Extensible Dependency Grammar:
A Modular Grammar Formalism Based On
Multigraph Description

Dissertation zur Erlangung des Grades
des Doktors der Ingenieurwissenschaften
der Naturwissenschaftlich-Technischen Fakultaten
der Universitat des Saarlandes

eingereicht von Ralph Debusmann
Saarbrticken, den 28. April 2006

Uberarbeitete Fassung vom 8. Juni 2007

Verfasser: Ralph Debusmann
Kaiserstral3e 197
66133 Saarbricken
rade@s. uni - sb. de

Dekan: Prof. Dr. Thorsten Herfet

Prufungsausschuss: Prof. Dr. J6rg Siekmann
Prof. Dr. Gert Smolka
Prof. Dr. Manfred Pinkal
Dr. Dominik Heckmann

Tag des Kolloquiums: 3.11.2006

Abstract

This thesis develops Extensible Dependency Grammar (XRG)w grammar formal-
ism combining dependency grammar, model-theoretic syatak Jackendoff’s parallel gram-
mar architecture. The design of XDG is strongly geared tdganodularity: grammars can
be modularly extended by any linguistic aspect such as getioat functions, word order,
predicate-argument structure, scope, information sirecand prosody, where each aspect
is modeled largely independently on a separate dimensibe.ifitersective demands of the
dimensions make many complex linguistic phenomena suchtsgcgon in syntax, scope
ambiguities in the semantics, and control and raising irsyimtax-semantics interface simply
fall out as by-products without further stipulation.

This thesis makes three main contributions:

1. The first formalization of XDG as a multigraph descriptianguage in higher order
logic, and investigations of its expressivity and compotal complexity.

2. The first implementation of XDG, the XDG Development KitlK), an extensive
grammar development environment built around a constparger for XDG.

3. The first application of XDG to natural language, modylanlodeling a fragment of
English.

Kurzzusammenfassung

Diese Dissertation entwickelt Extensible Dependency Gnan{XDG), einen neuen Gram-
matikformalismus, der Dependenzgrammatik, modellthesmee Syntax und die Parallele
Grammatik-Architektur von Jackendoff miteinander koméit Das Design von XDG ist
vollstandig auf Modularitat ausgerichtet: Grammatikent&n modular durch jeden beliebi-
gen linguistischen Aspekt erweitert werden, z.B. gramscag Funktionen, Wortstellung,
Pradikat-Argument Struktur, Skopus, Informationsstmnukind Prosodie, wobei jeder Aspekt
grofdtenteils unabhangig auf einer separaten Dimensioreltrert wird. Durch das Zusam-
menspiel der einzelnen Dimensionen fallen viele compleguistische Phanomene wie Ex-
traktion in der Syntax, Skopusambiguitaten in der Semantiki Kontrolle und Anhebung in

der Syntax-Semantik-Schnittstelle einfach als Nebengktedheraus, ohne dass sie explizit
beschrieben werden mussten.

Die Dissertation enthalt drei Hauptbeitrage:

1. Die erste Formalisierung von XDG, realisiert als Multigh-Beschreibungssprache in

hoherstufiger Logik, und Untersuchungen ihrer Ausdruékkstund ihrer computa-
tionalen Komplexitat.

2. Die erste Implementierung von XDG, das XDG DevelopmemntKDK), eine umfan-

greiche Grammatik-Entwicklungsumgebung, die um einens@aimtparser fur XDG
herum gebaut ist.

3. Die erste Anwendung von XDG auf natirliche Sprache, didceagments des Englis-
chen auf modulare Art und Weise beschreibt.

Ausflhrliche Zusammenfassung

In dieser Arbeit entwickeln wir den Grammatikformalismugénsible Dependency Gram-
mar (XDG) als Kombination von Dependenzgrammatik, modebtetischer Syntax and Jack-
endoffs Paralleler Grammatik-Architektur. Die Kombimatiergibt ein neuartiges, radikal
modulares Design, das es erlaubt, beliebige linguistigtsgekte zwar innerhalb dessel-
ben Formalismus, jedoch weitestgehend unabhangig vamdgnauf sogenannten Dimen-
sionen beschreiben zu konnen. Das erleichtert die Modeatigevon linguistischen Phdnome-
nen, da immer nur einzelne Aspekte wie z.B. die grammatiséhaktionen, Wortstellung
oder Pradikat-Argument-Struktur, und nicht alle Aspelaizeitig bericksichtigt werden
muissen. Zum Beispiel ist Wortstellung im Gegensatz zu damgratischen Funktionen fur
die Modellierung der Pradikat-Argument-Struktur meisetdreblich, musste jedoch in bish-
erigen Ansatzen oft trotzdem bei der Modellierung der Syas8amantik-Schnittstelle mitein-
bezogen werden. In XDG lassen sich beide Aspekte hingegaipliett voneinander abkop-
peln. Bei dieser modularen Herangehensweise fallen viglstgproblematische linguistische
Phanomene wie Extraktion, Skopusambiguitaten und Kdetuwid Raising dann einfach als
Nebenprodukte heraus, ohne dass sie explizit beschriebetew missten.

Diese Dissertation leistet drei Beitrdge, um zu zeigens &d3G nicht nur eine abstrakte
Idee ist, sondern auch konkret realisiert werden kann: dite d&ormalisierung von XDG
als Beschreibungssprache fur Multigraphen in héherstufiggik, die erste Implementierung
von XDG innerhalb eines umfangreichen Grammatikentwicghksystems, und die erste An-
wendung dieses Systems auf natirliche Sprache.

Die Formalisierung von XDG entwickeln wir in Teil I, und zeig dort, wie sich die Kern-
konzepte der Dependenzgrammatik, z.B. Lexikalisieruradgnz und Ordnung, in XDG real-
isieren lassen. Das ermoglicht uns dann, erste Untersgeinuier Ausdrucksstarke und der
computationalen Komplexitat von XDG anzustellen. Wir bmsga, dass XDG mindestens
so ausdrucksstark ist wie kontextfreie Grammatik, und eidariiber hinaus, dass nicht-
kontextfreie Sprachen wia'b"c" oder linguistische Benchmarks wie tiberkreuzende Depen-
denzen und Scrambling ebenfalls elegant modelliert wekdenen. Der Preis fur diese Aus-
drucksstarke wird im Folgenden sichtbar, wenn wir beweisiass das XDG-Erkennungs-
problem NP-hart ist.

Trotz dieser hohen Komplexitat erzielt der in Teil 1l diegebeit entwickelte XDG-Con-
straintparser fir kleinere, handgeschriebene Gramnmagkgtaunlich gute Ergebnisse. Um
den XDG-Parser herum bauen wir die komfortable Grammatikieklungsumgebung XDG
Development Kit (XDK), die es erlaubt, bequem Grammatiken Mand oder automatisch zu
erstellen und zu testen. Das XDK ist eine unabdingbare ¢s&taung fir die Entwicklung
der XDG-Grammatiktheorie, und wurde schon mehrfach eréodfp in der Lehre eingesetzt.

In Teil Il entwickeln wir schrittweise eine Grammatik furmeFragment des Englischen,
die sowohl Syntax, Semantik und Phonologie modelliert. ¥¥igen hier konkret, wie kom-
plizierte Phdnomene wie Extraktion (u.a. Pied Piping) in Sgntax, Skopus-Ambiguitaten
in der Semantik, und Kontrolle und Raising in der Syntax-&etik-Schnittstelle als Neben-
produkte aus der modularen Beschreibung herausfallere dinekt beschrieben werden zu
mussen.

Acknowledgments

First of all, I would like to thank my supervisor Gert Smolla fadopting me as his PhD
student in the first place, and for all his suggestions angaigence. | would also like to
thank my second supervisor Manfred Pinkal for his suggestiand for bringing me up as a
researcher in the very first place at the department of caatipngl linguistics.

From April 2002 until April 2005, the work on this thesis wasntied by the Interna-
tional Post-Graduate College Language Technology and i@ogiBystems, a program of
the Deutsche Forschungsgemeinschaft (DFG). I'd like to tayk you to the organizers
Matthew Crocker, Sabine Schulte im Walde, Claudia Verbaorg,supervisor in Edinburgh,
Mark Steedman, and to my colleagues in the IGK and in Edifurgluding (in alphabet-
ical order) Colin Bannard, Markus Becker, Bettina BrauneP®ienes, Amit Dubey, Malte
Gabsdil, Ciprian Gerstenberger, Kerstin Hadelich, Dokiithéckmann, Nikiforos Karamanis,
Pia Knoferle, Michael Kruppa, Jochen Leidner, Dominika@tj Olga Ourioupina, Sebastian
and Ulrike Pado, Oana Postolache, Andrew Smith, Tim Smitistida Striegnitz, Maarika
Traat and Victor Tron.

From April 2005 until April 2006, this thesis was funded betbFG as part of CHORUS
project Sonderforschungsbereich 378 (SFB 378). In the CH®Rroject, | had the opportu-
nity to work together with Alexander Koller, Marco Kuhlmaand Stefan Thater, and earlier
with Manuel Bodirsky, Katrin Erk and Markus Egg.

During all these years, except for five months at the departimielnformatics at the Uni-
versity of Edinburgh in 2003, my workplace was the Prograngrbystems Lab (PS-Lab)
in Saarbricken. Two former members of the PS-Lab, Denys ieuand Joachim Niehren,
were, before they left, the main advisers of my work. Denys tha one who laid the founda-
tions for XDG in the late nineties. Joachim was always a fetrgepporter of the project, and
has supported me in all areas of scientific life. 1 would alke to thank the other members
of the PS-Lab: Mathias Mo6hl, Andreas Rossberg, Jan Schwimgier and Guido Tack, the
former members Thorsten Brunklaus, Leif Kornstaedt, Ditlee Botlan, Tim Priesnitz, Lutz
Stral3burger and Gabor Szokoli, and our secretary Ann Varede.V

| have also profited from the collaboration with members ftben Computational Linguis-
tics Department, including (in alphabetical order) Gerakdhter, Valia Kordoni, Christian
Korthals, Andrea Kowalski, Christopher-John Rupp and M#dguaia Wolska. And Geert-Jan
Kruijff, who was always a helpful adviser with all his expee in dependency grammar.

| had the pleasure to visit Charles University in Prague,reheavas invited to by Martin
Platek and Vladislav Kubon. Ondrej Bojar then spent halfar ye Saarbricken in return and
was a fantastic colleague.

Thanks also for interesting conversations to Cem Bozsélhiarles Fillmore, Joakim Nivre,
Mark Pedersen and Gerold Schneider. And to Jorge PelizRay, Jackendoff and Jerry
Sadock for illuminating email exchanges about XDG and thralf grammar architecture.

Finally, meine liebste Simone, without your love, patieaca support while | sat there
writing and re-writing, writing and re-writing again, andttout your encouragement as | lost
belief in my abilities, | would have never made it. | promiseill never ever write a thesis
again.

For Sophie and Simone

Contents

1.

Introduction 16
1.1. Background
1.1.1. Dependency Grammar v i
1.1.2. Model-TheoreticSyntax 19
1.1.3. Parallel Grammar Architecture 20
1.1.4. ConstraintParsing 2
1.2. Contributions and Structure ofthe Thesis 23
1.3. Publications e 25

XDG in a Nutshell 27
21. XDGModels e
2.1.1. Dependency Graphs
2.1.2. Multigraphs
22, XDGGrammars oo e e e
2.21. DIMENSIONS e
2.2.2. Principles
2.2.3. Lexicon e
2.24. Example Grammar
2.3. Implementing XDG Grammars e 34
2.3.1. Metagrammar
2.3.2. Parser
2.4. Comparison with Other Grammar Formalisms 37
241, DIMENSIONS
24.2. Principles
2.4.3. LexXiCon
24.4. GrammarTheory e
2.4.5. Implementation
2.5, SUMmMaryo e e e e

Formalization 45

A Description Language for Multigraphs 46

3.1. Multigraphs 6 4

3.2. A Description Language for Multigraphs 49
3.2.1. TYPES . . . e

10

3.3.

Contents

3.2.2. MultigraphType
3.23. Terms
3.24. Signature
3.25. Grammar
3.26. Models
3.2.7. StringLanguage
summary ... e e e

. DG as Multigraph Description

4.1.

4.2.

4.3.

4.4,

4.5.

4.6.

4.7.

4.8.

GraphShape.,

4.1.1. DagPrinciple
41.2. TreePrinciple.
4.1.3. EdgelessPrinciple

Projectivity
4.2.1. Projectivity Principle
Lexicalization
4.3.1. LexicalEntries
4.3.2. Lexical Attributes
4.3.3. Lexicalization Principle
Valency
441, Fragments.

4.4.2. Configuration,
4.4.3. ValencyPredicates

4.4.4. ValencyPrinciple
Order
45.1. OrderedFragments
4.5.2. Ordered Configuration

45.3. Projectivityo
45.4. OrderPrinciple
Agreement. L L

4.6.1. AgrPrinciple
4.6.2. AgreementPrinciple

Linking
4.7.1. LinkingEndPrinciple
4.7.2. LinkingMother Principle
Summary ... e

. Expressivity

5.1.

5.2.

XDG and Context-Free Grammar
5.1.1. Context-Free Grammar
5.1.2. Derivations and DerivationTrees.
5.1.3. Lexicalized Context-Free Grammar
5.1.4. Constructing an XDG from an LCFG
Going Beyond Context-Freeness

11

Contents

5.2.1. a™c" . .
5.2.2. Cross-Serial Dependencies
5.2.3. Scrambling
5.3. Summary e e e e

Computational Complexity

6.1. RecognitionProblems. 0 a.

6.2. Fixed RecognitionProblem
6.2.1. Satisfiability Problem
6.2.2. InputPreparation
6.2.3. Models
6.2.4. Ordered Fragments
6.2.5. Attributes
6.2.6. Coreference
6.2.7. PLPrinciple
6.2.8. Proof

6.3. Universal Recognition Problem

6.4. SUMMAIY e

Implementation

. A Development Kit for XDG

7.1. Architecture
7.1.1. Metagrammar Compiler
7.1.2. ConstraintParser
7.1.3. Visualizer
7.1.4. Lattice Functors

7.2. The XDK Description Language« v v v v it iu
7.2.1. TYPES . . o e
7.2.2. TEIMS e

7.3, SUMMANY e e e e

Constraint Parser

8.1. Modeling Multigraphs
8.1.1. Modeling Dependency Graphs
8.1.2. Modeling Attributes oL
8.1.3. Multigraphs

8.2. ConstraintParsing. e
8.2.1. CreatingNodeRecords
8.2.2. Lexicalization.
8.2.3. PostingPrinciples

8.3. ModelingPrinciples
8.3.1. Principle Definitions L

12

Contents

8.3.2. Node Constraint Functors 110
8.3.3. Edge ConstraintFunctors. 112
8.3.4. Distribution 81
8.4. ExamplePrinciples 116
8.4.1. LinkingEnd 116
8.4.2. Order 117
8.4.3. Projectivity a1
8.5. Generation. e 181
8.5.1. Reversible Order Principle 119
8.5.2. Reversible Projectivity Principle 120
8.5.3. Reversible ConstraintParser 120
8.6. Runtime e 121
8.6.1. Handcrafted Grammars 211
8.6.2. Automatically Induced Grammars 122
8.7. Summary e 123
[ll. Application 124
9. Syntax 125
9.1. Immediate Dominance Dimension 125
9.1.1. TYPES . . . e 127
9.1.2. Principlesand LexicalClasses 129
9.2. Linear Precedence Dimension 132
9.2.1. TYPES . . . e e 133
9.2.2. Principlesand LexicalClasses 134
9.3. ID/LPDIMeNSIoNn e e e 38l
9.3.1. TYPES 138
9.3.2. Principlesand LexicalClasses 139
9.4. EmergingPhenomena 142
9.4.1. Topicalization. 421
9.4.2. Whaquestions e 142
9.43. PiedPiping 143
9.5, Summary e e e e 144
10. Semantics 145
10.1. Predicate-Argument Dimensiono e . 146
10.1.1. TYPES . . o o e e e e 148
10.1.2. Principles and LexicalClasses 149
10.2. Scope DIMeNSIoN e 153
10.2.2. TYPES . . . o e 155
10.2.2. Principles and LexicalClasses 155
10.3. PA/SCDImMeNnsion 157
10.3.1. TYPES . . o o o e e e 157

13

11.

12.

13.

