman (1982)
proposed the type-shifting-operation, which lead to the theory of Combinatorial
Categorial Grammar (CCG). Descendants of Tree Adjoining Grammar (TAG)
(Joshi 1987) are also equipped with means for dealing with freer-than-rigid word
order languages (e.g. Becker & Rambow 1994), and so are modern variants of HPSG
(Reape 1994), (Müller 1999), (Kathol 1995), (Fouvry & Meurers 2000). However
it is interesting to note that in their striving for extended generative power, these
formalisms make more and more use of notions borrowed from DG, most notably,
the head/dependent asymmetry.

At the same time, despite the obvious appeal of DG, existing DG frameworks

1There are no discrete steps in the transition from rigid word order languages such as En-
glish over mixed word order languages such as German and Dutch to free word order languages
(Finnish, Slavic languages). For instance, although German and Dutch both have mixed word
order, word order in German is freer than in Dutch.

CHAPTER 1. INTRODUCTION 9

have not really caught on: Dependency Unification Grammar (DUG) (Hellwig
1986), Functional Generative Description (FGD) (Sgall, Hajicova & Panevova
1986), Meaning Text Theory (MTT) (Mel’čuk 1988), Lexicase (Starosta 1988),
Word Grammar (WG) (Hudson 1990), all of these have not made the breakthrough
into the mainstream of linguistic research. Why? For two main reasons in our opin-
ion: First, all of these frameworks lack proper formalization in some way or other,
which severely constricts their applicability and verifiability. And, perhaps surpris-
ingly, the second reason is the very lack of a realistic and workable account of word
order.

Thus, DG has its appeal, but in general lacks both a clean formalization and a
workable account of word order. Our starting point is the dependency grammar
outlined in (Duchier 1999). Duchier’s DG already is properly formalized, in a way
that enables its axiomatization to be transformed into an efficient parser imple-
mentation. Still, like many of the above mentioned DG frameworks, it lacks a
sophisticated account of word order.

What we want to contribute in this thesis is a proper formal account of word
order for Duchier’s (1999) dependency parser. We couch this account of word
order in a declarative grammatical formalism which leads to a framework called
Topological Dependency Grammar or TDG. Earlier versions of TDG have already
been presented in (Duchier & Debusmann 2001), (Duchier 2001) and (Debusmann
2001). A prototype parser for TDG, implemented using techniques described in
(Duchier 2000), demonstrates that the efficiency of the parser described in (Duchier
1999) can be carried over to the more sophisticated TDG grammar framework.

1.2 Dependency grammar

In this section, we give a brief overview of the theory of dependency grammar,
starting out from its history.

History. Dependency grammar dates back to the middle ages (Covington 1984).
Others even argue that it actually dates back to antiquity. Modern day dependency
grammar is often credited to Tesnière (1959) and Lecerf (1960).

Heads and dependents. There is little agreement amongst the various ap-
proaches about what dependency grammar really is. Still, one commonality across
all dependency-based theories is the distinction between head and dependent, sim-
ilar (though not identical) to the distinction between functor and argument in

CHAPTER 1. INTRODUCTION 10

Categorial Grammar. Heads and their dependents are related by directed and
typed dependency relations which are for the most part semantically motivated.

Dependency relations. The degree of the ‘semantic’ motivation of dependency
relations varies considerably across dependency-based theories. While in some ap-
proaches (e.g. Word Grammar), dependency relations are embodied by grammat-
ical roles such as subject and object, there are also approaches where dependency
relations are identified with ‘deep’ argument roles such as agent, patient and bene-
ficiary. Among the theories on the latter track are Prague School descendants such
as FGD (Sgall et al. 1986) and Dependency Grammar Logic (DGL) (Kruijff 2001).
Many theories also postulate relations that reflect considerations regarding syn-
tactic structure, linearization, but also (e.g. Kruijff 2001) discourse and temporal
structure.

Valency. Valency is the fundamental concept of all the theories in the paradigm
of dependency grammar. It states what arguments (dependents) a word needs to
be combined with in order to form a meaningful unit. Valency of words can thus
be likened to the term’s original use in chemistry, where it expresses the bonding
requirements between chemical elements. An example is the word loves, which
requires through its valency specification a subject and an object, or, using deep
argument roles as dependency relations, an agent (the lover) and a patient (the
one being loved).

Lexicalization. One of the key characteristics of most dependency-based ap-
proaches to grammar is that they are highly lexicalized. Already in traditional
DG (Tesnière 1959), the valency of each word form is determined in the lexicon.
This notion of lexicalized valency originates from DG, but has in the meantime
been assimilated by most phrase structure-based and also CG-based approaches.
Government and Binding theory (GB) (Chomsky 1986) and HPSG (Pollard &
Sag 1994) for instance employ the similar concept of subcategorization.

Lexicalized DGs include DUG, MTT, Lexicase, WG, and, more recently, DACHS
(Bröker 1999), DGL (Kruijff 2001) and of course TDG (this study). A few ap-
proaches to dependency grammar make use of rule-based valency specifications,
e.g. the dependency grammar described in (Hays 1964) and (Gaifman 1965). The
more recent approach of (Kahane et al. 1998) is also rule-based rather than lexi-
calized.

CHAPTER 1. INTRODUCTION 11

Dependency trees. A DG analysis is a set of dependency relations between
pairs of words in a sentence, making up an analysis structure called dependency
tree. Dependency trees are often drawn with vertical dotted lines called projection
edges which connect nodes in the tree with the words that correspond to them.
(1.1) shows an example dependency tree including projection edges.

Mary has loved John

sub
j vpp

obj
(1.1)

Here, Mary is the subject of the finite perfectizer has. loved is a past participle
complement of has and John is the object of loved.

In many dependency-based theories, dependency trees are general graphs rather
than trees. Word Grammar for instance makes use of cyclic analysis structures
(e.g. for the analysis of relative clauses).

Projectivity. The projectivity condition is another aspect which can be used to
distinguish various formalisms in the dependency paradigm. It was introduced
by Lecerf (1960). Hays (1964) and Gaifman (1965) utilized the notion in their
attempt to relate DG to context-free grammar and found out that projective DG is
weakly equivalent to CFG. The projectivity condition states that the set of nodes
reachable by traversing downwards zero or more edges must form a contiguous
sequence. Dependency trees which obey this condition are called projective, and
non-projective if they do not.

In graphical terms, a violation of the projectivity condition typically leads to cross-
ing edges in the dependency tree. (1.2) depicts such a non-projective dependency
tree, where the edge from loved to John crosses the projection edges corresponding
to Mary and has:

John Mary has loved

sub
j vpp

obj
(1.2)

Compared with phrase structure grammar, the projectivity condition is the coun-

CHAPTER 1. INTRODUCTION 12

terpart of the assumption that constituents are contiguous strings of words. Similar
to PSG, projective DG is bereft of the possibility to decouple vertical from horizon-
tal organization principles and is therefore deprived of the possibility to elegantly
analyze variable word order languages. Even for rigid word order languages such
as English, it brings about the exclusion of structures which seem linguistically
adequate, such as the dependency tree shown in (1.2). For this reason, many
DG researchers have looked for weaker restrictions than projectivity, this study
included.

Levels of analysis. Dependency-based theories of grammar differ in the number
of levels of analysis structures they postulate. Most theories stick to a monostratal
approach using only one level of analysis (WG, Lexicase, DGL), whereas the most
prominent multistratal DGs are Meaning Text Theory, which employs seven levels
or strata of representation, and FGD.

1.3 Topological Fields Theory

Complementary to the short introduction to dependency grammar in the previous
section, we now review the basic concepts of topological fields theory.

History. Topological fields theory is a traditional approach to German descrip-
tive syntax reaching back, as Höhle (1986) shows, at least to Herling (1821) and
Erdmann (1886). Only recently has topological fields theory become popular
among PSG and DG grammarians: e.g. in his HPSG-based grammar of German,
Kathol (1995) heavily relies on topological fields theory. The same holds for Gerdes
& Kahane (2001) in the DG paradigm.

Topological fields. The basic idea of topological fields theory is to divide a
sentence into contiguous substrings. Each of these substrings is assigned to a
position called topological field. The inventory of topological fields commonly as-
sumed includes Vorfeld (‘pre-field’), linke Satzklammer (‘left sentence bracket’),
Mittelfeld (‘midfield’), rechte Satzklammer (‘right sentence bracket’) and Nachfeld
(‘post-field’).

The structure imposed on a German sentence by topological fields theory is as
follows: the left sentence bracket (‘(’) is the position of the finite verb, and there can
be at most one constituent left of it in the Vorfeld. The disposition of material into
the Vorfeld is often called fronting. Verbal dependents of the finite verb land in the

CHAPTER 1. INTRODUCTION 13

right sentence bracket (‘)’), which is often referred to as the verb cluster. Any other
dependents of the finite verb or of embedded verbs are positioned in the Mittelfeld,
where their linear arrangement is quite arbitrary, giving rise to phenomena such as
scrambling (Ross 1967). However, the order of the material in the Mittelfeld is not
entirely arbitrary but subject to preferences (e.g. Uszkoreit 1987) stating e.g. that
nominative nouns precede dative nouns and that dative nouns precede accusative
nouns, the situation being different for pronouns. The Mittelfeld is surrounded or
‘bracketed’ by the left sentence bracket and the right sentence bracket. We give
two example sentences analyzed in this fashion below:

Vorfeld (Mittelfeld) Nachfeld

Maria hat dem Mann einen Korb gegeben.
Maria has the man a basket given.

Einen Korb gegeben hat Maria dem Mann
A basket given has Maria the man

The Nachfeld is the position for relative clauses which have been extraposed, i.e. dis-
located to the right of the right sentence bracket, and also for subordinate clauses.
In the examples below, the subordinate clause dass er sie geliebt hat and the ex-
traposed relative clause der sie geliebt hat occur in the Nachfeld:

Vorfeld (Mittelfeld) Nachfeld

Maria hat dem Mann nicht geglaubt dass er sie geliebt hat.
Maria has the man not believed that he her loved has.
Maria hat dem Mann einen Korb gegeben der sie geliebt hat.
Maria has the man a basket given who her loved has.

Sentential patterns. Usually, a typology of three sentential patterns or sentence
types is assumed for German, viz. verb-first, verb-second and verb-final. These
names refer to the respective position of the finite verb. The examples given above
were all verb-second sentences with the finite verb hat appearing in the left sentence
bracket. Verb-second is by far the most common sentential pattern in German,
being used for declarative sentences and constituent questions (also known as wh-
questions).

In the case of polar questions (yes-no questions) and imperatives, the verb is not
in verb-second but in initial position with the Vorfeld remaining empty. This

CHAPTER 1. INTRODUCTION 14

sentential pattern is called verb-first:

Vorfeld (Mittelfeld) Nachfeld

Hat Maria dem Mann einen Korb gegeben?
Has Maria the man a basket given?
Gib dem Mann einen Korb!
Give the man a basket!

If the finite verb appears sentence-final, we observe the verb-final sentential pattern.
Verb-final sentences are instantiated by embedded sentences such as subordinate
and relative clauses. It is commonly assumed in adaptations of topological fields
theory (e.g. Kathol 1995) that the Vorfeld is empty in verb-final sentences, and that
the complementizer (in subordinate clauses) or the relative pronoun (in relative
clauses) is in the position of the left sentence bracket:

Vorfeld (Mittelfeld) Nachfeld

dass Maria dem Mann einen Korb gegeben hat
that Maria the man a basket given has
dem Maria einen Korb gegeben hat

whom Maria a basket given has

Notice that matrix clauses can only be verb-first or verb-second sentences. The
verb-final sentential pattern is restricted to subordinate clauses and relative clauses.

Up to this point, we have only discussed the relevance of topological fields theory for
German. However, the theory also applies for other languages. Kathol for instance
extends his account of linearization-based syntax using topological fields theory to
apply also to Dutch, Scandinavian languages and Yiddish (Kathol 1995), (Kathol
2000). Penn (1999) assumes the existence of topological fields for his analysis of
Serbo-Croatian. He identifies topological fields with domain objects denoting a
particular region over which to state linear precedence constraints. Kruijff (2001)
goes several steps further: he makes use of generalized notions from topological
fields theory in order to tackle a number of VX, XV and SVO languages2, using a
language typology based on work by Greenberg (1966) and Hawkins (1983).

1.4 Topological Dependency Grammar

The grammar formalism introduced in this thesis, TDG, makes use of two orthog-
onal yet mutually constraining tree structures:

2“VX” stands for verb-first, “XV” for verb-final and “SVO” for subject-verb-object order.

CHAPTER 1. INTRODUCTION 15

• the syntactic dependency tree or ID tree

• the topological dependency tree or LP tree

The non-ordered syntactic dependency tree (ID tree) conveys syntactic dependency
or immediate dominance information, whereas the ordered and projective topolog-
ical dependency tree (LP tree) conveys information regarding linear precedence.
Edges in ID trees are labeled by grammatical roles such as subject and object,
while edges in LP trees are labeled by topological fields such as Vorfeld and Mit-
telfeld. An ID analysis consists of an ID tree and a lexical assignment of lexical
entries to nodes. An LP analysis consists of an LP tree, a lexical assignment, a
total order on the set of nodes and a node label assignment.

The two trees can be seen as a realization of Curry’s (1961) call for a distinc-
tion between tectogrammatical structure and phenogrammatical structure. The tec-
togrammatical structure expressed by the ID tree can be utilized to compositionally
construct semantic meaning, and the phenogrammatical structure (LP tree) is con-
cerned with the overt linear realization of words in a string.

A TDG ID/LP analysis consists of both an ID analysis and an LP analysis sharing
the same lexical assignment. At the heart of the well-formedness conditions charac-
terizing the admissibility of both analyses lies a lexicalized notion of valency: each
word states how many possible dependents of a particular kind it can have. For
instance the word liebt (loves) requires a subject and an object on the ID analysis
level (1.3). On the LP analysis level (1.4), it requires its arguments to land either
in its Vorfeld or the Mittelfeld. Below, we depict an ID/LP analysis of the sentence
Maria liebt ihn (Maria loves him):

Maria liebt ihn

sub
j obj

(1.3)

Maria liebt ihn

n
v12

n

vf mf

(1.4)

The ID tree in (1.3) is to be interpreted as follows: The root node is the finite
verb liebt. liebt has two dependents, viz. the subject (subj) Maria and the object

CHAPTER 1. INTRODUCTION 16

(obj) ihn. In the LP tree in (1.4), the root is again liebt. liebt has two dependents:
Maria is in the Vorfeld (vf) of liebt and ihn in its Mittelfeld (mf).3

Although we concentrate on the application of TDG for German in this study,
we claim that the grammar formalism is applicable to other languages as well. We
envisage that other Germanic languages such as Dutch will be rather easy to handle,
as well as ‘simple’ (with respect to word order) languages such as English. Actually,
an implementation of TDG has been used in combination with a small English
grammar in a software project at the Department of Computational Linguistics
(Gabsdil, Koller & Striegnitz 2001). It should also be possible to handle non-
Germanic languages with TDG, e.g. following Kruijff’s (2001) language typology.

1.5 Overview

The structure of this thesis is as follows. Chapter 2 introduces the notion of an
ID analysis. An ID analysis consists of an ID tree and a lexical assignment, where
ID trees are traditional non-ordered dependency trees. TDG’s concept of an ID
analysis is based on the dependency grammar suggested in (Duchier 1999) but does
not include any constraints on word order.

In chapter 3, we turn to the question of how to derive word order from non-ordered
ID analyses. We give an overview of previously suggested theories tackling that
topic, both in the paradigm of PSG and of DG. We review the groundbreaking
work of Reape (1994) on word order domains in HPSG and point out its defects.
Then, we show how Kathol (1995) goes beyond Reape’s theory and how Bröker
(1999) transfers the notion of word order domains to DG. We conclude the chapter
with a theory recently suggested by Gerdes & Kahane (2001), which is in many
respects surprisingly similar to TDG.

In chapter 4, we introduce the notion of an LP analysis, equipping TDG with
a theory of word order. A TDG LP analysis consists of an LP tree, a lexical
assignment, a total order on the set of nodes and a node label assignment. LP
analyses describe topological structures in the spirit of topological fields theory.

Chapter 5 brings together the ID and the LP analyses using the notion of an ID/LP
analysis. An ID/LP analysis is a pair of an ID and an LP analysis. Both share
the same lexical assignment and the LP analysis includes a total order on the set
of nodes and a node label assignment. ID and LP analyses are related to each
other through the ‘climbing’ mechanism. We characterize licensed climbings by

3The LP tree also includes node labels (n and v12) on the projection edges. We postpone the
introduction of node labels to chapter 4.

CHAPTER 1. INTRODUCTION 17

well-formedness conditions called ID/LP principles.

The TDG ID/LP lexicon is the theme of chapter 6. Since TDG is highly lexicalized,
it is convenient to express linguistic generalizations in the lexicon. Therefore, we
arrange lexical types in a lexical type hierarchy, and obtain subtypes by lexical
inheritance.

In chapter 7, we present a TDG grammar fragment for German, thereby demon-
strating the expressive power of the framework. The fragment covers all sentential
patterns, i.e. verb-first, verb-second and verb-final. It handles subordinate clauses,
relative sentences, prepositional phrases, adverbial modification and more.

We lay out in chapter 8 how the grammar fragment can elegantly account for several
notorious phenomena in German syntax. These phenomena include scrambling, vp-
dislocation (including extraposition, intraposition and fronting) and auxiliary flip.
In addition, it also covers relative clause extraposition and pied piping. Chapter 8
is partly based on (Duchier & Debusmann 2001).

Chapter 9 provides a precise formalization of the notions of a TDG grammar and
the ID, LP, and ID/LP principles.

In chapter 10, we outline our prototype TDG parser implementation. The parser
is a reduction of the formalization presented in chapter 9 into a constraint program
in the Mozart-Oz programming language (Mozart 1998) using techniques described
in (Duchier 2000).

We conclude the thesis in chapter 11. Here, we also point out several ideas for
future research.

Appendix A outlines how we handle a number of phenomena which for simplicity
we do not cover in the grammar fragment of chapter 7, but which are still covered
in the implementation.

Chapter 2

ID analyses

This chapter introduces the notion of an immediate dominance (ID) analysis. An
ID analysis consists of a non-ordered traditional dependency tree called ID tree and
a lexical assignment. The well-formedness conditions for ID analyses are based on
the axiomatization of the dependency grammar suggested in (Duchier 1999) and
comprise general and lexicalized principles. We do not yet formalize the well-
formedness conditions in great detail: we refer to chapter 9 for a more in-depth
account.

2.1 ID trees

Similar to Hudson’s Word Grammar (Hudson 1990), ID trees (also called syntactic
dependency trees) relate heads and dependents by grammatical roles in the tra-
dition of Systemic-Functional Linguistics (SFL) (Halliday 1961), (Halliday 1994).
Grammatical roles include e.g. subject, object, past participle and adverb. ID tree
edges are labeled by abbreviations of these grammatical roles, e.g. subj for subject,
obj for object, vpp for past participle and adv for adverb. Nodes in the ID tree
correspond 1:1 to words in the analyzed string.1 Hence for a sentence of length n,
there are precisely n nodes in the corresponding ID tree.2 In (2.2) below, we give

1Because of their 1:1-correspondence, we will often identify nodes by words.
2We represent all the words of the analyzed string in the ID tree, contrary to approaches

like FGD (Sgall et al. 1986). FGD focuses only on ‘autosemantic’ words in its dependency tree
representation, leaving out for instance function words.

18

CHAPTER 2. ID ANALYSES 19

an example ID tree of the sentence glossed in (2.1).

Maria hat einen reichen Mann sehr geliebt.
Maria has a rich man a lot loved.

“Maria loved a rich man very much.”
(2.1)

Maria hat einen reichen Mann sehr geliebt

sub
j

det adj

obj adv

vpp

(2.2)

Here, Maria is the subject of the perfectizer hat, and geliebt its past participle
complement. Mann is the object of geliebt, einen the determiner and reichen an
adjective of Mann. Finally, sehr is an adverb of geliebt.

We represent nodes by boxes, connected to each other by downwardly-directed
labeled edges. In the picture, each node is connected to its corresponding word by
a dotted vertical projection edge. We call a mother in an ID tree syntactic head
and a daughter syntactic dependent. Notice that because ID trees are non-ordered
trees, we can pick an arbitrary linear arrangement for displaying purposes.

2.2 ID principles

HPSG (Pollard & Sag 1994) is a prototypical constraint-based grammar formal-
ism. HPSG states the semantics of its constraints or principles with respect to
typed feature structures. A sign is a typed feature structure describing a linguistic
analysis, and it is licensed if it satisfies all constraints. In TDG, we also employ
a set of principles to characterize the well-formedness conditions for ID analyses.
But whereas HPSG states its principles with respect to typed feature structures,
we state the principles for licensed ID analyses with respect to finite labeled graphs
under a lexical assignment.

What is an ID analysis? An ID analysis (V, Eid, ε) consists of a finite set of nodes
V , a finite set of edges Eid ⊆ V × V ×R (where R is a finite set of edge labels3)
and a lexical assignment ε. We call (V, Eid, ε) an attributed graph. From the set
of attributed graphs, we are only interested in those attributed graphs which are

3In the context of ID trees, the set of edge labels is the set of grammatical roles.

CHAPTER 2. ID ANALYSES 20

valid ID analyses. A valid ID analysis must satisfy the set of ID principles which
consist of general principles and lexicalized principles. The only general principle
is the treeness principle which requires that every ID analysis be a tree. The
set of lexicalized principles contains the accepted edge labels principle, the valency
principle and edge constraints. The accepted edge labels principle restricts the
label of a node’s incoming edge, and the valency principle poses restrictions on
a node’s outgoing edges. Edge constraints are formulated with respect to lexical
attributes and can be used to capture notions such as agreement4.

We write w for a node in the set of nodes V , and ρ for an edge label in the set of
edge labels R. An edge (w, w′, ρ) from w to w′ labeled with ρ is written w−ρ→w′,
and we call w′ a ρ-dependent of w. We also say that w′ has role ρ.

2.2.1 General principles

Treeness principle

Principle 2.1 Each analysis is a tree.

The treeness principle characterizes trees by the following three treeness conditions:

1. Each node has at most one incoming edge.

2. There is precisely one node (the root) with no incoming edge.

3. There are no cycles.

An ID analysis (V, Eid, ε) is well-formed under the treeness principle only if all of
these conditions hold.

2.2.2 Lexicalized principles

Lexicalized principles are defined with respect to a lexicon (E ,A) consisting of a
finite set E of lexical entries and a finite set A of lexical attributes. A lexical entry
is a pair (s, et) of a string s from the set Strs of strings5 and a lexical type et from
the set of lexical types Et:

E ⊆ Strs × Et (2.3)

4We demonstrate how to capture agreement using edge constraints in appendix A.
5In this study, we consider the set of Strs strings to denote fully inflected word forms.

CHAPTER 2. ID ANALYSES 21

A lexical attribute α ∈ A : Et → Dα maps lexical types to values in some domain
Dα. We introduce the function ε : V → E called lexical assignment which assigns
to each node a lexical entry. Overloading α, we introduce the function α : V → Dα

defined as:

α(w) = α(π2(ε(w))) (2.4)

where π2(ε(w)) stands for the second projection of ε(w), i.e. π2((s, et)) = et, and
α(w) denotes the value of lexical attribute α at node w.

We posit the set Aid = {labelsid, valency
id
} of lexical attributes called ID attributes.

labelsid is used in the formulation of the accepted labels principle, and valency
id

in
the formulation of the valency principle.

Accepted edge labels principle

Principle 2.2 Each node must accept the label of its incoming edge if any.

Except for the root, each node in the ID tree has one incoming edge. We show
an example in (2.5) below, where the incoming edge of node w′ is labeled with
grammatical role ρ:

w w’

ρ

(2.5)

The accepted edge labels principle restricts the licensed labels for a node’s incoming
edge: using the lexical attribute labelsid : Et → 2R we assign to each lexical type a
set of licensed edge labels. We call the value of the labelsid-attribute accepted roles.
An edge from node w to node w′ labeled with ρ is only licensed if ρ is in the set of
accepted edge labels of w′:

w−ρ→w′ ∈ Eid ⇒ ρ ∈ labelsid(w
′) (2.6)

An ID analysis (V, Eid, ε) is well-formed under the accepted edge labels principle
only if (2.6) holds for all edges w−ρ→w′ ∈ Eid.

Valency principle

Principle 2.3 Each node’s outgoing edges must precisely fulfill the node’s valency.

CHAPTER 2. ID ANALYSES 22

Each node w has a number of outgoing edges labeled with roles ρ1, ρ2, . . . , ρn:6

w

ρ1 ρ 2
ρ
n

(2.7)

Symmetrically to the accepted edge labels principle, the valency principle poses
restrictions on a node’s outgoing edges. We define the valency principle with respect
to a language of role valency specifications υ(R). A role valency specification
ρ′ ∈ υ(R) is defined by the following abstract syntax:

ρ′ ::= ρ | ρ? | ρ∗ for ρ ∈ R (2.8)

We pose the function valency
id

: Et → 2υ(R) mapping lexical types to sets of role
valency specifications. In the following, we will often refer to the value of the
valency

id
-attribute simply as role valency. Writing ρ(w) for the set of dependents of

node w with role ρ and |ρ(w)| for its cardinality, we formalize the valency principle
as follows:

ρ ∈ valency
id

(w) ⇒ |ρ(w)| = 1
ρ? ∈ valency

id
(w) ⇒ |ρ(w)| ≤ 1

ρ∗ ∈ valency
id

(w) ⇒ |ρ(w)| ≥ 0
otherwise ⇒ |ρ(w)| = 0

(2.9)

Intuitively, ρ indicates a required dependent with role ρ, ρ? an optional dependent
and ρ∗ an arbitrary number of dependents of role ρ.

An ID analysis (V, Eid, ε) is well-formed under the valency principle only if (2.9)
holds for all nodes w ∈ V .

Role valency can be likened to subcategorization: for instance a finite intransitive
verb subcategorizes for a required subj-dependent, and a finite transitive verb for
both a required subj- and a required obj-dependent. We also capture modification
with the role valency-concept: e.g. to license an arbitrary number of adjectives
which may modify a noun we state that a noun may have an arbitrary number
of dependents with role adj, i.e. the noun’s role valency includes the role valency
specification adj∗.

Edge constraints

Principle 2.4 Each edge must be licensed by the corresponding edge constraint.

6Notice that the roles ρ1, ρ2, . . . , ρn need not necessarily be pairwise distinct.

CHAPTER 2. ID ANALYSES 23

Edge constraints are a family (Γρ) of binary predicates indexed by grammatical
roles ρ. We call edge constraints for ID analyses ID edge constraints. Edge con-
straints are stated by making reference to lexical attributes.7 An edge w−ρ→w′ is
only licensed if the corresponding edge principle Γρ(w, w′) is satisfied:

w−ρ→w′ ∈ Eid ⇒ Γρ(w, w′) (2.10)

An ID analysis (V, Eid, ε) is well-formed under all edge constraints only if (2.10)
holds for all w, w′ ∈ V and ρ ∈ R.

2.3 Examples

We present in Figure 2.1 an example lexicon including the indefinite determiner
eine (a), the adjectives hübsche and kleine (pretty and little), the common noun
Frau (woman) and the intransitive finite verb lacht (laughs). We define the lexical
assignment ε as a straightforward mapping of nodes to their corresponding lexical
entries: for instance ε(eine) maps the node corresponding to eine to the appropriate
lexical entry topmost in Figure 2.1:

ε(eine) = (eine ,

[

labelsid : {det}
valency

id
: ∅

]

) (2.11)

In the following, we use the lexicon to demonstrate how the accepted edge labels
principle and the valency principle lead to the exclusion of ungrammatical sentences
and the inclusion of grammatical sentences.

2.3.1 Accepted edge labels principle violation

The ID tree below violates the accepted edge labels principle:

eine lacht

sub
j

(2.12)

7The abstract syntax of the contraint language in which edge constraints can be stated is
presented in chapter 9.

CHAPTER 2. ID ANALYSES 24

(eine ,

[

labelsid : {det}
valency

id
: ∅

]

)

(hübsche

[

labelsid : {adj}
valency

id
: ∅

]

)

(kleine ,

[

labelsid : {adj}
valency

id
: ∅

]

)

(Frau ,

[

labelsid : {subj}
valency

id
: {det, adj∗}

]

)

(lacht ,

[

labelsid : ∅
valency

id
: {subj}

]

)

Figure 2.1: Example lexicon

By the lexical assignment, the set of accepted edge labels of the determiner eine in-
cludes only det but not subj. Thus, the accepted edge labels constraint instantiated
below is violated:

lacht−subj→eine ⇒ subj ∈ labelsid(eine) (2.13)

because subj /∈ labelsid(eine) = {det}.

2.3.2 Valency principle violation

The ID tree shown in (2.14) violates the valency principle because Frau requires a
determiner by the lexical assignment, but lacks one in the tree:

Frau

(2.14)

The ID tree below also violates the valency principle since Frau requires only one
determiner but gets two:

eine eine Frau

det det

(2.15)

CHAPTER 2. ID ANALYSES 25

Both trees violate the instantiation of the valency principle shown below:

det ∈ valency
id

(Frau) ⇒ |det(Frau)| = 1 (2.16)

2.3.3 Well-formed ID tree

The following ID tree is well-formed:

eine hübsche kleine Frau lacht

det adj adj

sub
j

(2.17)

Here, Frau is modified by the two adjectives hübsche and kleine.

2.4 Summary

We introduced the basic concepts behind the notion of an immediate dominance
(ID) analysis. An ID analysis consists of a non-ordered traditional dependency
tree and a lexical assignment. The well-formedness conditions for ID analyses are
defined using general principles and lexicalized principles.

ID analyses are only one part of our grammar formalism, and they are not at
all concerned with surface word order. In the next chapter, we will show how
previously suggested theories incorporate constraints on surface word order. After
that, we propose our own account of word order in chapter 4.

Chapter 3

Approaches to linear precedence

This chapter contains an overview of several theories which stand close to our
approach in the paradigms of PSG and of DG. What all of these theories have in
common is the fundamental idea of dissociating syntactic structure from surface
structure. All of them posit two dissociated yet interacting levels of representation,
one characterizing relations of immediate dominance (ID), and the other relations
of linear precedence (LP). The set of discussed theories includes (Reape 1994) and
(Kathol 1995) (using HPSG), and (Bröker 1999) and (Gerdes & Kahane 2001)
(using DG).

3.1 Reape

Mike Reape suggested the theory of word order domains formulated in an HPSG-
setting (Reape 1994) which has paved the way for many modern HPSG grammars
for freer word order languages such as German. For instance Müller (1999) and
Kathol (1995) adapt Reape’s word order domains in their HPSG grammars for
German, and other adaptations of Reape’s idea can be found in (Penn 1999) and
(Fouvry & Meurers 2000).

Reape’s basic idea is to dissociate structures dealing with immediate dominance
(ID) from those dealing with linear precedence (LP). Reape’s terminology is how-
ever different: he distinguishes a level of syntax (ID) and a level of word order
domains1 (LP). In our presentation of Reape’s work, we use the terms ID and LP.
Each analysis is represented by two tree structures instead of one: an ID tree and

1Reape’s word order domains are a technical notion: his word order domains do not correspond
directly to fields in topological fields theory.

26

CHAPTER 3. APPROACHES TO LINEAR PRECEDENCE 27

an LP tree. The ID tree is an non-ordered phrase structure analysis, and the LP
tree is a flattened and ordered phrase structure analysis. As an example, consider
the following German sentence:

(dass) einen Roman Maria zu schreiben verspricht
(that) a novel(acc) Maria to write promises

“(that) Maria promises to write a novel”
(3.1)

The corresponding ID tree analysis is shown here:

s[∪−]

np[∪−] vp[∪+] v[∪−]

np[∪−] v[∪−]

det[∪−] n[∪−]

Maria einen Roman zu schreiben verspricht

(3.2)

And here is the LP tree analysis of the example sentence:

s

np np v v

det n

einen Roman Maria zu schreiben verspricht

(3.3)

The word order domain of a node in the LP tree is the sequence of its daugh-
ters. E.g. in LP tree (3.3), the word order domain of the s-node equals the se-
quence 〈np,np,v,v〉 of the two nps einen Roman and Maria and the two verbs zu
schreiben and verspricht. The word order domain of the node corresponding to the
np einen Roman is the sequence 〈det,n〉 of the determiner einen and the noun
Roman. Reape constrains the order of elements in a word order domain by linear
precedence rules like det ≺ n, which requires that determiners precede nouns and
np ≺ v, which requires that NPs precede verbs.