Contents

10.3.2. Principlesand LexicalClasses
10.4. Information Structure Dimension
10.4.1. Types e
10.4.2. Principlesand LexicalClasses
10.5. Emerging Phenomena L.
10.5.1. Scope Underspecification.
10.6. Summary e e e

Phonology

11.1. Prosodic Structure Dimension
11.0.1. Types . . . o o e
11.1.2. Principles and LexicalClasses

11.2.Summary e

Interfaces

12.1. Syntax-Semantics Interface
1211 Types . . . o o
12.1.2. Principlesand LexicalClasses

12.2. Phonology-Semantics Interface
12.2.1. Principles and LexicalClasses

12.3. Emerging Phenomena L.
12.3.1. Control, Raising and Auxiliary Constructions
12.3.2. PP-Attachment Underspecification

12.4.Summary

Conclusion

13.1. Summary
13.2. FutureWork

Lattice Functors

Al. Encode
A.1.1. Interpretation
A.1.2. Compilation

A.2. Top,BotandGIb
A.2.1. FlatLattices.
A.2.2. Accumulative Lattices
A.2.3. Intersective Lattices
A.2.4. Cardinality Lattices
A.25. Tuplelattices.,
A.2.6. RecordLattices

A.3. Constraint Variable Creation, Lexical Selection
A3.1. MakeVar
A3.2. Selecto

A.4. DecodeandPretty

14

Contents

A5, Summary ... e e 202
B. Metagrammar Compiler 203
B.1. Parsersand Converters 204
B.2. TypeChecker e 420
B.3. Encoder 207
B.4. Pickler 720
B.5. Runtime e 207
B.6. Summary e 208
C. Visualizer 209
C.1. OutputPreparer e e 209
C.1.1. Decoding o i i i e 210
C.1.2. EdgeRecord Creation 021
C.2. OutputLibrary 12
C.3. Summary e e 214
D. Programs 215
D.1. Metagrammar Converter e 215
D.2. Metagrammar Compiler. 215
D.3. ConstraintSolver e 215
D.4. GraphicalUseriInterface 217
D.5. Example Grammars, Scripts and Documentation. 217
D.6. Summary e e 218
E. Interface to CLLS 219
E.1. CLLS 219
E.1.1. Constraints e 219
E.1.2. Example 220
E.2. CLLSDIMeNsion 222
E.2.1. Types e e e 224
E.2.2. LexicalClasses 422
E.3. CLLSOutputFunctor e 225
E.3.1. Preprocessingthe Fragments 226
E.3.2. Concatenating the Fragments. 227
E.3.3. Adding Dominance Constraints 227
E.3.4. Adding Binding Constraints 229
E.4. Summary e e 231
Bibliography 232
Index 242

15

1. Introduction

We begin with introducing the background of this thesis, pasing dependency grammar,
model-theoretic syntax, the parallel grammar architectéund constraint parsing. Against this
background, we set our contributions, before we round aéf thapter by a summary of the
publications yielded by the thesis, and an overview of itscttire.

1.1. Background

1.1.1. Dependency Grammar

According to the structures that they talk about, grammian&isms for natural language can
be divided into two basic classes:

1. Phrase Structure GrammgPSQ
2. Dependency GrammgbG)

PSG is the approach originally taken by Noam Chomsky (Chgri8k7, Chomsky 1965),
and has also been adopted by the popular grammar formalisi@®wernment and Bind-
ing (GB) (Chomsky 1981)Lexical Functional GrammafLFG) (Bresnan & Kaplan 1982,
Bresnan 2001)Generalized Phrase Structure Gramm@&PSQ (Gazdar, Klein, Pullum &
Sag 1985)Head-driven Phrase Structure Gramm@&tPSQ (Pollard & Sag 1987, Pollard &
Sag 1994), andree Adjoining Gramma(TAG) (Joshi, Levy & Takahashi 1975, Joshi 1987).
A PSG analysis divides a sentence into continuous substoalledphrasesor constituents
which are labeled bgyntactic categoriebke S (sentence), NP (noun phrase) and VP (verb
phrase). These constituents are then arranged hierdighita phrase structure treeFig-
ure 1.1 shows an example phrase structure tree for the sertary wants to eat spaghetti
today The root has category S, i.e., is a sentence, which comdigts NPMary, the V (verb)
wants the VPto eat spaghettand the Adv (adverlipday The VP in turn consists of the Part
(particle)to, the Veatand the NFspaghetti

DG stands for a different way of analyzing natural langudtgeroots can be traced back as
far as to PaNini’'s grammar for Sanskrit (600 BC), the Arabngmarians of Basra and Kufa
in Iraq (800 AD) (Owens 1988), and Latin grammarians (1200 A®odern DG is attributed
to Tesniere (1959). A DG analysis does not hierarchicallgrage substrings but just words,
based on the syntactic relations between them caleggbndency relationgr grammatical
functions A DG analysis is calledlependency grapbr dependency treen which mothers
are callecheadsand daughterdependentsFigure 1.2 shows an example dependency tree of
Mary wants to eat spaghetti todayiere, each node (circle) is identified with a word in the

16

1. Introduction

/I\

\% / \ Adv
Mary wants Part today
to eat spaghetti

Figure 1.1.: Example phrase-structure analysis

sentence (as indicated by the dotted vertical lines caliepbction edges and the tree edges
are drawn as solid lines interrupted by edge labels whickaethe grammatical functions:
Mary is the subject (edge labelbj), eatis the infinitival complementv{nf), andtodaythe
adverbial modifierddv) of wants In turn,tois a particle part), andspaghettihe object §bj)
of eat

e

V/nf\ xo

. Ofy;
@ 7

Mc:xry wants to eat spaghetti ioday

Figure 1.2.: Example dependency tree

In a phrase structure tree, only continuous substrings eaartanged. This restriction
poses problems for the analysis of word order variationndgerigid word order languages
(Steele 1978) such as English, which exhibits e.g. the dismoous syntactic phenomena of
wh-questions and topicalization. An example for the laitethe sentenc&paghetti, Mary
wants to eat todaywhere the objecspaghettiof eathas been dislocated to the very left. The
result is the discontinuous VP constituspaghetti to eatwhich has a gap betweapaghetti
andto, comprising the wordslary andwants This is shown in the impossible phrase structure
of Figure 1.3. Such sentences can only be analyzed in PSGH®r ehanging the analysis,
by which the connection between the veditand its objecspaghettis lost, or by extending
the grammar formalism with additional mechanisms like ésea(GB) or feature percolation
(GPSG, HPSG).

/S\

NP \% VP Adv

N|P Mary wants Part \% today
spaghetti to eat

Figure 1.3.: (Impossible) discontinuous phrase strucanedysis

17

1. Introduction

For DG, discontinuous constructions can be representamstforwardly: as we have al-
ready emphasized, the analyses are based on words and strirggg In fact, Figure 1.4
shows a perfectly acceptable dependency tre§paghetti, Mary wants to eat today

)
L0

T o . ;
O/ : o :

Spaéhetti N:Iary w:ants : to :eat :today
Figure 1.4.: Example discontinuous (non-projective) deleacy tree

For some applications however, it is desirable to define @icgen analogous to that of
the continuity of substrings in PSG also for DG. Here, thaideto forbid that any edge
crosses a projection edge of a node higher up or to the sidheitvée, such as the edge from
eatto spaghettin Figure 1.4, which crosses the projection edges of the xodaesponding
to Mary andwants Analyses without crossing edges are then cafiegjective and those
which include themmon-projective The crucial advantage of DG is now that the projectivity
restriction is optional, whereas the continuity restdaotof PSG is obligatory. This crucial
difference was overseen in early formalizations of DG (Gr&964, Hays 1964, Gaifman
1965), where it was proven to be equivalen€ontext-Free GrammaiCFG) in general, even
though this is only true given the projectivity restriction

Theoretically, a DG analysis need not be ordered at all. §rasts DG the flexibility of
not being confined to model the syntax of natural languageeatedependency analyses can
also be used to model e.g. the semantics, where order isviardl. This is used for example
in the traditional DG frameworks dfunctional Generative DescriptiofiFGD) (Sgall, Haji-
cova & Panevova 1986) arMeaning Text Theor¢MTT) (Mel’ Cuk 1988) to modepredicate-
argument structure Figure 1.5 shows an example. Here, the edge labelthareatic roles
(Panenova 1974), (Dowty 1989) instead of grammatical fonst The wordwantsis the
theme (edge labeh) of today, and has itself the agenig) Mary and the themeat The word
eathas the ageriflary and the patientpat) spaghetti

. th .
o T~
“/@/Eag/?\n U,
Q : ; ©

Mé\ry wa:tnts to (:eat spz:ighetti tioday
Figure 1.5.: Example semantic dependency graph

How do PSG and D@rammarslook like? In PSG, a grammar is traditionally made up
of production rules (rewriting rules) such as the one belelich rewrites category S into an
NP, aV, a VP and an Adv:

S — NPV VP Adv (1.2)

In DG, grammars are traditionally expressed in termsadéncy The term is taken from
chemistry, where valency specifies for each atom the numftelectrons which it will give,

18

1. Introduction

take, or share to form a chemical compound. In DG, valencgiipe for each node the
required incoming edgesn(valency and outgoing edge(t valency.! For instance, the
verbeatis an infinitive, and requires a particle and an object. Thieflected in its in and out
valencies: its in valency licenses at most one incoming dalggledvinf, and its out valency
requires precisely one outgoing edge labegled, and one labeledbj. No other incoming
and outgoing edges are licensed. As DG is word-based, vateace typically expressed
in alexiconof lexical entries For example, the lexical entry below specifies the in and out
valencies of the wordat, where the question mark represents optionality, and tblaeation

mark obligation:
word = eat
in = {vinf?} (1.2)

out = {part!,obj!}

Even though most ideas of DG (heads/dependents, valermalizgation) have been grad-
ually adopted by most grammar formalisms, including GB, LEB®SG, HPSG, TAG and
also Combinatory Categorial GrammgCCG) (Steedman 200f), none of the frameworks
directly based on DG have really got into the mainstreamt B&D, MTT, Abhangigkeits-
grammatik(Kunze 1975)Word GrammarWG), (Hudson 1990), or the more recent frame-
works of Constraint Dependency GramméEDG) (Menzel & Schroder 1998)ree Order
Dependency GrammgFODG) (Holan, Kubon, Oliva & Platek 2000), Broker’s (1999) ap-
proach,Topological Dependency Gramm@rDG) (Duchier & Debusmann 2001), and Gerdes
& Kahane’s (2001) approach also called Topological Deprog&rammar. The reasons for
this are manifold:

* None of the frameworks is completely logically formalizedthough there are partial
formalizations of e.g. MTT (Kahane 2001).

 Although word order variation can be perfectly represeimeDG, the frameworks have
for a long time lacked a declarative and workable accountafivorder. This defect
has only recently been addressed, cf. (Broker 1999), (RuéhDebusmann 2001) and
(Gerdes & Kahane 2001), but only in frameworks that are cedfiio syntax.

* They lack a syntax-semantics interface to a deep semanticsa semantics beyond
predicate-argument structure, including the handlinguafrdifier scope.

1.1.2. Model-Theoretic Syntax

Grammar formalisms cannot only be distinguished as to tiietstres that they talk about, but
also with respect to the perspective they take on them. wltp(Pullum & Scholz 2001), we
distinguish two perspectives:

1. Generate-Enumerative Synté@RES

2. Model-Theoretic SyntaMTS

Traditionally (Peirce 1898), valency only refers to thegmihg edges. Following e.g. (Duchier & Debusmann
2001), we generalize it to encompass also incoming edges.

19

1. Introduction

GES originates in Chomsky’s original approach (Chomsky7)@mdCategorial Grammar
(Ajdukiewicz 1935, Bar-Hillel 1953). In GES, a grammar ohtpiagel is a device for re-
cursively enumerating sets of expressions, based on piioduciles or inference rules. An
expressior is grammatical according to a gramng@if and only if E is derivable inG. That
is, GES takes ayntacticor proof-theoreticperspective on grammar by asking the question
how expressions can be derived from other expressions. duptimn rule such as (1.1) above
is interpreted as “from category S, we can derive the conediten of the categories NP, V,
VP and Adv”.

McCawley (1968) had the insight to instead talseaanticor model-theoretiperspective,
and interpret the rule with respect to the models, i.e., tirage structure trees that it licenses.
From this perspective, (1.1) is the description of a loaa trooted in S, having the daughters
NP, V, VP and Adv, in this order. Using a term coined by Rog&@96), we call this perspec-
tive Model-Theoretic SyntaMTS). In MTS, a grammar of languadeis a logical description
of the well-formed models df, and an expressida is grammatical according to a grammar
Gifand only if E is a model ofG.

Of the grammar formalisms mentioned above, the pure GE$eetige is only taken by
TAG, CCG, and the dependency-based FGD and MTT. The otherefr@rks (GB, LFG,
GPSG and HPSG) can be regarded as hybrids: they all have eatjeadackbone based on
PSG which generates a large set of structures, from whichliftemed structures are then
filtered out by constraints.

Compared to GES, MTS is clearly more declarative: it fullgtafcts away from any un-
derlying mechanisms, and can thus offer a clarifying pestype This allows for better com-
parisons between grammar formalisms. Combined with a gyg#eantics interface, MTS
also has the potential for reversibility, i.e, the same MT&wmmnar can be used for parsing and
generation. These advantages have yielded a conside@hfeobwork devoted to the refor-
mulation of GES and hybrid GES/MTS frameworks into pure MT&rfeworks (Blackburn
& Gardent 1995, Rogers 1996, Rogers 1998).

1.1.3. Parallel Grammar Architecture

Traditionally, grammar formalisms have not only adopteel perspective of GES, but also,
consequently, ayntacto-centric architectureonly the well-formedness conditions of syntax
are independently specified, and all other linguistic $tmes such as semantics are derived
from it via functional, directed interfaces. We depict thrshitecture in Figure 1.6, where the
slanted arrow entering ti&yntax bubble represents the well-formedness conditions of gynta
and the curved directed arrows froByntax to Phonology and toSemantics represent the
corresponding functional interfaces. Typical instandethis architecture are GB, TAG and
CCG, and also FGD and MTT.

With the advent of the perspective of MTS, and inspiredAutosegmental Phonology
(Goldsmith 1979, Goldsmith 1990), the syntacto-centrchaecture has recently been chal-
lenged by Sadock’s (199Butolexical SyntaxValin & LaPolla’s (1997)Role and Reference
Grammar(RRQ and Jackendoff’'s (2002) approach, all of which propogmeallel gram-
mar architecture Here, all linguistic structures, not only syntax, are poded to the status
of autonomous modules, which are determined independbewnttiieir own well-formedness

20

1. Introduction

interface

Phonology

interface

Figure 1.6.: Syntacto-centric grammar architecture

conditions. The modules co-constrain each other throulghioeal, bi-directional, instead of
functional, directed interfaces. Figure 1.7 depicts tmch@ecture. Here, the three slanted
arrows entering th&honology, Syntax and Semantics bubbles represent the independent
well-formedness conditions of these modules, and the dubwglirectional arrows between
them the relational interfaces.

interface

interface

Phonolm

interface

Figure 1.7.: Parallel grammar architecture

The parallel grammar architecture is clearly more moduiantthe syntacto-centric one:
the linguistic modules can be developed separately, andused more easily. For instance,
the same semantic module could be reused for a number ofdgeguvhich differ only in their
syntax. In addition, the parallel grammar architectureegixise to what we cafmergence
many complex phenomena sim@gnergdrom the interaction of the individually simple mod-
ules, without further stipulation. This is because the bardf analysis is not carried by syntax
alone, but is instead shared with the other linguistic meslul

However, the parallel grammar architecture has not yet lpeginto practice, except for
a tiny fragment described in (Higgins 1998). As Jackend2®0@) notes, the parallel gram-
mar architecture presupposes a model-theoretic approathauld thus in principle be im-
plemented in LFG and HPSG. In their practical realizatidrasyever, both LFG and HPSG
are applied in syntacto-centrically: the semantics, €lge Semantic¢Dalrymple, Lamp-

21

1. Introduction

ing, Pereira & Saraswat 1995) in LFG aRtinimal Recursion Semanti¢dRS (Copestake,
Flickinger, Pollard & Sag 2004) in HPSG, are still derivednfr syntax, and not granted the
status of independent modules.

1.1.4. Constraint Parsing

In computational linguistics, parsing is usually done gsiontext-freechart parsing(Earley
1970, Kay 1980) or extensions thereof, e.g. for TAG (Sarl00). Chart parsing is an ap-
plication of dynamic programming and uses a data structiteccchart to memorize already
parsed subtrees. This removes the need for backtrackingrawdnts combinatorial explo-
sion.

An alternative approach isonstraint parsing(Maruyama 1990, Duchier 1999), where
parsing is viewed as finding the solutions ofCanstraint Satisfaction ProblefCSPB us-
ing Constraint ProgrammingCP) (Jaffar & Lassez 1988, Jaffar & Maher 1994, Hentenryck
& Saraswat 1996, Schulte 2002, Apt 2003). Constraint prognang is the study of com-
putational systems based on constraints, where consti@atprecisely specifiable relations
among several unknowns callednstraint variablesWork in this area can be traced back to
research in artificial intelligence and computer graphicthe 1960s and 1970s (Sutherland
1963, Montanari 1970, Waltz 1975); Wallace (1996) gives\araew of the practical appli-
cations of constraint programming, e.g. in artificial itggnce (reasoning, abduction, plan-
ning, scheduling, resource allocation and configuratiomkhe context of databases, user
interfaces, operations research, robotics and controryhén CP, the search for solutions is
determined by two processgwopagationanddistribution Propagation is the application of
deterministic inference rules to narrow down the searcleespand distribution corresponds
to non-deterministic choice. Both processes are integl@avlistribution ensues whenever
the information accumulated by propagation is not sufficfenfurther disambiguation, and
propagation ensues again after each distribution stegs @dradigm is callegropagate and
distribute and contrasts with the naivgenerate and tegpbaradigm, where every candidate
solution must be generated before it can be tested, ragdtirg into a combinatorial explo-
sion.

As ambiguity is prevalent in parsing, parsers based on CRyozatly benefit from con-
straint propagation in order to narrow down the search spdeeuyama (1990) was the first
to propose a treatment of dependency grammar using CP, aodlokxl parsing as a process
of incremental disambiguation. Harper, Hockema & White9@©continued this line of re-
search by proposing several algorithmic improvementsMenizel (1998), Heinecke, Kunze,
Menzel & Schroder (1998) and Menzel & Schréder (1998) preddbe use of soft, graded
constraints for robustness. Duchier (1999) developed aout of dependency parsing us-
ing concurrent constraint programming (Saraswat 1998)aaart/Oz(Smolka 1995, Mozart
Consortium 2006), where computation is viewed as arisiognfthe activities of concurrently
operating agents that communicate via a shared set of eomstariables. Duchier’s approach
made use of the unique combination of finite set constramdseacapsulated speculative com-
putations in the form ofleep guard¢Schulte 2002) only found in Mozart/Oz.

Constraint parsing has a number of advantages. Firsti/nivi tied to word order and con-
tinuity of constituents: it is indeed perfectly possibledim constraint parsing without taking

22

1. Introduction

word order into account at all. This makes it ideal for the lempentation of parsers for de-
pendency grammar. Secondly, constraint parsing is pérfegited for the implementation of

grammar formalisms based on MTS and the parallel grammahitacture, as they guarantee
both the reversibility of MTS approaches, and concurreney, the ability to simultaneously

process multiple levels of representation. However, casgpdo chart parsing, constraint
parsing is less efficient.

1.2. Contributions and Structure of the Thesis

In this thesis, we make three main contributions. The firatdembination of the paradigms of
dependency grammar, MTS and the parallel architectureltieg in the grammar formalism
of Extensible Dependency Gramm@DG), which we formalize as a multigraph descrip-
tion language in higher order logic. The second is an impteate®n of a constraint parser
for XDG within an extensive grammar development environingne XDG Development Kit
(XDK) (Debusmann & Duchier 2006). The third is an application BiXto natural language,
modeling a fragment of English syntax, semantics and plogyolThe presentation of these
contributions is preceded by a first overview of XDG and thekXib chapter 2, and followed
by a summary and an outlook in chapter 13.

Part | develops the first formalization of XDG as a multigraelscription language in higher
order logic (chapter 3). This brings us the position to redas key concepts of dependency
grammar, including lexicalization, valency and order, asgyples on multigraphs (chapter 4).
We then investigate the expressivity of XDG in chapter 5, idomputational complexity
in chapter 6.

Part Il develops the XDG Development Kit (XDK) (chapter 7hieh is centered around a
constraint parser based on the dependency parser intdu@uchier 1999, Duchier 2003),
(chapter 8). The XDK includes the statically typ¥®K description languagevhich serves
mainly as ametagrammagDuchier, Le Roux & Parmentier 2004, Crabbé & Duchier 2004)
for convenient grammar development, a comprehensive Graplser Interface (GUI) (cf.
Figure 1.8), and extensive documentation (more than 208g)aghe XDK spans 35000 lines
of Mozart/Oz code, and comes with example handcrafted gsifar Arabic, Czech, Dutch,
English, French and German, which span an additional 24066.1

Part Il applies XDG to model a fragment of the syntax, semeardnd phonology of En-
glish. The grammar subdivides the linguistic modules ofrhiogy, syntax and semantics:
within syntax (chapter 9), we make use of the declarativeaacof word order introduced
by Topological Dependency Gramm@rDG) (Duchier & Debusmann 2001): we distinguish
the two dimensions dinmediate Dominanc@D) andLinear Precedencé.P), where thabD
dimension models grammatical functions, andithelimension word order. Within semantics
(chapter 10), we distinguish thiredicate-Argument structuf@A) to model predicate logical
functor-argument relationships, tB€ope structurésc) to model quantifier scope, amafor-
mation Structurgis) to model the theme/rheme and focus/background relatipsdtPhonol-
ogy (chapter 11) contains only thosodic Structur¢ps).® The syntax-semantics interface

2We follow (Jackendoff 2002) in associating informatiorusture with semantics and not with pragmatics.
3This thesis does notinclude a thorough treatment of phayoleor this, we would need many more structures,

23

1. Introduction

Dimonsions Principlos Outputs Extras

a s 6
eat spaghetti today

e

Mary wants
- =

Kl \ﬁﬁu\\m\

4 s 6
L B . Mary wants to et spaghetti today o

Figure 1.8.: The XDK GUI £dk)

(chapter 12) is relational, supports underspecificatiod, lzas an interface to tH@onstraint
Language for Lambda Structurd€LLS (Egg, Koller & Niehren 2001). Thehonology-
semantics interfac@lso chapter 12) is a modular adaptation of Steedman’Og@@vosodic
account of information structure. We depict the complethigecture in Figure 1.9.

Phonology

Prosodic Structure

Linear Precedence

- Information Structure

Predicate-Argument Scope Structure
Structure /

v

Immediate Dominance

Figure 1.9.: The XDG grammar architecture in this thesis

cf. the tiers in Autosegmental Phonology (Goldsmith 1978ldSmith 1990). We include the prosodic di-
mension for two reasons: 1) to support the realization cd@tean’s (2008) prosodic account of information
structure, and 2) to be able to more clearly illustrate theefites of the parallel grammar architecture.

24

1.3.

1. Introduction

Publications

This section lists the publications resulting from the egsh for this thesis. The first papers
are centered around the XDG grammar formalism and its fozatadn:

Ralph Debusmann (2003Rependency Grammar as Graph Descriptioaforkshop:
Prospects and Advances in the Syntax-Semantics InteiXeoey/FR

Ralph Debusmann, Denys Duchier, Marco Kuhimann and Sté€feter (2004),TAG
Parsing as Model Enumeratioth International Workshop on Tree Adjoining Gram-
mar and Related Formalisms, TAG+7, Vancouver/CN

Ralph Debusmann, Denys Duchier and Geert-Jan Kruijff 20Bxtensible Depen-
dency Grammar: A New Methodolggyhe 20th International Conference on Com-
putational Linguistics, COLING 2004, Workshop: Recent Adges in Dependency
Grammar, Geneva/CH

Ralph Debusmann, Denys Duchier and Marco Kuhlmann (2004)ti-dimensional
Graph Configuration for Natural Language Processirgternational Workshop on
Constraint Solving and Language Processing, Roskilde/DK

Ralph Debusmann, Denys Duchier and Andreas Rossberg) 2d@8ular Grammar
Design with Typed Parametric Principle$he 10th Conference on Formal Grammar
and The 9th Meeting on Mathematics of Language, FG-MOL 2&0@%burgh/UK

Ralph Debusmann and Gert Smolka (2008ylti-dimensional Dependency Grammar
as Multigraph DescriptionThe 19th International FLAIRS Conference, FLAIRS 2006,
Melbourne Beach/US

The XDG Development Kit is published in:

Ralph Debusmann (2003A Parser System for Extensible Dependency Grammar
Workshop: Prospects and Advances in the Syntax-Semantmgdce, Nancy/FR

Ralph Debusmann, Denys Duchier and Joachim Niehren (2004) XDG Grammar
Development KjtSecond International Mozart/Oz Conference, MOZ 2004 rieha/
BE

The following papers describe the modeling of natural laggy including the interfaces
from syntax to semantics and from phonology to semantics:

Christian Korthals and Ralph Debusmann (20@2)king syntactic and semantic argu-
ments in a dependency-based formaligime 19th International Conference on Compu-
tational Linguistics, COLING 2002, Taipei/TW

Alexander Koller, Ralph Debusmann, Malte Gabsdil and tfrasStriegnitz (2004)Put
my galakmid coin into the dispenser and kick it: Computatldnnguistics and Theo-
rem Proving in a Computer Gaméournal of Logic, Language And Information

25

1. Introduction

* Ralph Debusmann, Denys Duchier, Alexander Koller, Marchlhann, Gert Smolka
and Stefan Thater (2004} Relational Syntax-Semantics Interface Based on Depen-
dency GrammarThe 20th International Conference on Computational Lisiigs,
COLING 2004, Geneva/CH

» Ralph Debusmann (2004yjultiword expressions as dependency subgragBad An-
nual Meeting of the Association for Computational Lingigsf ACL 2004, Workshop:
Multiword Expressions: Integrating Processing, Barcal&®

* Ralph Debusmann, Oana Postolache and Maarika Traat 20@6dular Account of In-
formation Structure in Extensible Dependency GramrB#r International Conference
on Intelligent Text Processing and Computational LingosstCICLING 2005, Mexico
City/MX

26

2. XDG in a Nutshell

This chapter gives a walkthrough of the main concepts of iiStbde Dependency Grammar
XDG: we introduce the models of XDG, explain how to write graars and how to implement
them using the XDG Development Kit (XDK). Then, we compare&Xmith a number of
existing grammar formalisms.

2.1. XDG Models

We first introduce the specific form of dependency graphs irs&@G. Then, we define the
models of XDG, which are tuples of dependency graphs shénmgame set of nodes called
multigraphs

2.1.1. Dependency Graphs

Dependency graphs in XDG (cf. the example in Figure 2.1) ameaific form of dependency
graphs having the following properties:

1. Each node (round circle) is associated with an index (3 €2¢.) indicating its position.
The connection is made explicit by the dotted vertical lioa¥ed projection edges.

2. Each node is associated with a wokdiafy, wants to etc.), which we write below its
index?

3. Each node is associated wdttributesarranged in attribute-value-matrices which we
call records Attributes incorporate lexical information (in ttex subrecord) and non-
lexical information (outside thé&ex subrecord). We draw the attributes of the nodes
below their associated words. In Figure 2.1, we have dra@mttiibutes schematically
because of lack of space, and have highlighted only thosedags1 and 2 by magnifi-
cation. The attributes include thexical attributes imandout describing the in valencies
and out valencies of the node (cf. section 1.1.1). For exantipé in valency of node 2 is
{root?}, where thecardinality ? stands for “at most one”, i.e., there must be at most one
incoming edge labelegot, and no other incoming edges are licensed. The out valency
of node 2 is{subj!, vinf! adv«}, where the cardinality ! stands for “precisely one” and
the x for “arbitrary many”. order is a set of pairs describing a strict partial order on
the dependents and the head (signified by the spaxdior labelT) with respect to its

1In this and the subsequent analyses of natural languagersest we assume that end-of-sentence markers
such as the full stop (node 7) form the root of the dependenraptgto ease the modeling of non-syntactic
linguistic aspects, e.g. predicate-argument structuddrefiormation structure.

27

2. XDG in a Nutshell

dependents. For example, for node 2, the subject of the haatprecede it and also its
infinitival complement.agrsdescribes a set of possildgreement tuplesonsisting of
person and number, argreethe set of edge labels of dependents with which the node
must agree. In the example, the finite vevantscan only have third person singular
agreementggrs= {(3,sg)}), and must agree with its subjeiary (agree= {subj}).

agr is anon-lexical attributerepresenting the agreement tuple assigned to the node,
picked out from theagrsset.

. The nodes are connected to each other by labeled andediredges. In the example,
there is an edge from node 7 to node 2 labeted to express thawvants the finite verb,
is the root of the analysis. There are also edges from noden@de 1 (labeledubj),
from 2 to 4 (labeledinf), and from 2 to 6 (labeleddv), which express tha#lary is the
subject,eatthe infinitival complement, antbdaythe adverbial modifier ofvants The
edges from node 4 to nodes 3 and 5 labglad andobj express thato is a particle of
eatandspaghettits object.

) Vinf\fldv\o :
93‘\ X ob/\ .
i : i3 6 ;
Mary wants to eat spaghetti today
Z0 L= |- IR R 1=
\ Tl
\ S~
\ ~<
\ o
. - in = {root?}
o'urL g“bj"”b” out= {subj!, vinf!, advs}
lex— order; O lex— order= {(subj, 1), (subj,vinf), (subj,adv),
agrs={(3,s9)} (1,vinf), (,adv), (vinf,adv)}
agree= {} ' agrs= {(3.59)}
agr= (3,59 agree= {subj}
gr=15s9 agr=(3,sg9)

Figure 2.1.: Dependency Graph (syntactic analysis)

As we have already mentioned in section 1.1.1, dependeraphgrare not restricted to
describing syntactic structures. In fact, in XDG, they dd¢ eeen have to be trees but can
be any kind of directed graph. Figure 2.2, for example, shadisected acyclic graplidag)
describing the predicate-argument structure of the exasgiitence, where the edge labels are
thematic role$. Here, the additional root node corresponding to the enseatence marker
helps us to distinguish nodes which correspond to semardaigates, which we take to be
the “roots” of the analysis, and nodes without semantic eatntwhich take to be “deleted”.
Roots are connected to the end-of-sentence marker by ealggledroot, and deleted nodes

2This structure does not provide us with all the informatiequired for a complete semantic representation, but
only with the relations between predicates (e.g. verbsdideand their arguments (e.g. nouns liary and
spaghetfi. What is missing to build e.g. a representation of the seicgm predicate logic is the modeling
of quantification, which we omit in this chapter for simpticiWe will pick up this issue again in chapter 10,
where we also provide a means of modeling quantificationgusmadditional dependency graph.

28

2. XDG in a Nutshell

by edges labeledel. In the examplewants eatandtodayare semantic predicatesvants
is additionally the themetk) of the adverktoday, and has in turn the agenig) Mary and
the themeeat eathasMary as its agent, too, and the patiepst) spaghetti The particleto
(node 3) has no semantic content and can thus be “deleten’tite semantic analysis. The
attributes of the nodes are the lexical attributeandout, standing for the in and out valency
of the nodes (cf. section 1.1.1), respectively.

t .
© mW :
@Q t? \ :
04‘// ° pat\o

1 2 3 2 5 6 7

Mary wants to eat spaghetti today

S e DO S P ectiny B
Figure 2.2.: Dependency Graph (semantic analysis)

XDG also supports dependency graphs without edges. Thegeigf such graphs is to
carry attributes which do not fit properly on any of the othependency graphs. These are
typically attributes which specify the interface betweemehsions. For example, in Fig-
ure 2.3 the attributes describe the realization of semamngioments like agent and theme by
grammatical functions like subject and infinitival compkemh g = {subj} andth = {vinf}).

o) ®) o o o O
1 2 3 4 5 6 7

Mary wants to eat spaghetti today

(ec{amf)y} {me{ ol))

Figure 2.3.: Dependency Graph (syntax-semantics analysis

2.1.2. Multigraphs

The models of XDG are tuples of dependency graphs. The coempolependency graphs are
calleddimensionswhich must all share the same set of nodes. Because oflikatjfles can
be regarded amsultigraphs i.e., graphs with multiple edges between the nodes fromigra
theory (Harary 1994). In fact, this is how we will call the nedsl of XDG for the remainder
of the thesis.

We show an example multigraph in Figure 2.4. It consists cédldimensions which we
call sYN (syntax),SEM (semantics) andYNSEM (Syntax-semantics interface). For clarity, we

29

2. XDG in a Nutshell

draw the three dimensions as individual dependency gragh&igure 2.1, Figure 2.2 and
Figure 2.3), and indicate the node sharing by arrangingeshaodes in the same columns.
The multigraph describes at the same time the syntacticemdrstic analysis of the sentence,
and expresses e.g. thdary (node 1), the subject affantson syN, is the realization of the
agent of bothwantsandeat on SEM. The SYNSEM dimension carries the attributes needed
for the syntax-semantics interface, e.g. specifying homes#ic arguments are realized by
grammatical functions.

root /O

L /Oq\ |
Q : (,a“ . % o
: : : ~ : :
1 2 4 ? 6 7

Mary wants to eat spaghetti today

1 2 3 4 5 6 7
Mary wants to eat spaghetti today

SEM

o 0o 0o o o 0o o
3 5 6

[
N
w
~

Mary wants to eat spaghetti today

SYNSEM

Figure 2.4.: Multigraph (simultaneous syntactic and sernamalysis)

For clarity, we will in the following abbreviate multigrapladopting the following conven-
tions:

» we omit all dimensions without edges
* we omit the attributes of the nodes

» we “ghost” the node corresponding to the end-of-sentenaken (i.e., we draw it in
gray instead of black) and all deleted nodes (i.e., whosenitg edge labels include
del)

» we “ghost” all edges labele@ot or del

We display an example in Figure 2.5, which is a “ghosted” ieersf Figure 2.4.

30

2. XDG in a Nutshell

Q
u‘O\/Q-v'\ad
9 : nf—o__ V\o
. \8 .
: N b :
: o o0
1 2 3 4 5 6
SYN Mary wants to eat spaghetti today

SEM Mary wants eat spaghetti today

Figure 2.5.: Abbreviated Multigraph

2.2. XDG Grammars

The models of XDG, multigraphs, are described by grammarsXBG grammar is defined
by:

1. defining the dimensions
2. defining the principles

3. defining the lexicon

2.2.1. Dimensions

Eachdimensioris associated with a uniqgue name (esgN), a set of edge labels and a set of
attributes. The latter will in this thesis always be chagdzed by a record type.

2.2.2. Principles

The principles state the well-formedness conditions of the XDG models. Newwciples
can be freely written, but usually, the grammar writer witlypneed to pick out a subset of
the predefined principles such as ffree principle(to state that the models of a dimension
must be trees) and thdalency principle(to constrain the in and out valencies of the nodes).
The set of predefined principles is already sufficient to rhadanteresting fragment of the
syntax, semantics and even phonology of English, as we with@hstrate in part Ill. The
principles have also been successfully employed for moddlagments of Arabic (Odeh
2004), Czech, Dutch (Debusmann & Duchier 2002), French Garthan (Debusmann 2001,
Bader, Foeldesi, Pfeiffer & Steigner 2004).

31

2. XDG in a Nutshell

2.2.3. Lexicon

Thelexiconis a set of records calldéxical entries Each lexical entry is indexed by a word
called itsanchor, and simultaneously specifies the attributes of all dinmrsiand thereby
synchronizes them. For example, the lexical entry belowthasnchomwantsand specifies
thein andout attributes of the dimensiorsrN andsewm:

word = wants

SYN = { in = {root?} }

out = {subj!,vinf!, advx}

SEM — in = {root!, thx}
~ | out= {ag!,th!}

(2.1)

2.2.4. Example Grammar

We present a first example grammar formulated over the threergionssyN, SEM and
SYNSEM.