The LP tree is obtained from the ID tree by a process of flattening. This flattening is
controlled by the unioned-attribute2: if a node is [∪+], it ‘contributes’ its daughters

2We write unioned = + as [∪+] and unioned = − as [∪−].

CHAPTER 3. APPROACHES TO LINEAR PRECEDENCE 28

to the domain of its mother. In our example, the vp-node is [∪+], and it therefore
contributes its daughters (np and v) to the domain of the s-node. If a node is
[∪−], the node contributes itself to the domain of its mother. In the example, the
np einen Roman is [∪−] and hence contributes itself (and not its daughters) into
the s-node’s domain. Reape employs the notion of language-specific principles to
determine the value of the unioned-attribute.

3.1.1 Formalization

We proceed with a HPSG-independent formalization of Reape’s word order do-
mains. An ID tree is a tree (Vid, Eid), where Vid is a finite set of ID nodes and
Eid ⊆ Vid × Vid a finite set of edges. In Reape’s approach, ID trees are phrase
structure trees, encoded in HPSG using the dtrs-feature (representing the daugh-
ters in the syntactic derivation). Since ID trees are non-ordered, dtrs is set-
rather than list-valued. In our formulation, we regard this feature as a function
dtrsid : Vid → 2Vid from ID nodes to sets of ID nodes.

An LP tree is a tree (Vlp, Elp). Vlp is a finite set of LP nodes and Elp ⊆ Vlp×Vlp a
finite set of LP edges. Because LP trees are ordered, the function dtrslp : Vlp → V ∗

lp

maps LP nodes to sequences of LP nodes. By flattening, the set of LP nodes is a
subset of the set of ID nodes: Vlp ⊆ Vid.

ID and LP trees are related to each other by the function dom : Vid → V ∗
lp

from
ID nodes to sequences of LP nodes. The value of dom at node v ∈ Vid is called the
word order domain of v. The licensed values of dom depend on the two functions
∪∗ (for sequence union) and contrib (for contributions), presented in the following.

Sequence union

Sequence union is a function ∪∗, mapping pairs of LP node sequences to sets of LP
node sequences:

∪∗ : V ∗

lp
× V ∗

lp
→ 2V ∗

lp (3.4)

Here is the definition of ∪∗: for two sequences A1 and A2, A1 ∪
∗ A2 denotes the set

of sequences A which satisfy the following conditions:

1. A contains all elements in A1 and A2 (and none other).

2. The respective order of elements in A1 and A2 is preserved in A.

CHAPTER 3. APPROACHES TO LINEAR PRECEDENCE 29

We write 〈a1, . . . , an〉 for a sequence of the elements a1, . . . , an. As an example, let
A1 = 〈a, b〉 and A2 = 〈c, d〉. Then, A1 ∪

∗ A2 is equal to:

〈a, b〉 ∪∗ 〈c, d〉 = { 〈a, b, c, d〉
〈a, c, b, d〉
〈a, c, d, b〉
〈c, a, b, d〉
〈c, a, d, b〉
〈c, d, a, b〉 }

(3.5)

Formally, sequence union can be captured as follows. S∗ is the set of all sequences
σ = (s,≺s) consisting of a set s ∈ S and total order ≺s on s. We define sequence
union ∪∗ as follows for all (s1,≺s1

), (s2,≺s2
) ∈ S∗:

(s1,≺s1
) ∪∗ (s2,≺s2

) = {(s,≺s) ∈ S∗ | s = s1 ∪ s2 ∧ (≺s1
∪ ≺s2

) ⊆ ≺s}
(3.6)

Contributions

The contribution contrib(v) of an ID node v is determined by the boolean function
unioned : Vid → {+,−}. For unioned, we introduce the following syntactic sugar:

v[∪+] for unioned(v) = +
v[∪−] for unioned(v) = −
v[∪±] for unioned(v) = + ∨ unioned(v) = −

(3.7)

We define the function contrib : Vid → V ∗
lp

as follows:

contrib(v) =

{

〈v〉 if v[∪−]
dom(v) if v[∪+]

(3.8)

That is, v’s contribution is either a sequence containing only itself (if v[∪−]) or its
own word order domain (if v[∪+]).

We are now in a position to define which are the licensed values for the function
dom: the word order domain dom(v) at node v is in the set of word order domains
licensed by the sequence union ∪∗ of the contributions of v’s daughters:

dom(v) ∈ ∪∗{contrib(v′) | v′ ∈ dtrsid(v)} (3.9)

If contrib(v′) = 〈v′〉, we say that v′ has been inserted into the word order domain
of its mother v. If contrib(v′) = dom(v′), we say that it has been merged.

CHAPTER 3. APPROACHES TO LINEAR PRECEDENCE 30

ID and LP tree share all nodes which are inserted (3.10), but not those which are
merged (3.11):

contrib(v) = 〈v〉 ⇒ v ∈ Vlp (3.10)

contrib(v) = dom(v) ⇒ v /∈ Vlp (3.11)

dtrslp(v) is equal to dom(v) for all v ∈ Vlp:

∀v ∈ Vlp : dtrslp(v) = dom(v) (3.12)

Language-specific principles

Reape controls the value of unioned by so-called language-specific principles. For
German, Reape suggests the two principles shown below, which must hold for all
v ∈ Vid:

v[∪+] ⇒ cat(v) ∈ {vp, s} (3.13)

extra(v) = + ⇒ cat(v) = vp ∧ v[∪−] (3.14)

Principle (3.13) expresses that only verbal projections (i.e. nodes with category
vp or s) can be [∪+] and Principle (3.14) that extraposed constituents are always
[∪−], where extra : V → {+,−} is a boolean function denoting + for extraposed
nodes and − for non-extraposed nodes.

Linear precedence rules

Reape employs linear precedence or LP rules to restrict the number of licensed
word order domains. LP rules must hold for all v ∈ Vid and for all v1, v2 in dom(v),
i.e. they apply locally within a word order domain. Reape (1994) assumes the
following rules for the fragment of German that we consider here:

cat(v1) = det ∧ cat(v2) = n ⇒ v1 ≺ v2 (3.15)

cat(v1) = np ∧ cat(v2) = v ⇒ v1 ≺ v2 (3.16)

cat(v1) = v ∧ cat(v2) = v ∧ v1 ∈ dtrsid(v2) ⇒ v1 ≺ v2 (3.17)

extra(v1) = − ∧ extra(v2) = + ⇒ v1 ≺ v2 (3.18)

(3.15) states that determiners precede nouns. (3.16) stipulates that nps precede
vs (considering only verb-final clauses) and (3.17) that verbs follow their verbal
complements. (3.18) states that extraposed nodes follow non-extraposed ones. For
the LP rules shown, we assume the function cat : Vid → Cats mapping ID nodes to
syntactic categories.

CHAPTER 3. APPROACHES TO LINEAR PRECEDENCE 31

3.1.2 Examples

Noun phrases

We proceed with two easy examples of how to obtain LP trees (i.e. word order
domains) from ID trees. First, consider the ID tree in (3.19) below. Nodes are
represented by their phrasal category, subscripted by a unique number. The values
of the nodes’ unioned-attributes are annotated to their right, and we use dotted
vertical edges to connect leaf nodes with their corresponding strings.

vp1[∪±]

np2[∪−] v3[∪−]

det4[∪−] n5[∪−]

einen Roman zu schreiben

(3.19)

In order to arrive at the LP trees corresponding to (3.19), we need to know which
word order domains are licensed by Reape’s theory at root node vp1. Proceeding
from bottom to top, we start with calculating the dom-values at np2:

dom(np2) ∈ contrib(det4) ∪
∗ contrib(n5)

= 〈det4〉 ∪
∗ 〈n5〉

= { 〈det4,n5〉, 〈n5,det4〉 }
(3.20)

Both det4 and n5 have been inserted into the word order domain of np2 because
they are both [∪−]. As 〈n5,det4〉 is excluded by LP rule (3.15), the only licensed
word order domain at np2 is 〈det4,n5〉:

dom(np2) = 〈det4,n5〉 (3.21)

Here, we calculate the dom-values at root node vp1:

dom(vp1) ∈ contrib(np2) ∪
∗ contrib(v3)

= 〈np2〉 ∪
∗ 〈v3〉

= { 〈np2,v3〉, 〈v3,np2〉 }
(3.22)

Again, both nodes np2 and v3 have been inserted in the domain of vp1. The
domain 〈v3,np2〉 is excluded by LP rule (3.16), which leaves us with 〈np2,v3〉 as
the only licensed word order domain at vp1:

dom(vp1) = 〈np2,v3〉 (3.23)

CHAPTER 3. APPROACHES TO LINEAR PRECEDENCE 32

We show the corresponding LP tree below:

vp1

np2 v3

det4 n5

einen Roman zu schreiben

(3.24)

This LP tree licenses only the linearization einen Roman zu schreiben.

Scrambling

In this section, we show how Reape’s theory tackles the scrambling example (3.1),
repeated here as (3.25):

(dass) einen Roman Maria zu schreiben verspricht
(that) a novel(acc) Maria to write promises

“(that) Maria promises to write a novel”
(3.25)

This is the ID tree analysis for (3.25):

s1[∪±]

np2[∪−] vp3[∪±] v4[∪−]

np5[∪−] v6[∪−]

det7[∪−] n8[∪−]

Maria einen Roman zu schreiben verspricht

(3.26)

LP rule (3.15) excludes sequence 〈n8,det7〉. Hence, the only licensed value for
dom(np5) is 〈det7,n8〉:

dom(np5) = 〈det7,n8〉 (3.27)

There is also only one possible word order domain at vp3:

dom(vp3) = 〈np5,v6〉 (3.28)

CHAPTER 3. APPROACHES TO LINEAR PRECEDENCE 33

since 〈v6,np5〉 is excluded by LP rule (3.16).

The daughters of s1 are np2, vp3 and v4. np2 and v4 must be inserted, but vps such
as vp3 can be either inserted (3.29) or merged (3.30) into their mother’s domain:

dom(s1) ∈ 〈np2〉 ∪
∗ 〈vp3〉 ∪

∗ 〈v4〉
= { 〈np2,vp3,v4〉, 〈vp3,np2,v4〉, 〈np2,v4,vp3〉 }

(3.29)

dom(s1) ∈ 〈np2〉 ∪
∗ dom(vp3) ∪

∗ 〈v4〉
= 〈np2〉 ∪

∗ 〈np5,v6〉 ∪
∗ 〈v4〉

= { 〈np2,np5,v6,v4〉, 〈np5,np2,v6,v4〉 }
(3.30)

Only (3.30) generates a linearization where Maria (np2) occurs between einen
Roman (np5) and zu schreiben (v6), i.e.:

〈np5,np2,v6,v4〉 (3.31)

That is, the respective order of the nps Maria and einen Roman is unrestricted
in (3.30), and all other permutations are excluded by LP rules (3.16) and (3.17):
(3.16) ensures that nps precede vs, and (3.17) that zu schreiben (v6) precedes
verspricht (v4), since v6 ∈ dtrs(v4).

We show the LP tree corresponding to word order domain (3.31) below:

s1

np5 np2 v6 v4

det7 n8

einen Roman Maria zu schreiben verspricht

(3.32)

VP extraposition

Reape’s approach can also treat the vp-extraposition example below:

(dass) Maria verspricht, einen Roman zu schreiben
(that) Maria promises, a novel(acc) to write

“(that) Maria promises to write a novel”
(3.33)

For (3.33), we assume the ID tree analysis shown in (3.34) below. Notice that
since vp3 is extraposed in the linearization, it must be [∪−] by language-specific

CHAPTER 3. APPROACHES TO LINEAR PRECEDENCE 34

principle (3.14):

s1[∪±]

np2[∪−] vp3[∪−] v4[∪−]

np5[∪−] v6[∪−]

det7[∪−] n8[∪−]

Maria einen Roman zu schreiben verspricht

(3.34)

The word order domains at np5 and vp3 are the same as in the scrambling example:

dom(np5) = 〈det7,n8〉 (3.35)

dom(vp3) = 〈np5,v6〉 (3.36)

And vp3 must be inserted into the domain of its mother s1 because it is [∪−]:

dom(s1) ∈ 〈np2〉 ∪
∗ 〈vp3〉 ∪

∗ 〈v4〉
= { 〈np2,vp3,v4〉, 〈vp3,np2,v4〉, 〈np2,v4,vp3〉 }

(3.37)

The other permutations 〈v4,np2,vp3〉, 〈v4,vp3,np2〉 and 〈vp3,v4,np2〉 are ex-
cluded by LP rule (3.16).

Sentence (3.33) corresponds to linearization 〈np2,v4,vp3〉, and its LP tree is shown
in (3.38):

s1

np2 v4 vp3

np5 v6

det7 n8

Maria verspricht einen Roman zu schreiben

(3.38)

CHAPTER 3. APPROACHES TO LINEAR PRECEDENCE 35

Partial VP extraposition

One weakness of Reape’s theory is that it cannot treat partial vp extraposition,
an example of which is shown below:

(dass) Maria einen Roman verspricht, zu schreiben
(that) Maria a novel(acc) promises, to write

“(that) Maria promises to write a novel”
(3.39)

The ID tree for this sentence is the same as for the full vp extraposition example
(3.34). Again, by language-specific principle (3.14), vp3 must be [∪−] because it is
extraposed. As we saw above, this ID tree licenses the following three word order
domains:

dom(s1) ∈ 〈np2〉 ∪
∗ 〈vp3〉 ∪

∗ 〈v4〉
= { 〈np2,vp3,v4〉, 〈vp3,np2,v4〉, 〈np2,v4,vp3〉 }

(3.40)

but none of the sequences corresponds to linearization (3.39). That is, while
Reape’s theory can handle the extraposition of full vps, it cannot account for
the fact that particular dependents of extraposed constituents (e.g. objects) can be
moved into the Mittelfeld. This defect is due to the fact that Reape’s distinction
between [∪+] and [∪−] is not fine-grained enough. We improve on Reape’s theory
in our approach, where we can specify on a per-dependent basis which dependent
of an extraposed verb has to stay with its verb or may be dislocated into the
Mittelfeld.

3.1.3 Criticism

Reape’s word order domains were groundbreaking and paved the way for many
modern HPSG grammars concerned with freer word order languages. But unfor-
tunately, Reape’s original formulation has defects.

For one, Reape’s dissociation of vertical syntactic structure and horizontal linear
structure is not perfect. Linear precedence constraints are still defined on categorial
grounds, since Reape does not have a primitive notion of topological fields. His word
order domains are only a technical notion and they cannot be straightforwardly
mapped to topological fields.

The rather crude notion of ‘unioning up’ as expressed by the [∪+]/[∪−]-distinction
does not allow Reape’s theory to handle e.g. partial vp extraposition. In order to
tackle extraposition phenomena in general, one needs to be able to distinguish be-
tween different kinds of arguments and allow only a subset of them to be extracted.

CHAPTER 3. APPROACHES TO LINEAR PRECEDENCE 36

For instance, only pps and relative clauses can be extracted out of nps in German,
but not determiners or adjectives.

Reape’s theory also exhibits other defects with respect to extraposition: in language
specific principle (3.14), he only allows vps to be extraposed, whereas clearly also
pps, ss and heavy nps should be amenable to extraposition. This is one of the
problems overcome by the adaptation of word order domains in (Kathol 1995),
which we discuss in the next section.

3.2 Kathol

In (Kathol 1995) and also (Kathol 2000), Andreas Kathol presents a HPSG-based
theory of syntax called Linearization-Based Syntax which is based on Reape’s no-
tion of word order domains but goes far beyond Reape’s approach.

Kathol (1995) notes that Reape’s approach is flawed in at least two areas. The
first is extraposition: Reape (1994) allows only vps to be extraposed, but other
categories like pps and ss can clearly also be extraposed. Secondly, Kathol shows
that Reape’s analysis of raising verbs is wrong.

3.2.1 Kathol’s adaptation of word order domains

Reape employs binary-valued features for both the statement of linear precedence
rules, e.g. extra in (3.14), and also in stating language-specific principles (unioned).
Kathol, on the contrary, dispenses with these binary-valued features altogether.
Instead, he directly associates domain objects with topological properties, i.e. each
domain object is assigned a topological field using the attribute topo. Kathol (1995)
introduces the following set of topological fields:

field name explanation

vf Vorfeld
cf complementizer field
mf Mittelfeld
vc verb cluster
nf Nachfeld

(3.41)

Linear precedence rules are then replaced in (Kathol 1995) by the following Topo-
logical Linear Precedence Statement (TLPS) which totally orders the set of fields:

vf ≺ cf ≺ mf ≺ vc ≺ nf (3.42)

CHAPTER 3. APPROACHES TO LINEAR PRECEDENCE 37

In addition, Kathol utilizes Topological Cardinality Conditions to restrict the car-
dinality of the Vorfeld vf and complementizer field cf to at most one.

3.2.2 Criticism

The new formulation of HPSG with word order domains as suggested by Kathol
(1995) overcomes some of the defects of Reape’s original proposal. The main asset
of Kathol’s approach is the primitive notion of fields, as opposed to Reape’s binary-
valued features. This primitive notion of topological fields allows Kathol to achieve
a dissociation between immediate dominance and linear precedence that is more
convincing than in Reape’s proposal. In Kathol’s approach, linear precedence con-
straints are stated not on categorial grounds but order topological fields (TLPS).
He also dispenses with Reape’s language-specific principles in favor of increased
lexicalization.

3.3 Bröker

The DACHS-framework (Dependency Approach to Coupling Heterogenuous knowl-
edge Sources) is a variant of dependency grammar proposed by Norbert Bröker
(Bröker 1999). DACHS aims at decoupling the dependency tree from surface word
order, to the effect that the theory does not need to compromise the semantic
motivation of dependencies and allows for a declarative and formally precise char-
acterization of word order.

DACHS makes use of two tree structures: the non-projective dependency tree
structure and the word order domain (or just ‘order domain’) structure. Both trees
are linked but structurally dissimilar. Surface word order is derived by traversing
the tree induced by the word order domain structure.

DACHS is formalized using a description logic based on modal logic that owes much
to the work of Blackburn (1994). Dependencies and the mapping from the depen-
dency tree to order domain structures are described by modal operators. Simple
properties such as word class and features used in the expression of precedence
predicates are described by modal properties.

CHAPTER 3. APPROACHES TO LINEAR PRECEDENCE 38

3.3.1 Word order domain structure

In Bröker’s theory, a word order domain m is a set of words. The cardinality
of an order domain can be restricted to at most one, at least one or exactly one
element. No restriction on the cardinality means that zero or more domain elements
are licensed. Each word is associated with a sequence of order domains where
one domain in this sequence must contain the word itself. A word order domain
structure is a partial order on the set M of word order domains, based on set
inclusion.

Order domain elements are assigned features which are later used in specifying
precedence predicates that constrain surface word order. These features are used to
model notions from topological fields theory: initial corresponds to the Vorfeld,
middle to the Mittelfeld and final to the Nachfeld.

DACHS employs the notion of precedence predicates from Hudson’s Word Gram-
mar (Hudson 1990) to state constraints on surface word order within domains.
Bröker postulates two kinds of precedence predicates: the first orders a word with
respect to the other elements in the domain it is associated with. The second states
constraints on the order among the other elements in the domain.

3.3.2 Example

Here is an example sentence and its corresponding dependency tree analysis (3.44):

Den Mann hat Maria geliebt.
The man(acc) has Maria loved.

“Maria has loved the man.”
(3.43)

Den Mann hat Maria geliebt

det

obj

subj
vpp

(3.44)

CHAPTER 3. APPROACHES TO LINEAR PRECEDENCE 39

The following order domain structure corresponds to the dependency tree (3.44):

d0

d1 d2

d3 d4 d5

Mann hat Maria geliebt .

(3.45)

Here, the sentence period introduces the single top domain d0 for the complete
sentence. The finite verb hat is associated with domain d2 and introduces by
lexical assignment a sequence of domains 〈d1, d2〉, requiring that d1 must precede
d2. d1 roughly corresponds to the Vorfeld in topological fields theory and d2 to the
Mittelfeld. Mann, Maria and geliebt introduce the order domains d3, d4 and d5 on
their own. Word order domains are sets of words. The word order domains in the
example contain the following sets of words:

d0 = {Mann, hat,Maria, geliebt, .}
d1 = {Mann}
d2 = {hat,Maria, geliebt}
d3 = {Mann}
d4 = {Maria}
d5 = {geliebt}

(3.46)

Order within a domain is controlled by precedence predicates. Bröker posits the
following conjunction of precedence predicates for finite verbs like hat :

hat ⇒ <∗ ∧ (3.47)

{subj, obj} < vpp (3.48)

(3.47) and (3.48) apply only to domains which have been introduced by hat and
which also contain hat, i.e. d2 in the example. The first conjunct (3.47) orders
hat with respect to the other elements in such a domain: it is only satisfied if
hat precedes all other words in the domain. The second conjunct (3.48) states a
constraint on the order among the other elements in such a domain: it is satisfied
if no subject or object follows the past participle (vpp). (3.47) is satisfied in the
example since no word precedes hat in d2. (3.48) is also satisfied because neither
the object Mann (which is included in d1 and d3) nor the subject Maria precede
the past participle geliebt in d2.

CHAPTER 3. APPROACHES TO LINEAR PRECEDENCE 40

3.3.3 Linking dependency and order domain structure

DACHS establishes the linking between dependency tree and word order domain
structure as follows: a node in the dependency tree may either be inserted into a
domain introduced by its direct (syntactical) head, or it may be extracted into a
domain introduced by a transitive head, which is then called the positional head of
the dependent.

In the example given in (3.45) above, the subject Maria is inserted into the domain
d2 of its direct head hat. Mann is not inserted into the domain d5 of its direct head
geliebt, but extracted into domain d1 introduced by its positional head hat.

The distance between positional heads and their dependents is restricted: for each
node, Bröker defines a set of dependency relations which may link its direct and
positional heads. Extraction is impossible if that set is empty: in this case, the
positional head of the node equals its direct head.

To illustrate this idea, we refer again to the the example pictured in (3.45) above.
Here, the extracted object Mann lexically defines the set L = {vpp} of dependency
relations which may link its direct head with its positional head. The direct head
of Mann is geliebt, and geliebt is a vpp-dependent of hat. Since vpp ∈ L, the direct
head geliebt may be linked to hat. hat is therefore the positional head of Mann.

3.3.4 Criticism

DACHS is highly similar to our theory of TDG (to be introduced in the chapters to
follow). Firstly, DACHS also decouples dependency structure from linear structure.
Dependency trees as used in DACHS represent the same structures as ID trees in
TDG.

Still, DACHS and TDG differ in some respects. For one, DACHS does not utilize a
primitive notion of topological fields but uses so-called features to model fields and
also other concepts. The nature of these features is not entirely clear. Some features
like initial, middle and final obviously model the fields Vorfeld, Mittelfeld and
Nachfeld from topological fields theory. On the other hand, there are features like
norel, whose interpretation is not as clear-cut.

Another point of criticism applies to the precedence predicates. Whereas TDG
states ordering constraints on the level of topological fields (i.e. Vorfeld precedes
Mittelfeld etc.), DACHS reverts back to dependency relations in the statement
of its precedence predicates (see (3.48)). We regard this as a withdrawal from the
original scheme of strictly decoupling dependency structure and surface word order.

CHAPTER 3. APPROACHES TO LINEAR PRECEDENCE 41

In our opinion, constraints on surface word order should only be expressed on the
word order domain level, and be free from any considerations regarding dependency
relations.

Lastly, another divergence of DACHS and TDG is how the theories are formalized.
DACHS makes use of modal logic in the spirit of (Blackburn 1994), whereas TDG
opts for model-theoretic syntax casted in graph-theoretical terms.

3.4 Gerdes and Kahane

The formulation of a ‘formal dependency grammar using a topological hierarchy’
outlined in (Gerdes & Kahane 2001) is also called Topological Dependency Gram-
mar. To distinguish it from our approach we call their framework TDG′ in the
following. TDG′ places itself in the context of the general framework of Meaning-
Text-Theory (MTT) (Mel’čuk 1988), which considers the modeling of a language
as a bidirectional correspondence between meanings and texts. TDG′ corresponds
to the syntactic module of MTT, providing the correspondence between syntactical
dependency trees and morphological strings.

TDG′ posits two structurally dissimilar but linked analysis structures: a syntactic
dependency tree and a topological structure. The syntactic dependency tree is
an non-ordered dependency tree whose edges are labeled with syntactic relations.
The syntactic dependency structure does not incorporate considerations regarding
surface word order. The topological structure is a ‘phrase structure’ tree derived
from the dependency tree using a set of correspondence rules.

3.4.1 Topological structure

A domain in TDG′ is a sequence of topological fields, and these fields are in turn
assigned to words. For example, the main domain md is a sequence of the following
fields:

vf, [, mf,], nf (3.49)

where vf corresponds to the Vorfeld, [to the left sentence bracket, mf to the
Mittelfeld,] to the right sentence bracket and nf to the Nachfeld. If a word of a
certain category lands in a certain field, it may create an embedded domain, which
is again associated with a sequence of fields.

Gerdes and Kahane liken domains to ‘boxes’ and fields to ‘compartments’ inside a
box. Compartments are linearly ordered within a box, and can again accommodate

CHAPTER 3. APPROACHES TO LINEAR PRECEDENCE 42

new boxes. This gives rise to a hierarchy of boxes which is the topological structure,
and is also called ‘phrase structure’ in (Gerdes & Kahane 2001).

3.4.2 Example

As an example, we go through a TDG′ analysis of the sentence glossed here:

Hat dem Mann jemand erlaubt, das Buch zu lesen?
Has the man(dat) anybody(nom) allowed, the book to read?

“Has anybody allowed the man to read the book?”
(3.50)

The corresponding syntactic dependency tree is depicted below:

Hat dem Mann jemand erlaubt das Buch zu lesen

det

iobj

subj vpp

det

obj

vzu

(3.51)

Here, jemand is the subject of hat (grammatical role: subj) and erlaubt its past
participle complement (vpp). Mann is the indirect object (iobj) of erlaubt and zu
lesen its zu-infinitival complement (vzu), Buch is the object (obj) of zu lesen.

The syntactic dependency tree pictured in (3.51) above gives rise to the topological

CHAPTER 3. APPROACHES TO LINEAR PRECEDENCE 43

structure shown in (3.52):

md

vc ed

vc

Hat dem Mann jemand erlaubt das Buch zu lesen

i

[mf mf

]

h

nf

mf

]

h

(3.52)

Notice that we depict the topological structure as a phrase structure tree, contrary
to the less conventional tree depictions in (Gerdes & Kahane 2001). The phrasal
nodes are labeled by domain names like md for main domain, the terminal nodes
by words and the edges by field names like mf for Mittelfeld and nf for Nachfeld.
i denotes the initial field.

Another notation for topological structures is labeled bracketed string notation.
Below, we show the topological structure displayed in (3.52) above in labeled brack-
eted string notation:

[mdHat[dem Mannmf jemandmf[vcerlaubth]][eddas Buchmf[vczu lesenh]]]nf]i (3.53)

Here, we write field names as subscripts and domain names follow opening brackets.

3.4.3 Grammar definition

A TDG′ grammar is defined in a rule-based fashion using four sets of rules:

• box creation rules

• box description rules

• field description rules

• correspondence rules

In addition, a permeability order is employed to restrict extraction.

CHAPTER 3. APPROACHES TO LINEAR PRECEDENCE 44

Box creation rules

‘Phrasal nodes’ in the topological structure, i.e. domains or boxes, are introduced
by box creation rules. A box creation rule (c, f,b, f ′) indicates that a word of
category c placed in field f may create a domain b and lands in field f ′ of that
domain. Hence each word creating a domain is associated with two fields: the field
f it is placed in and the field f ′ in the domain b which it has created. Graphically,
f is the label of its incoming edge, and f ′ the node label of the created domain.

The main domain for instance is introduced by the following box creation rule:

(vfin, i,md, [) (3.54)

indicating that a finite verb (category: vfin) such as hat in (3.52) placed in the
initial field i may create a domain md and lands in the left sentence bracket [of
that domain.

If a non-finite verb (category: vnonfin) is placed in one of the so-called major
fields majf such as Vorfeld (vf) or Nachfeld (nf), then it may create an embedded
domain ed. The verb itself lands in the right sentence bracket] of that embedded
domain:

(vnonfin,majf , ed,]) (3.55)

Note that (3.55) is not a box creation rule but a box creation rule schema: it
expands to one rule for each major field. In the example topological structure
(3.52) above, (3.55) induces an embedded domain ed in the Nachfeld, covering the
string das Buch zu lesen.

Box description rules

The order among the fields inside a domain or box is characterized by box descrip-
tion rules. A box description rule b → f1, . . . , fn indicates that domain b consists
of the sequence of fields f1, . . . , fn.

For instance, the sequence of fields in the main domain is described by the following
box description rule:

md → vf, [, mf,], nf (3.56)

The order of fields in an embedded domain is reflected in this box description rule:

ed → mf,], nf (3.57)

CHAPTER 3. APPROACHES TO LINEAR PRECEDENCE 45

Field description rules

Field description rules state constraints on the cardinality of fields. A field descrip-
tion rule is a pair (f, w) ∈ F×W , where F is the set of all fields and W = {!, ?, +, ∗}
a set of wildcards. A field f must contain either exactly one element (!) , at a most
one element (?), at least one element (+) or any number of elements (∗).

As an example, Gerdes & Kahane (2001) constrain the number of elements in the
left sentence bracket to exactly one by stating the field description rule ([, !) and
in the Mittelfeld to an arbitrary number of elements by stating rule (mf, ∗).

Correspondence rules

Correspondence rules establish the linkage between syntactic dependency tree and
topological structure. A correspondence rule looks like this:

(r, c1, f1, c2, f2,b) (3.58)

Such a rule indicates that if there is a dependency edge w1−r→w2 from word w1

with category c1 (and placed in field f1) to word w2 with category c2, labeled with
the grammatical relation r, then w2 may be placed in field f2.

The last argument b is used to control extraction or, as Gerdes and Kahane put
it, emancipation out of domains. Therefore, they define for each TDG′ grammar a
permeability order, which is a partial order on the set B of domains. By a corre-
spondence rule such as (3.58), w2 may emancipate out of domains with permeability
≤ b.

The part of the permeability order given in (Gerdes & Kahane 2001) which is
relevant for our purposes (including the domains vc, ed and md) is shown below:

vc < ed < md (3.59)

(3.59) indicates that extraction out of verb clusters (vc) is easier than extraction
out of embedded domains (ed), and that in turn is easier than extraction out of
main domains (md).

Here is an example correspondence rule schema: the positioning of a non-verbal
element in a major field:

(r, v, anyf , nv,majf , ed) (3.60)

stating that if there is a dependency edge w1−r→w2 from a verbal element (cate-
gory: v) w1 placed in any field (anyf) to a non-verbal element (category: nv) w2

CHAPTER 3. APPROACHES TO LINEAR PRECEDENCE 46

labeled with grammatical relation r, then the w2 may land in a major field (majf).
Thereby, w2 may be emancipated out of domains with permeability ≤ ed.

An example of the operation of the permeability order (3.59) and correspondence
rule (3.60) can be read off our example in (3.51) and (3.52) above: here, the indirect
object dem Mann of erlaubt is emancipated into the Mittelfeld of the main domain.
On its way, diesen Mann is extracted out of the verb cluster (vc) domain of erlaubt.
The extraction is licensed since vc ≤ ed holds in (3.59).

3.4.4 Criticism

TDG′ (Gerdes & Kahane 2001) closely resembles our approach. Again, TDG′ posits
two levels of representation, the non-ordered syntactic dependency tree (ID tree)
and a topological structure (LP tree). However, there are a number of differences
between the two approaches.

For one, whereas TDG (this study) makes use of dependency trees (where each
node corresponds 1:1 to a word) on both levels, Gerdes and Kahane construct a
phrase structure-like topological structure including phrasal (non-terminal) nodes.

Another crucial difference is that Gerdes and Kahane’s approach is formalized in a
rule-based fashion, as opposed to TDG and DACHS, which are highly lexicalized.

In spite of these differences, we think that TDG′ can be lexicalized and that the
topological phrase structure analysis is finitely expandable. Thus, we suggest that
it is possible to establish a mapping from TDG′ to TDG and vice versa. This
way, TDG′ could make use of the computational techniques developed for TDG in
order to attain a parser implementation. So far, Gerdes and Kahane (p.c.) have
implemented a generator which obtains from a given dependency tree the set of
all licensed topological structures, but they do not yet have a practical parser for
TDG′.

3.5 Summary

In this chapter, we have discussed four rather similar approaches, two of them based
on HPSG (Reape 1994), (Kathol 1995) and two based on dependency grammar
(Bröker 1999), (Gerdes & Kahane 2001). All of them have in common the funda-
mental idea to dissociate vertical syntactic structure or immediate dominance from
horizontal linear order or linear precedence. We showed that although Reape’s
theory of word order domains has proven very influential within and outside the

CHAPTER 3. APPROACHES TO LINEAR PRECEDENCE 47

HPSG community, it is not free from flaws. Kathol’s Linearization-Based Syntax
overcomes some of these flaws. Bröker’s adaptation of word order domains for
dependency grammar is promising but falls foul of similar problems as Reape’s
theory: it does not incorporate a primitive notion of topological fields and does
not satisfactorily dissociate immediate dominance and linear precedence. Gerdes
and Kahane’s TDG′ in turn can be criticized mostly for its rule-based rather than
lexicalized character and its rather sketchy formalization.

In the following chapters, we will introduce a new way of stating constraints on
linear precedence in the context of dependency grammar, which remedies the prob-
lems plaguing the approaches outlined in this chapter.

Chapter 4

LP analyses

In chapter 2, we introduced the notion of an ID analysis. In this chapter, we
present the notion of a linear precedence (LP) analysis. An LP analysis consists
of an LP tree, a lexical assignment, a total order on the set of nodes and a node
label assignment. LP trees are ordered dependency trees representing topological
structures in the spirit of topological fields theory. The well-formedness conditions
for LP analyses comprise general principles and lexicalized principles. Because we
do not yet formalize the well-formedness conditions in great detail, we refer to
chapter 9 for a more in-depth account.

4.1 LP trees

An LP analysis consists mainly of a topological dependency tree or LP tree. In
defining LP trees, we make use of notions borrowed from topological fields theory1

as explained in chapter 1. The idea behind topological fields theory is to divide
sentences into contiguous substrings and to assign to these substrings so-called
topological fields. Here is an example analysis:

Vorfeld (Mittelfeld) Nachfeld

Maria hat dem Mann einen Korb gegeben der lacht.
Maria has the man a basket given who laughs.

(4.1)

1Notice that although we apply TDG (and in particular the LP part) for the description of
German surface word order here, TDG is intended to be a grammar formalism for any language,
in the same way as topological fields theory can be applied in modified forms to other languages
(Kathol 1995), (Penn 1999), (Kruijff 2001).

48

CHAPTER 4. LP ANALYSES 49

We partition the sentence into six substrings and assign them to five topological
fields: Maria in the Vorfeld, hat in the left sentence bracket, dem Mann and einen
Korb in the Mittelfeld, gegeben in the right sentence bracket and der lacht in the
Nachfeld.

In our dependency-based setting, topological dependency trees or LP trees are
headed structures: we distinguish topological heads and their topological dependents.
In the example, hat is the topological head, offering the topological fields Vorfeld,
Mittelfeld, right sentence bracket and Nachfeld for its topological dependents to
land in. Here is an LP tree analysis of the example sentence:

Maria hat dem Mann einen Korb gegeben der lacht

n

v12

n
n

n
n v

n
v

vf

nvf

mf

nvf

mf vcf

rvf

nf

(4.2)

As in ID trees, nodes in LP trees correspond 1:1 to words in the analyzed string.
But while ID tree edges are labeled with grammatical roles, LP tree edges are
labeled by topological fields. Also, each node in the LP tree is assigned a node label
which we annotate on the dotted line. We give an overview of the topological fields
used in the example LP tree (4.2) below:

field meaning

vf Vorfeld
mf Mittelfeld
vcf right sentence bracket
nf Nachfeld
nvf nominal Vorfeld

(4.3)

In (4.2), Maria, Mann, Korb, gegeben and lacht are topological dependents of the
topological head hat. Maria is a dependent in the Vorfeld (vf), Mann and Korb are
dependents in the Mittelfeld (mf), gegeben in the right sentence bracket (vcf) and
lacht in the Nachfeld (nf). The determiners of the common nouns Mann and Korb,
dem and einen, are topological dependents in the ‘nominal Vorfeld’2 (nvf) of the
noun. Nouns and determiners are assigned the node label n, and verbs the node
label v, except for the root hat which is assigned node label v12 where ‘v’ stands
for verb and ‘1’ and ‘2’ for either verb-first or verb-second position. We use node

2We justify this terminology in chapter 7.

CHAPTER 4. LP ANALYSES 50

labels to position topological heads with respect to their topological dependents:
e.g. in (4.2), v12 orders the finite verb hat (in the left sentence bracket) to the right
of the Vorfeld (vf) and to the left of the Mittelfeld (mf).

4.2 LP principles

We turn now to the well-formedness conditions for LP analyses, which are a refine-
ment of those for ID analyses. An LP analysis (V, Elp, ε, <, labeln) comprises a set
of nodes V , a finite set of edges Elp ⊆ V × V × FE (where FE is the set of edge
labels3), a lexical assignment ε, a total order < on the set of nodes and a node
label assignment labeln : V → FN (where FN is the set of node labels). A valid LP
analysis must satisfy the set of LP principles, comprising general principles and
lexicalized principles.

We write f for an edge label in the set of edge labels FE. An edge from node w to
node w′ labeled with f is written w−f→w′, and we say that w′ lands in the field f
of w or lands on w. The set of node labels is FN, and we write n for a node label
in this set.4

4.2.1 General principles

Treeness principle

The treeness principle remains as in chapter 2.

Order principle

Principle 4.1 Each analysis must be well-ordered.

Consider the picture in (4.4) where the topological head w has two topological
dependents labeled with f1 and f2 (where f1, f2 ∈ FE) and w has node label n

3The FE set of edge labels corresponds to the set topological fields.
4The “N” subscripting FN stands for ‘node’ and the “E” subscripting FE for ‘edge’.

CHAPTER 4. LP ANALYSES 51

(where n ∈ FN):

w

f 1 f
2

n (4.4)

Contrary to ID analyses, which are non-ordered, LP analyses are ordered trees. To
establish this order, we posit a total order ≺ on the set FE of edge labels:

f1 ≺ f2 (4.5)

(4.5) induces a total order on the yields, i.e. the set of nodes reachable by traversing
downwards zero or more LP edges of the topological dependents of a node. Thus
by (4.5), the yields of f1-labeled topological dependents must precede the yields of
f2-labeled dependents. The induced order is partial: if two topological dependents
land in the same field, they are not ordered with respect to each other.

As a concrete example, consider the LP tree given in (4.2) above. We order the set
FE of topological fields occuring in this tree as follows:

nvf ≺ vf ≺ mf ≺ vcf ≺ nf (4.6)

(4.6) induces the following partial order among the yields of the topological depen-
dents of hat in LP tree (4.2):

vf ≺ mf ≺ vcf ≺ nf

[Maria] ≺ [dem Mann] ≺ [gegeben] ≺ [der lacht]
[einen Korb]

(4.7)

The induced order is partial because the two nps dem Mann and einen Korb both
land in the same field (the mf of hat) and are thus not ordered with respect to each
other.

The order on the set FE of edge labels does not tell us the position of the topological
head with respect to its topological dependents. We position topological heads with
respect to their topological dependents using node labels. Therefore, we extend the
total order on the set FE of edge labels to a total order on the set F = FE] FN

of edge and node labels. For instance the total order shown in (4.8) results from
extending the order in (4.5) with node label n between f1 and f2:

f1 ≺ n ≺ f2 (4.8)

In (4.4), w is assigned node label n. Therefore, (4.8) induces an order where the
topological head w is positioned between the yields of its topological dependents
labeled with f1 and f2.

CHAPTER 4. LP ANALYSES 52

In the concrete example, (4.7) does not tell us where the topological head hat
should occur in this sequence. Thus, we extend the total order on the set of edge
labels given in (4.6) to a total order on the set F = FE] FN of edge and node
labels:

nvf ≺ n ≺ vf ≺ v12 ≺ mf ≺ vcf ≺ v ≺ nf (4.9)

Because hat has node label v12 (verb-first or verb-second position) in LP tree (4.2),
it must occur between the vf and the mf by the total order (4.9):

vf ≺ v12 ≺ mf ≺ vcf ≺ nf

[Maria] ≺ hat ≺ [dem Mann] ≺ [gegeben] ≺ [der lacht]
[einen Korb]

(4.10)

To sum up, the order principle consists of the following conditions, given a total
order ≺ on the set F = FE]FN of topological fields (edge labels) and node labels:

w−f1→w1 ∧ w−f2→w2 ∧ f1 ≺ f2 ⇒ w1 < w2 (4.11)

w1→
∗w′

1 ∧ w2→
∗w′

2 ∧ w1 < w2 ⇒ w′

1 < w′

2 (4.12)

w−f→w1 ∧ f ≺ labeln(w) ⇒ w1 < w (4.13)

w−f→w1 ∧ labeln(w) ≺ f ⇒ w < w1 (4.14)

where < is a total order on the set V of nodes. (4.11) orders the daughters of a
node w with respect to each other. (4.12) states that if w1 precedes w2, then all
nodes in the yield of w1 must also precede all nodes in the yield of w2. (4.13) and
(4.14) orders mothers with respect to their daughters using node labels.

An LP analysis (V, Elp, ε, <, labeln) is well-formed under the order principle if the
conditions (4.11–4.14) are satisfied. We say that the LP analysis is then well-
ordered.

Projectivity principle

Principle 4.2 Each analysis must be projective.

LP analyses are projective: the yield5 of each node must cover a contiguous sub-
string. The projectivity principle is a prerequisite for using topological fields theory:
topological fields theory orders contiguous substrings with respect to each other,
and only projective analyses give rise to contiguous substrings.

5Roughly, the yield of a node in a dependency analysis can be regarded as a phrase structure
constituent: for example the yield of a non-finite verb node corresponds to a vp-constituent, and
the yield of a noun to an np.

CHAPTER 4. LP ANALYSES 53

An LP analysis (V, Elp, ε, <, labeln) is well-formed under the projectivity principle
only if the yield of each node covers a contiguous substring.

4.2.2 Lexicalized principles

We further restrict the number of admissible LP analyses by lexicalized principles.
The set of lexicalized principles for LP analyses contains the accepted edge labels
principle, the valency principle and the edge constraints (which remain as before
for ID analyses) and the new accepted node labels principle.

For stating lexicalized principles, we pose the set Alp = {labelslp, valency
lp

, labelsn}
of LP attributes. We employ labelslp in the formulation of the accepted edge labels
principle, valency

lp
for the valency principle and labelsn for the accepted node labels

principle.

Accepted edge labels principle

The accepted edge labels principle remains the same as in chapter 2. Here, the
principle makes use of the lexical attribute labelslp : Et → 2FE which maps lexical
types to sets of accepted edge labels. We call the value of the labelslp-attribute
accepted fields.

Valency principle

We have already presented the valency principle in chapter 2. Here, the principle
employs the lexical attribute valency

lp
: Et → 2υ(FE) mapping lexical types to sets

of field valency specifications. We call the value of the valency
lp

-attribute field
valency. If either of the valency specifications f, f? or f∗ is in valency

lp
(w), we say

that w offers f. Using terminology from GB theory, we say that f is then a landing
site for other nodes.

Accepted node labels principle

Principle 4.3 Each node must accept its node label.

Each node is lexically assigned a set of possible node labels using the lexical at-
tribute labelsn : Et → 2FN mapping lexical types to sets of node labels. The node

CHAPTER 4. LP ANALYSES 54

label assignment labeln : V → FN maps each node to its node label. The accepted
node labels principle is defined as follows for all nodes w ∈ V :

labeln(w) ∈ labelsn(w) (4.15)

An LP analysis (V, Elp, ε, <, labeln) is well-formed under the accepted node labels
principle only if (4.15) holds for all nodes w ∈ V .

Edge constraints

The edge constraints principle remains as introduced in chapter 2. We call edge
constraints for LP analyses LP edge constraints.

4.3 Examples

In this section, we illustrate the well-formedness conditions for LP analyses by
providing examples. We begin with specifying a total order on the set F = FE]FN

of fields FE = {vf, mf, vcf, nf} and node labels FN = {n, v12, v}:

n ≺ vf ≺ v12 ≺ mf ≺ vcf ≺ v ≺ nf (4.16)

We present in Figure 4.1 an example lexicon including the proper names Maria and
Peter, the transitive past participle geliebt (loved) and the finite perfect auxiliary
hat (has). Like before, the lexical assignment ε straightforwardly maps words to
their corresponding lexical entries. Both the node label assignment labeln and the
total order < assumed in each example are those implicitly used in the graphical
rendition its LP tree.

4.3.1 Order principle violation

The LP tree below violates the order principle:

Maria hat geliebt Peter

n
v12

v n

vf vcf mf

(4.17)

CHAPTER 4. LP ANALYSES 55

(Maria ,





labelslp : {vf, mf}
labelsn : {n}

valency
lp

: ∅



)

(Peter ,





labelslp : {vf, mf}
labelsn : {n}

valency
lp

: ∅



)

(geliebt ,





labelslp : {vf, vcf}
labelsn : {v}

valency
lp

: {mf∗}



)

(hat ,





labelslp : ∅
labelsn : {v12}

valency
lp

: {vf?, mf∗, vcf?, nf?}



)

Figure 4.1: Example lexicon

Here, geliebt in the vcf precedes Peter in the mf, but the total order given in (4.16)
states that mf ≺ vcf. Thus, condition (4.11) of the order principle is violated:

hat−mf→Peter ∧ hat−vcf→geliebt ∧ mf ≺ vcf ⇒ Peter < geliebt (4.18)

because geliebt < Peter in LP tree (4.17).

4.3.2 Projectivity principle violation

The following LP tree violates the projectivity principle since the yield of geliebt
(Peter geliebt) does not cover a contiguous string but is interrupted by hat and
Maria, resulting in a non-projective LP tree:

Peter hat Maria geliebt

n

v12
n v

mf vcf

mf
(4.19)

CHAPTER 4. LP ANALYSES 56

4.3.3 Accepted edge labels principle violation

The LP tree below exhibits a violation of the accepted edge labels principle:

Maria hat geliebt Peter

n
v12

v n

vf mf mf

(4.20)

The incoming edge of geliebt is labeled with field mf, but mf is not in the set of
accepted fields of geliebt. Thus, the accepted edge labels constraint instantiated
below is violated:

hat−mf→geliebt ⇒ mf ∈ labelslp(geliebt) (4.21)

because mf /∈ labelslp(geliebt) = {vf, vcf}.

4.3.4 Valency principle violation

The following LP tree violates the valency principle:

Maria Peter hat geliebt

n n
v12

v

vf vf vcf

(4.22)

By the lexical assignment, hat only offers at most one position for topological
dependents in the Vorfeld by field valency specification vf?, but in the tree above
there are two vf-dependents. Thus, the LP tree violates the instantiation of the
valency principle displayed below:

vf? ∈ valency
lp

(hat) ⇒ |vf(hat)| ≤ 1 (4.23)

CHAPTER 4. LP ANALYSES 57

4.3.5 Accepted node labels principle violation

The LP tree below violates the accepted node labels principle:

Maria Peter hat geliebt

n n
v12

n

vf vf vcf

(4.24)

Here, geliebt has node label n, but n is not in the set of accepted node labels of
geliebt. Hence, the accepted node labels constraint instantiated below is violated:

labeln(geliebt) ∈ labelsn(geliebt) (4.25)

because

labeln(geliebt) = n /∈ labelsn(geliebt) = {v} (4.26)

4.3.6 Well-formed LP tree

The following LP tree is well-formed under the total order (4.16) and the lexical
assignment:

Hat Peter Maria geliebt

v12
n n v

mf mf vcf

(4.27)

Here, the total order in (4.16) induces the following ordering, where the two nouns
Peter and Maria in the Mittelfeld (mf) are not ordered with respect to each other:

v12 ≺ mf ≺ vcf

[Hat] ≺ [Peter] ≺ [geliebt]
[Maria]

(4.28)

4.4 Summary

We introduced the notion of a linear precedence (LP) analysis. An LP analysis
consists of an LP tree, a lexical assignment, a total order on the set of nodes and

CHAPTER 4. LP ANALYSES 58

a node label assignment. LP trees represent topological structures in the spirit of
topological fields theory but from a dependency-based perspective: we distinguish
topological heads and topological dependents, and order the yields of topological
dependents according to a total order on the set of edge labels.

The next chapter brings together the notions of ID and LP analyses: we present the
concept of an ID/LP analysis consisting of an ID and an LP analysis sharing the
same lexical assignment. We relate ID and LP analyses to each other by positing
ID/LP principles associated with the notion of climbing.

Chapter 5

ID/LP analyses

In this chapter, we bring together the notions of ID and LP analyses characterized
in the previous chapters. We define an ID/LP analysis as a pair of an ID analysis
and an LP analysis sharing the same lexical assignment, and relate ID and LP
analyses to each other by the climbing principle. As a result, the shape of the LP
tree is a flattening of the ID tree’s. We refine the climbing principle by the subtrees
principle and the barriers principle.

5.1 ID/LP principles

An ID/LP analysis is a pair of an ID analysis (V, Eid, ε) and an LP analysis
(V, Elp, ε, <, labeln). Both analyses share the same lexical assignment ε. < is a
total order on the set V of nodes and labeln a node label assignment. We specify a
set of well-formedness conditions called ID/LP principles to relate the ID and the
LP analyses to each other. As a result, both analyses are mutually constraining.
In the version of TDG presented in this thesis, we posit three ID/LP principles:
the climbing principle, the subtrees principle and the barriers principle.

5.1.1 Climbing principle

The elementary idea behind climbing is that nodes in the ID tree may ‘climb up’
from a lower position in the ID tree to a position higher in the LP tree. As a
result, the shape of the LP tree is a flattening of the ID tree’s, in the same sense
as in similar approaches (such as those presented in chapter 3). In the paradigm of
dependency grammar, climbing can be likened to what is called lifting in (Kahane

59

CHAPTER 5. ID/LP ANALYSES 60

et al. 1998) and emancipation in (Gerdes & Kahane 2001). Climbing is also similar
to movement in GB (Debusmann 2001). Here is the climbing principle:

Principle 5.1 A node must land on a transitive head1.

How does the climbing principle bring about a flattening of LP trees with respect
to ID trees? Here is an abstract example:

w1 w2 w3

⇒

w1 w2 w3

(5.1)

On the left hand side of (5.1) is an ID tree and on the right hand side an LP tree.
We omit edge and node labels for simplicity. As indicated by the dashed arrow in
the ID tree, node w3 ‘climbs up’ to node w1, resulting in an LP tree on the right
hand side where w3 is a daughter of w1. Observe that w1 is a transitive head of w3

(as required by principle 5.1) by virtue of being in the set of nodes above w3 in the
ID tree. Obviously, the LP tree on the right hand side is flatter than the ID tree
on the left hand side: it has only depth one instead of depth two.

The following example shows that by flattening, we can turn a non-projective ID
tree into a projective LP tree:

w1 w2 w3

⇒

w1 w2 w3

(5.2)

The ID tree on the left hand side of (5.2) is non-projective: the set of nodes
reachable by traversing downwards zero or more nodes from w3, i.e. {w3, w1}, does
not represent a contiguous sequence because w2 interrupts the two. Contrarily, the
LP tree on the right hand side of (5.2) is projective: w1 has climbed up to w2.
Thus, climbing has resulted in an LP tree whose shape is a flattening of the ID
tree and has also transformed the non-projective ID tree into a projective LP tree.

1The set of transitive heads of a node w
′ contains all nodes above w

′ in the ID tree. The term
is due to Norbert Bröker (Bröker 1999).

CHAPTER 5. ID/LP ANALYSES 61

Forced climbing

Climbing can be ‘forced’ by means of the lexicon. This is achieved by simultane-
ously specifying role and field valency in a way that a syntactic dependent of a
node cannot be a topological dependent of the node in the LP tree. Following the
climbing principle, the only ‘way out’ for the syntactic dependent is to climb up to
a node higher in the tree which offers an appropriate field for it.

As an example, here is an abbreviated lexical entry2 for the ditransitive past par-
ticiple verb gegeben:

(gegeben ,





valency
id

: {adv∗, pp?, obj, iobj}
valency

lp
: ∅

. . .



) (5.3)

gegeben subcategorizes for an object and an indirect object in its role valency. It
can additionally be modified by adverbs and a pp. In its field valency, gegeben
offers no field.

Nouns like for example Mann and Korb can only land in the Vorfeld (vf) or the
Mittelfeld (mf), as indicated by the following abbreviated lexical entries:

(Mann ,





labelsid : {subj, obj, iobj}
labelslp : {vf, mf}

. . .



) (5.4)

(Korb ,





labelsid : {subj, obj, iobj}
labelslp : {vf, mf}

. . .



) (5.5)

And finite verbs in verb-second position such as hat offer the fields vf, mf, vcf and
nf in their field valency:

(hat ,

[

valency
lp

: {vf?, mf∗, vcf, nf?}
. . .

]

) (5.6)

Now consider sentence (5.7) below. We show an ID/LP analysis of it in (5.8) where
the ID tree is depicted in the upper half and the LP tree in the lower half:

Maria hat dem Mann einen Korb gegeben.
Maria has the man a basket given.

“Maria has given the man a basket.”
(5.7)

2We indicate by ellipsis that the lexical entry is incomplete.

CHAPTER 5. ID/LP ANALYSES 62

Maria hat dem Mann einen Korb gegeben

su
bj

det

iobj

det

obj

vpp

Maria hat dem Mann einen Korb gegeben

n

v12

n
n

n
n v

vf

nvf

mf

nvf

mf vcf

(5.8)

In (5.8), climbing was ‘forced’ by the participating lexical entries: although Mann
and Korb are syntactic dependents of gegeben in the ID tree, they cannot be topo-
logical dependents of gegeben in the LP tree since gegeben, by virtue of its field
valency, does not offer a field. Due to the climbing principle, the only ‘way out’
for the two nominal complements is to climb up to a node higher in the tree which
offers an appropriate field (vf or mf) for them. The only node higher in the tree
is the root hat. In its field valency, hat offers both vf and mf. Thus, as in the
example, Mann and Korb can both land in the mf of hat.

Climbing principle violation

To further illustrate the climbing principle, we exhibit in (5.10) an ID/LP anal-
ysis that violates the climbing principle, and thereby gives rise to the following
ungrammatical linearization:

∗Maria gegeben hat dem Mann einen Korb.
Maria given has the man(dat) a basket(acc).

(5.9)

CHAPTER 5. ID/LP ANALYSES 63

Maria gegeben hat dem Mann einen Korb

subj vpp

det

iobj

det

obj

Maria gegeben hat dem Mann einen Korb

n
v

v12

n
n

n
n

mf

vf

nvf

mf

nvf

mf

(5.10)

ID/LP analysis (5.10) is invalid because the node corresponding to Maria does not
climb up but moves to its sister gegeben.

5.1.2 Subtrees principle

We refine the notion of climbing embodied by the climbing principle by the subtrees
principle. The idea behind this well-formedness condition is that if a node climbs
up, it must take its entire subtree along:

Principle 5.2 A node must land on, or climb higher than its syntactic head.

We illustrate the subtrees principle by an example. Consider the ID/LP analysis
shown below, where w4 climbs up to w1:

w1 w2 w3 w4

⇒

w1 w2 w3 w4

(5.11)

By the subtrees principle, w3 must either land on or climb higher than its (syntactic)
head w4. In (5.11), it lands on its head w4. In (5.12) below, it climbs higher than

CHAPTER 5. ID/LP ANALYSES 64

w4 and lands on w1:

w1 w2 w3 w4

⇒

w1 w2 w3 w4

(5.12)

Subtrees principle violations

In (5.13), we display an example where the subtrees principle is violated because
w3 neither lands on its head w4 nor climbs higher than w4, but it lands on w2:

w1 w2 w3 w4

⇒

w1 w2 w3 w4

(5.13)

ID/LP analysis (5.15) also displays a violation of the subtrees principle and thereby
gives rise to the ungrammatical linearization below:

*(dass) Maria lieben wird ihn können
(that) Maria love will him can

(5.14)

CHAPTER 5. ID/LP ANALYSES 65

(dass) Maria lieben wird ihn können

subj

vinf

obj

vinf

(dass) Maria lieben wird ihn können

n v
v

n
v

mf vcf

mf

vxf

(5.15)

In (5.15), lieben climbs up into the vcf of wird but does not take its entire subtree
along. In particular, lieben ‘leaves behind’ its object ihn in the mf of können.

5.1.3 Barriers principle

We further restrict climbing by the lexicalized barriers principle:

Principle 5.3 A node may not climb through a barrier.

We only consider a simple notion of barrier. The essential idea is to prevent a node
w′ from ‘climbing through’ another node w. Which nodes are allowed to climb
through w and which are not is determined by the grammatical role of w′. The
barriers principle applies the ID/LP attribute blocks : Et → 2R which maps each
lexical type to a set of grammatical roles which it ‘blocks’.

CHAPTER 5. ID/LP ANALYSES 66

As an example, consider the following abstract example ID tree:

w1 w2 wn−1 wn

ρ

(5.16)

In (5.16), wn climbs up to its transitive head w1, and by doing that, it climbs
through nodes wn−1, . . . , w2. wn has role ρ. Any of the nodes wi (for 2 ≤ i ≤ n−1)
blocks wn if ρ is in the set of roles blocked by wi. If a node wi blocks wn, wn cannot
climb up through wi (to a node above wi).

Barriers principle violation

Here is an example illustrating the barriers principle. We define a lexicon including
the common nouns Frau (woman) and Mannes (man) and the definite determiner
des (the(gen)). The assumed lexical assignment ε is again a straightforward map-
ping of nodes to their corresponding lexical entries. We begin with the lexical entry
for Frau:

(Frau ,





valency
id

: {det?, genmod?}
valency

lp
: {nvf?, nxf?}

. . .



) (5.17)

(5.17) subcategorizes for an optional determiner (grammatical role: det) and an
optional genitival modifier (genmod). In its field valency, it offers the fields nvf and
nxf. nvf stands for ‘nominal Vorfeld’ and is the position of a noun’s determiner
or genitival modifier to the left of the noun. nxf stands for ‘nominal extraposition
field’ and is the position of a genitival modifier following the noun.3

The lexical entry for the genitive determiner des is displayed in the following:

(des ,





labelsid : {det}
labelslp : {nvf}

. . .



) (5.18)

3We justify this terminology in chapter 7.

CHAPTER 5. ID/LP ANALYSES 67

The only accepted role of des is det. It can only land in the nominal Vorfeld nvf.

And here is the lexical entry for the genitive noun Mannes:

(Mannes ,













labelsid : {genmod}
valency

id
: {det?, genmod?}

labelslp : {nvf, nxf}
valency

lp
: {nvf?, nxf?}

. . .













) (5.19)

Mannes accepts only role genmod. As a genitival modifier, it can land either in the
nvf to the left of the noun it modifies or in the nxf to the right.

Without the barriers principle, the lexical entries above license (besides others) the
following two ID/LP tree analyses:

Frau des Mannes

genmod

det

Frau des Mannes

n

n
n

nxf

nvf (5.20)

des Frau Mannes

genmod

det

des Frau Mannes

n
n

n

nxfnv
f

(5.21)

In the LP tree on the right hand side of (5.20), Mannes lands in the nominal
extraposition field (nxf) to the right of Frau. The determiner des lands in the
nominal Vorfeld (nvf) of Mannes. In the LP tree in (5.21), Mannes still resides in
the nxf of Mannes, but des has climbed up into the nvf of Frau.

Only the first analysis (5.20) represents a grammatical linearization, while (5.21)
is ungrammatical: determiners like des cannot be extracted out of their nps in
German. In other words, we must prevent that determiners climb through nouns.
To this end, we refine the lexical entry for the noun Mannes:

(Mannes ,

[

blocks : {det}
. . .

]

) (5.22)

CHAPTER 5. ID/LP ANALYSES 68

By (5.22), Mannes now blocks determiners (role det) and the barriers principle
excludes ID/LP analysis (5.21) because des cannot climb through Mannes anymore
(and hence cannot climb up to Frau).

5.2 Summary

We defined an ID/LP analyses to be a pair of an ID and an LP analysis sharing
the same lexical assignment. A set of well-formedness conditions called ID/LP
principles relate ID and LP analyses to each other. As a result, the two analyses
are mutually constraining. The elementary idea behind the ID/LP principles is
that of climbing: nodes can climb up from a position lower in the ID tree to a
position higher up in the LP tree. Climbing causes the shape of the LP tree to
be a flattening of the ID tree’s. The central climbing principle is refined by two
additional ID/LP principles: the subtrees principle and the barriers principle. The
subtrees principle requires that only whole subtrees may climb up. The barriers
principle is a lexicalized principle and restricts extraction possibilities.

In the following chapter, we introduce the TDG lexicon.

Chapter 6

ID/LP Lexicon

This chapter presents the TDG ID/LP lexicon which is a finite binary relation
between strings and lexical types. The lexicon consists of lexical types arranged in
a lexical type hierarchy and lexical entries which can be obtained from the lexical
types by lexical inheritance. By inheritance, we improve lexical economy, facilitate
lexicon development and ease the statement of linguistic generalizations.

6.1 Lexical type hierarchy

In this section, we introduce the notion of a lexical type hierarchy defined on the ba-
sis of complete lattices. The lexical type hierarchy allows us to specify lexical types
in a more succinct way and facilitates the statement of linguistic generalizations.

A TDG ID/LP lexicon is a pair (E ,A) consisting of a finite set E of lexical entries
e and a finite set A of lexical attributes αi. A lexical entry is a pair of (s, et) of
a string s from the set Strs of strings and a lexical type et from the set of lexical
types Et.

Each lexical attribute αi ∈ A : Et → Di maps lexical types to values in some
domain Di. We arrange the range Di of lexical attribute αi in a complete lattice
Li = 〈Di,>i,⊥i,ui,ti〉 where >i is the top element and ⊥i the bottom element of
lattice Li. ui denotes the greatest lower bound -operation and ti the least upper
bound -operation.