Dimensions. We begin the definition of the grammar with the definition oé gvN di-
mension. We definsyN given a typeAgr = tuple({1,2,3},{sgpl}) of agreement tuples
consisting of a persori(2 or 3) and a numberdgfor “singular” andpl for “plural”).

* The edge labelksyy Of SYN are:
{root, subj, part, obj, vinf,adv } (2.2)

whereroot stands for the root of the analysssbj for subject,part for particle,obj for
object,vinf for infinitival complement, anddv for adverb.

» The attributes orsYN are defined by the following record type:

in : valencyLsyy)
out : valencyLsyy)

lex: < order: seftuple(Lsyn|{T},Lsyn|{T})) (2.3)
agrs: setAgr) '
agree: sefLsyy)
agr : Agr

where the attributes in thex subrecord are calleléxical attributessince they will be
determined by the lexicon. The lexical attribuiasand out are valencies specifying
the licensed incoming and outgoing edges, i.e., mappirmys &dge labels oBYN to
cardinalities (!, ? ok). order specifies a strict partial order on the dependents and on the
anchor] with respect to its dependentsagrs specifies the licensed agreement tuples
for the node, andgreethe set of dependents with which it must agree. The nondéxic
attributeagr stands for the one agreement tuple out of the licensed agraemples
which is picked out by the node in each analysis.

3Here, for two domaing andT’, we writeT | T for the union ofT andT’.

32

2. XDG in a Nutshell

On thesem dimension, the set of edge labels and the attributes are:

» edge labels:
{root,del,ag, pat, th} (2.4)

whereroot, standing for the roots of the analysis, afatifor deleted nodes are used to
connect roots and deleted nodes to the additional root afriabysis, andg, pat andth
are thematic roles.

* attributes: enctLecy)
] in : valencyLgey
{ lex : { out : valencyLgsgy) } } (2.5)
Finally, on thesyNsSeM dimension, the set of edge labels is empty since its models ar
graphs without edges. The attributesmsem are:

{ lex - { arg : veqLsew, S€{Lsyn)) } } (2.6)

mod: sefLsgv)

arg is avectorused to mafseM edge labels to sets afyN edge labels to constrain the real-

ization of the semantic arguments of verbs, such as aggntgammatical functions such as

subjectsmodis a set oEM edge labels to constrain the realization of the semantioaegts

of adverbs by their syntactic mothers.

Principles. Our grammar makes use of the following principles ongke& dimension:
 Tree principle the graph orsYN must be a tree.

* Projectivity principle sYN must be projective.

» Valency principle the nodes orsYN must satisfy their in and out valencies (lexical
attributesn andout).

» Order principle the dependents of each node and the node itself must beadrder
cording to the lexicalized strict partial order given by tider attribute.

» Agr principle each node must pick out one agreement tuatg)(from the lexicalized
set of licensed agreement tupleg(9).*

» Agreement principlethe agreement tuplagr of each node must agree with the agree-
ment tuple of all dependents in the lexicalizedagiee

On thesem dimension, the grammar makes use of the following prineiple
» Dag principle the graph orsEM must be a dag.

» Valency principle the nodes orsEM must satisfy their lexicalized in and out valencies
(lexical attributesn andout).

4For nodes associated with words not having agreement Btigaily, e.g. adverbs, we license all possible
agreement tuples.

33

2. XDG in a Nutshell

On thesyNseEM dimension, we make use of the following principles:
» Edgeless principlethe graph orsYNSEM must be edgeless.

 LinkingEnd principle the sYN andsem dimensions must satisfy the lexicalg speci-
fications for realization of the semantic arguments of verbs

 LinkingMother principle the sYN and SeM dimensions must satisfy the lexicalod
specifications for realization of the semantic argumentadyierbs. This principle en-
sures e.g. that only verbs that are modified by adverbsyon(e.g.wantsby todayin
Figure 2.4) can be their arguments aMm.

Finally, the Lexicalization principleensures that each node is assigned a suitable lexical
entry from the lexicon, i.e., one associated with the sanre\ae the node.

Lexicon. The lexicon at the same time specifies the lexical attriboftesyn, sem and
SYNSEM. For example, here is the lexical entry f@ants

word = wants
in = {root?}
out = {subj!,vinf!, advx}
order = {(subj, 7), (subj,vinf), (subj,adv),
(T,vinf), (7,adv), (vinf,adv) }
agrs= {(3,59}
agree= {subj} (2.7)

i pr— |
SEM — { in = {root!,thx} }

SYN =

out = {ag!,th!}
[ag = {subj}
synsem={ 297 { ’EE = {Vimg} } }
mod= {}

2.3. Implementing XDG Grammars

In this thesis, we not only develop XDG theoretically, bidaalmplement a parser and an
extensive grammar development kit: the XDK. In the XDK, graars are written in the
XDK description languagea metagrammamith a number of concrete syntaxes (including
one based on XML). The metagrammar is statically typed, lwhiakes it very easy to spot
errors.

2.3.1. Metagrammar

Using the XDK description language, XDG grammars can beteritlown just as described
above: by first defining the dimensions, then choosing thecpies from the set of prede-
fined ones from therinciple library, and then defining the lexicon. The set of principles is
extensible, and each of the existing ones can be freelyaegpla

34

2. XDG in a Nutshell

Dimensions. As an example, we show how the types of edge lakrisl(abeltype), lex-
ical attributes {efentrytype) and non-lexical attributesiéfattrstype) are defined for the
SYN dimension of our example metagrammar:

deftype "syn.label" {root subj part obj vinf adv}
deftype "syn.label 1" "syn.label" | {"""}

deftype "syn.person" {"1" "2" "3"}

deftype "syn.nunber" {sg pl}

deftype "syn.agr" tuple("syn.person" "syn.nunber")

def | abel type "syn. | abel" (2.8)
defentrytype {in: val ency("syn.|abel")

out: val ency("syn.label™)

order: set(tuple("syn.labell" "syn.|abel 1"))

agrs: iset("syn.agr")

agree: set("syn.label")}
defattrstype {agr: "syn.agr"}

Principles. The principles of thesEm dimension are instantiated as follows:

useprinciple "principle.graph" { dinms {D. sent} }
useprinciple "principle.dag" { dins {D: sen} } (2_9)
useprinciple "principle.valency" { dinms {D. sent }

Lexicon. The lexical entries can be written down as before, with tighsdifference that
the word attribute is encapsulated in an additional dimension dalkex. For example, the
lexical entry (2.7) is then written as:

defentry {
dimlex {word: "wants"}
dimsyn {in: {root?}
out: {subj! vinf! adv+}
order: {[subj "~"] [subj vinf] [subj adv]
["~" vinf] [""~" adv] [vinf adv]}
agrs: {["3" sgl} (2.10)
agree: {subj}}
dimsem{in: {root! thx}
out: {ag! th!'}}
di m synsem {arg: {ag: {subj}
th: {vinf}}
mod: {}}}

However, simply spelling out the lexical entries quicklycbees infeasible. Therefore,
the metagrammar provides means for factorization and awetibn of partial lexical entries
calledlexical classesand for the easy statement of alternations. Lexical ctaasebasically
lexical types with complete inheritance. Here are some @kalexical classes:

5In addition to the Dag’(principle.dag”’) and Valency (principle.valency”) principles of our exam-
ple grammar, in the XDK we also need to instantiate a priectpl establish that the models are graphs
("principle.graph”).

35

2. XDG in a Nutshell

* finite verbs: _
defclass "fin" Wrd Agrs {

dimlex {word: Wrd}
dimsyn {in: {root?}

out: {subj!} (2_11)

order: <subj "~" obj vinf adv>

agrs: Agrs

agree: {subj}}}
fin has the two argumenird andAgrs for the word of the lexical entry and its set of
licensed agreement tuples. ®wN, it licenses at most one incoming edge labetlsst,
and requires precisely one outgoing edge labsié{] reflecting that finite verbs always
require a subject. The subject must be ordered to the leffiedfiead, and the head must
be ordered to the left of the infinitival complement and thathte left of the adverb.
The word must agree with its subject.

* verbs in general:
defclass "verb" {

d? m syn {_out: {adv=*}} (2_12)
dimsem{in: {root! thx}}}
OnsyN, verb licenses arbitrary many outgoing edges labelédto reflect that verbs
can always be modified by adverbs. ®grM, it requires precisely one incoming edge
labeledroot and licenses arbitrary many labeldd i.e., it can be the theme of arbitrary
many adverbs.

e intransitive verbs: ,
defclass "intrans" {

dimsem {out: {ag'}} (2_13)
dimsynsem{arg: {ag: {subj}}}}
OnsyYN, intrans requires one outgoing edge labelggfor its agent. This agent must
be realized by a subject{NSEM).

* transitive verbs:
defclass "trans" {

"intrans"

dimsyn {out: {obj!}} (2_14)

dimsem {out: {pat!}}

dimsynsem {arg: {pat: {obj}}}}
Transitive verbs inherit the specifications of the classrans. In addition, they syntac-
tically require precisely one object and semantically [g&g one patient. The patient
is realized by the object.

* verbs requiring an infinitival complement:

defclass "vinfc" {
dimsyn {out: {vinfl}}
dimsem{out: {th!'}} (2'15)
dimsynsem{arg: {th: {vinf}}}}

Such verbs syntactically require an infinitival complemanti semantically a theme.
The theme is realized by the infinitival complement.

5The metagrammar allows to abbreviate the specificationriuft startial orders with a notation using angle
brackets.

36

2. XDG in a Nutshell

We can then use the classes to generate the lexical entgigsreboth the intransitive and
the transitive alternations efantsas follows:

defentry {
"verb"
("intrans" | "trans")

"vinfc" (2'16)
“fin" {Word: "wants"
Agrs: {["3" sg]}}}

where the bar betwe€rintrans” and”trans” represents a disjunction.

2.3.2. Parser

The constraint parser of the XDK is based on constraint pmogning in Mozart/Oz, and
implements the complete XDG grammar formalism as present#us thesis, including all
principles. All dimensions are processed concurrentiynt&eces can be parsed either using
the GUI or the commandline version of the solver. If the GUpQ(fFe 2.6) is used, th®z
Explorer (Schulte 1997) displays the solutions of a parse as in FiguteThe solutions can
be visualized using several output functors e.g. fapX-output (as in e.g. Figure 2.1) or
output in a window, as shown in Figure 2.8.

L dtewwee X
Project Search Dimensions Principles Outputs Extras
Grammar: nuti.ul

Examples: nutl.txt

Inspect lexical entries

Mary wants to eat . Y
Mary wants to eat today .

Mary wanis to eat spaghetli .

Mary wants to eat spaghetti today . |
Peter wants Mary to eat spaghetti .

Peler wants Mary to eat spaghetli today .

Mary eats .

Mary eats today .

Mary wants eat .
Mary wants .
wants Mary to eat .
Mary want to eat .
eats Mary .

Solve | tdary wants to eal spaghetti today
I 0

Figure 2.6.: GUI of the XDK

2.4. Comparison with Other Grammar Formalisms
In this section, we compare the main notions of XDG, i.e., @hisions, principles and the

lexicon, to their embodiments in the the popular grammamédisms of CCG, TAG, GB,
HPSG, LFG and MTT, before we compare their grammar theoridsraplementations.

37

2. XDG in a Nutshell

v
Explorer Move Search Nodes Hide Options |

™

Time: 90ms (1 €2 [0 Depth: 2
D ——

Figure 2.7.: Oz Explorer displaying a parse solution

Al
[
o [
=
sem —I\pﬂ\
o =
Mary wants eat spaghetti today
1 2 4 3 [
[
=
}"‘J(%ﬂv\'
sy ¥ (gm’ J\ohj\' ¥
o o
Mary wants to eat spaghetti today
1 2 3 9 S 8 L

Figure 2.8.: Output functor

2.4.1. Dimensions

By dimensionswe mean linguistic aspects such as syntax, semantics ambjagy. Dimen-
sions can also be defined in a finer-grained fashion, e.g.dinduishing within syntax the
aspects of grammatical functions and word order, or, wid@mantics, predicate-argument
structure and quantifier scope. In XDG, each dimension isateacby a different dependency
graph. As XDG adopts thgarallel grammar architecturésee Figure 1.7), all dimensions are
autonomous modules, which can be processed concurrently.

Combinatory Categorial Grammar. In CCG, an analysis is a type-logical proof carrying
out a syntactic analysis. Prosodic structure is encodeti@msyntactic categories, and se-
mantics and information structure are derived from synfékat is, CCG distinguishes the

dimensions of prosody, semantics and information strectuut contrary to XDG, they are no

autonomous modules, but encoded in or derived from synt®G Gas thus a prototypically

syntacto-centric architecture (see Figure 1.6). The sastuslior the generalization of struc-

tures other than syntax proposed by Kruijff & Baldridge (2D(ecause crucially, they are

still derived in lockstep with syntax.

38

2. XDG in a Nutshell

Tree Adjoining Grammar. In TAG, an analysis corresponds to a series of substitutions
and adjunctions of lexicalized phrase structure treegdalementary trees. The result of an
analysis are two structures: tkerived treeitself and the “history” of the derivation called
derivation tree The derivation tree, which is unordered, more closelyasponds with the
dimension of syntactic relations, and the derived treectvis ordered, with the dimension of
word order. Thus, many proposals for a TAG syntax-semairttesface (Candito & Kahane
1998), (Joshi & Shanker 1999), (Kallmeyer & Joshi 2003) heederivation tree as a starting
point, although there are other proposals that use theatkthee (Frank & van Genabith
2001), (Gardent & Kallmeyer 2003). In any case, the resgiirchitecture is syntacto-centric,
as dimensions other than syntactic dimensions, e.g. s@saate not granted the status of
autonomous modules. A proposal for TAG more akin to the pErgtammar architecture is
Synchronous TAGSTAQ (Shieber & Schabes 1990), where sets of trees are synalsliyno
derived, e.g. one tree for syntax, and one for semantics.

Government and Binding. GB has the dimensions of D-Structure (formerly Deep Struc-
ture in (Chomsky 1965)), from which it derives the S-Struet(Surface Structure) via ap-
plication of the generic rule move- From the S-Structure, GB derives the dimensions of
phonology (Phonetic Form) and semantics (Logical Form).défgict the architecture in Fig-
ure 2.9. The architecture is syntacto-centric, like thaL GG and TAG.

Phonology

Phonetic Form

Figure 2.9.: The architecture of Government and Binding

Head-driven Phrase Structure Grammar. In HPSG, linguistic analyses are described in
terms of feature structures using a feature logic define@angenter 1992). In theory, HPSG
is able to formulate any kind of architecture, i.e., alsopheallel grammar architecture. In
practice, however, the HPSG grammar theory founded in §Rbl& Sag 1987, Pollard &
Sag 1994) is syntacto-centric just like CCG, TAG and GB: timethsions of syntax and
semantics are both constructed in lockstep according téetitare structure-encoded syntax
tree.

39

2. XDG in a Nutshell

Lexical Functional Grammar. LFG defines a clean separation between the syntactic di-
mensions of constituent structure (c-structure) and fanat structure (f-structure): the c-
structure is a phrase structure tree, whereas the f-steudua feature structure capturing
syntactic relations, which can also be viewed as a depegdgaph. Both c- and f-structure
have their own well-formedness conditions. The so-cajfletshpping provides a bi-directional
interface between the two. The interfaces from syntax toplamy and to semantics are not
part of the standard LFG theory, but there are proposalsioidirectional syntax-phonology
interface (Butt & King 1998), and for a bi-directional syrtsemantics interface (Frank &
Erk 2004). The resulting architecture, depicted in FigurE02is parallel. However, the
standard syntax-semantics interface of LF&tae SemanticfDalrymple et al. 1995) is not
bi-directional but functional (from syntax to semantia®ndering the architecture syntacto-

centric again.

Figure 2.10.: The architecture of Lexical Functional Graanm

~

Meaning-Text-Theory. MTT (Mel cuk 1988) makes use of seven dimensions which are
calledstrata

1. Semantic Representation (SemR) (meaning)
. Deep Syntactic Representation (DSyntR)

. Surface Syntactic Representation (SSyntR)

2

3

4. Deep Morphological Representation (DMorphR)

5. Surface Morphological Representation (SMorphR)

6. Deep Phonological Representation (DPhonR)

7. Surface Phonological Representation (SPhonR) (text)

where the endpoints of this architecture are meaning (Sem&)ext (SPhonR). Each stratum
has its own well-formedness conditions called well-formesk rules in (Me€uk & Polguere
1987) and later criteria in (lordanskaja & Mélik 2005). The relation between meaning and

40

2. XDG in a Nutshell

text is mediated via bi-directional interfaces. Contrarytte parallel grammar architecture of
XDG, however, interfaces exist only for adjacent strata,nmi for non-adjacent ones such as
SMorphR and SemR. This leads to the architecture outlin€&igare 2.11.

Phonology

Figure 2.11.: The architecture of Meaning Text Theory

2.4.2. Principles

What are the concepts related to the XDG principles in theragjrammar formalisms?

Combinatory Categorial Grammar. The principles in XDG roughly correspond to the
combinatory rules of CCG: functional application, funci@b composition and type raising,

which exist in various flavors (forward, backward, cros3jmghere e.g. functional application

can be likened to the notion of valency in XDG. CCG constréesnumber of these rules by
meta rules called principles: the principle of adjacenkg, principle of consistency, and the
principle of inheritance, which have no counterpart in XO@&e main difference of the CCG

rules to the XDG principles is that they are formulated fromraof-theoretic perspective,

whereas XDG principles take a model-theoretic stance.

Tree Adjoining Grammar. Compared to TAG, the principles of XDG correspond to the
two simple modes of tree composition, i.e., substitutiod adjunction. The two can be
likened to valency in XDG, where substitution is used for ptementation, and adjunction
for modification. TAG has no other principles or rules; evkiyg else (e.g. order) is encoded
in the elementary trees in the lexicon. However, this miniapgroach needs to be extended
in practice (XTAG Research Group 2001), leading e.g. to &a¢ure extensions d¢feature-
Based Tree Adjoining Gramm@FB-TAG.

41

2. XDG in a Nutshell

Government and Binding. The principles of GB comprise e.g. the moweaule schema,
the B-criterion, the projection principle and the case filter. @hciples are similar to XDG
principles, but there are two main differences: GB prinesphre not formulated in a logic but
in natural language, and they are mutually dependent arsdélss modular than in XDG: for
instance, to account fully for the notion of valency, GBeslon interactions of th@-criterion
with the projection principle and the case filter.

Head-driven Phrase Structure Grammar. HPSG proposes two kinds of well-formedness
conditions: HPSG principles such as the Head Feature Blenand the Subcategorization
Principle, and HPSG rules such as the Head Complement RdléharHead Modifier Rule.
HPSG principles are more general and language-independeateas HPSG rules are gen-
eralizations of context-free rules and language-dependddG principles are more similar
to HPSG principles than HPSG rules. For example, the Subpoaration Principle (replaced
by the Valence Principle in later versions of HPSG) is analsgto the Valency principle of
XDG.

Lexical Functional Grammar. The principles of LFG are very general: c-structure is con-
strained by X-bar theory (Jackendoff 1977), and f-struietoy functional uniqueness, func-
tional completeness and functional coherence. Functicorableteness and coherence form
the counterpart of the Valency principle in XDG. Other XDGngiples, e.g. agreement, are
not formulated as LFG principles, but as path equationsearigkicon.

Meaning-Text-Theory. In MTT, the counterparts of the XDG principles are called Iwel
formedness rules of the individual strata, which were lagédlied criteria.

2.4.3. Lexicon

We now compare the lexicon of XDG with that of the other gramfoemalisms.

Combinatory Categorial Grammar. In CCG, the lexicon pairs each word with a pair con-
sisting of a syntactic category and a semantic representédiA -term). The syntactic cate-
gory encodes simultaneously the syntactic valency reou@rgs and word order, whereas the
semantic representation encodes the meaning of the word.

Tree Adjoining Grammar. In TAG, the lexicon consists of elementary trees. In the spe-
cialization of TAG most often used for modeling natural laage Lexicalized Tree Adjoining
Grammar(LTAG), each of these trees must have at least one anchor, i.eisitha associated
with a word. All alternations, e.g. of verbs, must be congitait into different elementary
trees, which leads to very large lexicons. To reduce theg,snany extensions such meta-
grammar (Candito 1996), anéXtensible MetaGrammaXMG) (Crabbé & Duchier 2004)
(Crabbé 2005) have been propoged.

"XMG, was actually the major source of inspiration for the aggammar of the XDK.

42

2. XDG in a Nutshell

Government and Binding. In the GB lexicon, words are basically paired with a valency
frame specifying the semantic valency requirements in $eofrf-roles. That is, the lexi-
con of GB includes less information than that of XDG, lackspgcifications of agreement,
government, and also linking.

Head-driven Phrase Structure Grammar. The HPSG lexicon pairs words with feature
structures. These structures are more complex than XDGdesmtries: they are often deeply
nested, make use of structure sharing, and allow evenanpitlations (e.g. append) to be ex-
pressed. HPSG lexical entries can be easily extended witHewures, and lexical economy
is ensured by the HPSG type hierarchy and lexical rules.

Lexical Functional Grammar. In the LFG lexicon, words are paired with valency frames
and f-structure path equations. The latter have no direabtespart in XDG. In the imple-
mentations of LFG, the mechanisms of template and lexidasrensure lexical economy.

Meaning-Text-Theory. The MTT lexicon is called Explanatory Combinatorial Dictery
(ECD). In ECD, lexical entries are split into three zones:

1. semantic zone
2. syntactic zone
3. lexical combinatorics zone

In the semantic zone, the semantics of the lexical entryesertbed using a semantic network.
The syntactic zone defines syntactic valency and the govarhpattern, which establishes a
linking between the syntactic and semantic argumentsccalbtants. The lexical combina-
torics zone describes relations between lexemesnilgiword expressiomsultiword expres-
sion. The MTT lexicon is by far the most complex of the presdrgrammar formalisms, and
is also far more complex than the XDG lexicon. Interestinglynilar to XDG, the specifi-
cations for syntax and semantics are largely independedtiree lexical entries also contain
linking specifications. MTT is the only one of the presentedngmar formalisms to han-
dle multiword expressions. For XDG, ideas to handle multdvexpressions using a notion
calledgroupsare presented in (Debusmann 2BP4dnd extended in (Pelizzoni & das Gracas
\olpe Nunes 2005).

2.4.4. Grammar Theory

So far, the emphasis of our research was on the modeling gblessrhand selected phenom-
ena. Thus, so far, there are no large-scale grammars cobhpaoahose for the established
grammar formalisms, e.KTAG (XTAG Research Group 2001) for TAG, or tiglish Re-
source Gramma(ERG (Copestake & Flickinger 2000) for HPSG, available for XDG.
However, with respect to syntax, we have developed gramfoatGerman (Debusmann
2001, Bader et al. 2004), Dutch (Debusmann & Duchier 20029, Bnglish (this thesis),

43

2. XDG in a Nutshell

covering e.g. the phenomena of topicalization, pied pipstgambling and cross-serial de-
pendencies. With respect to semantics and the syntax-sesamerface, we have devel-
oped accounts of control and raising (e.g. Debusmann, RuéhKruijff 2004), scope am-
biguities and underspecification (Debusmann, DuchierledKadKuhlmann, Smolka & Thater
2004), and a modular version of Steedman’s (Z)@@osodic account of information structure
(Debusmann, Postolache & Traat 2005). These hand seldutemena serve as a proof-of-
concept of XDG grammar theory, and combined with the moddésign of XDG, they are

a strong indication for its scalability: that given enouglaurces, large-scale grammars can
indeed be constructed.

2.4.5. Implementation

From the beginning, XDG was geared towards an extensibleucoent implementation using
constraint programming, which was in fact developed in lperaith the grammar formalism.
The resulting constraint parser is reasonably fast on tisieg handwritten grammars, and
the extensive grammar development kit, the XDK, is comfadgand instructive, e.g. for ex-
perimenting with grammar formalisms based on dependeramygrar and for teaching. As a
result, the XDK has already been successfully employecefaeting, e.g. in a course at ESS-
LLI 2004 (Debusmann & Duchier 2004), and a Fortgeschritt@naktikum at the Universitat
des Saarlandes, also in 2004 (Debusmann 2004

As there are no large-scale grammars for XDG available yetcould not prove that the
parser is scalable. Negative evidence comes from gramrdaction studies (Korthals 2003,
Mohl 2004, Bojar 2004, Narendranath 2004), indicating thatcurrent XDG parser is not
usable for large-scale parsing, which would not be a reasavonder: the parser is almost
unoptimized, not yet profiled, and does not use global caimgs, which are usually indis-
pensable for efficient constraint programming. In additibe parser does not use any of the
statistical techniques used to boost the efficiency of tihegua for other grammar formalisms,
such as supertagging @penCCGEWhite 2004).

2.5. Summary

In this chapter, we have given a walkthrough of the main cptscef XDG. The models of
XDG are multi-dimensional dependency graphs called nmalibs. These models are de-
scribed by XDG grammars, which are defined in three stepsnidgfthe dimensions, then
the principles, and then the lexicon. The implementatioXD, the XDK, provides a con-
straint parser and a metagrammar for convenient grammaiajewent. The metagrammar
facilitates grammar writing by providing means for fackation and alternation using lexi-
cal classes. We compared the main concepts of XDG in reladidheir counterparts in a
number of existing grammar formalisms, and compared coetptreir grammar theory and
implementation.

44

Part I.

Formalization

45

3.

XDG—A Description Language for
Multigraphs

After the informal introduction to the main concepts of XD@&the previous chapter, we now
proceed with presenting a formalization of XDG as a desioriplanguage for multigraphs,

which will serve as the basis for the formalization of the keycepts of dependency gram-
mar in chapter 4, and for our investigations of the exprégsfehapter 5) and computational

complexity (chapter 6) of XDG.

3.1. Multigraphs

We begin in this section with formalizing multigraphs and tklations induced by them. We
definemultigraphsas follows.

Definition 1 (Multigraph) A multigraph is a tupléV,D,W,w,L,E, A, a) consisting of:

1.

2
3
4
5.
6
7
8

a finite interval V of the natural numbers starting frdroalled nodes

. afinite set D of dimensions
. afinite set W of words

. thenode-word mappingv €V — W

a finite set of L of edge labels

. afinite set ECV xV x D x L of edges
. afinite set A of attributes

. thenode-attributes mappirgecV — D — A

Figure 3.1 shows an example multigraph, repeating Figuée 2As explained in sec-
tion 2.1.1, we assume an additional root node corresporiditige end-of-sentence marker:

1.
2.

the set of nodeg is {1,2,3,4,5,6,7}

the set of dimensiori3 is {SYN, SEM, SYNSEM}

10nly the attributes of the nodes 1 and 2 are highlighted, as the attributes of the other nodes astewant
here.

46

3. A Description Language for Multigraphs

w

4. the node-word mapping is {1 +— Mary, 2 — wants 3~ to, 4+— eat...}

62

. the set of wordsV is {Mary, wantsto, eat spaghettitoday, .}

dimensions and the additional anchor lapel

6. the sek of edges is:

{(2,1,SYN,subj), (2,4,SYN,vinf),...,(2,1,SEM,ag), (2,4, SEM, th),...}

\‘

tion 2.2.4):

Lsyn = {root,subj,part,obj,vinf,adv}
Lsem = {root,del,ag, pat,th}
L = LsywULsemU{T}

a) record type foBYN:

in : valencyLsyn)
out : valencyLsyy)

lex: ¢ order: seftuple(Lsyn| {1}, Lsyn|{T}))
agrs: sef(Agr)
agree: sefLsyy)
agr : Agr

b) record type fosEM:

lox - in : valencyLsgw)
" | out: valencyLsgy)

c) record type fOSYNSEM:

{

lex { arg : vedLsew, sellsyn)) } }

mod: sefLsgy)

8. the node-attributes mapping is:

1~ SYN—

2 — SYN—

lex =
agr = (
lex =
agr = (

in = {subj?, obj?}

out= {}
order = {}
agrs = {(3,s9)} ’
agree= {}
3,59
in = {root?}

out = {subj!,vinf!, advs}
order = {(subj, T), (subj,vinf), (subj,adv),
(T,vinf), (T,adv), (vinf,adv) }
agrs= {(3,s9}

agree= {subj}
3,59

a7

. the sel of edge labels is defined as the union of the edge labels &tReand SEM

(3.1)

(3.2)

. the setA of attributes is characterized by the following three relctypes (cf. sec-

(3.3)

(3.4)

(3.5)

(3.6)

3. A Description Language for Multigraphs

/O<—mm/?
W vi ad :
_5) : inf— 8 V\O
: T op;. ;
: : e U~ : :
1 2 4 ? 6 7
Mary wants to eat spaghetti today
e EE==r)] - 1 [e [o el | 1
N T T T T T -
\ ——-—_
\ T~
\ ~<.
: B in = {root?}
= ? 0bj?’
olunt— EUbJ"ObJ'} out= {subj!,vinf!, advx}
lex={ order={} lex— order= {(subj, 1), (subj, vinf), (subj,adv),

(T,vinf), (1,adv), (vinf,adv)}

agrs={(3,s9)} agrs={(3,s9)}

agr=(3 sg)ree: v agree= {subj}
SYN ' agr=(3,sg)
root .
/ﬁ‘/_/‘oo\?/ .
/Q\rh :
& — :
L L : :
1 2 3 4 5 6 7
Mary wants to eat spaghetti today
SEM
@) @) o ®) @) @) ®)
1 2 3 4 5 6 7
Mary wants to eat spaghetti today
SYNSEM

Figure 3.1.: Multigraph (simultaneous syntactic and seiioamalysis)

Each dimensiomn € D of a multigraph induces three relations: tlhéeled edge relation
(—4), thestrict dominance relatiof—) and theprecedence relatiofi<).

Definition 2 (Labeled Edge Relation)Given two nodes v and &and a label |, the labeled

edge relation v'—>d\/ holds if and only if there is an edge from v tdabeled | on dimension
d:
—q = {(wV.h)[(wV.dl)eE} (3.7)

where the dot is a placeholder for the edge label.

Definition 3 (Strict Dominance Relation)Given two nodes v and,vthe strict dominance
relation v—; V' holds if and only if v is an ancestor of en dimension d.— is defined as
the smallest relation such that:

=4 = {wv) |3l :v#d\/ V(' HI’:de\/’ AV =iV} (3.8)

Definition 4 (Precedence Relationisiven two nodes v and the total order on the natural
numbers induces the precedence relatior: vV holds if and only if v is smaller thar.v

48

3. A Description Language for Multigraphs

3.2. A Description Language for Multigraphs

Having introduced multigraphs formally, we can define XDGaadescription language for
them. We formulate XDG in higher order logic (Church 1940,dfews 2002), which we
use as a tool to illustrate the semantics of XDG. Thereby, elderately neglect that in
practice, XDG does not seem to require the full expressofityigher order logic. In fact, in
the grammars which we will present throughout this thesesywl only make use of its first
order fragment.

We define XDG by first defining the types of the language, theretms, and then its
signature. Since each multigraph has different dimensiwagds, edge labels and attributes,
the types in the signature vary. We capture this by paramnedrithe signature with a tuple
characterizing the type of the dimensions, words, edgddarel attributes of a multigraph
calledmultigraph type Figure 3.2 illustrates this idea: the signature relatesythes and terms
of XDG. The multigraph type, made up from types, determihesypes in the signature.

multigraph type

(signature
» T

types terms

Figure 3.2.: Structure of XDG

3.2.1. Types
We begin with defining the types of the logic and their intetption.

Definition 5 (Types) We define the types Ty of XDG given a set At of atoms (arbitsany s
bols) in simply typed lambda calculus with records:

acAt
TeTy == B boolean
| V node
| T1—T function (3.9)
| {a1,...,an} finite domain(n > 1)
| {a1:T,....an: T} record

where for finite domains and records;,a. ., a, are pairwise distinct, and we forbid empty
finite domains.

Definition 6 (Interpretation of Types)We interpret the types as follows:
» Bas{0,1}

* V as a finite interval of the natural numbers starting with

49

3. A Description Language for Multigraphs
T1 — T, as the set of all functions from the interpretation @ftd the interpretation of
T2
{a1,...,an} asthe sefay,...,an}
{a1:T1,...,an: Ty} as the set of all functions f with

1. Dom f={ay,...,an}
2. forall1<i<n, f g is an element of the interpretation qf T

Definition 7 (Notational Conveniences for Typed)/e introduce notational conveniences for:

. def
unlons:{al?"'aak}|{ak+17"'7an} :e {a17"'7an}

sets: sefT) defr B, i.e, we model sets by their characteristic functions

tuples: tupléTy, ..., Ty) d:ef{l ‘T,...,n: Ty}

vectors: ve¢{a,...,an},T) def {a1:T,...,an: T}, i.e., vectors are simply abbrevia-
tions of records where each attribute has the same type

valencies: valendy{ay,...,an}) d:(#veq{al, —ank, {12 %,0})

As examples, consider the record types defined in (3.3))}-&béve.

3.2.2. Multigraph Type
Definition 8 (Multigraph Type) A multigraph type is a tuple ME (Dim, Word, lab, attr),

where
1. Dime Ty is a finite domain of dimensions
2. Worde Ty is a finite domain of words
3. labe Dim — Ty is a function from dimensions to label types, i.e., the typthe edge
labels on that dimension. Label types must be finite domains.
4. attr € Dim — Ty is a function from dimensions to attributes types, ilee,type of the

attributes on that dimension. Attributes types can be apg.ty

50

3. A Description Language for Multigraphs

As an example, we depict the multigraph tyyd& = (Dim, Word lab, attr) for the grammar
presented in section 2.2%:

Dim = {SYN,SEM,SYNSEM}
Word = {Mary,wantsto,eat spaghettitoday; .,...}
{ SYN — {root,subj, part,obj,vinf, adv, ...}
lab

SEM — {root,del,ag, pat, th,...}
SYNSEM — {o}
in : valencyLsyy)
out : valencyLsyy)
lex: 4 order: se(tuple(Lsyn[{T},Lsyn|{T})) (3.10)
agrs: sef(Agr)
agree: sefLsyn)
agr : Agr
SEM s { lox - { in : valencyLsew) } }

out : valencyLsey)

arg : vedLsgy, selLsyn)) } }

mod: se{Lsgv)

SYN —

attr =

SYNSEM — { lex: {

To bring multigraphs and multigraph types together, we ndefine what it means for a
multigraphM to have multigraph typ®T, or in other words, what it means fdd to be
compatible withMT. We definecompatibilitywriting M(T) for the interpretation of typ&
overM.