69

CHAPTER 6. ID/LP LEXICON 70

6.1.1 Lexicon lattice

We do not only want to arrange the ranges of lexical attributes in lattices but
also the set Et of lexical types. We call the complete lattice in which we arrange
the lexical types lexicon lattice and obtain this lattice by composition of the lat-
tices Li corresponding to the individual lexical attributes αi ∈ A. We define the
composition L1 ⊗ . . . ⊗ Ln of lattices Li = 〈Di,>i,⊥i,ui,ti〉 as follows:

L1 ⊗ . . . ⊗ Ln =
〈D1 × . . . × Dn, 〈>1, . . . ,>n〉, 〈⊥1, . . . ,⊥n〉,u1 ⊗ . . . ⊗ un,t1 ⊗ . . . ⊗ tn〉

(6.1)

The greatest lower bound- and least upper bound-operations of lattice L1⊗ . . .⊗Ln

are defined below:

〈x1, . . . , xn〉 u1 ⊗ . . . ⊗ un 〈y1, . . . , yn〉 = 〈x1 u1 y1, . . . , xn un yn〉 (6.2)

〈x1, . . . , xn〉 t1 ⊗ . . . ⊗ tn 〈y1, . . . , yn〉 = 〈x1 t1 y1, . . . , xn tn yn〉 (6.3)

We define a lexical type et ∈ Et as a tuple

〈α1(et), . . . , αn(et)〉 ∈ D1 × . . . × Dn (6.4)

Using AVM-notation, we write

[α1 : α1(et) . . . αn : αn(et)] (6.5)

instead of 〈α1(et), . . . , αn(et)〉.

6.1.2 Lexical inheritance

We can now define our notion of lexical inheritance: we say that a lexical type e
directly inherits (from now on, inherits) from lexical types ei iff e = e1 u . . . u en.1

Lexical inheritance can be seen as a specialization of lexical types in order to obtain
subtypes.

We illustrate lexical inheritance by an example below where lexical type e inherits
from the lexical types e1 and e2:

e =
e1 u e2 =
[α1 : α1(e1) . . . αn : αn(e1)] u1 ⊗ . . . ⊗ un [α1 : α1(e2) . . . αn : αn(e2)] =
[α1 : α1(e1) u1 α1(e2) . . . αn : αn(e1) un αn(e2)]

(6.6)

1Since the greatest lower bound-lattice operation is associative and commutative, the order of
the elements e1, . . . , en is irrelevant.

CHAPTER 6. ID/LP LEXICON 71

6.2 Lattice types

For the version of TDG proposed in this thesis, we only consider set-valued lexical
attributes: Di = 2Si where Si is an arbitrary finite set. We arrange Si in either an
intersective lattice or an accumulative lattice, both of which we introduce below.

6.2.1 Intersective set lattices

An intersective set lattice forms a partial order over the power set 2S of a set S.
The top element is the set S and the bottom element the empty set. The greatest
lower bound of two sets is defined by set intersection, and the least upper bound
by set union. We write L∩(S) = 〈2S, S, ∅,∩,∪〉 for the intersective set lattice for
S.

As an example, consider the intersective set lattice for S = {n, v, v12}:

>
{n, v, v12}

{n, v} {n, v12} {v, v12}

{n} {v} {v12}

∅
⊥

(6.7)

With respect to (6.7), the following equations hold:

{v} t {v12} = {v} ∪ {v12} = {v, v12} (6.8)

{n, v12} t {v12} = {n, v12} ∪ {v12} = {n, v12} (6.9)

{v} u {v12} = {v} ∩ {v12} = ∅ (6.10)

{n, v12} u {v12} = {n, v12} ∩ {v12} = {v12} (6.11)

6.2.2 Accumulative set lattices

An accumulative set lattice also leads to a partial order over the power set 2S of
the set S it is defined on. The top element is the empty set ∅ and the bottom
element is the set S. The greatest lower bound of two sets is defined by set union,

CHAPTER 6. ID/LP LEXICON 72

and the least upper bound by set intersection. We write L∪(S) = 〈2S, ∅, S,∪,∩〉
for an accumulative set lattice for S.

As an example, here is the accumulative set lattice for S = {n, v, v12}:

>
∅

{n} {v} {v12}

{n, v} {n, v12} {v, v12}

{n, v, v12}
⊥

(6.12)

As can easily be seen, (6.12) equals (6.7) but upside down.

6.3 Lexical attributes

In this section, we define the set A of all lexical attributes α for the version of TDG
introduced in this thesis. A consists of three sets:

• the set Aid = {labelsid, valency
id
} of ID attributes

• the set Alp = {labelslp, valency
lp

, labelsn} of LP attributes

• the set Aidlp = {blocks} of ID/LP attributes

Thus, A = Aid]Alp]Aidlp, and the signature of a TDG lexical type is as follows:

ID attributes

[

labelsid : 2R

valency
id

: 2υ(R)

]

LP attributes





labelslp : 2FE

valency
lp

: 2υ(FE)

labelsn : 2FN





























labelsid : 2R

valency
id

: 2υ(R)

labelslp : 2FE

valency
lp

: 2υ(FE)

labelsn : 2FN

blocks : 2R

























ID/LP attributes
[

blocks : 2R
]

(6.13)

CHAPTER 6. ID/LP LEXICON 73

We arrange the values of the lexical attributes in lattices: we arrange the attributes
labelsid, labelslp and labelsn in intersective set lattices and the attributes valency

id
,

valency
lp

and blocks in accumulative set lattices:

















labelsid : L∩(R) = 〈2R,R, ∅,∩,∪〉
valency

id
: L∪(υ(R)) = 〈2υ(R), ∅, υ(R),∪,∩〉

labelslp : L∩(FE) = 〈2FE,FE, ∅,∩,∪〉
labelsn : L∩(FN) = 〈2FN,FN, ∅,∩,∪〉

valency
lp

: L∪(υ(FE)) = 〈2υ(FE), ∅, υ(FE),∪,∩〉
blocks : L∪(R) = 〈2R, ∅,R,∪,∩〉

















(6.14)

These choices allow to conveniently build up a lexical type hierarchy. We illustrate
this in an example in section 6.4.

For notational convenience, we allow attributes with value > to be omitted and call
these attributes maximal attributes. Here are the >-values for the lexical attributes
defined above:

attribute >

labelsid R
valency

id
∅

labelslp FE

labelsn FN

valency
id

∅
blocks ∅

(6.15)

For instance the following lexical type for finite verbs only specifies the ID attributes
labelsid and valency

id
:

t fin =

[

labelsid : ∅
valency

id
: {subj, adv∗, pp?}

]

(6.16)

The other attributes, viz. the LP and the ID/LP attributes, are maximal attributes:
their value is > in their respective lattices. Thus, (6.16) amounts to the fully
expanded lexical type below:

t fin =

















labelsid : ∅
valency

id
: {subj, adv∗, pp?}

labelslp : FE

labelsn : FN

valency
lp

: ∅
blocks : ∅

















(6.17)

CHAPTER 6. ID/LP LEXICON 74

6.4 Example

Here is an example illustrating how to obtain lexical entries from the lexical type
hierarchy. We begin with defining abbreviated lexical types (ID attributes only)
for non-finite verbs (t nonfin), bare infinitives (t inf) and ditransitive verbs (t ditr).
Non-finite verbs inherit from the following lexical type:

t nonfin =





labelsid : {vinf, vzu, vpp}
valency

id
: {adv∗, pp?}

. . .



 (6.18)

The set of accepted roles of (6.18) includes vinf (bare infinitive), vzu (zu-infinitive)
and vpp (past participle). The role valency includes an arbitrary number of adjec-
tives and zero or one pp-modifiers.

Bare infinitives inherit from the lexical type given below:

t inf =

[

labelsid : {vinf}
. . .

]

(6.19)

The only accepted role is vinf. We omit the maximal attribute valency
id

which is
therefore assigned the >-value (here: > = ∅).

Ditransitive verbs inherit from the following lexical type:

t ditr =

[

valency
id

: {obj, iobj}
. . .

]

(6.20)

The role valency includes an object (obj) and an indirect object (iobj). We omit
the attribute labelsid which is therefore assigned the >-value (here: > = R).

By lexical inheritance, we can now obtain the lexical entry for the non-finite bare
infinitival ditransitive verb geben as follows:

(geben , t nonfin u t inf u t ditr) (6.21)

(6.21) results in the following lexical entry:

(geben ,





labelsid : {vinf}
valency

id
: {adv∗, pp?, obj, iobj}

. . .



) (6.22)

We arrange the lexical attributes denoting accepted roles (labelsid), accepted fields
(labelslp) and accepted node labels (labelsn) in intersective set lattices to allow

CHAPTER 6. ID/LP LEXICON 75

specialization by narrowing down sets. In the example, we specialized the set of
accepted roles from {vinf, vzu, vpp} in lexical type t nonfin (6.18) to {vinf} in (6.22):

labelsid(geben) = labelsid(t nonfin) u labelsid(t inf) u labelsid(t ditr) =
{vinf, vzu, vpp} u {vinf} u R =
{vinf, vzu, vpp} ∩ {vinf} ∩ R =
{vinf}

(6.23)

The lexical attributes denoting role valency (valency
id

), field valency (valency
lp

)
and blocked roles (blocks) are arranged in accumulative set lattices to allow spe-
cialization by adding elements: in the example, we specialized the role valency from
{adv∗, pp?} in lexical type t nonfin (6.18) to the set {adv∗, pp?, obj, iobj} in (6.22):

valency
id

(geben) = valency
id

(t nonfin) u valency
id

(t inf) u valency
id

(t ditr) =
{adv∗, pp?} u ∅ u {obj, iobj} =
{adv∗, pp?} ∪ ∅ ∪ {obj, iobj} =
{adv∗, pp?, obj, iobj}

(6.24)

6.5 Summary

This chapter introduced the TDG lexicon. The set of lexical types is arranged in a
lexical type hierarchy called lexicon lattice which is modeled by a complete lattice.
The lexicon lattice is the composition of the lattices corresponding to the individual
lexical attributes. We define lexical inheritance with respect to the lexicon lattice
using the greatest lower bound-lattice operation.

The next chapter presents a TDG grammar fragment of German. We will use
this fragment in chapter 8 to tackle a number of notorious phenomena in German
syntax.

Chapter 7

German grammar fragment

We present a TDG grammar fragment for German which will enable us to elegantly
tackle a variety of notorious syntactic phenomena. Still, the fragment is only in-
tended to be a demonstration of TDG, and is not meant to be a definitive grammar
for German. For clarity, we introduce grammar specifications concerned with the
ID part separately from those concerned with the LP part.

7.1 ID part

In this section, we introduce grammar specifications concerned with the ID part of
TDG. These specifications include the set R of grammatical roles and the definition
of a set of lexical types defined on the basis of ID attributes.

7.1.1 Definitions

Grammatical roles

The set R of grammatical roles for the grammar fragment is given in Table 7.1.

7.1.2 Subcategorization

For verbs in general, we define a set of lexical types dealing with subcategoriza-
tion. For instance a transitive verb is characterized by requiring an object, and a
ditransitive by requiring both an object and and indirect object. As an example,

76

CHAPTER 7. GERMAN GRAMMAR FRAGMENT 77

role full name

adj adjective
adv adverb

comp complementizer
det determiner

genmod genitival modifier
genobj genitival object
iobj dative indirect object
obj accusative object
pp prepositional phrase
rel relative clause
sub subordinate clause
subj nominative subject
vinf bare infinitive
vpp past participle
vzu zu-infinitive
zu zu-particle

Table 7.1: The set of grammatical roles for the grammar fragment

we show the lexical type t tr id for transitive verbs below:

t tr id =
[

valency
id

: {obj}
]

(7.1)

Another example is the lexical type t ditr id for ditransitive verbs:

t ditr id =
[

valency
id

: {obj, iobj}
]

(7.2)

And verbs subcategorizing for a bare infinitive inherit from the following lexical
type:

t infc id =
[

valency
id

: {vinf}
]

(7.3)

7.1.3 Finite verbs

The ID part of the lexical type t fin id for finite verbs looks like this:

t fin id =

[

labelsid : {sub, rel}
valency

id
: {subj, adv∗, pp?}

]

(7.4)

The set of accepted roles in (7.4) includes sub and rel, i.e. a finite verb can either
be root, the head of a relative clause (rel) or the head of a subordinate clause (sub).

CHAPTER 7. GERMAN GRAMMAR FRAGMENT 78

The role valency consists of a required subject, an arbitrary number of adverbial
modifiers (adv) and at most one prepositional (pp) modifier.

Here is a graphical illustration of (7.4), illustrating the possible incoming and out-
going edges1 of a node with type t fin id:

t fin id

s,rel

sub
j adv

pp (7.5)

Note that since ID trees are non-ordered, the order of the edges in these figures is
arbitrary.

By inheritance, the role valency of finite verbs can be augmented with other comple-
ments such as obj and iobj for a ditransitive verb. E.g. the lexical type t fin ditr id
for finite ditransitive verbs can be obtained as displayed here:

t fin ditr id = t fin id u t ditr id (7.6)

resulting in the following expanded lexical type:

t fin ditr id =

[

labelsid : {sub, rel}
valency

id
: {subj, adv∗, pp?, obj, iobj}

]

(7.7)

Examples

Consider the following sentence:

Peter lacht oft.
Peter laughs often.

“Peter often laughs.”
(7.8)

We show the corresponding ID tree below:

Peter lacht oft

sub
j adv

(7.9)

1In the illustrations, the number of the outgoing edges does not accurately reflect the lexical
type since we do not graphically distinguish optional and obligatory dependents.

CHAPTER 7. GERMAN GRAMMAR FRAGMENT 79

Here, the finite verb lacht is the root. Peter is the subject of lacht and oft an
adverbial modifier.

The ID tree shown in (7.11) corresponds to sentence (7.10):

dass Peter oft lacht
that Peter often laughs

“that Peter often laughs”
(7.10)

dass Peter oft lacht

subj ad
v

sub

(7.11)

Here, lacht is the head of a subordinate clause, as indicated by its role sub. Again,
Peter is the subject of lacht and oft an adverbial modifier.

In the ID tree for (7.12), lacht is the head of a relative clause having grammatical
role rel:

ein Mann, der oft lacht
a man, who often laughs

“a man who often laughs”
(7.12)

ein Mann der oft lacht

det

subj ad
v

rel

(7.13)

Here, lacht heads a relative clause which modified the noun Mann.

7.1.4 Non-finite verbs

The grammatical role of a non-finite verb (lexical type: t nonfin id) is either vinf

(bare infinitive), vzu (zu-infinitive) or vpp (past participle). As opposed to finite
verbs, non-finite verbs never have a subject:

t nonfin id =

[

labelsid : {vinf, vzu, vpp}
valency

id
: {adv∗, pp?}

]

(7.14)

CHAPTER 7. GERMAN GRAMMAR FRAGMENT 80

Here is a graphical illustration of (7.14):

t nonfin id

vin
f,vz

u,v
pp

adv pp (7.15)

We use lexical inheritance to obtain lexical types for bare infinitives (vinf), zu-
infinitives (vzu) and past participles (vpp):

t vinf id = t nonfin id u
[

labelsid : {vinf}
]

(7.16)

t vzu id = t nonfin id u

[

labelsid : {vzu}
valency

id
: {zu}

]

(7.17)

t vpp id = t nonfin id u
[

labelsid : {vpp}
]

(7.18)

Example

Consider the following example sentence:

Die Frau hat oft mit Peter gelacht
The woman has often with peter laughed

“The woman has often laughed with Peter.”
(7.19)

The ID tree analysis of (7.19) is shown below:

die Frau hat oft mit Peter gelacht

de
t

sub
j

adv pp

iobj

vpp

(7.20)

Here, the past participle gelacht is a vpp-dependent of the root hat. gelacht is
modified by the adverb oft and by the prepositional phrase mit Peter.

CHAPTER 7. GERMAN GRAMMAR FRAGMENT 81

7.1.5 Complementizers

Complementizers like dass inherit from lexical type t comp id:

t comp id =

[

labelsid : {comp}
valency

id
: {sub}

]

(7.21)

Here is the graphical version of that lexical type:

t comp id

comp

sub (7.22)

Example

An example sentence including the complementizer dass and its corresponding ID
tree analysis are given below:

Maria glaubt, dass er lacht.
Maria thinks, that he laughs.

“Maria thinks that he laughs.”
(7.23)

Maria glaubt dass er lacht

sub
j comp

su
bj

sub

(7.24)

Here, dass is a comp-dependent of the finite verb glaubt. The subordinate clause
headed by lacht is a sub-dependent of dass.

7.1.6 Adverbs

Adverbs inherit from t adv id:

t adv id =
[

labelsid : {adv}
]

(7.25)

CHAPTER 7. GERMAN GRAMMAR FRAGMENT 82

7.1.7 Zu-particle

The zu-particle inherits from lexical type t zu id:

t zu id =
[

labelsid : {zu}
]

(7.26)

7.1.8 Nouns

All nouns inherit from the following lexical type:

t noun id =
[

labelsid : {subj, obj, iobj, genobj, genmod}
]

(7.27)

The role of the noun depends on its case: e.g. if the noun is in accusative case,
labelsid contains only role obj.2

Common nouns

Common nouns inherit from the following lexical type:

t cnoun id = t noun id u
[

valency
id

: {det?, adj∗, genmod?, pp?, rel?}
]

(7.28)

Below is a graphical illustration of (7.28):

t cnoun id

subj,obj,iobj,genobj,genmod

det adj
genmod

pp rel (7.29)

Examples

Here are two examples for common nouns. An ID analysis of the np glossed below
is depicted in (7.31):

die hübsche kleine Frau des Mannes
the pretty small woman the man(gen)

“the man’s pretty small woman”
(7.30)

2For simplicity, we have not included a treatment of agreement and case in the grammar
fragment. We illustrate how to handle this in appendix A.

CHAPTER 7. GERMAN GRAMMAR FRAGMENT 83

die hübsche kleine Frau des Mannes

det adj adj

det

genmod

(7.31)

In (7.31), die is the determiner of the noun Frau, and hübsche and kleine are
adjectival modifiers. The noun phrase des Mannes is a genitival modifier of Frau.

The ID tree analysis of the sentence glossed in (7.32) is shown in (7.33):

die Frau mit dem Teleskop, die lacht
the woman with the telescope, who laughs

“the woman with the telescope who laughs”
(7.32)

die Frau mit dem Teleskop die lacht

de
t pp

det

iobj sub
j

rel

(7.33)

In (7.33), the noun Frau is modified by the pp mit dem Teleskop and the relative
clause die lacht.

Proper names

Proper names inherit from the following lexical type:

t pname id = t noun id u
[

valency
id

: {det?, adj∗, genmod?, pp?, rel?}
]

(7.34)

Personal pronouns

Personal pronouns inherit from the following lexical type:

t perpro id = t noun id (7.35)

CHAPTER 7. GERMAN GRAMMAR FRAGMENT 84

Relative pronouns

Relative pronouns inherit from the following lexical type:

t relpro id = t noun id (7.36)

7.1.9 Determiners

Determiners inherit from lexical type t det id:

t det id =
[

labelsid : {det}
]

(7.37)

7.1.10 Adjectives

Adjectives inherit from t adj id:

t adj id =
[

labelsid : {adj}
]

(7.38)

7.1.11 Prepositions

Prepositions inherit from lexical type t prep id:

t prep id =
[

labelsid : {pp}
]

(7.39)

The role valency of a preposition contains, depending on the type of the preposition,
either obj (if the preposition combines with a accusative complement) or iobj (dative
complement). This is reflected in the role valency of the two lexical subtypes
t prep obj id and t prep iobj id:3

t prep obj id = t prep id u
[

valency
id

: {obj}
]

(7.40)

t prep iobj id = t prep id u
[

valency
id

: {iobj}
]

(7.41)

For example, the resulting lexical type t prep iobj id looks like this:

t prep iobj id =

[

labelsid : {pp}
valency

id
: {iobj}

]

(7.42)

3It is also possible to distinguish between the two types of prepositions using case. We opt for
the simpler way of distinguishing them here.

CHAPTER 7. GERMAN GRAMMAR FRAGMENT 85

As an illustration, we show a graphical version of (7.42) below:

t prep iobj id

pp

iobj
(7.43)

Example

Here is an example sentence including the prepositional phrase mit dem Mann and
its corresponding ID analysis:

Maria lacht mit dem Mann.
Maria laughs with the man.

“Maria laughs with the man.”
(7.44)

Maria lacht mit dem Mann

sub
j pp

det

iobj

(7.45)

Here, mit is a pp-dependent of lacht. In turn, Mann is a iobj-dependent of mit.

7.2 LP part

We proceed with the LP part of the grammar fragment. Thereby, we introduce
the set FE of topological fields, the set FN of node labels and a total order on the
set F = FE] FN of topological fields and node labels. Then, we introduce a set
of lexical types defined on the basis of LP attributes and also the ID/LP attribute
blocks.

CHAPTER 7. GERMAN GRAMMAR FRAGMENT 86

7.2.1 Definitions

Topological fields

The set FE of topological fields defined for the grammar fragment is depicted in
Table 7.2.

field full name

if intraposition field
mf Mittelfeld
nf Nachfeld

nmf nominal Mittelfeld
nvf nominal Vorfeld
nxf nominal extraposition field
pf particle field
rvf relative clause Vorfeld
vcf verb canonical field
vf Vorfeld
vxf verb extraposition field

Table 7.2: The set of topological fields for the grammar fragment

The fields vf, mf, vcf and nf correspond to Vorfeld, Mittelfeld, right sentence bracket
and Nachfeld in topological fields theory. vcf abbreviates ‘verb canonical field’: it is
not only the counterpart of the right sentence bracket-position in topological fields
theory but also, more generally, the landing site for verbs in canonical position, i.e.
in the typical, non-marked position. The ‘particle field’ pf is the landing site for
the zu-particle.

The ‘intraposition field’ if is the landing site for vps intraposed to the left of the
Mittelfeld. The ‘relative clause Vorfeld’ rvf is the position of the relative pronoun
in relative clauses to the left of the Mittelfeld (also to the left of the intraposition
field).4 rvf is also the landing site for nps, pps or vps participating in a pied
piping construction (see also the discussion about pied piping in chapter 8 and
appendix A).

The ‘verb extraposition field’ vxf is a position for vps extraposed to the right of their
governors, but to the left of the Nachfeld. Postulating the vxf goes against many
theories (e.g. Kathol 1995) adopting topological fields theory where extraposed
vps land in the Nachfeld. But if extraposed vps landed in the same field as other

4Appendix A contains a more in-depth discussion about relative clauses and especially the
relative pronoun and the rvf-field.

CHAPTER 7. GERMAN GRAMMAR FRAGMENT 87

extraposed material such as extraposed relative clauses, then extraposed vps and
extraposed relative clauses in the Nachfeld should not be ordered with respect to
each other. However, the following contrast demonstrates that they are ordered:
extraposed vps must precede extraposed relative clauses:

(dass) eine Frau versucht, zu schlafen, die lacht
(that) a woman tries, to sleep, who laughs

“(that) a woman who laughs tries to sleep”
(7.46)

∗ (dass) eine Frau versucht, die lacht, zu schlafen
(that) a woman tries, who laughs, to sleep

(7.47)

In (7.46), zu schlafen is the extraposed vp and die lacht the extraposed relative
clause. As can be seen from the ungrammaticality of (7.47), zu schlafen must pre-
cede die lacht. We capture this ordering by assigning different fields to extraposed
vps and extraposed relative clauses: extraposed vps land in the vxf and extraposed
relative clauses in the nf, and vxf precedes nf.

We coin the fields ‘nominal Vorfeld’ (nvf) and ‘nominal Mittelfeld’ (nmf) to hint
at the similarity between the topological structures induced by nouns and verbs.
nvf is the position of the determiner to the very left of the governing noun. We
liken this position to the Vorfeld. nmf is the position for adjectives between the
determiner and the noun. Since a noun can be modified by any number of adjectives
in any order5, we liken the adjective position to the Mittelfeld of a verb: here,
non-verbal complements can also be rather freely permuted. Finally, the ‘nominal
extraposition field’ (nxf) is the field for a genitival modifier or a pp following the
noun. It is the counterpart of the verb extraposition field vxf.

Node labels

The set FN of node labels is shown here:

node label full name

n words related to nouns
v12 finite verbs (left sentence bracket)
v words related to verbs

(7.48)

We assign node label n to all nouns and to all words related to nouns such as
determiners and adjectives. Node label v12 is assigned to finite verbs in the left
sentence bracket in verb-first and verb-second sentences. The ‘1’ in v12 stands for
verb-first and the ‘2’ for verb-second. Node label v applies to all other verbs and
also to words related to verbs such as the zu-particle.

5Notice that the order of the adjectives modifying a noun tends to have semantic implications.

CHAPTER 7. GERMAN GRAMMAR FRAGMENT 88

Global order

The set F = FE] FN of topological fields and node labels is totally ordered. The
total order utilized for the grammar fragment is displayed below:

nvf ≺ nmf ≺ n ≺ nxf ≺ vf ≺ v12 ≺ rvf ≺ if ≺ mf ≺ vcf ≺ pf ≺ v ≺ vxf ≺ nf

(7.49)

In the course of this section, we will subdivide the total order shown in (7.49) into
so-called topological domains induced by lexical types. As an example, we show
the lexical type t cnoun lp for common nouns, which we anticipate in (7.50) below
(omitting the labelslp-attribute):

t cnoun lp =





labelsn : {n}
valency

lp
: {nvf, nmf∗, nxf?, nf?}

. . .



 (7.50)

Nouns are assigned the node label n and they offer the fields nvf, nmf, nxf and nf.
Considering the total order in (7.49), t cnoun lp induces the following topological
domain:

nvf ≺ nmf ≺ n ≺ nxf ≺ nf (7.51)

where the noun (node label n) follows the fields nvf (for determiners and genitival
modifiers) and nmf (adjectives), and precedes nxf (pps and genitival modifiers) and
nf (relative clauses).

7.2.2 Finite verbs

In the LP part of the grammar fragment, finite verbs inherit from lexical type
t fin lp:

t fin lp =

[

labelsn : {v, v12}
valency

lp
: {if?, mf∗, vcf?, vxf?, nf?}

]

(7.52)

The node label of a finite verb is either v (in verb-final position) or v12 (in left
sentence bracket position). Each finite verb offers the positions intraposition field
(if), Mittelfeld (mf), right sentence bracket (vcf), verb extraposition field (vxf) and
Nachfeld (nf). We do not allow climbing through finite verb nodes: all roles are
blocked.

We distinguish three types of finite verbs, depending on their position: (a) verbs
in left sentence bracket (verb-first or verb-second) position, (b) verbs in verb-final
subordinate clause position and (c) verbs in verb-final relative clause position.
We obtain the corresponding lexical types t v12 lp, t sub lp and t rel lp by lexical
inheritance.

CHAPTER 7. GERMAN GRAMMAR FRAGMENT 89

Verb-first and verb-second

Finite verbs in the left sentence bracket inherit from lexical type t v12 lp:

t v12 lp = t fin lp u









labelsid : ∅
labelslp : ∅
labelsn : {v12}

valency
lp

: {vf?}









(7.53)

t v12 lp specializes lexical type t fin lp. It also fixes the value of the ID attribute
labelsid to the empty set. The set of accepted fields is also empty6 and its node
label is v12. The field valency of a finite verb in verb-first or verb-second position
includes besides the fields inherited from t fin lp also the optional Vorfeld-position
(vf?). The Vorfeld in a verb-first sentence is empty and the Vorfeld is non-empty
in a verb-second sentence.

The topological domain induced by the lexical type t v12 lp and the total order
displayed in (7.49) is shown here:

vf ≺ v12 ≺ if ≺ mf ≺ vcf ≺ vxf ≺ nf (7.54)

Below, we show a graphical illustration of t v12 lp:

t v12 lp

vf if mf vcf vxf nf
v12 (7.55)

Notice that contrary to the graphical illustrations we display in the ID part, the
order of the edges is crucial in illustrations of lexical types concerned with the LP
part.

Examples

We continue with some examples. The first is a verb-second sentence:

Maria hat den Mann geliebt.
Maria has the man(acc) loved.

“Maria has loved the man.”
(7.56)

6If the sets of accepted roles and accepted fields are empty, then verbs in this position must
always be the root. But sentences like Er sagt, er sei der beste. show that this is not the case:
here, sei is in verb-second position but not the root of the sentence. For simplicity, we do not
treat this phenomenon here.

CHAPTER 7. GERMAN GRAMMAR FRAGMENT 90

Maria hat den Mann geliebt

n
v12

n
n v

vf

nvf

mf vcf

(7.57)

where Maria in the Vorfeld (vf) correctly precedes the finite verb hat with node
label v12. hat in turn precedes the np den Mann in the Mittelfeld (mf) and the
past participle geliebt in the right sentence bracket (vcf).

In the example below, the past participle versprochen lands in the right sentence
bracket position and the vp den Mann zu lieben is extraposed into the vxf:

Maria hat versprochen, den Mann zu lieben.
Maria has promised, the man(acc) to love.

“Maria has promised to love the man.”
(7.58)

Maria hat versprochen den Mann zu lieben

n
v12

v

n
n v

v

vf vcf

nvf

mf pf

vxf

(7.59)

The next example is a verb-first sentence (the vf is empty). Here, the fields vcf,
vxf and nf of the finite verb hat are all used up: the right sentence bracket (vcf) is
filled by the past participle versprochen, the verb extraposition field (vxf) by the
extraposed vp ihn zu lieben and the Nachfeld (nf) by the relative clause die oft
lacht :

Hat die Frau versprochen, ihn zu lieben, die oft lacht?
Has the woman promised, him to love, who often laughs?

“Has the woman who often laughs promised to love him?”
(7.60)

CHAPTER 7. GERMAN GRAMMAR FRAGMENT 91

Hat die Frau versprochen ihn zu lieben die oft lacht

v12

n
n v

n v
v

n v
v

nv
f

mf vcf

mf pf

vxf

rvf mf

nf

(7.61)

Verb-final subordinate clause

Finite verbs in verb-final position inherit from the following lexical type:

t sub lp = t fin lp u





labelsid : {sub}
labelslp : {nf}
labelsn : {v}



 (7.62)

Verbs of this type have role sub, land only in the Nachfeld nf and have node label
v. Their field valency equals the field valency inherited from t fin lp.

Here is the topological domain induced by the lexical type in (7.62) and the total
order in (7.49):

if ≺ mf ≺ vcf ≺ v ≺ vxf ≺ nf (7.63)

And below, we depict the corresponding graphical illustration:

t sub lp

nf

if mf
vc

f vxf nf
v

(7.64)

Example

Here is an example LP analysis of a subordinate clause:

dass Maria den Mann zu lieben versucht
that Maria the man(acc) to love tries

“that Maria tries to love the man”
(7.65)

CHAPTER 7. GERMAN GRAMMAR FRAGMENT 92

Inducing the following ID tree analysis:

dass Maria den Mann zu lieben versucht

v

n
n

n
v

v
v

mf

nvf

mf

pf

vcf

nf

(7.66)

Here, the finite verb versucht lands in the nf of the complementizer dass. The two
nps Maria and den Mann land in the mf of versucht, and the verbal complement
zu lieben in the vcf.

Verb-final relative clause

Finite verbs heading a relative clause inherit from lexical type t rel lp:

t rel lp = t fin lp u









labelsid : {rel}
labelslp : {nf}
labelsn : {v}

valency
lp

: {rvf}









(7.67)

Verbs of this type have role rel. They can only land in the Nachfeld (nf), accept
node label v and offer the relative clause Vorfeld (rvf). rvf is the landing site of the
relative pronoun and also pied piped material such as pps and vps.

The attentive reader might ask the question why we use the new field ‘relative
clause Vorfeld’ (rvf) and why we do not let relative pronouns (and pied piped nps,
pps and vps) land in the Vorfeld (vf)? The answer is that if we indeed applied
vf for the analysis of relative clauses, we would overgenerate with respect to vp

pied piping. The set of constituents which may participate in a vp pied piping
construction (landing in the field rvf) is much smaller than the set of constituents
which may be fronted (landing in the field vf). E.g. vps of any type may be fronted,
including vps headed by bare infinitives, past participles or zu-infinitives. But only
the latter can also occur in a pied piping construction.

Here are some examples. In (7.68) and (7.69) below, the vp den Mann zu lieben is
fronted into the Vorfeld (7.68) and takes part in a pied piping construction (7.69).
Both sentences are grammatical because the vp is headed by a zu-infinitive:

Den Mann zu lieben verspricht Maria.
The man(acc) to love promises Maria.