Definition 9 (Compatibility of Multigraphs and Multigraph Types)A multigraph
M = (V,D,W,w,L,E,A a) has multigraph type M (Dim, Word, lab, attr) if and only if:

1. The dimensions are the same:
D = M(Dim) (3.11)

2. The words of the multigraph are a subset of the words of thiégraph type:

W C M(Word) (3.12)

3. The edges in E have the right edge labels for their dimensio

V(vV,d,I)€E : | €M(labd) (3.13)

4. The nodes have the right attributes for their dimension:

WweV : vdeD : (avd eM(attrd) (3.14)

2As we forbid empty finite domains, the edge labels ofsiveisEM dimension must include a “dummy” label
(here:o).

51

3. A Description Language for Multigraphs

3.2.3. Terms

The terms of XDG augment simply typed lambda calculus withre, records and record
selection.

Definition 10 (Terms) Given a set of atoms At and constants Con, we define the setsf te
Te as:

ac At
ceCon

teTe = X variable
| ¢ constant
| a atom (3.15)
| Ax:T.t abstraction
| tito application
| {a1=ty,...,an=1n} record
| ta record selection

where for records, 4. .., a, are pairwise distinct.

Definition 11 (Notational Conveniences for Term3)Ve introduce notational conveniences
for:

* setsovertype T:
{t1,...,tn} def AXCT.X=t1V...VX=ty (3.16)

where= stands for equality.

* tuples:
(trentn) & (1=ty,....n=t, (3.17)

3.2.4. Signature
The signature of XDG defines two kinds of constants:ldiggcal constantsind themultigraph
constantswhere the latter are determined by a multigraph tyfie= (Dim, Word, lab, attr).

Definition 12 (Logical Constants)The logical constants include the type constarand the
following term constants:

0 :B false
= : B—B—B implication (3.18)
=r . T—T—B equaliy (for each type T))
Ir : (T — B)— B existential quantification (for each type T)

which are interpreted as usual.

Definition 13 (Multigraph Constants)The multigraph constants include the type constant
and the following term constants:

—_—

d : V=V —labd— B labeled edgéd € Dim)
-4 1 VoV—B strict dominancgd € Dim)
< : V=V—-B precedence (3.19)
W-) : V— Word word
(d-) : V—attrd attributes(d € Dim)

where we interpret

52

3. A Description Language for Multigraphs

—4 as the labeled edge relation on dimension d.

—¢ as the strict dominance relation on dimension d.

< as the precedence relation

(W -) as the word, e.gW V) represents the word of node v

(d -) as the attributes on d, e.gd v) represents the attributes of node v on dimension d

Definition 14 (Notational Conveniences for Logical Constan#e introduce notational con-
veniences for:

* 1 (true)

- (negation)

V (disjunction)

A (conjunction)

< (equivalence)

++ (inequality)

H% (unique existential quantification)

V1 (universal quantification)
using the usual logical equivalences.

Definition 15 (Notational Conveniences for Setd)/e introduce notational conveniences for
sets, building on the definitions deEfy X, and using the usual equivalences:

* 0 (empty set)

* ¢7 (exclusion)

* Nt (intersection)
* Ut (union)

* C7 (Subset)

Definition 16 (Notational Conveniences for Multigraph Constanise introduce notational
conveniences for

» edges where the edge label is irrelevant:

* non-strict dominance:
Vo4V def EAAVASAY (3.21)

3. A Description Language for Multigraphs

3.2.5. Grammar

The definition of an XDG grammar is now easy.

Definition 17 (Grammar) An XDG grammar G= (MT,P) is defined by a multigraph type
MT and a set P of formulas callgatinciples Each principle must be formulated according
to the signature determined by MT.

3.2.6. Models

Next, we define the models of an XDG grammar and its stringdagg.

Definition 18 (Models) The models of a grammar & (MT, P) are all multigraphs M which:
1. have multigraph type MT
2. satisfy all principles P

where M satisfies a principle if and only if it is true for M.

3.2.7. String Language

Definition 19 (String Language)Given a grammar G, (G) is the set of all strings s
Wi ...Wq such that:

1. there is a model of G with as many nodes as words: ¥4, ...,n}

2. concatenating the words of the nodes yield8/¢:1)...(W n) =s

3.3. Summary

In this chapter, we first presented a formal definition of myudiphs, before we developed a
formalization of XDG as a description language for multgra based in higher order logic.
Here, the crucial step was the introduction of multigrapgsetyto parametrize the signature of
the logic. Multigraph types also played a role in the subsegidefinitions of XDG grammars
and XDG models, preceding that of the string language of egrar.

54

4. Dependency Grammar as Multigraph
Description

In this chapter, we apply XDG as a grammar formalism for depeany grammar. In particu-
lar, we show how the key concepts of DG can be reformulatediasiples on multigraphs.

4.1. Graph Shape

Most grammar formalisms based on DG only license graphshidnas the shape of dags or
trees, even though there are exceptions like WG (Hudson)1980ch allows unrestricted
graphs. An XDG dimension can be any kind of graph. We consitashape using principles
such as the Dag principle (cf. tleEmM dimension in the grammar in section 2.2.4), the Tree
principle (SYN) and the Edgeless principleXNSEM).

4.1.1. Dag Principle

TheDag principlestates a dimension must have no cycles.

Principle 1 (Dag) Given a dimension d, the Dag principle is defined as:

dagy = Wi-(v—]V) (4.1)

4.1.2. Tree Principle

The Tree principlestates, given a dimensiah thatd is a tree, i.e., there must be no cycles,
there must be precisely one root and each node must have abneosmcoming edge.

Principle 2 (Tree) Given a dimension d, the Tree principle is defined as:

tregy = Wi-(v—=jv) A Fvi-V Vv A Wi (= IV v VEV IV sy (4.2)

4.1.3. Edgeless Principle

TheEdgeless principlstates, given a dimensiah thatd must be without edges.

Principle 3 (Edgeless) Given a dimension d, the Edgeless principle is defined as:

edgelesg = W:-av:iv—yV (4.3)

55

4. DG as Multigraph Description

4.2. Projectivity

Projectivity is a central concept in DG. The idea is to forbrdssing edges, i.e., edges that
cross any of the projection edges of the nodes higher up betsitle in the graph. A projective
dependency tree, without crossing edges, was given in &iy@; and a non-projective one in
Figure 1.4. As already noted in section 1.1.1, projectiigtgptional for DG. Consequently,
in XDG, we can freely decide for each dimension whether iudthbe projective by or not.

4.2.1. Projectivity Principle

We express projectivity with thBrojectivity principle defined given a dimensiah and re-
quiring that for all edges fromto v, all nodes/’ betweernv andv' must be below.

Principle 4 (Projectivity) Given a dimension d, the Projectivity principle is defined as
projectivityy = W,V :

VgV AVSY = WivaV AV <V = vV A (4.4)
VgV AV <V = WV VAV <V = vV

4.3. Lexicalization

As explained in chapter 2, XDG grammars are typically lelzeal, consisting of:
1. a small set of principles
2. alarge set of lexical entries which instantiate the ppiles
We express lexicalization using a principle. Thus, wheneasost other grammar formalisms,

e.g. those presented in section 2.4, lexicalization igynatieit is optional in XDG.

4.3.1. Lexical Entries
We begin by defining the type of a lexical entry.

Definition 20 (Lexical Entry) Given the word type Word, n dimensions.d.,d, and corre-
sponding record typesT.. ., Tn, the type of a lexical entry is defined as:

word : Word
E - Ty (4.5)
dn: Th

where T (1 <i < n)is thelexical attributes typ®f dimension d

56

4. DG as Multigraph Description

4.3.2. Lexical Attributes

The attributes of XDG connect the lexical entries with theemof the actual analysis.

Definition 21 (Lexical and Non-lexical Attributes)Given n dimensionsid...,d,, corre-
sponding lexical attributes typeg,T.., T, and atoms & ...,an (m > 0), the attributes on
dimension d(1 <i < n) are defined as:

lex: T;
attrdy, = - (4.6)
am ;...

where we call the attributes inside the lex subredesdcal attributef ¢, and the attributes
outside, i.e., @ ...,am, hon-lexical attributes

4.3.3. Lexicalization Principle

Lexicalization is put to work by theexicalization principlewhich requires the following:
1. Alexical entrye must be selected for each node.
2. The lexical entrye must be associated with the same word as the node.

3. Givenn dimensionds,...,dy, the lexical attributes for each dimensidn(1 <i < n)
must be equal to the corresponding attributesifon e.

As a result, whenever a lexical entry is selected on one ofltheensions, it immediately
determines the lexical attributes of all the other dimemsias well, and thereby synchronizes
them.

Principle 5 (Lexicalization) Given n dimensionsid...,d, and a lexical entry type E, the
Lexicalization principle must be instantiated with a leadex, which is a set of lexical entries
of type E, and is defined as:

dy = Alex Wv:

lexicalizationy, ..
Jdereclex A
eword=(WvVv) A

(div)lex=ed; A ... A (dyv).lex=ed,

4.7)

4.4. Valency

The next key concept of DG that we reformulate in XDG is vajettis application to linguis-
tics reaches back to (Peirce 1898), where valency desdtibeset of dependents of a lexical
head, i.e., its argument structure. For XDG, we adopt a leoadtion of valency, in which it
lexically specifies the incoming and outgoing edges of thaeso

57

4. DG as Multigraph Description

4.4.1. Fragments

We explain XDG valency using the intuitive metaphorfigments An XDG fragment is
simply a lexical specification of the incoming and outgoirtges of a node. We show a
picture of an example fragment below:

(4.8)

The fragment is defined for dimensioin The anchor of the fragment is the woadand
it licenses at most one incoming edge labededt most one outgoing edge labeledand
precisely one outgoing edge labeled It licenses no other incoming and outgoing edges.
Here is a second example:
Y

0
d (4.9)
b
This fragment with anchdp requires precisely one incoming edge labélednd licenses no
other incoming and outgoing edges.

4.4.2. Configuration

We call the arrangement of fragments into grapbsfiguration For instance, we can arrange
the two fragments (4.8) and (4.9) into the graph below:

O~
: © (4.10)
a b
1 2
However, there is no way to arrange the fragments into theviahg graph:
b a
NSA T
. © 70 (4.11)
a b a
1 2 3

This graph is not well-formed according to fragment (4.8)ce node 3 does not have the
obligatory outgoing edge labeléd

The string language of the grammar resulting from the twgrfrants is the set of words
with equally manyas andbs, which we call EQAB:

58

4. DG as Multigraph Description
Language 1(EQAB).
EQAB = {we (aub)” | |wla=|wip} (4.12)
Why is this so?

1. Theas are arranged in a chain: eagimust have at most one incoming edge labeled
and at most one outgoing edge labeddd the nexia.

2. The number oés andbs is always the same: the fragment &(.8) requires precisely
one outgoing edge labelédto ab, and the fragment fobb (4.9) ensures thdi cannot
become the root (which excludes the string containing bhly

4.4.3. Valency Predicates

We capture fragments in XDG using a set of predicates cabéehey predicates, which we
define given a dimensiath, a nodev and an edge labéi

* License no incoming edge labeletbr v:

N0y = AvAL —3vV:v-lsyv (4.13)

» Requiring precisely one incoming edge labeléar v:
inlyg = AvAL 3WV:v-lgv (4.14)

* License at most one incoming edge labdléak v:

in0orly = AV.AlL. (inOgv 1)V (inlgvl) (4.15)

For the outgoing edges, the three predicatg$, outlandoutOorlare defined analogously.

4.4.4. Valency Principle

The Valency principlecombines the valency predicates with lexicalization. Tdheaiis to
model fragments using the two lexical attributedor the licensed incoming edges, aodt
for the licensed outgoing edges. Given a type of edge ldbetbe type ofin and out is
valencyL) = veqL,!,? %,0), i.e., a vector used to map edge labels#adinalities which
restrict the number of edges with this label. The cardiraliare interpreted as follows:

* I: precisely one edge
e ?: at most one edge
* x: arbitrary many edges

* 0: no edges

59

4. DG as Multigraph Description

For example, the following lexical description represdragment (4.8):

word = a
[in={a=2b=0} (4.16)
D=1 out={a=2b=1
And the following fragment (4.9):
word = b
[in={a=0,b=!} (4.17)
=1 out={a=0b=0}

As for convenience, we allow to omit the signs between labels and cardinalities and pairs
with O cardinality, we can abbreviate e.g. (4.16) as:

word = a
o_ | in={a% (4.18)
~ | out={a?b!}
We can now turn to the definition of the Valency principle. <hhat we do not need to

stipulate any constraint for cardinality as it stands for arbitrary many edges.
Principle 6 (Valency) Given a dimension d, the Valency principle is defined as:

valency, =Vv: vl :

(dv).lexinl = 0 = in0qvVvl A

(dv)lexinl = ! = inlgvl A

(dv).lexinl = ? = inOorlgvl A (4.19)
(dv)lexinl = 0 = outQyvl A

(dv).lexinl = ! = outlyvl A

(dv).lexinl = ? = outOorlyvl

4.5. Order

The next key concept of DG is order.

4.5.1. Ordered Fragments

We begin with extending the fragments of the previous saatiith a local order on the daugh-
ters of the node. We impose this order indirectly by a strastipl ordet on the set of edge
labels of the daughters, and call the extended fragnedesed fragments

Here is an example ordered fragment:

(4.20)

T <a<b

1strict partial orders are binary relations which are 1)fieséve, 2) asymmetric and 3) transitive.

60

4. DG as Multigraph Description

The fragment is defined for dimensidn It extends fragment (4.8) with the orderk a < b

on the set of edge labels, whefeis a special additional label representing the anchor of
the fragment, which we draw directly below the anchor by emtion. The meaning of the
fragment is that the anchor must always precede the dawggiitr edge labeh, and those
must in turn precede the daughters with edge labélere is a second example:

(4.21)

where nothing is ordered since the fragment does not licemg@utgoing edges.

4.5.2. Ordered Configuration

Ordered fragments allow us to extend the notion of configumanow, a well-formed config-
uration must not only satisfy the constraints on the inca@naind outgoing edges, but also the
order on the set of edge labels. We call this extended nofioardigurationordered configu-
ration. For example, we can arrange the two fragments (4.20) a@d)(#to the well-formed
graph below:

C:)\b
: \Cb) (4.22)
1 2

However, the following ordered configuration is not weltffeed since it violates the order of
fragment (4.20), requiring that the anchor must precededsughter, not follow it:

7
Cb)/ : (4.23)
1 2

4.5.3. Projectivity

If we require that the fragments (4.20) and (4.21) can onlgdydigured into trees, the string
language seems to be thatroés followed byn bs, which we call ANBN:

Language 2(ANBN).
ANBN = {wea™"|n>1} (4.24)

But this is not the case. Figure 4.1 shows a counter-exarfgiall nodes, the anchors do
precede the-daughters, which in turn do precede theaughters, yet not alls precede all
bs.

61

4. DG as Multigraph Description

Figure 4.1.: Non-projective analysis

The problem is that we have to rule out non-projective arays/hen we order the daugh-
ters of a node, we need to ensure that the yields of the dasghtest be continuous, such that
it becomes impossible e.g. for the leftmbsinode 3) in Figure 4.1 to interrupt the sequence
of as. We can do this by applying th&ojectivity principle(principle 4).

4.5.4. Order Principle

Given a domain of edge labdlswe lexicalize the strict partial order on the edge labetstae
anchor of the ordered fragment by the lexical attributger, a set of pairs of edge labels and
theanchor labe i.e., having the typseftuple(L|{1},L|{T})). For example, the following
lexical description represents the ordered fragment §4.20

word = a
in = {a?}
LP = { out= {a?b!} } (4.25)
order = {(1,),(1,b), (a,b)}

TheOrder principleis then stated for each nogend all pairg1,1’) in the lexicalized strict
partial order ofv:

1. If | is the anchor label and an edge label, themmust precede its daughter.
2. If I’ is the anchor label anldan edge label, themmust follow itsl daughter.
3. If | andl’ are edge labels, then thelaughter ofs must precede thié daughter.

Principle 7 (Order) We define the Order principle given a dimension das:

ordery =

YW:V(lL,1") € (d v).lexorder:

W =7 A de\/ = v<V A (4.26)
A =1 A v#d\/ = Vv A

WV vV A vV = V<V

2This definition of the order principle requires us to chartye type of the—,4 multigraph constant from
V—V—labd—BtoV—V—(labd)|{1} — B. Another possibility would be to require the inclusion of
the 1 label in the edge labels of the dimension to be ordered rightyaWe chose the former possibility for
expository clarity:T should not be misunderstood an edge label. It is just neextetid order specification,
and there, it stands for the anchor.

62

4. DG as Multigraph Description

4.6. Agreement

The idea behind agreement is to ensure for certain nodeshimat'agree” with certain de-
pendents, e.g. for finite verbs to agree with their subjedts.this end, we assign to each
node:

» a set ofagreement tuplege.g. consisting of person and number) by the lexical aiteib
agrs

» a set of edge labels by the lexical attribatgee
» an agreement tuple froagrsby the non-lexical attributagr
Then, we model agreement using two principles: the Agr jwleand the Agreement princi-

ple.

4.6.1. Agr Principle

The Agr principle expresses the constraint that for each node on a given diometisthe
value ofagr must be an element afgrs

Principle 8 (Agr).
agry = Wv:(dv).agre (dv).lexagrs (4.27)

4.6.2. Agreement Principle

The Agreement principleonstrains each edge fromto V' labeledl ond such that ifl is in
the lexically specified setgreefor v, then the values dadgr of v and ofv must be equal.