“Maria promises to love the man.”
(7.68)

CHAPTER 7. GERMAN GRAMMAR FRAGMENT 93

ein Mann, den zu lieben Maria verspricht
a man, whom to love Maria promises

“a man whom Maria promises to love”
(7.69)

(7.70) and (7.71) contain the vp den Mann geliebt which is headed by the past
participle geliebt. vps of this kind may also fronted (7.70), but they cannot partic-
ipate in a pied piping construction, as demonstrated by the ungrammaticality of
(7.71):

Den Mann geliebt hat Maria.
The man(acc) loved has Maria.

“Maria has loved the man.”
(7.70)

∗ ein Mann, den geliebt Maria hat
a man, whom loved Maria has

(7.71)

Since past participles such as geliebt can be fronted, they must include vf in their
set of accepted fields. If we did not distinguish between vf and rvf, i.e. if we pos-
tulated that relative pronouns and pied piped material both landed in the vf, then
geliebt could also participate in pied piping constructions. But this is obviously
not possible, as (7.71) demonstrates. We account for this distinction by including
rvf in the set of accepted fields of zu-infinitives and by not including it in the set
of accepted fields of past participles and bare infinitives.

Example

Here is an example of a finite verb heading a relative clause:

ein Mann, den Maria zu lieben versucht
a man, whom Maria to love tries

“a man whom Maria tries to love”
(7.72)

ein Mann den Maria zu lieben versucht

n
n

n n
v

v
v

nvf

rvf mf

pf

vcf

nf

(7.73)

The relative sentence is headed by the finite verb versucht which lands in the nf

of the modified noun Mann. In turn, the relative pronoun den lands in the rvf of
versucht. The other dependents of versucht, Maria and zu lieben, land in its mf

and vcf respectively.

CHAPTER 7. GERMAN GRAMMAR FRAGMENT 94

7.2.3 Non-finite verbs

We distinguish between non-finite verbs in canonical position and non-finite verbs
in non-canonical position. Typically, verbs are in canonical position if the corre-
sponding linearization is unmarked. The canonical position of a non-finite verb
is to the left of its verbal governor (in a verb-final sentence) or in the right sen-
tence bracket (in a verb-first or verb-second sentence). If a non-finite verb is either
fronted into the Vorfeld, participates in a pied piping construction or is intraposed
or extraposed, we say that this verb is in non-canonical position.

Canonical position

If in canonical position (lexical type: t can lp), a non-finite verb lands in the vcf of
its governing verb, has node label v, and offers vcf. It does not block any role:

t can lp =









labelslp : {vcf}
labelsn : {v}

valency
lp

: {vcf?}
blocks : ∅









(7.74)

(7.74) induces the following topological domain:

vcf ≺ v (7.75)

The corresponding graphical illustration is shown here:

t can lp

vcf

vc
f

v

(7.76)

In canonical position, non-finite verbs do not offer the Mittelfeld-position mf: non-
verbal dependents are thus forced to climb up into the mf or vf offered by nodes
higher up in the tree. This idea is also reflected in Gerdes & Kahane’s (2001)
approach where non-finite verbs in the right sentence bracket open a ‘degenerate’
box with only one position offered to a verbal dependent to the left (corresponding
to the offered vcf-position in our proposal).

CHAPTER 7. GERMAN GRAMMAR FRAGMENT 95

It should be noted that verbs in canonical position do not offer fields for verbal
dependents in any of the non-canonical positions vf, rvf, if and vxf, and they do
not offer nf.

Example

An example analysis involving a non-finite verb in canonical position is given below:

dass Maria den Mann zu lieben versucht
that Maria the man(acc) to love tries

“that Maria tries to love the man”
(7.77)

dass Maria den Mann zu lieben versucht

v

n
n

n
v

v
v

mf

nvf

mf

pf

vcf

nf

(7.78)

Here, the zu-particle of the non-finite verb lieben lands in its pf. Since lieben in
canonical position (vcf), it does not offer mf, and its object Mann is forced climb
up into the mf of the finite verb versucht.

Non-canonical position

In non-canonical position, i.e. in the vf (fronted), rvf (pied piped), if (intraposed)
or vxf (extraposed), a non-finite verb is assigned the following lexical type:

t noncan lp =









labelslp : {vf, rvf, if, vxf}
labelsn : {v}

valency
lp

: {mf∗, vcf?, vxf?, nf?}
blocks : {adv, pp}









(7.79)

Verbs in non-canonical position block their adjuncts, i.e. adverbs (adv) and pps
(pp).

The topological domain corresponding to (7.79) is shown below:

mf ≺ vcf ≺ v ≺ vxf ≺ nf (7.80)

CHAPTER 7. GERMAN GRAMMAR FRAGMENT 96

And here is an illustration of lexical type t noncan lp:

t noncan lp

vf,rvf,if,xf

mf vc
f vxf nf

v

(7.81)

Similar to finite verbs in verb-final position, non-finite verbs in non-canonical po-
sition offer the fields mf and vcf to their left, and vxf and nf to their right.

Example

Here is an example sentence including an infinitive in non-canonical position (ex-
traposed):

dass Maria versucht, den Mann zu lieben
that Maria tries, the man(acc) to love

“that Maria tries to love the man”
(7.82)

dass Maria versucht den Mann zu lieben

v

n
v

n
n v

v

mf

nf

nvf

mf pf

vxf

(7.83)

Here, the vp den Mann zu lieben is extraposed into the vxf of the finite verb
versucht. The object Mann of lieben is not forced to climb up as in the canonical
case (7.78) because lieben is in non-canonical position, and hence does offer the
field mf for Mann to land in.

Distinguishing non-canonical positions

Only certain kinds of non-finite verbs can land in certain non-canonical positions.
Roughly, only zu-infinitives can land in any non-canonical position. Modals like

CHAPTER 7. GERMAN GRAMMAR FRAGMENT 97

können can be fronted or extraposed, but not intraposed or pied piped. All other
verbs can only be fronted, but neither extraposed nor intraposed or pied piped.
To capture these distinctions, we introduce the additional lexical types t front lp
for fronted verbs, t pied lp for pied piped verbs, t intra lp for intraposed verbs and
t extra lp for extraposed verbs. Here is the lexical type for fronted verbs:

t front lp = t noncan lp u
[

labelslp : {vf}
]

(7.84)

Pied piped verbs inherit from t pied lp:

t pied lp = t noncan lp u
[

labelslp : {rvf}
]

(7.85)

Intraposed verbs inherit from lexical type t intra lp:

t intra lp = t noncan lp u
[

labelslp : {if}
]

(7.86)

And extraposed verbs from lexical type t extra lp:

t extra lp = t noncan lp u
[

labelslp : {vxf}
]

(7.87)

Zu-infinitives

Zu-infinitives inherit from lexical type t vzu lp:

t vzu lp =

[

valency
lp

: {pf}
blocks : {zu}

]

(7.88)

In their field valency, they require their zu-particle to land in the particle field (pf).
They also block their zu-particle (role zu).

7.2.4 Complementizers

Here is the LP part of the lexical type t comp lp for complementizers such as dass:

t comp lp =









labelslp : {vf, nf}
labelsn : {v}

valency
lp

: {nf}
blocks : ∅









(7.89)

Complementizers land either in the vf or in the nf of a verb. They offer the field
nf for the subordinate clause, and block no role.

CHAPTER 7. GERMAN GRAMMAR FRAGMENT 98

The corresponding topological domain requires that the complementizer (node la-
bel: v) precede the subordinate clause in the nf:

v ≺ nf (7.90)

Here is a graphical illustration of (7.89):

t comp lp

vf,nf

nf
v

(7.91)

Example

We give an example LP tree analysis below:

Maria glaubt, dass er lacht.
Maria thinks, that he laughs.

“Maria thinks that he laughs.”
(7.92)

Maria glaubt dass er lacht

n
v12

v

n
v

vf nf

mf

nf

(7.93)

In (7.93), the complementizer dass lands in the nf of the finite verb glaubt in verb-
second position. In turn, the subordinate clause headed by lacht lands in the nf of
dass.

7.2.5 Adverbs

Adverbs inherit from t adv lp:

t adv lp =

[

labelslp : {vf, mf}
labelsn : {v}

]

(7.94)

CHAPTER 7. GERMAN GRAMMAR FRAGMENT 99

Adverbs can land in the vf or mf and are assigned node label v.

7.2.6 Zu-particle

The zu-particle inherits from lexical type t zu lp:

t zu lp =

[

labelslp : {pf}
labelsn : {v}

]

(7.95)

The zu particle lands in the pf and is assigned node label v.

7.2.7 Nouns

All nouns inherit from the following lexical type:

t noun lp =

[

labelslp : {vf, rvf, mf, nvf, nxf}
labelsn : {n}

]

(7.96)

(7.96) states that the only accepted node label of a noun is n. Nouns can land
either in the Vorfeld (vf), relative clause Vorfeld (rvf) or the Mittelfeld (mf) of a
verb. As a genitival modifier, they can land either to the left of a governing noun
in the nominal Vorfeld (nvf) or to the right in the nominal extraposition field (nxf).

Common nouns

Common nouns inherit from lexical type t cnoun lp:

t cnoun lp = t noun lp u

[

valency
lp

: {nvf, nmf∗, nxf?, nf?}
blocks : {det, adj, genmod}

]

(7.97)

The lexical type (7.97) induces the following topological domain:

nvf ≺ nmf ≺ n ≺ nxf ≺ nf (7.98)

And we display the corresponding illustration below:

t cnoun lp

vf,rvf,mf,nvf,nxf

nvf nm
f nxf nf

n

(7.99)

CHAPTER 7. GERMAN GRAMMAR FRAGMENT 100

Each noun is assigned the node label n. To its left, it offers the fields nvf and nmf:
nvf for its determiner or for a fronted genitival modifier and nmf for an arbitrary
number of adjectives. To its right, a noun offers nxf and nf: nxf is the landing
site for either a genitival or a prepositional modifier, and nf the landing site for
non-extraposed relative clauses. Determiners, adjectives and genitival modifiers
are blocked, whereas pps and relative clauses may be extracted.

Examples

Genitival modifiers may either follow or precede the noun they modify. In the
example below, the genitival modifier des Mannes lands in the nxf to the right of
the noun Frau:

die hübsche kleine Frau des Mannes
the pretty small woman the man(gen)

“the man’s pretty small woman”
(7.100)

die hübsche kleine Frau des Mannes

n n n
n

n
n

nvf nmf nm
f

nvf

nxf

(7.101)

The genitival modifier des Mannes precedes the noun Frau in the following example:

des Mannes hübsche kleine Frau
the man(gen) pretty small woman

“the man’s pretty small woman”
(7.102)

des Mannes hübsche kleine Frau

n
n n n

n
nvf

nvf nmf nm
f

(7.103)

Here, the modifier ‘takes over’ the position of noun’s determiner and there may be
no determiner in addition to it, which renders the following linearization ungram-
matical:

∗ die des Mannes hübsche kleine Frau
die the man(gen) pretty small woman

(7.104)

CHAPTER 7. GERMAN GRAMMAR FRAGMENT 101

In our grammar, we capture this fact as follows: nouns offer the nvf-field, and both
determiners and genitival modifiers are allowed to land that field. Since the nvf

may only contain up to one topological dependent, either the determiner or the
genitival modifier may land in there, but not both.

Proper names

Proper names inherit from the following lexical type:

t pname lp = t noun lp u

[

valency
lp

: {nvf?, nmf∗, nxf?, nf?}
blocks : {det, adj, genmod}

]

(7.105)

The only difference between proper names and common nouns in the grammar
fragment is that proper names have an optional nominal Vorfeld (nvf), whereas the
nvf is obligatory for common nouns.

Personal pronouns

Personal pronouns inherit from the lexical type given below:

t perpro lp = t noun lp (7.106)

Relative pronouns

Relative pronouns inherit from the lexical type given below:

t relpro lp = t noun lp u
[

labelslp : {rvf, mf, nvf, nxf}
]

(7.107)

Relative pronouns typically land in the ‘relative clause Vorfeld’ of the finite verb
heading the relative clause. In addition, they can land in the Mittelfeld of a pied
piped zu-infinitive vp, or in the nvf or nxf of a pied piped np, or in the nxf of a
pied piped pp. Contrary to other nouns, relative pronouns cannot land in the vf.

7.2.8 Determiners

Determiners inherit from lexical type t det lp:

t det lp =

[

labelslp : {nvf}
labelsn : {n}

]

(7.108)

t det lp requires that determiners land in the the nvf. Their node label is n.

CHAPTER 7. GERMAN GRAMMAR FRAGMENT 102

7.2.9 Adjectives

Adjectives inherit from t adj lp:

t adj lp =

[

labelslp : {nmf}
labelsn : {n}

]

(7.109)

Adjectives land in the nmf and are accept node label n.

7.2.10 Prepositions

Prepositions inherit from the following lexical type:

t prep lp =









labelslp : {vf, rvf, mf, nxf}
labelsn : {n}

valency
lp

: {nxf}
blocks : {obj, iobj}









(7.110)

Prepositions may either land in the vf or the mf of a verb, or to the right of a
noun in the nxf. In addition, they can also land in the relative clause Vorfeld rvf

of a relative clause when they participate in a pied piping construction. Their
node label is n and their nominal complement is required to land in their nxf.
Prepositions block the roles obj and iobj.

The following topological domain corresponds to lexical type t prep lp:

n ≺ nxf (7.111)

A graphical illustration of t prep lp is displayed here:

t prep lp

vf,
mf,n

xf

nxf
n

(7.112)

CHAPTER 7. GERMAN GRAMMAR FRAGMENT 103

Example

We give an example LP tree analysis below:

Mit dem Mann lacht Maria.
With the man laughs Maria.

“Maria laughs with the man.”
(7.113)

Mit dem Mann lacht Maria

n

n
n

v12
n

vf

nvf

nxf

mf

(7.114)

Here, the preposition mit lands in the Vorfeld (vf) of the finite verb lacht and Mann
lands in the nxf of mit.

7.3 Lexical entries

In this section, we demonstrate how to derive lexicon entries from the lexical types
defined introduced above.

7.3.1 Finite verbs

Here is how we obtain the lexical entry for the finite verb gibt in verb-final subor-
dinate clause position:

(gibt , t fin id u t ditr id u t sub lp) (7.115)

gibt is a finite verb (t fin id), it is ditransitive (t ditr id) and lands in verb-final
subordinate clause position (t sub lp).

(7.115) gives rise to the following lexical entry:

(gibt ,

















labelsid : {sub}
valency

id
: {subj, adv∗, pp?, obj, iobj}

labelslp : {nf}
labelsn : {v}

valency
lp

: {if?, mf∗, vcf?, vxf?, nf?}
blocks : R

















) (7.116)

CHAPTER 7. GERMAN GRAMMAR FRAGMENT 104

Making use of lexical ambiguity, we propose for each finite verb two further lexical
entries applying in left sentence bracket position (7.117) and in verb-final relative
clause position (7.118) respectively:

(gibt , t fin id u t ditr id u t v12 lp) (7.117)

(gibt , t fin id u t ditr id u t rel lp) (7.118)

7.3.2 Non-finite verbs

Below, we give an example of how to obtain the lexical entry for the past participle
gegeben:

(gegeben , t vpp id u t ditr id u t can lp) (7.119)

gegeben is a past participle (t vpp id), ditransitive (t ditr id) and lands in canonical
position (t can lp).

(7.119) induces the following lexical entry:

(gegeben ,

















labelsid : {vpp}
valency

id
: {adv∗, pp?, obj, iobj}

labelslp : {vcf}
labelsn : {v}

valency
lp

: {vcf?}
blocks : ∅

















) (7.120)

Past participles like gegeben can also land in the Vorfeld in a verb-second sentence.
We reflect this by proposing an additional lexical entry:

(gegeben , t vpp id u t ditr id u t front lp) (7.121)

7.3.3 Complementizers

Here is how we obtain the lexical entry for the complementizer dass:

(dass , t comp id u t comp lp) (7.122)

(dass ,

















labelsid : {comp}
valency

id
: {sub}

labelslp : {vf, nf}
labelsn : {v}

valency
lp

: {nf}
blocks : ∅

















) (7.123)

CHAPTER 7. GERMAN GRAMMAR FRAGMENT 105

7.3.4 Nouns

We construct the lexical entry for the common noun Frau below:

(Frau , t cnoun id u t cnoun lp) (7.124)

(Frau ,

















labelsid : {subj, obj, iobj, genobj, genmod}
valency

id
: {det?, adj∗, genmod?, pp?, rel?}

labelslp : {vf, rvf, mf, nvf, nxf}
labelsn : {n}

valency
lp

: {nvf, nmf∗, nxf?, nf?}
blocks : {det, adj, genmod}

















) (7.125)

7.3.5 Prepositions

An example lexical entry for the preposition mit is constructed below:

(mit , t prep iobj id u t prep lp) (7.126)

(mit ,

















labelsid : {pp}
valency

id
: {iobj}

labelslp : {vf, rvf, mf, nxf}
labelsn : {n}

valency
lp

: {nxf}
blocks : {obj, iobj}

















) (7.127)

7.4 Summary

We proposed a TDG grammar fragment for German. Since TDG is a highly lex-
icalized grammar formalism, the focus of this chapter was on how to specify the
lexical type hierarchy. We specified the lexicon in a modular fashion by introducing
the lexical types concerned with ID and LP (and ID/LP) attributes separately. In
the final section, we showed how to put together lexical entries from the lexical
types introduced before.

In the following chapter, we demonstrate that the grammar fragment is able to
tackle a variety of notorious phenomena in German syntax.

Chapter 8

Phenomena

This chapter applies the TDG grammar fragment laid out in the preceding chapter
to some of the most notorious phenomena in German syntax. We begin with ana-
lyzing scrambling (Ross 1967) in the Mittelfeld. Then, we turn to vp-dislocation-
related constructions, including extraposition, intraposition and fronting. The so-
called auxiliary flip construction (Hinrichs & Nakazawa 1994) is discussed there-
after, followed by a section about relative clauses, covering relative clause extra-
position and pied piping. Many of the analyses given in this chapter have already
been presented in (Duchier & Debusmann 2001).

8.1 Scrambling

Non-verbal material can be quite freely permuted in the Mittelfeld: in addition to
the linearization glossed in (8.1), the linearization in (8.2) is also possible, where
the vp einen Roman zu schreiben is discontinuous:

(dass) Maria einen Roman zu schreiben verspricht
(that) Maria a novel(acc) to write promises

“(that) Maria promises to write a novel”
(8.1)

(dass) einen Roman Maria zu schreiben verspricht
(that) a novel(acc) Maria to write promises

“(that) Maria promises to write a novel”
(8.2)

106

CHAPTER 8. PHENOMENA 107

The ID tree is the same for both (8.1) and (8.2):

(dass) Maria einen Roman zu schreiben verspricht

subj

det

obj zu

vzu

(8.3)

And here are the LP trees corresponding to (8.1) and (8.2):

(dass) Maria einen Roman zu schreiben verspricht

n
n

n
v

v
v

mf

nvf

mf

pf

vcf

(8.4)

(dass) einen Roman Maria zu schreiben verspricht

n
n n

v
v

v

mf

nvf

mf

pf

vcf

(8.5)

Because both nps Maria and einen Roman land in the same field, the mf of the
finite verb verspricht, they are not ordered with respect to each other and both LP
trees (8.4) and (8.5) are licensed. In (8.4), Maria precedes einen Roman, and in
(8.5), einen Roman precedes Maria.

8.2 VP dislocation

There are four kinds of vp dislocation in German: fronting, extraposition, intrapo-
sition and vp pied piping. In verb-second sentences, vps headed by any non-finite

CHAPTER 8. PHENOMENA 108

verb may be fronted into the Vorfeld. vps headed by a zu-infinitive may, in addi-
tion, be dislocated to the right of their verbal governors or to the left. Dislocation
to the right is called extraposition. Dislocation to the left of the Mittelfeld (but
not into the Vorfeld) is called intraposition. In relative clauses (see also section 8.4
below), zu-infinitives can additionally take part in a pied piping construction.

Notice that for simplicity, we do not take into account the issue of coherence and
incoherence. In simple terms, only a certain class of verbs which can construct
‘incoherently’ allows extraposition, intraposition or pied piping of its zu-infinitival
complement. We discuss the issue of coherence and incoherence in appendix A.

8.2.1 Fronting

Here is an example where the full vp einen Roman zu schreiben is fronted to the
left of the finite verb verspricht :

Einen Roman zu schreiben verspricht Maria.
A novel(acc) to write promises Maria.

“Maria promises to write a novel.”
(8.6)

We show the corresponding ID/LP analysis below:

Einen Roman zu schreiben verspricht Maria

det

obj zu

vzu subj

Einen Roman zu schreiben verspricht Maria

n
n v

v
v12

n
nvf

mf pf

vf mf

(8.7)

Here, the zu-infinitive zu schreiben lands in the Vorfeld (vf) of the finite verb
verspricht. It takes along its object Roman which lands in its Mittelfeld (mf). The
subject Maria lands in the mf of its governor verspricht.

CHAPTER 8. PHENOMENA 109

8.2.2 Partial fronting

Dependents of fronted verbs may be dislocated into the Mittelfeld, resulting in
partial fronting. In the following example, zu schreiben is fronted but its object np

einen Roman is dislocated into the Mittelfeld:

Zu schreiben verspricht Maria einen Roman.
To write promises Maria a novel(acc).

“Maria promises to write a novel.”
(8.8)

In the corresponding ID/LP analysis, the partial vp zu schreiben is fronted into
the vf while the object Roman climbs up into the mf of verspricht :

Zu schreiben verspricht Maria einen Roman

zu

vzu subj

det

obj

Zu schreiben verspricht Maria einen Roman

v
v

v12
n

n
n

pf

vf mf

nvf

mf

(8.9)

8.2.3 Extraposition

Extraposition of vps proceeds similar to fronting: here, a vp is dislocated to the
right of its verbal governor. An example is glossed below:

(dass) Maria verspricht, einen Roman zu schreiben
(that) Maria promises, a novel(acc) to write

“(that) Maria promises to write a novel”
(8.10)

The landing site for extraposed vps is the verb extraposition field (vxf). In the
ID/LP analysis presented below in (8.11), the vp einen Roman zu schreiben is

CHAPTER 8. PHENOMENA 110

extraposed, taking its object-dependent einen Roman along in its mf:

(dass) Maria verspricht einen Roman zu schreiben

subj

det

obj zu

vzu

(dass) Maria verspricht einen Roman zu schreiben

n
v

n
n v

v

mf

nvf

mf pf

vxf

(8.11)

8.2.4 Partial extraposition

Partial vps may also be extraposed. An example is depicted below:

(dass) Maria einen Roman verspricht, zu schreiben
(that) Maria a novel(acc) promises, to write

“(that) Maria promises to write a novel”
(8.12)

In the corresponding ID/LP analysis below, the extraposed partial vp zu schreiben
lands in the vxf of verspricht and its object Roman climbs up into the mf of

CHAPTER 8. PHENOMENA 111

verspricht :

(dass) Maria einen Roman verspricht zu schreiben

subj

det

obj zu

vzu

(dass) Maria einen Roman verspricht zu schreiben

n
n

n
v

v
v

mf

nvf

mf

pf

vxf

(8.13)

8.2.5 Intraposition

vps headed by a zu-infinitive can also be dislocated to the left:

(dass) einen Roman zu schreiben Maria verspricht
(that) a novel(acc) to write Maria promises

“(that) Maria promises to write a novel”
(8.14)

The corresponding ID/LP analysis is depicted in (8.15) below. Here, the infinitival
complement zu schreiben lands in the intraposition field (if) and takes its object

CHAPTER 8. PHENOMENA 112

Roman along in its mf:

(dass) einen Roman zu schreiben Maria verspricht

det

obj zu

vzu subj

(dass) einen Roman zu schreiben Maria verspricht

n
n v

v n
vnvf

mf pf

if mf

(8.15)

About the possibility of partial vp intraposition there is no general agreement:
Meurers & Kuthy (2001) for instance argue that partial vps can never be intra-
posed, whereas Askedahl (1983) presents a set of examples which are marginal but
still grammatical. In the present fragment, we do allow for partial intraposition:
verbs in non-canonical position (including if) block the roles adv and pp but e.g.
objects can climb through such verbs.

However, our framework also allows us to accomodate Meurers & Kuthy’s (2001)
view that intraposition must be treated differently from fronting and extraposition.
To this end, we might change the lexical type t intra lp for verbs in intraposed
position. To prohibit partial intraposition, we would make the lexical type for
intraposed verbs block all roles, with the result that no node may climb through
such a verb and only complete vps can be intraposed:

t intra lp = t noncan lp u

[

labelslp : {if}
blocks : R

]

(8.16)

Because we think, following Haider (1985), that pied piping should be treated
analogously to intraposition, the lexical type t pied lp for pied piped verbs would
also block all roles:

t pied lp = t noncan lp u

[

labelslp : {rvf}
blocks : R

]

(8.17)

CHAPTER 8. PHENOMENA 113

The lexical types t front lp for fronted verbs and t extra lp for extraposed verbs
would remain as specified in chapter 7, still allowing for partial fronting and partial
extraposition respectively.

8.3 Auxiliary flip

The auxiliary flip construction was first described by Bech (1955) using the term
Oberfeldumstellung. More recently, Hinrichs & Nakazawa (1994) coined the name
auxiliary flip in their account of the phenomenon in the HPSG-framework. In an
auxiliary flip construction, the verbal complement of an auxiliary such as werden
or haben follows the auxiliary rather than preceding it. The auxiliary is said to
have ‘flipped’ to the left periphery of the verb cluster. We will elaborate on five
aspects of the phenomenon: obligatory head-final placement, optional auxiliary
flip, obligatory auxiliary flip, V-projection raising and VC-split.

8.3.1 Obligatory head-final placement

Verbal complements typically precede their governors. Here are two examples:

(dass) Maria einen Roman schreiben wird
(that) Maria a novel(acc) write will

“(that) Maria will write a novel”
(8.18)

∗ (dass) Maria einen Roman wird schreiben
(that) Maria a novel(acc) will write

(8.19)

In (8.18), the infinitival complement schreiben precedes its governor wird. Lin-
earization (8.19) is ungrammatical because schreiben follows its governor rather
than preceding it.

CHAPTER 8. PHENOMENA 114

An ID/LP analysis of the grammatical linearization (8.18) is shown below:

(dass) Maria einen Roman schreiben wird

subj

det

obj

vinf

(dass) Maria einen Roman schreiben wird

n
n

n v
v

mf

nvf

mf vcf

(8.20)

Here, schreiben lands in canonical position (vcf) to the left of wird. The subject
Maria lands in the Mittelfeld (mf) of wird and so does the object Roman.

A hypothetical LP tree for the ungrammatical linearization (8.19) is shown in (8.21)
below. The ID tree remains the same as in (8.20).

(dass) Maria einen Roman wird schreiben

n
n

n
v

v

vxfmfmf

nvf (8.21)

Here, schreiben lands in the verb extraposition field (vxf) of its governor wird. How
do we exclude incorrect analyses like (8.21)? By stipulating in the lexicon that
main verbs such as schreiben can only land in canonical position (vcf) but not in
extraposed position (vxf). That is, we pose only a lexical entry for schreiben which
inherits from lexical type t can lp, but no lexical entries for schreiben inheriting
from e.g. t extra lp:

(schreiben , t vinf id u t tr id u t can lp) (8.22)

CHAPTER 8. PHENOMENA 115

8.3.2 Optional auxiliary flip

The future-auxiliary wird gives rise to optional auxiliary flip in combination with
a class of bare infinitival complements including modal verbs. Either of the two
linearizations glossed below are grammatical:

(dass) Maria einen Roman schreiben können wird
(that) Maria a novel(acc) write can will

“(that) Maria will be able to write a novel”
(8.23)

(dass) Maria einen Roman wird schreiben können
(that) Maria a novel(acc) will write can

“(that) Maria will be able to write a novel”
(8.24)

In (8.23), the bare infinitival modal verb complement können is in canonical posi-
tion to the left of its governor wird, whereas in (8.24), können occurs to the right
of wird. In the latter case, the auxiliary wird seems to have ‘flipped’ to the left of
the verb cluster.

The ID tree analyses of (8.23) and (8.24) are the same:

(dass) Maria einen Roman schreiben können wird

subj

det

obj

vinf

vin
f

(8.25)

The LP tree analyses are given in (8.26) and (8.27) respectively:

(dass) Maria einen Roman schreiben können wird

n
n

n
v

v
v

mf

nvf

mf

vcf

vcf

(8.26)

CHAPTER 8. PHENOMENA 116

(dass) Maria einen Roman wird schreiben können

n
n

n
v

v
v

mf

nvf

mf

vcf

vxf

(8.27)

In (8.26), the modal verb können lands in canonical position (vcf) to the left of its
auxiliary governor wird. Contrarily, in (8.27) können lands in the verb extraposition
field (vxf) to the right of wird. Thus, we do not assume that the auxiliary ‘flips’ to
the left but rather that the bare infinitival complement of the auxiliary is extraposed
to the right (into a non-canonical position).

Only the bare infinitival forms of a small class of words can be extraposed, including
modal verbs. We propose for such words two lexical entries: one inherits from
t can lp and one from t extra lp. For instance, here are the two lexical entries for
the infinitival form of the modal verb können:

(können , t vinf id u t infc id u t can lp) (8.28)

(können , t vinf id u t infc id u t extra lp) (8.29)

(8.28) is selected if können lands in canonical position to the left of its governor
and (8.29) if können lands in non-canonical, extraposed position to the right of its
governor.

8.3.3 Obligatory auxiliary flip

Auxiliary flip is obligatory if the perfect-auxiliary haben is the head of a so-called
Ersatzinfinitiv (substitute infinitive). A substitute infinitive exhibits bare infinitival
inflection, yet syntactically acts as a past participle. Only modals, raising-to-object
verbs such as sehen and the verb helfen can act as a substitute infinitive. Here are
two examples, including the substitute infinitive können as the complement of the
perfect-auxiliary hat :

(dass) Maria einen Roman hat schreiben können
(that) Maria a novel(acc) has write can

“(that) Maria has been able to write a novel”
(8.30)

∗ (dass) Maria einen Roman schreiben können hat
(that) Maria a novel(acc) write can has

(8.31)

CHAPTER 8. PHENOMENA 117

(8.30) is an auxiliary flip construction where the hat precedes its verbal complement
können. Contrarily, hat follows können in the ungrammatical (non-auxiliary flip)
construction shown in (8.31).

The ID/LP tree analysis of the grammatical linearization (8.30) is exhibited below:

(dass) Maria einen Roman hat schreiben können

subj

det

obj

vinf

vpp

(dass) Maria einen Roman hat schreiben können

n
n

n
v

v
v

mf

nvf

mf

vcf

vxf

(8.32)

And in (8.33), we show a hypothetical LP tree for the ungrammatical linearization
(8.31). The ID tree remains the same as in ID/LP analysis (8.32).

(dass) Maria einen Roman schreiben können hat

n
n

n
v

v
v

mf

nvf

mf

vcf

vcf

(8.33)

Here, the substitute infinitive können lands in canonical position (vcf) to the left
of its governor hat. We exclude this analysis by requiring that substitute infinitives
such as können can only land in extraposed position (vxf) but not in canonical
position (vcf).

CHAPTER 8. PHENOMENA 118

We display the lexical entry for the substitute infinitival form of können below:

(können , t vpp id u t infc id u t extra lp) (8.34)

Notice that contrary to the lexical entry for the bare infinitival form of können in
(8.29) above, können in substitute infinitival form inherits from t vpp id (and not
from t vinf id) because it syntactically acts as a past participle and not as a bare
infinitive. Its set of accepted labels hence includes vpp instead of vinf.

8.3.4 V-projection raising

V-projection raising describes a phenomenon where non-verbal material is inter-
spersed in the verb cluster. In the example below, the np einen Roman is positioned
between wird and schreiben können in the verb cluster:

(dass) Maria wird einen Roman schreiben können
(that) Maria will a novel(acc) write can

“(that) Maria will be able to write a novel”
(8.35)

In the corresponding ID/LP analysis, the extraposed bare infinitive können offers
a mf-position on its own by virtue of landing in a non-canonical position, and the
object einen Roman of schreiben climbs up to this position:

(dass) Maria wird einen Roman schreiben können

sub
j

det

obj

vinf

vinf

(dass) Maria wird einen Roman schreiben können

n
v

n
n v

v

mf

nvf

mf vcf

vxf

(8.36)

CHAPTER 8. PHENOMENA 119

Notice that although we allow non-verbal material to be interspersed in the verb
cluster as in (8.36), this does not lead to overgeneration. In the following, we show
how we exclude various ungrammatical linearizations with non-verbal material in-
terspersed in the verb cluster. For instance consider the linearization below where
the np einen Roman follows schreiben and precedes können and wird :

∗ (dass) Maria schreiben einen Roman können wird
(that) Maria write a novel(acc) can will

(8.37)

We show a hypothetical LP tree below:

(dass) Maria schreiben einen Roman können wird

n
v

n
n

v
v

mf vcf

vcf mf

nvf (8.38)

(8.38) is excluded by the order principle: schreiben lands in the vcf of können
preceding Roman in the mf of können, but mf must precede vcf.

Another example is the following ungrammatical linearization:

∗ (dass) Maria schreiben können einen Roman wird
(that) Maria write can a novel(acc) will

(8.39)

of which we show a hypothetical LP tree analysis below:

(dass) Maria schreiben können einen Roman wird

n
v

v
n

n
v

mf vcf

vcf

mf

nvf (8.40)

This LP tree is also excluded by the order principle: können lands in the vcf of
wird, preceding Roman in the mf of wird. But again, mf must precede vcf.

8.3.5 VC-split

Zwischenstellung (VC-split) is a construction first described by Meurers (1994).
Here, the auxiliary is not ‘flipped’ to the left but into the middle of the verb-

CHAPTER 8. PHENOMENA 120

cluster. In other words, the verb-cluster is ‘split’. An example is given below,
where the auxiliary wird lands in between schreiben and können:

(dass) Maria einen Roman schreiben wird können
(that) Maria a novel(acc) write will can

“(that) Maria will be able to write a novel”
(8.41)

We display the corresponding ID/LP analysis below:

(dass) Maria einen Roman schreiben wird können

subj

det

obj

vinf

vinf

(dass) Maria einen Roman schreiben wird können

n
n

n v
v

v

mf

nvf

mf vcf vxf

(8.42)

Here, schreiben climbs into the vcf of wird. By virtue of being in canonical position,
schreiben offers no mf and therefore forces its object Roman to climb up (into the
mf of wird). The modal verb können lands in the vxf of wird.

Below, we demonstrate that licensing the VC-split construction does not lead to
overgeneration. E.g. we do not obtain the ungrammatical linearization below:

∗ (dass) Maria schreiben wird einen Roman können
(that) Maria write will a novel(acc) can

(8.43)

CHAPTER 8. PHENOMENA 121

because the corresponding hypothetical LP tree is not licensed by our theory:

(dass) Maria schreiben wird einen Roman können

n v
v

n
n

v

mf vcf

nvf

mf

vxf

(8.44)

(8.44) violates the subtrees principle: schreiben has climbed up into the vcf of wird
but has left its dependent object Roman behind lower in the tree (in the mf of
können).

8.4 Relative clauses

In this section, we discuss two phenomena associated with relative clauses. The
first is pied piping and the second relative clause extraposition.1

8.4.1 Pied Piping

In a pied piping (‘Rattenfänger’) construction, the relative pronoun at the left of a
relative clause takes along its governor. We discern three cases of pied piping: np

pied piping, pp pied piping and vp pied piping.

NP pied piping

Below, we present an example for np pied piping, where the relative pronoun dessen
takes along its nominal governor Frau:

ein Mann, dessen Frau lacht
a man, whose woman laughs

“a man whose woman laughs”
(8.45)

1Notice that the grammar fragment as exhibited in chapter 7 gives rise to overgeneration with
respect to relative clauses. We outline a possibility to tackle this by the relative clause principle

in appendix A. Informally, the relative clause principle states that the relative pronoun must be
in the yield of the relative clause Vorfeld (rvf).

CHAPTER 8. PHENOMENA 122

ein Mann dessen Frau lacht

det

gen
mod

sub
j

rel

ein Mann dessen Frau lacht

n
n

n
n

v

nvf

nvf

rvf

nf

(8.46)

In (8.46), the noun Frau lands in the relative clause Vorfeld (rvf) of the finite verb
lacht. The genitival relative pronoun dessen lands in the nvf of the noun.

PP pied piping

Here is an example for pp pied piping, where the relative pronoun dem takes along
its prepositional governor mit :

ein Mann, mit dem Maria lacht
a man, with whom Maria laughs

“a man with whom Maria laughs”
(8.47)

CHAPTER 8. PHENOMENA 123

ein Mann mit dem Maria lacht

det

pp

iobj

sub
j

rel

ein Mann mit dem Maria lacht

n
n

n
n

n
v

nvf

rvf

nxf

mf

nf

(8.48)

Here, the preposition mit lands in the rvf of the finite verb lacht, and the relative
pronoun dem in the nxf of the preposition.

VP pied piping

Another case of pied piping is vp pied piping. Here, the relative pronoun takes
along its governing verb. In the example below, the relative pronoun den takes
along the zu-infinitive zu schreiben:

einen Roman, den zu schreiben Maria verspricht
a novel(acc), which(acc) to write Maria promises

“a novel which Maria promises to write”
(8.49)

Haider (1985) observed that pied piping can be regarded as an instance of intrapo-
sition: the same class of verbs (viz. zu-infinitives) can be intraposed as well as pied
piped, whereas vps headed by a bare infinitive or a past participle can neither be
intraposed nor pied piped.

CHAPTER 8. PHENOMENA 124

Here is an ID/LP analysis of (8.49):

einen Roman den zu schreiben Maria verspricht

det

obj zu

vzu subj

rel

einen Roman den zu schreiben Maria verspricht

n
n

n v
v n

v

nvf

mf pf

rvf mf

nf

(8.50)

In (8.50), the head schreiben of the pied piped vp den zu schreiben lands in the
relative clause Vorfeld (rvf) of the finite verb verspricht and the relative pronoun
den lands in the mf of schreiben. Notice that this analysis proceeds analogous to
the analysis given in (8.15) for the intraposition example. The difference is that
the vp lands in the relative clause Vorfeld rvf here and in the intraposition field if

in (8.15).

8.4.2 Relative clause extraposition

In German, relative clauses can always be extraposed to the right as in the example
below:

(dass) Maria einen Mann liebt, der lacht
(that) Maria a man(acc) loves, who laughs

“(that) Maria loves a man who laughs”
(8.51)

In the ID/LP analysis of (8.51), the relative clause der lacht climbs up into the nf

CHAPTER 8. PHENOMENA 125

of the finite verb liebt :

dass Maria einen Mann liebt der lacht

subj

det

obj

sub

sub
j

rel

dass Maria einen Mann liebt der lacht

v

n
n

n
v

n
v

mf

nvf

mf

nf

rvf

nf

(8.52)

8.5 Summary

We gave a number of examples of how the grammar fragment presented in the
preceding chapter is able to elegantly handle difficult phenomena in German syntax.
We began with scrambling, and turned to constructions which were related to
vp-dislocation, including extraposition, intraposition and fronting. Moreover, we
showed how to tackle auxiliary flip and related constructions, and gave analyses of
constructions associated with relative clauses such as relative clause extraposition
and pied piping.

The following chapter provides a formalization of the TDG grammar formalism.

Chapter 9

Formalization

In this chapter, we formalize the notion of a TDG grammar and give formal ren-
ditions of the ID, LP and ID/LP principles, largely based on (Duchier 2000) and
(Duchier 2001). Making use of the formalizations of the principles, we can formally
define the notions of ID, LP and ID/LP analyses.

9.1 TDG grammar

A TDG grammar is characterized by the following 8-tuple:

TDG = (R,FE,FN,≺, E ,A, (Γρ), (Γf)) (9.1)

where R is a set of grammatical roles, FE the set of topological fields, FN the set
of node labels and ≺ is a total order on F = FE]FN. E is the set of lexical entries
and A the set of lexical attributes. (Γρ) and (Γf) denote the sets of ID and LP
edge constraints respectively.

For each TDG grammar, A includes at least the following lexical attributes:

A = {labelsid, valency
id
, labelslp, labelsn, valency

lp
, blocks} (9.2)

The definitions of the lexical attributes and their corresponding lattices remain as
in chapter 6.

We turn now to the principles restricting the number of admissible ID, LP and
ID/LP analyses, and start with the ID principles.

126

CHAPTER 9. FORMALIZATION 127

9.2 ID principles

In this section, we formalize the set of ID principles. We begin with formalizing
the general principles and then turn to the lexicalized principles.

9.2.1 General principles

The set of general principles in the set of ID principles includes only the treeness
principle.

Treeness principle

Principle 9.1 Each analysis is a tree.

The starting point for our formalization is an axiomatization of finite labeled
graphs. From this set of finite labeled graphs we then characterize the set of
finite labeled graphs which are also trees.

We assume an infinite set of nodes V and a finite set of edge labels L. A directed
labeled edge is an element of V ×V ×L. G(V,L) is the set of finite labeled graphs
G = (V, E) formed from a finite set of nodes V ⊆ V and the finite set of edges
E ⊆ V × V × L. Note that since E is a set, we only consider graphs without
duplicate edges. G(V,L) is the set of finite graphs in G(V,L) with node set V .

We write w−`→w′ for a labeled edge (w, w′, `). Given a graph G = (V, E), we
write w−`→Gw′ for w−`→w′ ∈ E, and we define the successor relation →G as:

→G = ∪{−`→G | ` ∈ L} (9.3)

w→+
Gw′ is the transitive closure and w→∗

Gw′ the reflexive transitive closure of →G.
We define →+

G as being the smallest relation such that:

w→Gw′ ⇒ w→+
Gw′

w→+
Gw′ ∧ w′→+

Gw′′ ⇒ w→+
Gw′′ (9.4)

and →∗

G as being the smallest relation such that:

w→∗
Gw

w→Gw′ ⇒ w→∗
Gw′

w→∗

Gw′ ∧ w′→∗

Gw′′ ⇒ w→∗

Gw′′

(9.5)

CHAPTER 9. FORMALIZATION 128

The edges of a graph G induce the functions `G for each ` ∈ L, daughtersG,
mothersG, downG, eqdownG, upG and equpG of type V → 2V and rootsG of type
2V . We define these functions below.

`G(w) denotes the set of `-daughters w′ of a node w whose incoming edge is labeled
with `:

`G(w) = {w′ | w−`→Gw′} (9.6)

daughtersG(w) denotes the set of daughters of a node w:

daughtersG(w) = {w′ | w→Gw′} (9.7)

mothersG(w′) denotes the set of mothers of a node w′:

mothersG(w′) = {w | w→Gw′} (9.8)

downG(w) denotes the set of nodes below a node w:

downG(w) = {w′ | w→+
Gw′} (9.9)

eqdownG(w) denotes the set of nodes equal or below w:

eqdownG(w) = {w′ | w→∗

Gw′} (9.10)

upG(w′) denotes the set of nodes above w′:

upG(w′) = {w | w→+
Gw′} (9.11)

equpG(w′) denotes the set of nodes equal or above w′:

equpG(w′) = {w | w→∗

Gw′} (9.12)

rootsG denotes the set of roots:

rootsG = {w′ | ¬∃w : w→Gw′} (9.13)

A finite labeled graph G = (V,L) is also a finite labeled tree if and only if it satisfies
the following three treeness conditions:

1. Each node has at most one incoming edge.

CHAPTER 9. FORMALIZATION 129

2. There is precisely one node (the root) with no incoming edge.

3. There are no cycles.

We formalize these conditions using the functions defined on G above. The first
treeness condition requires that each node has at most one incoming edge: for any
node w′′, there exists at most one ` ∈ L and one w ∈ V such that w′′ ∈ `G(w), or,
equivalently:

∀`, `′ ∈ L : ∀w, w′ ∈ V : (` 6= `′ ∨ w 6= w′) ⇒ `G(w) ‖ `′G(w′) (9.14)

where ‖ expresses disjointness.

The second treeness condition states that there must be one unique root. That is,
the cardinality of the set of roots of G is 1:

|rootsG| = 1 (9.15)

Finally, the third treeness condition forbids cycles, i.e. w must never be a successor
of itself:

∀w ∈ V : w /∈ downG(w) (9.16)

GT(V,L) is the subset of G(V,L) satisfying conditions (9.14), (9.15) and (9.16).
GT(V,L) is the set of trees in GT(V,L) whose node set is V .

9.2.2 Lexicalized principles

We turn now to the formalization of the lexicalized ID principles. We define lex-
icalized principles with respect to a lexicon (E ,A) consisting of a finite set E of
lexical entries and a finite set A of lexical attributes. Recall that a lexical entry is
a pair (s, et) of a string s from the set Strs of strings and a lexical type et from the
set of lexical types Et:

E ⊆ Strs × Et (9.17)

Lexical attributes α ∈ A are functions α : Et → Dα mapping lexical types to values
in some domain Dα. For each lexical attribute α ∈ A with type α : Et → Dα, we
introduce the overloaded function α : V → Dα defined as:

∀w ∈ V : α(w) = α(π2(ε(w))) (9.18)

where π2(ε(w)) denotes the second projection of ε(w).

Given a lexicon (E ,A), a graph (V, E) ∈ G(V,L) and a lexical assignment ε : V →
E of lexical entries to nodes, we call (V, E, ε) an attributed graph. We state all
lexicalized principles with respect to attributed graphs.

CHAPTER 9. FORMALIZATION 130

Accepted edge labels principle

Principle 9.2 Each node must accept the label of its incoming edge if any.

To restrict the label of a node’s incoming edge, we propose the lexical attribute
labels : Et → 2L mapping lexical types to sets of edge labels. We define the accepted
edge labels principle as follows:

w−`→Gw′ ∈ E ⇒ ` ∈ labels(w′) (9.19)

and we write GE(V,L, E ,A) for the set of attributed graphs G = (V, E, ε) that are
well-formed under the accepted edge labels principle and lexicon (E ,A).

Valency principle

Principle 9.3 Each node’s outgoing edges must precisely fulfill the node’s valency.

Symmetrically to the accepted edge labels principle, the valency principle states
constraints on a node’s outgoing edges. We define the valency principle with respect
to a language of valency specifications υ. The language of valency specifications
for edge label set L is υ(L). A valency specification `′ ∈ υ(L) is defined by the
following abstract syntax:

`′ ::= ` | `? | `∗ (9.20)

We pose the function valency : Et → 2υ(L) mapping lexical types to sets of valency
specifications. Writing `(w) for the set of dependents of node w with edge label `,
we formalize the valency principle as follows:

` ∈ valency(w) ⇒ |`(w)| = 1
`? ∈ valency(w) ⇒ |`(w)| ≤ 1
`∗ ∈ valency(w) ⇒ |`(w)| ≥ 0

otherwise ⇒ |`(w)| = 0

(9.21)

and we write GV(V,L, E ,A) for the set of attributed graphs G = (V, E, ε) that are
well-formed under the valency principle and lexicon (E ,A).

Edge constraints

Principle 9.4 Each edge must be licensed by the corresponding edge constraint.

CHAPTER 9. FORMALIZATION 131

Edge constraints are a family (Γ`) of binary predicates indexed by edge labels ` ∈ L.
In order for an edge w−`→Gw′ to be licensed, Γ`(w, w′) must be satisfied.

We express edge constraints in a constraint language whose abstract syntax is
depicted in (9.22). w and w′ are variables ranging over nodes, a denotes an arbitrary
element of a domain and D an arbitrary finite domain. α is a lexical attribute in
A. A binary predicate Γ` must be of the form λw, w′ · C, i.e. a P -expression:

E ::= a | D | α(w) |
C ::= C ∧ C ′ | E = E ′ | E 6= E ′ | E ∈ E ′ | E /∈ E ′ | E ⊆ E ′ | E ‖ E ′

P ::= λw, w′ · C
(9.22)

We classify edge constraints under the set of lexicalized principles since they are
usually defined with respect to lexical attributes. An example is our treatment of
agreement illustrated in appendix A.

Here is the definition of the edge constraints principle:

w−`→Gw′ ∈ E ⇒ G |= Γ`(w, w′) (9.23)

where G |= Γ`(w, w′) means that G satisfies Γ`(w, w′) and satisfaction is defined in
the obvious Tarskian fashion.

We write GC(V,L, E ,A, (Γ`)) for the set of attributed graphs G = (V, E, ε) that
are well-formed under lexicon (E ,A) and edge constraints (Γ`).

9.2.3 ID analyses

ID analyses are subject to the general treeness principle and the lexicalized princi-
ples of accepted edge labels, valency and edge constraints. Thus, we define the set
of well-formed ID analyses as follows:

GT(V,R) ∩
GE(V,R, E ,A) ∩ GV(V,R, E ,A) ∩ GC(V,R, E ,A, (Γρ))

(9.24)

where R is the finite set of grammatical roles ρ. An ID analysis is a tuple (V, Eid, ε)
where Eid is the set of ID tree edges and ε a lexical assignment.

9.3 LP principles

In this section, we formalize the set of LP principles. Again, we begin with the
general principles and then turn to the lexicalized principles.

CHAPTER 9. FORMALIZATION 132

9.3.1 General principles

The general LP principles include the treeness principle, the order principle and
the projectivity principle.

Treeness principle

The treeness principle remains as in section 9.2.1.

Order principle

Principle 9.5 Each analysis must be well-ordered.

We distinguish a set LE of edge labels ` and LN of node labels n and pose a total
order ≺ on the set LE]LN of edge and node labels. Given a graph (V, E), a lexical
assignment ε, a total order < on V and a node label assignment labeln : V → FN, we
say that G = (V, E, ε, <, labeln) is a well-ordered graph iff it satisfies the following
conditions:

w−`1→Gw1 ∧ w−`2→Gw2 ∧ `1 ≺ `2 ⇒ w1 < w2 (9.25)

w1→
∗

Gw′

1 ∧ w2→
∗

Gw′

2 ∧ w1 < w2 ⇒ w′

1 < w′

2 (9.26)

w−`→Gw1 ∧ ` ≺ labeln(w) ⇒ w1 < w (9.27)

w−`→Gw1 ∧ labeln(w) ≺ ` ⇒ w < w1 (9.28)

(9.25) orders the daughters of a node w with respect to each other. (9.26) states
that if w1 precedes w2, then all nodes in the yield of w1 must also precede all nodes
in the yield of w2. (9.27) and (9.28) orders mothers with respect their daughters
using node labels.

We write GO(V,LE,LN, E ,A,≺) for the set of graphs G = (V, E, ε, <, labeln) which
are well-formed under the order principle, lexicon (E ,A) and the total order ≺.

Projectivity principle

Principle 9.6 Each analysis must be projective.

The projectivity principle requires ordered graphs to be projective, i.e. the yield
of each node must cover a contiguous substring. We formalize the projectivity

CHAPTER 9. FORMALIZATION 133

principle as:

∀w ∈ V : convex(eqdown(w)) (9.29)

The declarative semantics of convex(S) is that for all w1, w2 ∈ S, if w1 < w2, then
for all w such that w1 < w < w2, also w ∈ S. That is, convex(S) requires that the
interval S contains no holes.

We write GP(V,LE) for the set of ordered graphs G = (V, E, <) satisfying the
projectivity principle.

9.3.2 Lexicalized principles

The set of lexicalized LP principles includes the accepted edge labels principle, the
valency principle and the accepted node labels principle.

Accepted edge labels principle

The accepted edge labels principle remains as in section 9.2.2.

Valency principle

The valency principle remains as in section 9.2.2.

Accepted node labels principle

Principle 9.7 Each node must accept its node label.

This principle makes use of the lexical attribute labelsn : Et → 2LN and the node
label assignment labeln : V → LN. labeln(w) assigns to w precisely one node label
from the set of node labels labelsn(w):

∀w ∈ V : labeln(w) ∈ labelsn(w) (9.30)

We write GN(V,LE,LN, E ,A) for the set of attributed graphs G = (V, E, ε, labeln)
that are well-formed under the accepted node labels principle and lexicon (E ,A).

Edge constraints

The edge constraints principle remains as in section 9.2.2.

CHAPTER 9. FORMALIZATION 134

9.3.3 LP analyses

LP analyses are subject to the general treeness principle, the order principle and the
projectivity principle. Each LP analysis must also satisfy the lexicalized principles
of accepted edge labels, valency, accepted node labels and edge constraints. Thus,
we define the set of well-formed LP analyses as follows:

GT(V,FE) ∩ GO(V,FE,FN, E ,A,≺) ∩ GP(V,FE) ∩
GE(V,FE, E ,A) ∩ GV(V,FE, E ,A) ∩ GN(V,FE,FN, E ,A) ∩
GC(V,FE, E ,A, (Γf))

(9.31)

where FE is the set of LP edge labels and FN the set of LP node labels. An LP
analysis is a tuple (V, Elp, ε, <, labeln) where Elp is the set of LP tree edges, ε a
lexical assignment, < a total order on V and labeln a node label assignment.

9.4 ID/LP principles

A TDG ID/LP analysis is subject to general and lexicalized ID/LP principles.

9.4.1 General principles

The set of general ID/LP principles includes the climbing principle and the subtrees
principle.

Climbing principle

Principle 9.8 A node must land on a transitive head.

We formalize the climbing principle by stating that the set of topological heads of
node w is a subset of the set of nodes equal or above w in the ID tree:1

∀w ∈ V : motherslp(w) ⊆ equp
id

(w) (9.32)

1The id- and lp-subscripts indicate whether the respective function is defined on the ID or
the LP tree.

CHAPTER 9. FORMALIZATION 135

Subtrees principle

Principle 9.9 A node must land on, or climb higher than its syntactic head.

We formalize the subtrees principle by requiring that the set of nodes above w in
the LP tree is a subset of the set of nodes equal or above the syntactic head in the
LP tree:

∀w ∈ V : up
lp

(w) ⊆ ∪{equp
lp

(w′) | w′ ∈ mothersid(w)} (9.33)

9.4.2 Lexicalized principles

The set of lexicalized ID/LP principles includes only the barriers principle.

Barriers principle

Principle 9.10 A node may not climb through a barrier.

The barriers principle makes use of the lexical attribute blocks : Et → 2R mapping
lexical types to sets of roles. A node w is blocked by another node w′ if w has role
ρ and ρ ∈ blocks(w′). Here is a formalization of the barriers principle:

The nodes which w must climb through are all nodes between w and the topological
head of w:

through(w) = up
id

(w) ∩ ∪{downid(w
′) | w′ ∈ motherslp(w)} (9.34)

We pose the function labelid : V → R which assigns to each node the label of its
incoming edge:

∀w ∈ V : labelid(w) ∈ labelsid(w) (9.35)

Whenever the label of w’s incoming edge is ρ, then ρ must not be blocked by any
of the nodes in through(w):

∀ρ ∈ R : ∀w ∈ V : ρ = labelid(w) ⇒ ρ /∈ ∪{blocks(w′) | w′ ∈ through(w)}(9.36)

CHAPTER 9. FORMALIZATION 136

9.4.3 ID/LP analyses

An ID/LP analysis is a tuple (V, Eid, Elp, ε, <, labeln) such that (V, Eid, ε) is a well-
formed ID analysis and (V, Elp, ε, <, labeln) is a well-formed LP analysis and the
ID/LP principles are satisfied.

9.5 Summary

We provided a formalization of the TDG grammar formalism. We started out with
defining the notion of a TDG grammar, and continued with stating the principles
for admissible ID, LP and ID/LP analyses. Starting from the formalizations of the
principles, we could define the notions of ID, LP and ID/LP analyses. An ID/LP
analysis is only licensed if all principles are satisfied.

The following chapter sketches the parser implementation done for the thesis.

Chapter 10

Implementation

Using a reduction into a constraint satisfaction problem (CSP) stated in terms of
finite sets described in (Duchier 2000), the formalization presented in the previous
chapter yields an efficient parser implementation. In this chapter, we review the
TDG parser implementation done in the context of this thesis. Grammars for the
parser can be written using a concrete grammar specification language, and we have
also created a graphical user interface (GUI) to facilitate grammar development and
grammar debugging.

10.1 Parser

In the formalization of TDG in the previous chapter, most of the principles were
stated in terms of sets. As an example, consider the accepted edge labels principle:

w−`→Gw′ ∈ E ⇒ ` ∈ labels(w′) (10.1)

which is stated on the sets E of edges and labels(w′) of accepted edge labels for
node w′. However, there are also principles, such as the order principle, which for
simplicity we formalized in a more classical fashion. Their reformulation as set
constraints is beyond the scope of this thesis, but follows directly from (Duchier
2000, Duchier 2001). Using his ideas we obtain a characterization of valid ID/LP
analyses as solutions of a constraint satisfaction problem (CSP) which is entirely
stated in terms of set variables. The central importance given to sets, in both the
formalization and the implementation, is a novel and distinguishing aspect of our
approach.

The Mozart-Oz programming language (Mozart 1998) provides all the means nec-
essary to turn the CSP into a constraint program. These means include a sophis-

137

CHAPTER 10. IMPLEMENTATION 138

ticated constraint system with support for finite set variables. Consequently, the
CSP can be converted straightforwardly into an Oz program. Parsing amounts
to searching for solutions of the CSP which describes the valid ID/LP analyses
for a given input. This process follows the propagate and distribute paradigm of
constraint programming and alternates steps of deterministic inference through
constraint propagation with steps of non-deterministic choice variously called ‘dis-
tribution’ or ‘labeling’. With the help of the selection constraint developed in
(Duchier 1999) and (Duchier 2000), we achieve very strong propagation. In fact, in
many cases no search at all is necessary, in spite of substantial lexical and structural
ambiguity.

The parser is highly efficient. Although parsing with TDG is NP-complete (Alexan-
der Koller, pc), it seems to be polynomial for practical applications. As an example,
we can find the first parse for a 10 word sentence in 200ms, for 20 words in 700ms
and for 50 words in 5 seconds on a 700MHz x86-machine. Notice that we attain
this high degree of efficiency without any kind of optimization.

The parser implementation is completely modular and allows to add additional
principles using a plugin system. One example of such an additional principle is
the relative clause principle described in appendix A.

To facilitate grammar debugging, the parser can be switched into generate mode.
In generate mode, it does not parse a sequence of words but tries to find all ID/LP
analyses for a bag of words. This can be used to check whether the grammar
licenses undesired linearizations. Another useful feature for grammar debugging is
the possibility to individually toggle each of the ID, LP and ID/LP principles on
and off.

The latest version of the parser (including the GUI) can be found in the MOzart
Global User Library (http://www.mozart-oz.org/mogul)

10.2 Concrete grammar specification language

Grammars for the TDG parser are written in a concrete grammar specification
language. The specification language has two advantages over writing grammars
directly in Oz:

• it abstracts away from the syntax of Mozart-Oz

• it specifically supports our formal presentation of TDG

• it is statically typed

CHAPTER 10. IMPLEMENTATION 139

A grammar specification written in the concrete grammar specification language
consists of a sequence of definition sections introduced by keywords. We display a
list of the sections in Table 10.1.

section defines

deftypes types
defentry lexical attributes
deforder total order on F = FE] FN

defattributes node attributes
defnode node constraints

defedges id ID edge constraints
defedges lp LP edge constraints

defdistribute distribution strategy
defword lexical hierarchy and entries

Table 10.1: Concrete grammar specification language: definition sections

10.2.1 Constants and variables

In the concrete grammar specification language, we distinguish constants Const
and variables Var :

Const ::= [a−z][A−Za−z0−9 −]∗
’([̂ \n’]|\\.) ∗ ’
[0−9]∗

(10.2)

Var ::= [A−Z][A−Za−z0−9 −]∗ (10.3)

Variables must start with an upper-case letter [A−Z], while constants must start
with a lower-case letter [a−z]. Subsequent characters can either be upper case
letters, lower case letters, digits (0−9), underscores () or dashes (−).1 Addition-
ally, a constant may also be quoted ’([̂ \n’]|\\.) ∗ ’ so that they may contain
unusual characters or in order to distinguish them from keywords. Integers are
also constants.

Examples

Here are some example variables:

ROLE EXT TesT Hello (10.4)

1The asterisks following the closing square brackets indicate that constants and variables may
consist of an arbitrarily long sequence of these characters.

CHAPTER 10. IMPLEMENTATION 140

And below, we show some example constants:

rOLE subj ′def′ 4711 (10.5)

10.2.2 Types

Types can be either sets or lattices defined on sets. We define types in the
deftypes-section:

deftypes {
Var1 : Typeexpr1

. . .
Varn : Typeexprn

}

(10.6)

Expressions of type Typeexpr are defined as follows:

Typeexpr ::= Typeexpr21 ∗ . . . ∗ Typeexpr2n

| Typeexpr2
(10.7)

A Typeexpr is either a cartesian product where the individual factors Typeexpr2i

are separated by asterisks2 or just an expression of type Typeexpr2 . Typeexpr2 is
defined as follows:

Typeexpr2 ::= Var
| {Const1 . . . Constn}
| Typeexpr2 set

| Typeexpr2 aset

| Typeexpr2 valency

(10.8)

where set corresponds to lattice type L∩, aset to L∪ and valency to L∪ ◦ υ.

Example

Here is an example where we define the types ROLE, EXT and INT and, in addition,
the type AGR which is defined as the cartesian product of the types PERSON, GENDER,

2Notice that the asterisks here do not belong to the metalanguage as in the definition of
constants and variables above but to the concrete grammar specification language itself.

CHAPTER 10. IMPLEMENTATION 141

NUMBER, DEF and CASE:

deftypes {
ROLE : {adj adv . . . zu}
EXT : {if mf . . . vxf}
INT : {n v12 v}

PERSON : {1 2 3}
GENDER : {masc fem neut}
NUMBER : {sg pl}

DEF : {def indef undef}
CASE : {nom gen dat acc}
AGR : PERSON ∗ GENDER ∗ NUMBER ∗ DEF ∗ CASE

}

(10.9)

ROLE corresponds to the set R of grammatical roles, EXT to the set of topological
fields FE and INT to the set of node labels FN. These three types must be defined
in each grammar specification. AGR corresponds to the set Agr defined in (A.35) in
appendix A where we show how we handle agreement in TDG.

10.2.3 Lexical attributes

In the defentry section, we assign lattices to lexical attributes:

defentry {
Typefeat1

. . .
Typefeatn

}

(10.10)

Typefeat is defined as:

Typefeat ::= Const : Typeexpr (10.11)

where Const is a lexical attribute and Typeexpr a lattice.

CHAPTER 10. IMPLEMENTATION 142

Example

In chapter 6, we assigned the following lattices to the ID, LP and ID/LP attributes:

















labelsid : L∩(R)
valency

id
: L∪(υ(R))

labelslp : L∩(FE)
labelsn : L∩(FN)

valency
lp

: L∪(υ(FE))
blocks : L∪(R)

















(10.12)

Below, we show how to do the same in the concrete grammar specification language.
In addition, we assign to the new lexical attribute agrs the lattice AGR set:

defentry {
labelsID : ROLE set

valencyID : ROLE valency

labelsLP : EXT set

labelsINT : INT set

valencyLP : EXT valency

blocks : ROLE aset

agrs : AGR set

}

(10.13)

Here, labelsID corresponds to lexical attribute labelsid, valencyID to valency
id

,
labelsLP to labelslp, labelsINT to labelsn, valencyLP to valency

lp
and blocks

to blocks. All the lexical attributes contained in (10.13) must be defined in each
grammar specification.

10.2.4 Total order

The total order on F = FE] FN is stated in the deforder-section:

deforder {
Cons1 . . . Consn

}
(10.14)

where the constants Consi must either be of type EXT or INT.