Principle 9 (Agreement)

agreement=w,V : V| :

v—yV Al € (dv).lexagree= (d v).agr= (d V).agr (4.28)

As an example, the analysis in Figure 4.2 is well-formed ediog to the Agr principle and
the Agreement principle:

1. For nodes 1 and 2, the valueadjr, is an element o&grs

2. As required byagree node 2 agrees with its subject, i.e., @gr value equals thagr
value of node 1,

The example analysis in Figure 4.3 is not well-formed. The panciple is satisfied: for
nodes 1 and 2, the value afr is an element ohgrs The Agreement principle is however
violated: node 2 does not agree with its subjectags value (3,pl) does not equal thagr
value(3,sg) of node 1, as required kagree

63

4. DG as Multigraph Description

O/SUM/?
people IaL.Jgh
1
in = {subj?,0bj?} in =
lex = out= {} lex— out= {subjr
agrs= {(3,pl)} agrs = {(1,s9),(2,s9),(1,pl),(2,pl), (3,pl)}
agree= {} agree {subj}
agr = (3,pl agr = (3,pl)
Figure 4.2.: Agr and Agreement principle: well-formed ys&d
o/sub]/?
Mary Ialjgh
1
in = {subj? obj?} in=
t= t= {subj!}
{ o= { ou =tk } } { lex = { agrs— hl 29 2.59.(Lpl). 2. (3.0} } }
agree= {} agree {subj}
agr = (3,59 agr = (3,pl

Figure 4.3.: Agr and Agreement principle: ill-formed arsty

4.7. Linking

The example grammar in section 2.2.4 made use of the Linkidginciple and the Linking-
Mother principle to constrain the syntactic realizatiosefmantic arguments. These principles
are instances of an entire family of principles callidking principles whose purpose is to
“link” together pairs of dimensions. The idea behind théilg principles is, given an edge
from a nodev to a node/ labeled onds, to constrain the path td on another dimensiod.
Linking principles are lexicalized by attributes on a thinterface dimensiods, which acts
as an interface.

4.7.1. LinkingEnd Principle

The LinkingEnd principleconstrains the incoming edge labelvdfon d,, which we call the
endpoint of the path t& ond, (hence the name LinkingEnd). It is lexicalized by the attré
linkEnd, whose type is a vector used to map edge label$; do sets of edge labels ah. The
principle is stated as follows. If for an edge fronto V' labeledl ond,, the value ofinkEnd
for v andl onds is non-empty, then for at least one edge ldbat this set, there must be an
edge from any node’ to V' ond, labeled’. Figure 4.4 shows an illustration.

Principle 10 (LinkingEnd). Given three dimensions dd, and d&, the LinkingEnd principle

is defined as:
linkingEndy, g, ¢, = Y,V : VI

v—og, VA (d3v).lexlinkEndl # 0 = (4.29)
321 € (dsv).lexlinkEnd] A 3V vy v

64

4. DG as Multigraph Description

o—
v v
.
o o
d2
\Y \
@
d, 3 ?
v v

[l e {121}

Figure 4.4.: LinkingEnd illustration

4.7.2. LinkingMother Principle

The LinkingMother principleconstrains/ to be the mother of on d,. It is lexicalized by
the attributdinkMother, whose type is a set of edge labelsain The principle is stated as
follows. If for an edge fronv to V' labeledl ondg, | is in the setinkMotherof v onds, thenV
must be the mother afond,. Figure 4.5 shows an illustration.

s

d, 1
v v

d, |
\' Vv’
0 O

ds
v v

{ Iex:{ linkMother = {I,...} } }

Figure 4.5.: LinkingMother illustration

65

4. DG as Multigraph Description

Principle 11 (LinkingMother). Given three dimensiong dd, and &, we define the Linking-
Mother principle as:

linkingMothey, 4, 4, = Y,V : VI

VL’dl\/ A I € (d3 v).lexlinkMother=V —, v (4.30)

4.8. Summary

In this chapter, we have shown how to reformulate the key eptscof dependency grammar
as XDG principles. These principles, and their use on mleltipnensions, will form the basis
of our investigation of the expressivity and computatia@mahplexity of XDG in the following
chapters, and then of our modeling of natural language inlpar

66

5. Expressivity

In this chapter, we investigate the expressivity of XDG. Végih with the relation between
XDG and Context-Free Grammar (CFG). We prove that it is fidss$o transform every CFG,
given that it does not generate the empty string, into anvatgnt XDG. In the next step, we
show that by using multiple dimensions, XDG can also desddimguages that fall outside
context-freeness, including languages which are bendtswfiar coping with natural language
syntax.

5.1. XDG and Context-Free Grammar

We begin this chapter by looking at the relation XDG and CF®&th® end of this section
stands a proof showing that for every CFG, we can construsCda which licenses the same
string language, i.e., which is weakly equivalent. In piphe, this is nothing new: the first
proofs showing that restricted versions of dependency granare weakly equivalent to CFG
date back to (Hays 1964), (Gaifman 1965) and (Gross 1964)emieeless, the proof is new
for XDG, and shall show that XDG is at least as expressive &.CF

5.1.1. Context-Free Grammar

Definition 22 (Context-Free GrammarA CFG G is defined by a setV of non-terminal sym-
bols, a sek of terminal symbols, a setRV x (V UZ)* of production rules and a start symbol
SeV:

G = (V3RS (5.1)

We write single uppercase Roman letters for non-terminalsyls, single lowercase Roman
letters for terminal symbols, and lowercase Greek let@rséquences of terminal and non-
terminal symbols. We writé\ — a for (A,a) € R, and call the left component of a rule
Left Hand Side (LHS), and the right Right Hand Side (RHS).dHisran example grammar
describing language ANBN (section 4.5.3)roés followed byn bs.

G = ({SB},{ab!,{S—aSBS— aB B— b}, (5.2)

5.1.2. Derivations and Derivation Trees

The string languagk(G) of a CFGG is the set of all strings derivable from the start symbol.
In each derivation step, writtemm=- 3, a non-terminal is replaced by the RHS of a rule with

67

5. Expressivity

Aon its LHS. We show an example derivation of the sti@adpbunder the example grammar
(5.2) below:
S= aSB=- aaBB=- aabB=- aabb (5.3)

Derivations impose a tree structure on the derived stritigatayntax tree or derivation
tree. Figure 5.1 shows an example derivation tree, whictesgmts the derivation in (5.3).

SN
A

|
a b

o—m@

Figure 5.1.: Derivation tree for derivation (5.3)

5.1.3. Lexicalized Context-Free Grammar

In our transformation of CFGs into XDGs, we restrict ourssltolLexicalized Context-Free
Grammar(LCFG).

Definition 23 (Lexicalized Context-Free Grammath an LCFG, the RHS of each rule con-
tains precisely one terminal symbd! € k < n):

A — Bj...Bka@By1...By (5.4)

Every CFGG which does not generate the empty string can be brought iweaély equiv-
alent LCFGG, i.e.,L(G) = L(G'). One method is to conve@ to G’ in Greibach Normal
Form (GNF)L. However, the method of conversion is not our concern here.

5.1.4. Constructing an XDG from an LCFG

Using e.g. GNF, we can transform CFGs into weakly equivdl&@RGs. In this subsection, we
proceed by showing that for every LCFG, we can construct klyemuivalent XDG. We can
then combine the two transformations to construct a weatyvalent XDG from any CFG
which does not generate the empty string. We first preseritifas behind the construction
and an example, before we prove its correctness.

We construct the XDG from the LCFG using a grammar with oneetision calledleriva-
tion dimensionabbreviateERI). The derivation trees of the LCFG stand in the following
correspondence to the models DERI:

1GNF requires that the RHS of each rule starts with a termipait®l, and is followed by a sequence of
non-terminal symbolsn(> 0):
A — aB;...B, (5.5)

68

5. Expressivity

* the non-terminal nodes in the derivation tree corresporitié nodes oDERI

* the labels of the non-terminal nodes in the derivation éteerepresented by the incom-
ing edge labels of the corresponding node®ari?

* the terminal nodes in the derivation tree correspond tavitrels ONDERI

Figure 5.2 shows an exampbeERI model, corresponding to the derivation tree displayed in
Figure 5.1. For example, the non-rd®hode in the derivation tree corresponds to node 2 on
DERI. The symbolS of the node in the derivation tree is represented by the intgredge
label onDERI, and the right in the derivation tree corresponds to the word associatéd wi
node 2 OrDERI.

Figure 5.2.DERI tree

The constructed XDG grammar uses the Tree, Projectivitendy and Order principles.
We describe the lexical entries specifying the valency adérarequirements by ordered frag-
ments. Each rul& — B;...BkaBy,1...Bn (1 <k < n), given thatA is the start symbol of the
LCFG, corresponds to the following ordered fragment:

DERI By! Byet! (5.6)
a
B,<..<B< 1 <B,,4<..<B,

The anchor of the fragment is the terminal symbadf the RHS of the LCFG rule. The
fragment licenses at most one incoming edge labeled by ttgdftthe rule, i.e.A. It requires
precisely one outgoing edge for each non-terminal on the 8Hilse rule, i.e.Bs,...,Bn, and
preserves the order of the non-terminals and the anchoreoRHS of the ruleB; < ... <
Bk <a< By <...<By).

If Ais not the start symbol of the LCFG, then it can never be theabthe derivation tree,
and hence it must have an incoming edge. This is expressied faltowing ordered fragment:

DERI TR By (5.7)
a
Bi<..<By< 1 <Byy<..<B,

2Except for the root.

69

5. Expressivity

(5.7) is equivalent to (5.6), except that it requires prelgi®ne incoming edge labeled(A!)
instead of licensing at most on&Y).

However, there is a caveat to the construction presentearsa bnly works for grammars
where the RHSs of the rules do not contain multiple occuesraf the same non-terminal.
A counter-example i&\ — BaB, whereB occurs twice on the RHS. At this point, we are left

with two choices:

1. Change the construction of the XDG, e.g. augmenting the &bels with the positions
of the non-terminals.

2. Change the LCFG to get an LCFG where for each rule, the Rid&ics only at most
one occurrence of the same non-terminal.

We take the second choice: before we construct an XDG fronL@EG, we change the
LCFG to contain at most one occurrence of each non-termm#h® RHSs of its rules. This
is easy:
1. We replace each rule where the RHS contains multiple oecoes of the same non-
terminals by a rule in which we replace the repeated noniteis by fresh ones. For
example A — aBBCCCbhecome# — aBBCC'C”.

2. For each rule with one of the repeated non-terminals obHiS, we introduce a new
rule for each fresh non-terminal, where the fresh non-teamieplaces the repeated one.
In our example, we introduce a new ride— S for each ruleB — 3, and two new rules
C' — yandC” — yfor each ruleC — .

As an example, we construct an XDG corresponding to the LGHG (5.2) above. The
grammar contains no rule with more than one occurrence o$dinge non-terminal. Thus,
we can directly proceed to construct the XDG. The set of wofdfe corresponding XDG
grammar is{a,b}. The set of edge labels @eRI corresponds to the set of non-terminals:

{S,B} (5.8)

The three rules correspond to the following ordered fragsen

1. S— aSB .
\b B!
DERI v>
s (5.9)
a
T <S<B
2. S— aB:
Q\O
5 \E!
DER | (5.10)

1 <B

70

5. Expressivity

3.B—b:

~

O
DER ? (5.11)

For proving the correctness of the construction, we makeofisécCawley’s (1968) idea
to view CFG as a description language for ordered, labeksssir McCawley describes the
well-formedness conditions for derivation trees usingatbednode admissibility conditions

Definition 24 (Node Admissibility Conditions)Given an LCFG G= (V,Z,R S), a node v
satisfies G if eithef:

1. vis aleaf node and is labeled with a terminal symbol.
2. vis aninner node with successoks.v., Vg, V', Vi 1, - - -, Vn (in that order), and:

a) vis labeled with A
b) R contains rule A» B;...BxaBy.1...Bh (1 <k <n)
c) Vis labeled with a
d) each other successorfd <i <n) is labeled with B

An ordered tree satisfies G if its root node is labeled with & @hof its nodes satisfy G.

McCawley’s conditions carry over almost directly to our X@@nstruction. The differences
between the CFG derivation trees and the XD&R| trees are:

* DERI trees do not contain the terminal nodes of the derivatiastrénstead, each node
is associated with the corresponding word by the node-waplpimg.

» The edges of theEeRlI trees are labeled, not the nodes, as in the derivation tiges.
node labels of the nodes in the derivation tree are modelédeoincoming edge label
ONDERI.

Proof. Considering these differences, we can adapt McCawley’® raatiissibility condi-
tions for proving that our construction of XDGs from LCFGscisrrect. Given an XDGGE'
constructed from an LCF@&, a nodev on DERI satisfiesG' if v is a node with successors
Vi,...,Vq (in that order), and:

1. if vis the root, it has no incoming edge, if it is not the root, itsaming edge i

3This is also used as the starting point for the introductibhexicalised Configuration Gramma(sCGS in
(Grabowski, Kuhlmann & Méhl 2005).
4We have slightly adapted McCawley’s conditions for CFG f@RG.

71

5. Expressivity

2. if vis the root, the lexicon of5’ contains the ordered fragment (5.6), whéreorre-
sponds to the start symbol of the underlying LCFG, othenwiseis not the root, the
lexicon contains the ordered fragment (5.7)

3. vis associated with the anchaof the fragment by the node-word mapping
4. the successoks (1 < i < n) have incoming edge lab8l (1 <i<n)

A DERI analysis is always an ordered tree by the Tree principle laaétojectivity principle.
A DERI analysis satisfie§' if all its nodes satisfiG'. O

5.2. Going Beyond Context-Freeness

Now that we know that XDG is at least context-free, we show ithia also perfectly able to
handle languages which go beyond context-freeness. Wea betfi modeling the artificial
languagea™b"c", and proceed with two classical non-context-free benckenfor grammar
formalisms from natural languageross-serial dependenciasdscrambling

5.2.1. a'b"c"

The language of words formed by subsequent blockaspbs andcs, is the prototypical
example of a non-context-free language. We call it ANBNCN.

Language 3(ANBNCN).
ANBNCN = {wea™c"|n>1} (5.12)

We model ANBNCN using two dimensions: Immediate Dominanbé &nd Linear Prece-
dence (P). The purpose of thedp dimension is to ensure that for eaghthere is precisely
oneb and precisely one. The models onbd are unordered trees, and the set of edge labels
is {a,b,c}. We relegate the ordering of the nodes to thedimension, whose models are or-
dered trees. More specificallyp trees always have depth 1: the leftmass$ the root, which
orders all the remaining nodes to its right. The set of edgeltaonLp is {1,2,3}, wherel
corresponds ta, 2 to b and3 to c. We show an example analysis in Figure 5.3.

The grammar uses the Tree and Valency principles oniipoamdLP. TheLP dimension in
addition makes use of the Order principle. Thus, the lexmicthe grammar can be described
using pairs of unordered and ordered fragments, where thelered fragment specifies the
lexical attributes of the Valency principle ob, and the ordered fragment the lexical attributes
of the Valency principle and the Order principle on We call the pairgragment pairs

We start with the fragment pairs for nodes associated wittdwo We make such nodes
lexically ambiguous, behaving differently as a root and alependent. As a root, they are

72

5. Expressivity

ID a a b b c c

§§s§53555==:~\‘
. . 2. 2 3 3
INSSSS S
1 2 3 4 5 6
LP a a b b c c

Figure 5.3.1D/LP analysis

constrained by the following fragment pair:

b
a?

c4 (5.13)

2*
LP
a

T<1<2<3

This pair requires the node to be a root on batlandLp as it does not license any incoming
edges. As for the outgoing edges, ian it licenses at most one labeledo the nexta, and
requires precisely one labeledind one labeled to ensure that there are equally masybs
andcs. OnLP, it licenses arbitrary many outgoing edges labdlétbr theas), 2 (for the bs)
and3 (for thecs). The root precedes all remainiag, which in turn precede dlfis which in
turn precede alts.

As a dependent, nodes with waaidire constrained by the following fragment pair:

~L o

b
a?

(5.14)

LP

a
1

Here, oniD andLP, a must have precisely one incoming edge labeleohd 1, respectively.
That is, the node cannot be the root. @nthe outgoing edges are constrained as in the root

73

5. Expressivity

fragment pair (5.13) above to ensure an equal numbesgdbs andcs. OnLP, it does not
license any outgoing edges. As a result, all nodes whoseen@mot the root node om
must find a new mother arp, and this new mother can only be the rapsince it is the only
node onLP which licenses any outgoing edges.

For completeness, the fragment pairsti@ndc are the following:

w\

O

(5.15)
\

LP

2 (5.16)
L

LP

On bothip andLP, they require precisely one incoming edge labedemhd?2 (c and 3 for
¢). They do not license any outgoing edges, i.e., they musdy@vbe dependents of nodes
associated with word.

Notice that this grammar could easily be extended to langsiagth any finite number of
letter blocks, e.ga"b"c"d"e" etc., whereas interestingly, languages with more thanitmaks
cannot be modeled anymore using thadly context-sensitivgrammar formalisms of TAG
and CCG (Shanker & Weir 1994).

5.2.2. Cross-Serial Dependencies

Cross-serial dependencies occur e.g. in Dutch (BresngpagiaPeters & Zaenen 1983) and
in Swiss German (Shieber 1985) subordinate sentences.yploaltexamples are so-called
hippo sentencesuch as the following Dutch example:

(omda) ik Cecilia de nijlpaarden zag voeren

(thaty | Cecilia the hippos saw feed (5.17)
“(that) | saw Cecilia feed the hippos”

74

5. Expressivity

We show a dependency analysis of (5.17) in Figure 5.4. Haeetlge labetlet stands
for “determiner” andvbse for “infinitival complement in base form”. As can be seen,gop
sentences are split into two parts:

1. The verbs on the right (hereagandvoerer) make up the so-callegerb cluster Here,
each verbal head must precede its verbal dependents, hettoe @xamplezag must
precedevoeren

2. The nominal dependents on the left make up the so-chligdlfeld®. Here, each nom-
inal head must follow the nominal dependents of the verblsdrigp, so e.gnijlparden
the object ofvoeren must followik andCecilia, the subject and object aag which is
the mother ofvoerenand thus situated higher up.