CHAPTER 10. IMPLEMENTATION 143

Example

As an example, we repeat the total order on the set F = FE] FN defined for the
grammar fragment in chapter 7:

nvf ≺ nmf ≺ n ≺ nxf ≺ vf ≺ v12 ≺ rvf ≺ if ≺ mf ≺ vcf ≺ pf ≺ v ≺ vxf ≺ nf

(10.15)

And below, we show how to state this total order using the concrete grammar
specification language:

deforder {
nvf nmf n nxf vf v12 rvf if mf vcf pf v vxf nf

}
(10.16)

10.2.5 Node attributes

We can also define so-called node attributes. Node attributes are functions with
domain V . We define node attributes in the defattributes-section:

defattributes {
Typefeat1

. . .
Typefeatn

}

(10.17)

Example

Here is an example where we define the node attribute agr of type AGR:

defattributes {
agr : AGR

}
(10.18)

CHAPTER 10. IMPLEMENTATION 144

10.2.6 Node constraints

The licensed values of node attributes can be constrained using node constraints.
We define node constraints in the defnode-section:

defnode {
Nodecons1

. . .
Nodeconsn

}

(10.19)

We define expressions of type Nodecons as shown below:

Nodecons ::= Nodeexpr1 = Nodeexpr2

| Nodeexpr1 in Nodeexpr2

| Nodeexpr1 subset Nodeexpr2

| Nodeexpr1 disjoint Nodeexpr2

(10.20)

where = denotes equality, in denotes ∈, subset denotes ⊆ and disjoint denotes
‖ (disjointness).

Expressions of type Nodeexpr are defined as:

Nodeexpr ::= Scoreexpr
| Conexpr

(10.21)

We define Scoreexpr as:

Scoreexpr ::= [Const]
| Dot1 . . .Dotn

(10.22)

where the underscore denotes the current node. [Const] denotes the value of node
attribute Const at the current node.

We define Dot as:
Dot ::= .Const (10.23)

using expressions of type Dot we can access features of so-called signs which are
Oz record structures introduced for each node by the parser. A sign is defined as

CHAPTER 10. IMPLEMENTATION 145

follows:
sign(
lex : o(

index : Index

word : Word

entry : Entry

)
id : NodeID

lp : NodeLP

attribute : AttributeRecord

)

(10.24)

where Index is the index of the selected entry, Word the string corresponding to the
node and Entry the selected lexical entry itself. NodeID holds the information for
the occurrence of the node in the ID tree and NodeLP the corresponding information
for its occurrence in the LP tree. AttributeRecord is a record containing the node
attributes. For instance to access the feature labelsID of the lexical entry at the
current node, we write .lex.entry.labelsID. To access node attribute agr at
the current node, we can either write .attribute.agr or use the more convenient
notation [agr].

We define Conexpr as:

Conexpr ::= Const
| { }
| { Wild1 . . . Wildn }
| $ Genexpr

(10.25)

i.e. a Conexpr is either a constant (Const), the empty set ({ }), a set of wildcard
expressions ({ Wild1 . . . Wildn }) or a set generator expression ($ Genexpr).

We define a wildcard expression Wild as:

Wild ::= Const
| Const?
| Const∗

(10.26)

Wildcard expressions are used to specify the valency features valencyID and
valencyLP.

We define a set generator expression Genexpr as:

Genexpr ::= Genexpr2
| Genexpr | Genexpr2

(10.27)

CHAPTER 10. IMPLEMENTATION 146

Genexpr2 is defined as follows:

Genexpr2 ::= Genexpr3
| Genexpr2 & Genexpr3

(10.28)

and Genexpr3 is defined as follows:

Genexpr3 ::= (Genexpr)
| Const

(10.29)

Set generator expressions are boolean expressions generating values for the corre-
sponding types. For example

$ 3 & sg & (nom | acc) (10.30)

generates the set of all agreement tuples that are third person (3), singular (sg)
and nominative or accusative case ((nom | acc)).

Example

Here is an example node constraint:

defnode {
[agr] in .lex.entry.agrs

}
(10.31)

[agr] denotes the value of node attribute agr and .lex.entry.agrs the value of
the lexical attribute agrs. Notice that this node constraint is the counterpart of
the constraint given in (A.40) in appendix A.

10.2.7 ID edge constraints

ID edge constraints are defined in the defedges id -section:

defedges id {
Edgedef1

. . .
Edgedefn

}

(10.32)

CHAPTER 10. IMPLEMENTATION 147

Edgedef is defined as follows:

Edgedef ::=
Lab {

Edgecons1
. . .

Edgeconsn
}

(10.33)

Lab is defined as follows:
Lab ::= Cons

|
(10.34)

where Cons must be of type ROLE for ID edge constraints and of type EXT for LP
edge constraints and is a special symbol matching any edge label.

Edgecons is defined as follows:

Edgecons ::= Edgeexpr1 = Edgeexpr2

| Edgeexpr1 in Edgeexpr2

| Edgeexpr1 subset Edgeexpr2

| Edgeexpr1 disjoint Edgeexpr2

(10.35)

Edgeexpr is defined as follows:

Edgeexpr ::= Scoreexpr
| Conexpr
| Caretexpr
|

(10.36)

Caretexpr is defined as follows:

Caretexpr ::= [̂Const]
| ^Dot1 . . .Dotn

(10.37)

CHAPTER 10. IMPLEMENTATION 148

Example

Here are example ID edge constraints written in the concrete grammar specification
language:

defedges id {
subj {

[agr] = [̂agr]
[agr] in & nom

}
obj {

[agr] in & acc

}
}

(10.38)

The ID edge constraint for grammatical role subj corresponds to the edge con-
straint given in (A.41) in appendix A and the ID edge constraint for role vpref

to the one given in (A.42). Notice that we have chosen the notation using under-
scores () and carets (̂) to hint at a similarity to LFG: in LFG and also here, the
underscore can be read as ‘down’ (this node) and the caret as ‘up’ (mother).

10.2.8 LP edge constraints

LP edge constraints are defined precisely like ID edge constraints except that the
section is headed by defedges lp instead of defedges id:

defedges lp {
Edgedef1

. . .
Edgedefn

}

(10.39)

10.2.9 Distribution strategy

The distribution strategy used by the parser can be adjusted in the defdistribute-
section:

defdistribute {
Scoreexpr1

. . .
Scoreexprn

}

(10.40)

CHAPTER 10. IMPLEMENTATION 149

Each Scoreexpri expression identifies a feature of the signs which should be deter-
mined next using distribution (aka labeling).

Example

The following distribution strategy determines the values of all set variables in a
typical TDG grammar:

defdistribute {
.id.mothers
.id.daughterSet
.lp.mothers
.lp.daughterSet
.lp.labelINT
.lp.pos

}

(10.41)

In other words, the strategy first determines the ID mother for each sign. After
this step of the strategy, every node knows its ID mother or is root. While each
node in the ID tree now knows its mother, it may not yet know the label on its
incoming edge. The second step takes care of this by determining all daughter sets.
After this step, the ID tree is entirely known. The third and fourth steps do the
same for the LP tree. The fifth step takes care of the node label assignment, and
the last step determines the order (in case we were executing in ‘generate’ mode).

10.2.10 Lexical hierarchy and entries

Lexical types and lexical entries are both defined using the keyword defword:

defword Const1 . . . Constn {
Featexpr1

. . .
Featexprn

}

(10.42)

Featexpr is defined as follows:

Featexpr ::= Const : Conexpr (10.43)

CHAPTER 10. IMPLEMENTATION 150

Example

As an example of how to specify a lexical type, we repeat the type t cnoun id for
common nouns from chapter 7:

t cnoun id = t noun id u
[

valency
id

: {det?, adj∗, genmod?, pp?, rel?}
]

(10.44)

Here is how we write it in the concrete grammar specification language:

defword t cnoun id t noun id {
valencyID : {det? adj ∗ genmod? pp? rel?}

}
(10.45)

That is, the first argument of defword is the name of the lexical type to be defined
(here: t cnoun id), followed by an arbitrary number of lexical types from which to
inherit (here: only t noun id). In curly brackets, the definition of another lexical
type is given from which the defined type inherits.

Lexical entries are defined identically. As an example, we repeat here the lexical
entries for the past participle gegeben in chapter 7:

(gegeben , t vpp id u t ditr id u t can lp) (10.46)

(gegeben , t vpp id u t ditr id u t front lp) (10.47)

In the concrete grammar specification language, we obtain these lexical entries as
follows:

defword gegeben t vpp id t ditr id t can lp { }
defword gegeben t vpp id t ditr id t front lp { }

(10.48)

I.e. we define the lexical entry gegeben which inherits from the lexical types
t vpp id and t ditr id. gegeben also inherits from t can lp (upper entry)
and t front lp (lower entry).

10.3 Graphical user interface

We have also implemented a graphical user interface (GUI) to facilitate grammar
development and grammar debugging. We describe the GUI in the following.

CHAPTER 10. IMPLEMENTATION 151

10.3.1 Main window

We display the main window of the graphical user interface (GUI) in Figure 10.1.
The main window is divided into five parts. The first part is the topmost row of
pulldown-menus, consisting of Project, Search, Principles, Tools and Plugins.

Figure 10.1: GUI main window

The second part is a status display showing which grammar file is currently active
(Grammar: grammar-de.dg), which example file is currently loaded (Examples:
examples-de.dg) and which plugins file (Plugins: Plugins-de.ozf).

The third part is made up of a button labeled Inspect lexical entries and an adjacent
text entry field. Here, a list of words (including also names of lexical types) can be
entered (separated by spaces) whose corresponding lexical entries shall be depicted

CHAPTER 10. IMPLEMENTATION 152

using the Oz Inspector (Brunklaus 2000). The function is triggered either by
pressing the Inspect lexical entries-button or by pressing the return key while the
text entry field is active. An example output of this function for the lexical entry
lacht is given in Figure 10.2.

Figure 10.2: Lexical entries displayed by the Mozart-Oz Inspector

The fourth part of the main window is a scrollable listview of example strings.
Once clicking on an example string copies it into the text entry field below, and
double clicking indicates that the string shall be parsed.

The fifth part consists of a button labeled Parse and an adjacent text entry field.
In this entry field, the string to parse can be edited. Parsing is triggered either by
pressing the Parse-button or by pressing the return key whilst the text entry field
is active.

10.3.2 Pulldown menus

Project

The Project-menu consists of the following menu entries. About... displays an
about window. Open all... displays a file requestor where the user is asked to

CHAPTER 10. IMPLEMENTATION 153

select a grammar file from which the GUI then extracts an identifier 〈id〉 such as
“de” or “acl”. The GUI then tries to load the grammar file “grammar-〈id〉.dg”,
the examples file “examples-〈id〉.txt” and the plugins file “Plugins-〈id〉.ozf”. Open
grammar file... displays a file requestor by which a new grammar file for the
parser can be selected. Reload grammar file reloads the currently active grammar
file. Open examples... loads a new examples file. Examples files are standard text
files. Reload examples reloads the currently loaded text file and Append examples...
appends an examples file to the list of examples currently loaded. Open plugins...
loads a new plugins file. Reload plugins reloads the selected plugins file. Close
tree windows closes all windows containing ID, LP or ID/LP analyses which is
particularly useful in case the screen is cluttered up by them. Quit quits.

Search

The Search-menu consists of the two parts. The first allows the user to choose
between the entries First solution and All solutions First solution means that
search stops after the first solution (parse) has been found, and All solutions that
all solutions are enumerated. The Generate-menu entry can be used to toggle the
generate mode on and off. Generate mode is very useful for grammar debugging
since it allows to generate all licensed linearizations of a bag of words, which means
that also undesired linearizations can be comfortably spotted.

Principles

The Principles-menu contains a number of switches which can be used to toggle
the TDG principles on and off. The first three of these principles are the set of ID
principles, the second the set of LP principles and the third the set of ID/LP prin-
ciples. These switches are extremely useful for grammar debugging: by switching
off individual principles, one can easily find out which principles exclude ID/LP
analyses of a particular string.

Tools

The Tools-menu consists of three menu entries: Save trees as LaTeX... allows
the user to save all licensed ID/LP analyses of the currently selected sentence
(in the Parse text entry field) into a LATEX-file. The LATEX-code utilized Denys
Duchier’s “dtree.sty”-style file which is also used for the dependency tree depictions
throughout this thesis. Notice that the options configured in the Search-menu apply
for this function.

CHAPTER 10. IMPLEMENTATION 154

The Save test suite...-menu entry starts a function which goes through all strings
in the examples file, parses each string and writes statistics about the parse into a
text file. The statistics are of the form

maria wird haben einen mann lieben koennen

choices : 9 failed : 1 succeeded : 9
(10.49)

where the upper line contains the parsed string and the lower line information about
the search tree: the number of choice points (choice), of failed spaces (failed)
and of succeeded spaces (succeeded).

The Inspect all linearizations-menu entry uses the generate mode to generate all
licensed linearizations of a bag of words. The linearizations are displayed in list
form. Each of the displayed linearizations can be parsed by selecting the corre-
sponding list in the Inspector and invoke the action Parse from the Inspector’s
context menu.

The Configure pretty printing... allows to individually toggle features on and off
when using the Pretty-information action.

Plugins

Entries in the Plugins-menu are generated on the basis of plugins-specifications
which are explained in the parser’s online documentation.

10.3.3 Explorer

We employ the Oz Explorer to display the search space traversed during distribu-
tion. The Explorer is described in (Schulte 1997). Roughly, blue circles denote
choice points in the search space, green diamonds solutions and red boxes failures.
If the search space contains only red boxes, no parse for the string could be found.
We show an example Explorer search tree in Figure 10.3.

Non-failed nodes in the search tree (blue circles and green diamonds) can be double-
clicked to invoke a so-called information action. Information actions are e.g. the
graphical display of the ID/LP analysis corresponding to the node in the search
tree or a printout of the internal sign-structure of each node. The user can choose
between several information actions using the Explorer’s pulldown-menu (menu
entry Information Action in the Node-menu), all of which we explain below.

Show prints out the list of Signs on stdio. Browse prints out the list of Signs using
the Oz Browser. Inspect does the same using the Oz Inspector. The information

CHAPTER 10. IMPLEMENTATION 155

Figure 10.3: Search space displayed by the Oz Explorer

action Pretty prints out the list of Signs in prettified, i.e. more readable form using
the Inspector. This action takes into account the options set under Configure pretty
printing... in the Tools-menu. The information actions ID tree, LP tree graphically
depict ID and LP trees in separate windows and ID and LP tree depicts both trees
in one window. We show an example ID/LP tree depiction in Figure 10.4.

Figure 10.4: An ID/LP tree depiction

CHAPTER 10. IMPLEMENTATION 156

10.4 Summary

We have presented a parser implementation for the TDG grammar formalism. The
parser is written using state-of-the-art constraint solving technology provided by
the Mozart-Oz programming language (Mozart 1998). The performance of the
parser is very good, even without optimization. Grammars for the parser are
written in a concrete grammar specification language whose concrete syntax is
very similar to the set-theoretic notation used throughout the thesis. Grammars
can be comfortably debugged using a graphical user interface (GUI).

The following chapter concludes this thesis and provides pointers for future re-
search.

Chapter 11

Conclusions and future work

11.1 Summary

In the course of this thesis, we have developed a declarative grammar formalism
for dependency grammar called Topological Dependency Grammar (TDG). TDG
makes use of two orthogonal yet mutually constraining tree structures: the non-
ordered syntactic dependency tree (ID tree) and the ordered and projective topo-
logical dependency tree (LP tree). A set of ID/LP principles based on the notion
of climbing relates both trees to each other.

In chapter 2, we introduced the notion of an ID analysis. An ID analysis consists of
an ID tree and a lexical assignment. ID trees are essentially non-ordered traditional
dependency trees in the spirit of the dependency grammar outlined in (Duchier
1999), but modulo any constraints on word order.

In chapter 3, we presented a selection of approaches to linear precedence both in the
paradigm of PSG and of DG. On the PSG-side, we reviewed Reape’s (1994) theory
of word order domains and Kathol’s (1995) Linearization-Based Syntax. On the
DG-side, we outlined Bröker’s (1998) theory of word order domains in dependency
grammar and Gerdes & Kahane’s (2001) dependency-based theory which we called
Topological Dependency Grammar′. All of these theories share the fundamental
idea to dissociate immediate dominance from linear precedence, but we noticed
flaws in all of them.

In chapter 4, we introduced the notion of an LP analysis. An LP analysis consists
of an LP tree, a lexical assignment and an ordering on the set of nodes. LP
trees represent topological structures in the spirit of topological fields theory, but
from a dependency-based perspective, utilizing the notions of topological heads

157

CHAPTER 11. CONCLUSIONS AND FUTURE WORK 158

and topological dependents.

Chapter 5 introduced the notion of an ID/LP analysis. An ID/LP analysis is a pair
of an ID analysis and an LP analysis, and both analyses are related to each other by
well-formedness conditions called ID/LP principles. Climbing is the fundamental
concept driving these principles: nodes can climb up from a position lower in the
ID tree to a position higher up in the LP tree. As a result, the shape of the LP
tree is a flattening of the ID tree’s.

ID and LP analyses are subject to a number of lexicalized constraints. In chapter 6,
we introduced the TDG ID/LP lexicon. In order to improve lexical economy and
facilitate the statement of linguistic generalizations, we introduced a lexical type
hierarchy modeled using lattices. In this lexical type hierarchy, we use lexical
inheritance to obtain subtypes from more general lexical types.

In chapter 7, we presented a TDG grammar fragment for German. The focus on this
chapter was on specifying the lexicon. We split the exposition of the lexicon into
two parts, concerned with ID attributes and LP attributes (and ID/LP attributes)
respectively.

We breathed life into the German grammar fragment in chapter 8 where we demon-
strated how we are able to handle a number of difficult syntactic phenomena. In
spite of its small size, the grammar fragment allowed us to treat the scrambling con-
struction, vp-dislocation related phenomena, auxiliary flip and various phenomena
associated with relative clauses.

Chapter 9 provided a formalization of the TDG grammar formalism. We precisely
defined the notions of a TDG grammar and of ID, LP, and ID/LP principles. The
formalization of the principles gave rise to formal renditions of the concepts of ID,
LP and ID/LP analyses.

By reduction to a constraint problem following Duchier (2000), the formalization
in chapter 9 lead to the implementation of a TDG parser. We outlined the parser
implementation in chapter 10.

Appendix A explains a number of phenomena which not included in the grammar
fragment for simplicity.

11.2 Future work

In this section, we allude to some of the open questions surrounding the TDG
grammar formalism. We briefly discuss the issues of extending coverage and the
application of TDG to other languages besides German and English. Then, we

CHAPTER 11. CONCLUSIONS AND FUTURE WORK 159

argue that TDG needs a morphology interface to facilitate large-scale grammar de-
velopment. A syntax-semantics interface is also not yet specified, although we have
already implemented a preliminary syntax-semantics interface on top of an earlier
version of TDG. Finally, we discuss the incorporation of information structure.

11.2.1 Extending coverage

The grammar fragment presented in chapter 7 and also appendix A already han-
dles a number of notorious phenomena in German syntax, but still coverage is far
from complete. One future direction is thus an extension of the grammar fragment
developed in the course of writing this thesis. However we think that the imple-
mented grammar fragment demonstrates that even the most difficult phenomena
in German syntax can already be treated in TDG. Thus, we are optimistic that
extending coverage in order to attain a more realistic grammar should be doable.

The grammar fragment developed for this thesis was a competence grammar de-
veloped from a theoretical linguistics point of view. Extending such a compe-
tence grammar amounts to a high degree of linguistic research. There is how-
ever the possibility to build large-scale performance grammars using corpora such
as the NEGRA-corpus (Uszkoreit, Brants, Duchier, Krenn, Konieczny, Oepen &
Skut 1998). Christian Korthals from the NEGRA-project recently presented a first
prototype for automatic lexicon extraction using the NEGRA corpus. He also suc-
cessfully converted an extracted example lexicon into the TDG grammar format
which means that the resulting grammar can actually be parsed. However, the
lexicon extraction mechanism does not yet extract word order information from
the corpus.

11.2.2 Other languages

So far, we have applied TDG only to German (this study) and English (Gabsdil
et al. 2001). Another future research program might involve the application of
TDG to other languages. Because of the nature of the grammar formalism (using
topological fields theory), we think it should not be difficult to apply TDG for other
Germanic languages such as Dutch and scandinavian languages. Especially in the
HPSG community, topological fields theory has already been applied to a number
of languages besides German, including Dutch and the scandinavian languages
(Kathol 1995), (Kathol 2000). With respect to non-Germanic languages, Penn
uses a variant of topological fields in his treatment of Serbo-Croation (Penn 1999),
and Kruijff (2001) makes use of a generalized notion of topological fields in his

CHAPTER 11. CONCLUSIONS AND FUTURE WORK 160

competence grammar for tackling a number of typologically different languages
with varying degrees of word order freedom. Because Penn’s (1999) and Kruijff’s
(2001) approaches also use the fundamental notion of topological fields, we envisage
that the application of TDG to other languages is realistic.

11.2.3 Morphology interface

We have not yet specified an interface to morphology in the TDG grammar formal-
ism. At this point, the TDG lexicon is a full form lexicon listing all morphological
alternatives, i.e. fully inflected morphological forms. For any sensible large-scale
grammar development, we think that TDG must be augmented with an interface
to a morphology module.

A first step would be to apply an already available morphology module and use it
to generate a full form lexicon on the basis of a stem lexicon. A major drawback
of this practice would be that the resulting full form lexicon would become very
large for realistic applications. Hence, the next step would involve the integration
of a morphology module to analyze full forms at parse time.

11.2.4 Syntax-semantics interface

Another direction for future work is the specification of a syntax-semantics interface
for TDG. So far, we have not specified a declarative syntax-semantics interface.

Still, we are optimistic that the specification of a syntax-semantics interface is
doable. Recently, we have implemented an interface to an underspecified semantics
on top of an earlier version of TDG. The semantics formalism was a fragment of
the Constraint Language for Lambda Structures (CLLS) (Egg, Koller & Niehren
2001). CLLS is a formalism developed for semantic underspecification in the sense
of (Pinkal 1999) and has been developed in the CHORUS-project. CLLS has
already been applied to model scope ambiguities, reinterpretation (Koller, Niehren
& Striegnitz 2000) and ellipsis using parallelism constraints (Erk & Niehren 2000).

11.2.5 Information structure interface

Word order variation is not arbitrary. Following the Prague School of linguis-
tics, variation in word order is a structural means to realize information structure.
Thus, another issue for further work would be the integration of an interface to
information structure.

CHAPTER 11. CONCLUSIONS AND FUTURE WORK 161

Kruijff (2001) presents a multilingual grammar fragment for the DGL grammar
framework which models the interaction of word order, tune and information struc-
ture. He utilizes an extended version of FGD’s Topic-Focus-Articulation (TFA)
(Sgall et al. 1986) in order to determine whether a word is contextually bounded
or non-bounded. The notions topic and focus are based on the structural notions
of contextual boundedness and non-boundedness which combine to effect changes
in surface word order.

Kruijff’s DGL is a dependency-based framework in which a categorial calculus is
used to derive representations of form and meaning. He encodes the concepts of
heads and dependents using modes in addition to the categorial notions of functor
and argument. Because DGL is dependency-based, we think that adapting his
theory of how to derive information structure can in principle be done. However,
the theoretical basis of DGL is completely different from that of TDG: DGL is
formulated on categorial type logical grounds, whereas TDG is formalized in a
model-theoretic, constraint-based fashion. We do not yet see how these two views
can be reconciled in order to directly make use of Kruijff’s results in TDG.

Appendix A

Additions to the grammar
fragment

This chapter contains additions to the grammar fragment not included in chapter 7
for simplicity. First, we discuss the issue of coherence and incoherence of verbs in
German (Bech 1955). Then, we turn to the treatment of separable verb prefixes,
the notion of agreement and finally the relative clause principle.

A.1 Coherence and incoherence

A.1.1 The phenomenon

Following a distinction first made by Bech (1955), we divide the set of German
verbs which subcategorize for infinitival complements into three classes:

• obligatorily coherent verbs

• obligatorily incoherent verbs

• optionally coherent verbs

In a coherent construction, the infinitival complement of a governing verb lands
in canonical position, i.e. in the right sentence bracket (verb-first and verb-second
sentences) or to the left of the governing verb (verb-last sentences). An incoherent
construction is characterized by the infinitival complement landing in non-canonical
position, i.e. either intraposed (to the left periphery of the Mittelfeld) or extraposed

162

APPENDIX A. ADDITIONS TO THE GRAMMAR FRAGMENT 163

(to the right of its governor). Obligatorily coherent verbs such as scheinen may
only construct coherently, obligatorily incoherent verbs such as empfehlen may
only construct incoherently, and optionally coherent verbs such as versuchen may
construct either coherently or incoherently. Notice that regardless of their status
with respect to coherence and incoherence, all non-finite verbs can be fronted into
the Vorfeld in verb-second sentences.

We proceed with some examples. In (A.1) below, the infinitival complement zu
lieben lands in canonical position to the left of the governing verb scheint, re-
sulting in a coherent construction. In (A.2), zu lieben (in fact the entire vp den
Mann zu lieben) is extraposed to the right of its governing verb, resulting in an
incoherent construction. Since scheint is an obligatorily coherent verb, only the
coherent construction (A.1) is grammatical. The incoherent construction (A.2) is
ungrammatical:

(dass) Maria den Mann zu lieben scheint
(that) Maria the man(acc) to love seems

“(that) Maria seems to love the man”
(A.1)

∗ (dass) Maria scheint, den Mann zu lieben
(that) Maria seems, the man(acc) to love

(A.2)

The opposite situation occurs in constructions involving obligatorily incoherent
verbs such as empfiehlt. Again, we show one example (A.3) where the infinitival
complement zu lieben lands in canonical position and one (A.4) where it lands in
non-canonical (extraposed) position. Hence (A.3) is a coherent and (A.4) is an inco-
herent construction. Because empfiehlt is an obligatorily incoherent verb, only the
incoherent construction (A.4) is grammatical, whereas the coherent construction
(A.3) is ungrammatical:

∗ (dass) Maria den Mann zu lieben empfiehlt
(that) the man(acc) to love Maria recommends

(A.3)

(dass) Maria empfiehlt, den Mann zu lieben
(that) Maria recommends, the man(acc) to love

“(that) Maria recommends to love the man”
(A.4)

Optionally coherent verbs such as versucht may give rise to either coherent or
incoherent constructions: the infinitival complement may either land in canonical
position (A.5) or in non-canonical position (A.6):

(dass) Maria den Mann zu lieben versucht
(that) Maria the man(acc) to love tries

“(that) Maria tries to love the man”
(A.5)

APPENDIX A. ADDITIONS TO THE GRAMMAR FRAGMENT 164

(dass) Maria versucht, den Mann zu lieben
(that) Maria tries, the man(acc) to love

“(that) Maria tries to love the man”
(A.6)

A.1.2 How we handle it

In order to distinguish between the three classes of verbs, we need to modify the
grammar fragment presented in chapter 7. There, we introduced in the LP part
the lexical type t fin lp for finite verbs:

t fin lp =





labelsn : {v, v12}
valency

lp
: {if?, mf∗, vcf?, vxf?, nf?}

blocks : R



 (A.7)

But (A.7) leads to overgeneration: every finite verb inherits from t fin lp, and hence
every finite verb offers the canonical field vcf for their verbal complements as well
as the non-canonical fields if and vxf. Thus, all verbs may give rise to coherent and
incoherent constructions. In other words, (A.7) treats all verbs as being ‘optionally
coherent’ which is clearly wrong.

In order to remedy this problem, we redefine t fin lp, thereby changing its field
valency:

t fin lp =





labelsn : {v, v12}
valency

lp
: {mf∗, nf?}

blocks : R



 (A.8)

In (A.8), we removed the fields if, vcf and vxf from the field valency of and only
kept mf and nf.

In addition, we introduce three lexical types corresponding to the three classes
of verbs introduced above. Obligatorily coherent verbs inherit from lexical type
t fin oblco lp given below:

t fin oblco lp = t fin lp u
[

valency
lp

: {vcf?}
]

(A.9)

(A.9) inherits from t fin lp and additionally offers the canonical field vcf. As a
result, any verbal complement of such a verb must land in canonical position.
Hence, verbs inheriting from this type only license coherent constructions.

Obligatorily incoherent verbs inherit from the following lexical type:

t fin oblinco lp = t fin lp u
[

valency
lp

: {if?, vxf?}
]

(A.10)

APPENDIX A. ADDITIONS TO THE GRAMMAR FRAGMENT 165

Verbs of this type offer only the non-canonical positions if and vxf for their verbal
complements to land in, but not the canonical position vcf. Thus, verbs inheriting
from this type only license incoherent constructions.

Finally, optionally coherent verbs inherit from lexical type t fin optco lp:

t fin optco lp = t fin lp u
[

valency
lp

: {if?, vcf?, vxf?}
]

(A.11)

Optionally coherent verbs offer both the canonical field vcf and the non-canonical
fields if and vxf.1 Therefore, verbs of this type license both coherent and incoherent
constructions.

A.1.3 Summary

The grammar fragment exhibited in chapter 7 did not distinguish between verbs
which behave differently with respect to coherence and incoherence. In this sec-
tion, we demonstrated how to incorporate this distinction in the fragment. We
changed the lexical type for finite verbs to t fin lp and introduced the three types
t fin oblco lp, t fin oblinco lp and t fin optco lp, which correspond to three classes
of obligatorily coherent, obligatorily incoherent and optionally coherent verbs.

A.2 Separable verb prefixes

A.2.1 The phenomenon

A German specialty is that in verb-first or verb-second sentences (but not in verb-
final sentences), some verbs can ‘lose’ their prefixes to the right sentence bracket.
Here is an example. In the verb-final sentence (A.12) below, the prefix ein is not
separated from the finite verb einkauft, while in the verb-second sentence (A.13),
einkaufen loses its prefix ein to the right sentence bracket:

(dass) Maria heute einkauft
(that) Maria today goes shopping

“(that) Maria goes shopping today”
(A.12)

Maria kauft heute ein.
Maria goes shopping today (pref).

“Maria goes shopping today.”
(A.13)

1Note that t fin optco lp amounts to precisely the same type as displayed in (A.7) above.

APPENDIX A. ADDITIONS TO THE GRAMMAR FRAGMENT 166

We posit the following ID analysis for (A.13), where Maria is the subject, heute
an adverb and the prefix ein a vpref-dependent of kauft :

Maria kauft heute ein

sub
j advvpref

(A.14)

The corresponding LP tree is shown in (A.15): Maria lands in the vf, heute in the
mf and the verb prefix ein in the vcf of kauft :

Maria kauft heute ein

n
v12

v v

vf mf vcf

(A.15)

A.2.2 How we handle it

We introduce new lexical types required to handle separable verb prefixes. First,
we add to the set R of grammatical roles the role vpref for ‘verb prefix’. Then, we
posit the subtype t v12 vpref of the lexical type t v12 lp for finite verbs in verb-first
or verb-second position with a separable prefix:

t v12 vpref = t v12 lp u

[

valency
id

: {vpref}
valency

lp
: {vcf?}

]

(A.16)

In its role valency, t v12 vpref requires a vpref-dependent, and in its field valency,
it offers the field vcf for the separated prefix to land in.

The separable prefix itself inherits from lexical type t vpref:

t vpref =

















labelsid : {vpref}
valency

id
: ∅

labelslp : {vcf}
labelsn : {v}

valency
lp

: ∅
blocks : ∅

















(A.17)

(A.17) declares that verb prefixes accept only role vpref and have an empty role
valency. Their only accepted field is the right sentence bracket vcf, and their node
label v. Their field valency is empty, as is their set of blocked roles.

APPENDIX A. ADDITIONS TO THE GRAMMAR FRAGMENT 167

We still need to match the verb with its prefix, thereby excluding sentences like
(A.18) below, where the separated prefix zu does not match the verb kauft :

∗ Maria kauft heute zu
Maria goes shopping today (pref)

(A.18)

To this end, we define a set Vpref of separable prefixes and introduce the two lexical
attributes vprefsReq : E → 2Vpref and vprefs : E → 2Vpref. vprefsReq assigns to each
word a set of prefixes which the word admits and vprefs a set of prefixes which the
word ‘is’: vprefs(e) is the singleton set containing only π1 ◦ e (the string s in lexical
entry e = (s, et)) if e is a verb prefix, and vprefs(e) is empty if e is no verb prefix.

As an example, we show how to derive the lexical entries for the finite verb kauft
and the separable verb prefix ein. Here is an abbreviation of the lexical entry for
kauft :

(kauft , t v12 vpref u . . . u

[

vprefReq : {ein}
vprefs : ∅

]

) (A.19)

And below, we show the lexical entry for the separable verb prefix ein:

(ein , t vpref u

[

vprefsReq : ∅
vprefs : {ein}

]

) (A.20)

We match verb prefixes and their corresponding verbs using the ID edge constraint
for role vpref:

Γvpref(w, w′) ≡ λw, w′ · (vprefs(w′) ⊆ vprefReq(w)) (A.21)

ID edge constraint (A.21) states that the vprefs-value of the verb prefix w ′ must be
a subset of the vprefsReq-value of the finite verb w. The ungrammatical sentence
(A.18) is now excluded because zu is not in the set of admitted verb prefixes for
kauft :

vprefs(zu) = {zu} 6⊆ vprefsReq(kauft) = {ein} (A.22)

A.2.3 Summary

The grammar fragment exhibited in chapter 7 did not include a treatment of sep-
arable verb prefixes. Here, we illustrated an approach to handle separable pre-
fixes in TDG. First, we introduced new lexical types for separable prefix verbs
(t v12 vpref) and separable prefixes (t vpref). Then, we posed two new lexical at-
tributes, vprefsReq and vprefs, and used ID edge constraints to match separable
prefix verbs with their corresponding separable prefixes.

APPENDIX A. ADDITIONS TO THE GRAMMAR FRAGMENT 168

A.3 Agreement

A.3.1 The phenomenon

In this section, we turn to agreement in German. For one, finite verbs must agree
with their subjects in person and number, and the subject must be in nominative
case. (A.23) below is an example where both conditions are satisfied: the finite
verb lacht and the subject Mann agree in person and number and Mann is in
nominative case:

Der Mann lacht.
The man(nom,3rd,sg) laughs(3rd,sg).

“The man laughs.”
(A.23)

In (A.24), the finite verb does not agree with its subject in number: lacht is singular
and Männer plural:

∗ Die Männer lacht.
The men(nom,3rd,pl) laughs(3rd,sg).

(A.24)

(A.25) shows an example where the finite verb does agree with the subject, but
the subject is not in nominative but in genitive case:

∗ Des Mannes lacht.
The man(gen,3rd,sg) laughs(3rd,sg).

(A.25)

Within each German np, the noun must agree with its determiner and its adjectives
in gender, number, definiteness and case. In the following examples, we concentrate
only on definiteness. Example (A.26) below exhibits a definite np and (A.27) an
indefinite np:

der reiche Mann
the(def) rich(def) Mann(def)

“the rich man”
(A.26)

ein reicher Mann
a(indef) rich(indef) man(indef)

“a rich man”
(A.27)

If we e.g. use the indefinite adjective in the definite np, and the definite adjective
in the indefinite np, the examples become ungrammatical:

∗ der reicher Mann
the(def) rich(indef) man(def)

(A.28)

∗ ein reiche Mann
a(indef) rich(def) man(indef)

(A.29)

APPENDIX A. ADDITIONS TO THE GRAMMAR FRAGMENT 169

A.3.2 How we handle it

We employ ID edge constraints to handle agreement. Although we focus here on
agreement in German, we claim that the same approach can also be applied for
other languages.

We distinguish between the morphological notions of person, gender, number, def-
initeness and case and capture these notions by the following five sets:

Person = {1, 2, 3} (A.30)

Gender = {masc, fem, neut} (A.31)

Number = {sg, pl} (A.32)

Def = {def, indef, undef} (A.33)

Case = {nom, gen, dat, acc} (A.34)

The set Person consists of 1 (first person), 2 (second person) and 3 (third person).
Gender consists of masc (masculine), fem (feminine) and neut (neuter). The set
Number comprises sg (singular) and pl (plural), and the set Def includes def (defi-
nite), indef (indefinite) and undef (no determiner).2 Finally, the set Case is made
up of nom (nominative), gen (genitive), dat (dative) and acc (accusative).

From these five sets, we construct the set Agr of agreement tuples as follows:

Agr = Person × Gender× Number × Def× Case (A.35)

For convenience, we also define the following four sets of agreement tuples in nom-
inative, genitive, dative and accusative case:

NOM = Person × Gender × Number × Def× {nom} (A.36)

GEN = Person × Gender × Number × Def× {gen} (A.37)

DAT = Person × Gender × Number × Def× {dat} (A.38)

ACC = Person × Gender × Number × Def× {acc} (A.39)

We introduce the lexical attribute agrs : Et → 2Agr mapping lexical types to sets
of agreement tuples. This captures the fact that the same surface form may be
consistent with a number of agreement tuples. We also posit the function agr :
V → Agr which maps nodes to agreement tuples. agr(w) picks out precisely one
agreement tuple from the set agrs(w) of possible agreement tuples of a node w:

agr(w) ∈ agrs(w) (A.40)

2The corresponding German terms are schwache Flexion for def, gemischte Flexion for indef
and starke Flexion for undef.

APPENDIX A. ADDITIONS TO THE GRAMMAR FRAGMENT 170

Notice that for example finite verbs do not inflect for gender, case and definiteness,
and nouns (except for pronouns) do not inflect for person, yet we assign to them
agreement tuples including gender, case and definiteness (for finite verbs) and per-
son (nouns). If a word does not inflect for any of the projections in the agreement
tuple, we simply assign to that projection its range.

We employ ID edge constraints to state agreement requirements. We capture the
requirement that finite verbs must agree with their subjects and their subjects must
be in nominative case by ID edge constraint (A.41):

Γsubj(w, w′) ≡ λw, w′ · agr(w) = agr(w′) ∧ agr(w′) ∈ NOM (A.41)

stating that the agreement values of the finite verb w and the subject w′ must
be equal (agr(w) = agr(w′)) and that the subject must be in nominative case
(agr(w′) ∈ NOM).

We also need to ensure that objects are in accusative case, indirect object in da-
tive case and genitival dependents in genitive case. This is accomplished by the
following four ID edge constraints:

Γobj(w, w′) ≡ λw, w′ · agr(w′) ∈ ACC (A.42)

Γiobj(w, w′) ≡ λw, w′ · agr(w′) ∈ DAT (A.43)

Γgenobj(w, w′) ≡ λw, w′ · agr(w′) ∈ GEN (A.44)

Γgenmod(w, w′) ≡ λw, w′ · agr(w′) ∈ GEN (A.45)

And determiners and adjectives agree with their nouns, which is characterized by
the following ID edge constraints:

Γdet(w, w′) ≡ λw, w′ · agr(w) = agr(w′) (A.46)

Γadj(w, w′) ≡ λw, w′ · agr(w) = agr(w′) (A.47)

A.3.3 Summary

The grammar fragment exhibited in chapter 7 did not include a treatment of agree-
ment. In this section, we illustrated how to handle a number of agreement phe-
nomena in TDG. We introduced the new lexical attribute agrs which assigns to
each lexical type a set of possible agreement tuples. Then, we stated agreement
requirements for subjects, objects, indirect objects, genitival dependents and also
for determiners and adjectives using ID edge constraints.

APPENDIX A. ADDITIONS TO THE GRAMMAR FRAGMENT 171

A.4 Relative clause principle

A.4.1 The phenomenon

For two reasons, the treatment of relative clauses in the grammar fragment in
chapter 7 leads to overgeneration:

• We do not require that there must be precisely one relative pronoun per
relative clause.

• We do not require that the relative pronoun agrees with the modified noun.

As an example, consider the following sentence which exhibits np pied piping:

ein Mann, dessen Frau lacht
a man, whose woman laughs

“a man whose woman laughs”
(A.48)

The corresponding ID/LP analysis is given below:

ein Mann dessen Frau lacht

det

gen
mod

sub
j

rel

ein Mann dessen Frau lacht

n
n

n
n

v

nvf

nvf

rvf

nf

(A.49)

In (A.49), not the relative pronoun dessen but the nominal governor Frau of the
relative pronoun lands in the relative clause Vorfeld rvf. But then how do we guar-
antee that there actually is a relative pronoun somewhere in the relative clause, or,
more precisely, somewhere in the yield of the node landing in the rvf? The grammar

APPENDIX A. ADDITIONS TO THE GRAMMAR FRAGMENT 172

fragment specified in chapter 7 does not guarantee that there is a relative pronoun
in each relative clause: it also licenses the following ungrammatical example where
the relative pronoun is missing:

∗ ein Mann, eine Frau lacht
a man, a woman laughs

(A.50)

The licensed ID/LP analysis for this sentence would be:

ein Mann eine Frau lacht

det

det

sub
j

rel

ein Mann eine Frau lacht

n
n

n
n

v

nvf

nvf

rvf

nf

(A.51)

On the other hand, we do not yet require that the relative pronoun agrees with
the modified noun. So far, our grammar fragment does license the ungrammatical
example in (A.52) below where the relative pronoun die has feminine gender and
the corresponding noun Mann masculine gender:

∗ ein Mann, die lacht
a man(masc), who(fem) laughs

(A.52)

A.4.2 How we handle it

We have shown that we need to enhance our treatment of relative clauses in order
to avoid overgeneration. To this end, we introduce an additional ID/LP principle
called relative clause principle:

Principle A.1 Each relative clause has precisely one relative pronoun in its rela-
tive clause Vorfeld which agrees with the corresponding noun.

APPENDIX A. ADDITIONS TO THE GRAMMAR FRAGMENT 173

We formalize the relative clause principle as follows. We introduce the function
rpros : V → 2V mapping nodes to sets of nodes and the set Allrpros : 2V denoting
the set of all relative pronouns in a sentence. rpros(w) denotes the singleton set
containing only the relative clause’s relative pronoun if w is a finite verb heading a
relative clause. If w is not the head of a relative clause, rpros(w) denotes the empty
set.

In the first part of the relative clause principle, we state that the set of all relative
pronouns in a sentence is the disjoint union of the sets denoted by rpros(w) for each
node:

Allrpros =]{rpros(w) | w ∈ V } (A.53)

The second part of the relative clause principle ensures that the relative pronoun
has the correct category. Therefore, we pose the function cat : V → Cats which
maps each node to its category. The category of relative pronouns is rpro. The
following constraint states that a word is of category rpro if and only if it is in the
set Allrpros of all relative pronouns in the sentence:

Allrpros = {w ∈ V | cat(w) = rpro} (A.54)

For the next part of the relative clause principle, we overload the functional notation
ρ: ρ(V) is the image of set V by function ρ, defined as:

ρ(V) = ∪{ρ(w) | w ∈ V } for ρ ∈ R (A.55)

i.e. ρ(V) denotes the set of all nodes whose incoming edge is labeled with ρ. We
impose two further constraints: (A.56) requires that the set rpros(w) of relative
pronouns assigned to node w has cardinality zero or one. (A.57) states that the
cardinality of rpros(w) is one if and only if w’s incoming edge is labeled with role
rel, i.e. if w is the head of a relative clause:

∀w ∈ V : |rpros(w)| ≤ 1 (A.56)

∀w ∈ V : w ∈ rel(V) ≡ |rpros(w)| = 1 (A.57)

In the fourth part of the relative clause principle, we state that the relative pronoun
must be in the set of nodes reachable by traversing downwards zero or more edges
from the node landing in the rvf:

∀w ∈ V : rpros(w) ⊆ →∗ ◦ rvf(w) (A.58)

Here, we make use of the function rvf : V → 2V which assigns each node to the set
of its dependents in the rvf. →∗ ◦ rvf(w) denotes all nodes reachable by traversing
downwards zero or more edges from the node landing in the rvf.

APPENDIX A. ADDITIONS TO THE GRAMMAR FRAGMENT 174

Finally, we require that the relative pronoun agrees with the modified noun. Here,
we make use of the function mothersid : V → 2V mapping each node to the set of
its syntactic mothers:

∀w ∈ V : |rpros(w)| = 1 ⇒ ∀w′ ∈ rpros(w) ∀w′′ ∈ mothersid(w) :
agr|Gender×Number(w

′) = agr|Gender×Number(w
′′)
(A.59)

where agr|Gender×Number stands for the projection of the agreement tuple to gender
and number.

A.4.3 Summary

In this section, we added to TDG a new ID/LP principle called relative clause
principle. The goal of this principle is twofold: on the one hand, it ensures that
there is precisely one relative pronoun in each relative clause. On the other hand,
it requires that the relative pronoun agrees with the modified noun in gender and
number.

Bibliography

Ades, A. E. & Steedman, M. J. (1982), ‘On the order of words’, Linguistics and
Philosophy 4, 517–558.

Askedahl, J. O. (1983), ‘Kohärenz und Inkohärenz in deutschen Infinitfügungen:
Vorschlag zur begrifflichen Klärung’, Lingua 59, 177–196.

Bach, E. (1981), Discontinuous constituents in generalized categorial grammars, in
‘Proceedings of the 11th Annual Meeting of the Northeast Linguistic Society’,
Amberst/GLSA, pp. 515–531.

Bech, G. (1955), Studien über das deutsche Verbum Infinitum, Det Kongelige
Danske videnskabernes selskab. Historisk-Filosofiske Meddelelser, Bd. 35, Nr.
2 (1955) and Bd. 36, Nr. 6 (1957), Munksgaard, Kopenhagen/DK.

Becker, T. & Rambow, O. (1994), ‘Parsing free word-order languages in polynomial
time’.

Blackburn, P. (1994), Structures, languages and translations: The structural ap-
proach to feature logic, in C. J. Rupp, M. A. Rosner & R. L. Johnson,
eds, ‘Constraints, Language and Computation’, Academic Press, London/UK,
pp. 1–27.

Bröker, N. (1998), Separating surface order and syntactic relations in a dependency
grammar, in ‘COLING-ACL 98 - Proc. of the 17th Intl. Conf. on Computa-
tional Linguistics and 36th Annual Meeting of the ACL.’, Montreal/CAN.

Bröker, N. (1999), Eine Dependenzgrammatik zur Kopplung heterogener Wis-
sensquellen, Linguistische Arbeiten 405, Max Niemeyer Verlag, Tübin-
gen/FRG.

Brunklaus, T. (2000), Der Oz Inspector - Browsen: Interaktiver, einfacher, effizien-
ter, Master’s thesis, Universität des Saarlandes.

175

BIBLIOGRAPHY 176

Chomsky, N. (1986), Barriers, Linguistic Inquiry Monograph 13, MIT Press, Cam-
bridge/MA.

Covington, M. A. (1984), Syntactic theory in the High Middle Ages, Cambridge
University Press.

Curry, H. B. (1961), Some logical aspects of grammatical structure, in ‘Structure
of Language and its Mathematical Aspects: Proceedings of the Twelfth Sym-
posium in Applied Mathematics’, American Mathematical Society, pp. 56–68.

Debusmann, R. (2001), Movement as well-formedness conditions, in ‘Proceedings
of the Sixth ESSLLI Student Session’, Helsinki/FIN.

Duchier, D. (1999), Axiomatizing dependency parsing using set constraints, in
‘Sixth Meeting on the Mathematics of Language’, Orlando/FL.

Duchier, D. (2000), ‘Configuration of labeled trees under lexicalized constraints
and principles’, To appear in the Journal of Language and Computation.

Duchier, D. (2001), Lexicalized syntax and topology for non-projective dependency
grammar, in ‘Eighth Meeting on Mathematics of Language’, Helsinki/FIN.

Duchier, D. & Debusmann, R. (2001), Topological dependency trees: A constraint-
based account of linear precedence, in ‘39th Annual Meeting of the Association
for Computational Linguistics (ACL 2001)’, Toulouse, France.

Egg, M., Koller, A. & Niehren, J. (2001), ‘The constraint language for lambda
structures’, Journal of Logic, Language, and Information .

Erdmann, O. (1886), Grundzüge der deutschen Syntax nach ihrer geschichtlichen
Entwicklung dargestellt, Erste Abteilung, Stuttgart/FRG.

Erk, K. & Niehren, J. (2000), Parallelism constraints, in ‘International Conference
on Rewriting Techniques and Applications’, Vol. 1833 of Lecture Notes in
Computer Science, Springer-Verlag, Berlin, Norwich/UK, pp. 110–126.

Fouvry, F. & Meurers, D. (2000), Towards a platform for linearization grammars, in
E. W. Hinrichs, D. Meurers & S. Wintner, eds, ‘Proceedings of the Workshop
on Linguistic Theory and Grammar Implementation’, ESSLLI 2000, Birming-
ham, UK, pp. 153–168.

Gabsdil, M., Koller, A. & Striegnitz, K. (2001), Building a text adventure on
description logic, in ‘Proceedings of KI-2001 Workshop on Applications of
Description Logics’, Vienna/AUT.

BIBLIOGRAPHY 177

Gaifman, H. (1965), ‘Dependency systems and phrase-structure systems’, Informa-
tion and Control 8(3), 304–337.

Gazdar, G., Klein, E., Pullum, G. & Sag, I. (1985), Generalized Phrase Structure
Grammar, B. Blackwell, Oxford/UK.

Gerdes, K. & Kahane, S. (2001), Word order in german: A formal dependency
grammar using a topological hierarchy, in ‘39th Annual Meeting of the Associ-
ation for Computational Linguistics (ACL 2001)’, Toulouse/FRA. To appear.

Greenberg, J. H. (1966), Some universals of grammar with particular reference
to the order of meaningful elements, in J. H. Greenberg, ed., ‘Universals of
Language’, The MIT Press, Cambridge/MA, pp. 73–114. second edition.

Haider, H. (1985), ‘Der Rattenfängerei muss ein Ende gemacht werden’, wiener
linguistische gazette pp. 27–50.

Halliday, M. A. K. (1961), ‘Categories of the theory of grammar’.

Halliday, M. A. K. (1994), Introduction to functional grammar, Edward Arnold,
London/UK.

Hawkins, J. A. (1983), Word Order Universals, Academic Press.

Hays, D. G. (1964), ‘Dependency theory: A formalism and some observations’,
Language 40, 511–525.

Hellwig, P. (1986), Dependency unification grammar, in ‘Proc. of the 11th Int.
Conf. on Computational Linguistics’, pp. 195–198.

Herling, S. (1821), ‘Über die Topik der deutschen Sprache’.

Hinrichs, E. & Nakazawa, T. (1994), Linearizing AUXs in German verbal com-
plexes, in J. Nerbonne, K. Netter & C. Pollard, eds, ‘German in Head-Driven
Phrase Structure Grammar’, CSLI, Stanford/CA, pp. 11–37.

Höhle, T. (1986), Der Begriff “Mittelfeld”, Anmerkungen über die Theorie der
topologischen Felder, in W. Weiss, H. E. Wiegand & M. Reis, eds, ‘Akten
des 7. Internationalen Germanisten-Kongresses, Göttingen 1985’, Vol. 3, Max
Niemeyer Verlag, Tübingen/FRG, pp. 329–340.

Hudson, R. A. (1990), English Word Grammar, B. Blackwell, Oxford/UK.

Joshi, A. K. (1987), An introduction to tree-adjoining grammars, in A. Manaster-
Ramer, ed., ‘Mathematics of Language’, John Benjamins, Amsterdam/NL,
pp. 87–115.

BIBLIOGRAPHY 178

Kahane, S., Nasr, A. & Rambow, O. (1998), Pseudo-projectivity: a polynomially
parsable non-projective dependency grammar, in ‘36th Annual Meeting of the
Association for Computational Linguistics (ACL 1998)’, Montreal/CAN.

Kathol, A. (1995), Linearization-Based German Syntax, PhD thesis, Ohio State
University.

Kathol, A. (2000), Linear Syntax, Oxford University Press.

Koller, A., Niehren, J. & Striegnitz, K. (2000), ‘Relaxing underspecified semantic
representations for reinterpretation’, Grammars 3:2-3.

Kruijff, G.-J. M. (2001), A Categorial-Modal Architecture of Informativity, PhD
thesis, Charles University, Prague/Czech Republic.

Lecerf, Y. (1960), ‘Programme des conflits, modèle des conflits.’, Bulletin bimestriel
de l’atala .

Mel’čuk, I. (1988), Dependency Syntax: Theory and Practice, State Univ. Press of
New York, Albany/NY.

Meurers, W. D. (1994), ‘A modified view of the german verbal complex’. Hand-
out of a talk given on 7. Oktober 1994 at the HPSG workshop in Heidel-
berg/Germany.

Meurers, W. D. & Kuthy, K. D. (2001), ‘On partial constituent fronting in german’,
Journal of Comparative Germanic Linguistics .

Mozart (1998). http://www.mozart-oz.org/.

Müller, S. (1999), Deutsche Syntax deklarativ. Head-Driven Phrase Structure
Grammar für das Deutsche, Linguistische Arbeiten 394, Max Niemeyer Verlag,
Tübingen/FRG.

Penn, G. (1999), A generalized-domain-based approach to serbo-croatian second-
position clitic placement, in G. Bouma, E. Hinrichs, G.-J. M. Kruijff &
R. Oehrle, eds, ‘Constraints and Resources in Natural Language Syntax and
Semantics’, CSLI Publications, Stanford/CA, pp. 119–136.

Pinkal, M. (1999), On underspecification, in ‘Proceedings of the 5th International
Workshop on Computational Semantics’, Tilburg/NL.

Pollard, C. & Sag, I. (1994), Head-Driven Phrase Structure Grammar, University
of Chicago Press, Chicago.

BIBLIOGRAPHY 179

Reape, M. (1994), Domain union and word order variation in german, in J. Ner-
bonne, K. Netter & C. Pollard, eds, ‘German in Head-Driven Phrase Structure
Grammar’, CSLI, Stanford/CA, pp. 151–197.

Robinson, J. J. (1970), ‘Dependency structures and transformation rules’, Language
46, 259–285.

Ross, J. R. (1967), Constraints on Variables in Syntax, PhD thesis, MIT.

Schulte, C. (1997), Oz Explorer: A visual constraint programming tool, in L. Naish,
ed., ‘Proceedings of the Fourteenth International Conference on Logic Pro-
gramming’, The MIT Press, Leuven, Belgium, pp. 286–300.

Sgall, P., Hajicova, E. & Panevova, J. (1986), The Meaning of the Sentence in its
Semantic and Pragmatic Aspects, D. Reidel, Dordrecht/NL.

Starosta, S. (1988), ‘The case for lexicase’.

Steele, S. M. (1978), Word order variation: A typological study, in J. Greenberg,
ed., ‘Universals of Human Language’, Stanford University Press, Stanford,
pp. 585–624.

Tesnière, L. (1959), Eléments de Syntaxe Structurale, Klincksiek, Paris/FRA.

Uszkoreit, H. (1987), Word Order and Constituent Structure in German, CSLI,
Stanford/CA.

Uszkoreit, H., Brants, T., Duchier, D., Krenn, B., Konieczny, L., Oepen, S. &
Skut, W. (1998), ‘Studien zur performanzorientierten Linguisitk. Aspekte der
Relativsatzextraposition im Deutschen’, Kognitionswissenschaft 7(3).

Venneman, T. (1977), ‘Konstituenz und Dependenz in einigen neueren Grammatik-
theorien’, Sprachwissenschaft 2, 259–301.

Index

accepted edge labels principle, 21, 53,
129, 133

accepted fields, 53
accepted node labels principle, 53, 133
accepted roles, 21
accumulative set lattice, 71
Agr, 169
agr, 169
agreement, 167
agreement tuple, 169
agrs, 169
argument, 9
attributed graph, 19, 129
automatic lexicon extraction, 159
auxiliary flip, 113

barriers principle, 65, 135
blocks, 65, 135
⊥, 69
bottom element, 69
box, 41, 94
box creation rules, 43
box description rules, 44
Bröker, 37

canonical position, 86, 94, 162
Caretexpr , 147
Case, 169
case, 169
CCG, 8
CFG, 7
CG, 8
CHORUS, 160
climb through, 65, 135

climb up, 59
climbing principle, 59, 134
CLLS, 160
coherence, 162
coherent construction, 162
competence grammar, 159
complementizer, 80, 97
Conexpr , 145
Const , 139
constraint language, 131
constraint satisfaction problem, 137
contiguous substring, 52
contribution, 28, 29
CSP, 137

DACHS, 37
Def, 169
defattributes, 143
defdistribute, 148
defedges id, 146
defedges lp, 148
defentry, 141
definiteness, 169
definition section, 139
defnode, 144
deforder, 142
deftypes, 140
defword, 149
dependency relation, 10
dependency tree, 10
dependent, 9
DG, 7
DGL, 10
Dot , 144

180

INDEX 181

DUG, 9

edge constraints, 22, 54, 130, 133
Edgecons, 147
Edgedef , 147
Edgeexpr , 147
Eid, 19, 131
Elp, 50, 134
emancipation, 45, 60
Ersatzinfinitiv, 116
extraposition, 33, 86, 109

FE, 50, 134
Featexpr , 149
FGD, 9
field valency, 53
finite labeled graph, 127
finite labeled tree, 128
flattening, 27, 59
FN, 50, 134
forced climbing, 60
free word order, 7
freer word order, 8
fronting, 12, 108
functor, 9

Γadj, 170
Γdet, 170
Γgenmod, 170
Γgenobj, 170
Γiobj, 170
Γobj, 170
Γsubj, 170
Γvpref , 167
GB, 10
Gender, 169
gender, 169
general principle, 20, 50, 127, 131, 134
generate mode, 138
Genexpr , 145
Genexpr2 , 146
Genexpr3 , 146

Gerdes and Kahane, 41
GPSG, 8
grammatical role, 10, 18
graphical user interface, 150
greatest lower bound, 69
GUI, 150

have role, 20
head, 9
head-wrapping, 8
horizontal organization principle, 8
HPSG, 8
HPSG-independent, 28

ID, 8
ID analysis, 15, 18, 131
ID attributes, 21, 72
ID edge constraints, 23, 170
ID principle, 19, 126
ID tree, 15, 18, 26
ID/LP analysis, 15, 59, 135
ID/LP attributes, 72
ID/LP lexicon, 69
ID/LP principle, 59, 134
immediate dominance analysis, 18
immediate dominance tree, 18
implementation, 137
incoherence, 162
incoherent construction, 162
incoming edge, 21
insert, 29
intersective set lattice, 71
intraposition, 86, 111
intraposition field, 86

Kathol, 36

Lab, 147
labeln, 54, 133
labels, 130
labelsid, 21
labelslp, 53

INDEX 182

labelsn, 53, 133
land on, 50
landing site, 53
language-specific principles, 30
lattice, 69
lattice type, 70
least upper bound, 69
left sentence bracket, 12, 87
lexical assignment, 21, 129
lexical attribute, 20, 69, 129
lexical entry, 20, 69, 129
lexical inheritance, 70
lexical type hierarchy, 69
lexicalization, 10
lexicalized principle, 20, 53, 129, 133,

135
Lexicase, 9
lexicon, 20, 69, 129
lexicon lattice, 69
lifting, 59
linear precedence analysis, 48
linear precedence rules, 30
linear precedence tree, 48
Linearization-Based Syntax, 36
linke Satzklammer, 12
LP, 8
LP analysis, 15, 48, 133
LP attributes, 53, 72
LP edge constraints, 54
LP principle, 50, 131
LP rules, 30
LP tree, 15, 27, 48

maximal attribute, 73
merge, 29
Mittelfeld, 12, 86
mixed word order, 8
modification, 22
monostratal, 12
movement, 60
MTT, 9

multistratal, 12
mutually constraining, 59

Nachfeld, 12, 86
NEGRA, 159
node attribute, 143
node constraint, 144
node label, 49, 51
Nodecons, 144
Nodeexpr , 144
nominal extraposition field, 87
nominal Mittelfeld, 87
nominal Vorfeld, 87
non-canonical position, 95, 162
non-projective, 11
NP pied piping, 121
Number, 169
number, 169

Oberfeldumstellung, 113
obligatorily coherent, 163
obligatorily incoherent, 163
obligatory auxiliary flip, 116
obligatory head-final placement, 113
offer, 53
omitted attribute, 73
optional auxiliary flip, 114
optionally coherent, 163
order principle, 50, 132
outgoing edge, 22

partial extraposition, 34, 110
partial fronting, 108
partial intraposition, 112
particle field, 86
performance grammar, 159
permeability order, 45
Person, 169
person, 169
phenogrammatical structure, 15
pied piping, 86, 92, 121, 171
plugin system, 138

INDEX 183

positional head, 40
PP pied piping, 122
principle, 19
projection edge, 11, 19
projective, 11, 52, 132
projectivity, 11
projectivity principle, 52, 132
PSG, 7

R, 19, 131
Reape, 26
rechte Satzklammer, 12
relative clause extraposition, 124
relative clause principle, 121, 170
relative clause Vorfeld, 86, 92
relative pronoun, 121
ρ-dependent, 20
right sentence bracket, 12, 86
rigid word order, 7
role valency, 22
role valency specification, 22

Scoreexpr , 144
scrambling, 13, 32, 106
selection constraint, 138
sentence type, 13
sentential pattern, 13
separable verb prefix, 165
sequence union, 28
SFL, 18
sign, 19, 144
specialization, 70
strata, 12
subcategorization, 10, 22, 76
substitute infinitive, 116
subtrees principle, 63, 134
subtype, 70
syntactic dependency tree, 15, 18
syntactic dependent, 19
syntactic head, 19

t adj id, 84

t adj lp, 102
t adv id, 81
t adv lp, 98
TAG, 8
t can lp, 94
t cnoun id, 82
t cnoun lp, 88, 99
t comp id, 81
t comp lp, 97
t det id, 84
t det lp, 101
TDG, 9
TDG grammar, 126
TDG′, 41
t ditr id, 77
tectogrammatical structure, 15
t extra lp, 97
TFA, 161
t fin id, 77
t fin lp, 88, 164
t fin oblco lp, 164
t fin oblinco lp, 164
t fin optco lp, 165
t front lp, 97
t infc id, 77
t intra lp, 97
t intra lp, 112
t noncan lp, 95
t nonfin id, 79
t noun id, 82
t noun lp, 99
>, 69
top element, 69
Topic-Focus-Articulation, 161
topological dependency tree, 15, 48
topological dependent, 49
topological domain, 88
topological field, 12, 86
topological fields theory, 12, 48, 86
topological head, 49
total order, 51, 132

INDEX 184

t perpro id, 83
t perpro lp, 101
t pied lp, 97
t pied, 112
t pname id, 83
t pname lp, 101
t prep id, 84
t prep iobj id, 84
t prep lp, 102
t prep obj id, 84
transitive head, 40, 60
treeness conditions, 20, 128
treeness principle, 20, 50, 127, 132
t rel lp, 92
t relpro id, 84
t relpro lp, 101
t sub lp, 91
t tr id, 77
t v12 lp, 89
t v12 vpref, 166
t vinf id, 80
t vpp id, 80
t vpref, 166
t vzu id, 80
t vzu lp, 97
type-shifting, 8
Typeexpr , 140
Typeexpr2 , 140
Typefeat , 141
t zu id, 82
t zu lp, 99

unioned-attribute, 27

V , 19
V-projection raising, 118
valency, 10
valency, 130
valency principle, 21, 53, 130, 133
valency specification, 130
valency

id
, 22

valency
lp

, 53

Var , 139
VC-split, 119
verb canonical field, 86
verb cluster, 13, 113
verb extraposition field, 86
verb-final, 13, 88
verb-first, 13, 88
verb-second, 13, 88
vertical organization principle, 8
Vorfeld, 12, 86, 92
VP dislocation, 107
VP pied piping, 123
Vpref, 167
vprefs, 167
vprefsReq, 167

well-formedness condition, 19
well-ordered, 52, 132
WG, 9
Wild , 145
word order domains, 26
word order variation, 7

yield, 51, 52, 132

Zwischenstellung, 119