L ob}
et :
1 2 3 4 5 6

ik Cecilia de nijlpaarden zag voeren

Figure 5.4.: Dependency analysis fomdat) ik Cecilia de nijlpaarden zag voeren

To show how this phenomenon scales up, we give another egampl

(omda) ik Cecilia Henk de nijlpaarden zag helpen voeren
(thaty | Cecilia Henk the hippos saw help feed (5.18)
“(that) | saw Cecilia help Henk feed the hippos”

of which we show a dependency analysis in Figure 5.5.

o‘/’o—/wﬁb obj /‘O\ Ybse
: /m/o
e
1 2 3 3 4 5 6 6

ik Cecilia Henk de nijlpaarden zag helpen voeren

Figure 5.5.: Dependency analysis {o@mdat) ik Cecilia Henk de nijlpaarden zag helpen vo-
eren

The phenomenon gets its name from the series of crossingndepeies which it gives rise
to, e.g. in Figure 5.5, the edge framelpento Henk(crossing the projection edge p&g and
the edge fronvoerento de nijlpaarden(crossing that ozagandhelper).

Now for simplicity, we assume that each verb has exactly @aminal argument and model
cross-serial dependencies by the indexed language®CSD.

5The term is borrowed from German descriptive linguisticer(iig 1821), (Erdmann 1886).
The indices are not part of the terminal alphabet, whichriggy {n,v}.

75

5. Expressivity

Language 4(CSD)
csD = {nlt. .nKviU VK |Kk>1) (5.19)

The string language of CSD ig*V¥ | k > 1}, i.e., k nouns followed byk verbs. Each
index (in superscript) pairs exactly omeand onev, reflecting that then is an argument of
thev. CSD is not context-free (Shieber 1985), but can be handledilily context-sensitive
grammar formalisms like TAG and CCG. In fact, cross-sergpehdencies are one of the
primary reasons for the introduction of such grammar forsnad with a higher expressivity
than CFG.

In XDG, we model CSD using two dimensions, andLP, similarly as for ANBNCN: the
models ofiD are unordered trees, whereas the models,adre ordered and projective trees.
On D, we ensure that for each verb, there is a corresponding n@umLp, we order the
nouns and verbs. For the verbs, we require that they foll@anttuns and that verbal heads
precede their verbal dependents. For the nouns, we redpaii@dditional constraint that each
n-dependent of a verb nodemust follow then-dependents of the verbs aboxeWe realize
this constraint by th€SD principle where we instantiatd with 1D, and show an example
ID/LP analysis ofnnnvwvin Figure 5.6.

Principle 12 (CSD). Given a dimension d, the CSD principle is defined as:

csth =W,V :

de\/:>V\/’,\/”:\/’—>§V/\\/’L>d\/":>\/"<\/ (5.20)

Lp n n n v v A

Figure 5.6.1D/LP analysis for stringinnvvwv(CSD grammar)

Contrary to ANBNCN, we need an additional constraint to $yonize the two dimensions.
Otherwise, the dominance relations of the verbs in the vieildier oniD are not preserved on
LP, giving rise to ill-formed analyses. An example is shown igufe 5.7, where omD, the
second noun (node 2) is a dependent of the third verb (noden@)not, as it should, of the
second verb (node 5). To rule out such analyses, we intraalnegv principle calle€limbing
principle, which postulates that the dominance relation.ermust be a subset of that on.

In our grammar, we instantiatk with Lp andd, with ID.

76

5. Expressivity

r\/Q\v
o o7

n
o—

LP n n n \ v v

Figure 5.7.: lll-formedD/LP analysis for stringqinnvvy(CSD grammar)

Principle 13 (Climbing). Given two dimensions;dand &, the Climbing principle is defined
as:
climbingy 4, =W,V : V=4V =Vv—iV (5.21)

The principle gets its name from the metaphor that nodehjsrcase the nouns, are allowed
to “climb up” from their position on dimensiod, (here:ID) to a higher position od; (LP).
For example, in Figure 5.6, the third noun (node 3) climbssifodows: it is a dependent of
the third verb (node 6) o, and climbs up to become a dependent of the first verb (node 4)
onLP. Figure 5.7 is ruled out by the Climbing principle since thied verb (node 6) does not
climb up fromiD to LP, but migrates down to become a dependent of the second vede (n
5).

To sum up, the XDG for CSD makes use of the following prinaple

* ID: Tree, Valency and CSD
* LP: Tree, Valency, Order
* 1D andLP: Climbing

As for ANBNCN, we describe the lexical entries for the leXized Valency (onb andLP)
and Order principles (oop only) by fragment pairs of an unordered fragment and an ecter
fragment. Verbs (word) are ambiguous between the following two lexical entries:

1. As aroot, a verly requires precisely one noun and at most one other verbahdepée
onID. OnLP, vlicenses arbitrary many nominal dependents (edge [Bleatd at most
one verbal depender?)(wherev must be positioned between the nominal dependents

77

5. Expressivity

on the left and the verbal dependent on the right:

(5.22)

1< <2

2. As a dependent (with incoming edge labgla verb licenses the same outgoing edges
as arootonb. OnLP (incoming edge labdl), it does not take any nominal dependents
but only at most one verbal dependent, which must follow #rdyv

X!\
ID n " v?

\Y

&\

\
T<2

(5.23)

Nouns must be dependents with incoming edge laloeliD and1 onLP, and do not license
any outgoing edges:

(5.24)

LP

5.2.3. Scrambling

Subordinate sentences in standard German have a simiatus® as in Dutch, but there are
two differences:

78

5. Expressivity

1. The order of the verbs in the verb cluster is reversed: ritgras precede their heads
instead of following them.

2. The nominal dependents can occur in any permutation.
Here is an example:

(dasg ein Mann Cecilia die Nilpferde futtern sah
(thaty a man Cecilia the hippos feed saw (5.25)
“(that) a man saw Cecilia feed the hippos”

where interestingly, the other possible permutations@htbminal arguments in the Mittelfeld
are also grammatical (although some are marginal). We shdepandency analysis of (5.25)
in Figure 5.8, and of one of its permutations in Figure 5.9.

‘_/O://ﬁmb obj ”W?

/de‘/(:) : 0‘5\/(:)/ :

O : : /O‘/ : :
: : : aev :

: : : O‘/ : : :

1 2 3 2 5 6 7

ein Mann Cecilia die Nilpferde futtern sah

Figure 5.8.: Dependency analysis {diass) ein Mann Cecilia die Nilpferde futtern sah

X /ﬂo
/subl /ob\ oS :
/08/0 .

dev :

el "
— :
O :

: . o/ . . : .
1 2 4 5 3 6 7

ein Mann die Nilpferde Cecilia futtern sah
Figure 5.9.: Dependency analysis {diass) ein Mann die Nilpferde Cecilia futtern sah

If we ignore the different ordering of the verbs for simplycand leave it as in the cross-
serial case (verbal dependents follow their heads), andresthat each verb has exactly one
overt nominal argument, we can model scrambling with thexed language SCR taken from
(Becker, Rambow & Niv 1992).

Language 5(SCR)
SCR = {oml, ... M) vl k>1ando apermutation (5.26)

The string language of SCR is the same as of C&%* | k > 1}, and each index in SCR
again pairs exactly oneand onev, reflecting the fact that is an argument of the

For modeling SCR, we can reuse the same grammar as for CS[2,abitkr the only ex-
ception that we leave out the CSD principle to free the ordén@nominal arguments in the
Mittelfeld. Becker et al. (1992) prove that no formalism retclass oLinear Context-Free
Rewriting System@dCFRS (Weir 1988) can model SCR, where LCFRS includes TAG, CCG
and localMulti-Component TAGMC-TAQ also introduced in (Weir 1988). So interestingly,
what we did was to remove a constraint from the grammar for G&tich is included in the
LCFRS class, to get a grammar for SCR which is not includedd/RS.

79

5. Expressivity

5.3. Summary

In this chapter, we have investigated the expressivity ofSXWe have proven that XDG is
more expressive than context-free grammar by first trangl&FGs into equivalent XDGs,

and then showing that we can use XDG to model languages whibleypnd context-freeness
(ANBNCN, CSD and SCR). The XDG grammars for the benchmarkguages CSD and
SCR demonstrated that XDG can handle complicated word @tiemomena in natural lan-
guage in an elegant way, which is substantiated by the elegaount of German word order
in (Duchier & Debusmann 2001) and (Debusmann 2001), exted¢Bader et al. 2004).

We have not found an upper bound to XDG’s expressivity, bujexure that it is at least
mildly context-sensitive, i.e., that it at least includesGland CCG. Evidence for this is the
encoding of TAG into XDG proposed (but not proven) in (Debasm Duchier, Kuhimann &

Thater 2004). We must leave a proof of this conjecture toré&nuork.

80

6. Computational Complexity

After investigating the expressivity of XDG, we are intdegkin the price we have pay for
it in terms of computational complexity. Therefore, in toisapter, we will prove the lower
bound of the complexity of two kinds of recognition problems

6.1. Recognition Problems
Following (Trautwein 1995), we distinguish two kinds of ogoition problems: theniversal
recognition problenand thefixed recognition problem

Definition 25 (Universal Recognition ProblemGiven a pair(G,s) where G is a grammar
and s a string, is s in (G)?

Definition 26 (Fixed Recognition Problem)_et G be afixed grammar. Given a string s, is s
inL(G)?

6.2. Fixed Recognition Problem

We prove that the fixed membership problem is NP-hard by itemhuof the NP-completsAT
problem.

6.2.1. Satisfiability Problem

SAT is the problem of deciding whether a formula in propositidngic has an assignment
under which it evaluates to true.

Definition 27 (Propositional Formula)

false (6.1)

fi= X)Y,Z,... variable
| O
| fi=fo implication

The reduction oBAT proceeds as follows.

6.2.2. Input Preparation

In three steps, we transform the propositional formiulato a strings which is suitable as an
input to the fixed recognition problem. We call the functiarfprming these stegsep For
example, given the formula

X=0)=Y (6.2)

81

6. Computational Complexity

the transformation is defined as:

1. We transform the formula into prefix notation:

== X0Y (6.3)

2. A propositional formula can contain an arbitrary numbievariables, yet the domain
of words of an XDG grammar must be finite. To overcome thistétnon, we adopt
a unary encoding for the variables: we encode the first viarikbm the left of the
formula (hereX) asvar I, the second (heré) var | | etc. (6.3) then becomes:

== varlOvarll (6.4)

3. To clearly distinguish the input string from the origimabpositional formula, we re-
place all implication symbols with the wordhpl:

impl impl var | 0 var | | (6.5)

All three steps are polynomial.

6.2.3. Models

We model the structure of the propositional formula usingnaethsion called’ropositional
Logic (abbreviation:PL). The models oL are ordered trees, which we enforce by the Tree
and Projectivity principles. For example, Figure 6.1 sh@awsL analysis of (6.5). Here,
the edge labels ar&rgl andarg2 for the antecedent and the consequent of an implication,
respectively, anthar for connecting the bars (woid of the unary variable encoding. Below
the words of the nodes, we display their attributes, whiafeliae following type:

truth: B
{ bars: V } (6.6)
wheretruth represents the truth value of the node adls the number of bars (nodes with
word 1) below the node plus 1. For example, in Figure 6.1,lhes value of node 3, which
has one bar (node 4) below it, is 2. Tharsvalue of node 6, which has two bars (nodes 7

and 8) below it, is 3. The purpose of tharsattribute will be to aid establishing coreferences
between variables. Its typeVsfor two reasons:

1. There are always less (or equally many) variables in adtarthan nodes, since every
encoded formula contains less (or equally many) varialbflas tvords, and henc#,
always suffices to distinguish them.

2. We require the precedence predicate, which is only detindtie typeV, to implement
incrementation.

82

6. Computational Complexity

ciar\ar 2
91 [¢]
argz arg2 Q\br?r
\O : ~
: : dar : : bar
1 2 3 9 5 6 7
impl impl var | 0 var | |

pu (Bt} {bee) (s} (W) (et} (W) (g} {haet)
Figure 6.1.PL analysis of the propositional formu(X = 0) =Y

6.2.4. Ordered Fragments

PL is additionally constrained by the Valency principle and @rder principle. We describe
their lexical specifications with the following ordereddraents.

Implications. Implications, i.e., nodes with worichpl, correspond to the following ordered

fragment:
argl?, arg2?

L\, argl!

PL (6.7)

imbl
' <argl < arg2
That is, an implication can have at most one incoming edgeldalargl or arg2. As for the
outgoing edges, an implication requires precisely ondéalzegl and one labeledrg?2 for its

own antecedent and consequent. The implication preceslastiécedent, and the antecedent
in turn precedes the consequent.

Zeros. Zeros are nodes with wol@ They correspond to the following ordered fragment:

argl?, arg2?

O
PL

(6.8)

That is, a zero can either be the antecedent or the consesfusmimplication, and must not
have any outgoing edges.

83

6. Computational Complexity

Variables. The following ordered fragment corresponds to variables, nhodes with word

var.:
wgll?, arg2?

O

; bar!
PL :
X (6.9)
Vé.l’
1 < bar
That is, a variable can either be the antecedent or the coeseqf an implication, and re-

quires precisely one outgoing edge labebad for the first bar below it. The variable must
precede itbar-daughter.

Bars. Bars (nodes with word) correspond to the following ordered fragment:

W

O

; bar?
PL :
\ (6.10)

T < bar

That is, a bar must have an incoming edge labéled and can have at most one outgoing
edge labeledar. It must precede this potentibdr-daughter.

6.2.5. Attributes

In this section, we constrain the attributesmn i.e., truth andbars. We capture these con-
straints using XDG predicates.

Roots. The truth value of the root of aL analysis corresponds to the truth value of the
analyzed formula. Thus, to model an assignment that eeduattrue, we must ensure that
thetruth attribute of the root node has value 1. We express this ainsin XDG with the

following predicate:
plRoots= Vv:
-V V-, v = (PLV).truth=1

(6.11)
Implications. Thetruth value of implications equals the implication of the trutHueaof
its argl-daughter (the antecedent) andatg2-daughter (the consequent). Tharsvalue is
irrelevant and hence we can pick an arbitrary value and seftlit

plimpls= Vv,V Vv’ :
argl arg2

(V=S VAV, VY = (6.12)
(PLV).truth= ((PLV).truth= (PL V').truth)) A
(PLV).bars=1

84

6. Computational Complexity

Zeros. Thetruth value of a zero is 0. Thebarsvalue is irrelevant, i.e., we can arbitrarily

setitto 1:
plZeros= Vv :
Wv=0=
(PLV).truth=0 A
(PLV).bars=1

(6.13)

Variables. Thetruth value of variables cannot be constrained a priori. Thansvalue is
the same as that of theiar daughter.

plVars= W,V :
(W V) =var= (6.14)

vV = (PLV).bars= (PL V).bars

Bars. The truth value of bars (word) is irrelevant, and hence we can safely set it to an
arbitrary value, here: 0. Thebrarsvalue is either 1 for the leaf bars (which do not have a
daughter), or else thearsvalue of its daughter plus one:

plBars=Vv:
Wv=I=
(PLV).truth=0 A

-V :iv—, V= (PLV).bars=1 A

(W vV = (PLV).bars< (PLV).barsA

-3V (PLV).bars< V' AV’ < (PLV).bars)

(6.15)

Notice that the latter constraint actually increments thevalue, even though XDG does not
provide us with any direct means to do that. The trick is to laeuincrementing using the
precedence predicate.

6.2.6. Coreference

We can now establish coreferences between the variablereoces. To this end, we stipulate
that for each pair of variables (i.e., nodeandV, both with wordvar) that if they have the
samebarsvalues, then their truth values must also be the same:

plCoref = Vv,V :
(W V) =varA (W V) =var= (6.16)
(PLV).bars= (PL V).bars= (PL v).truth = (PL V).truth

6.2.7. PL Principle

ThePL principleties the predicates defined in section 6.2.5 and sectioé tagether.
Principle 14 (PL).

pl = plRootsA plimplsA plZerosa plVariablesh plBarsA plCoref (6.17)

85

6. Computational Complexity

6.2.8. Proof
Now we have gathered all the necessary ingredients for ocindt&ness proof.

Proof. Given a formulaf according to definition 27 and the XDG gramnfardefined in
sections 6.2.3-6.2. 7, is satisfiable if and only iprep f € L(G). That is,SAT is reducible to
the fixed recognition problem for XDG. As the reduction isypamial, the fixed recognition
problem for XDG is NP-hard. O

6.3. Universal Recognition Problem

The proof that the universal recognition problem is NP-resdvell falls out of the previous
result.

Proof. The fixed recognition problem is an instance of the universabgnition problem
where the grammag is fixed. Hence, the universal recognition problem is attleasdif-
ficult as the fixed recognition problem, and as the latter ishidRI, the universal recognition
problem must also be NP-hard.]

A similar result has been obtained in (Koller & Striegnit202), where they prove that the
universal recognition problem for TDG, an instance of XD&NP-complete.

6.4. Summary

We have proven a lower bound for the complexity of the two kinflrecognition problems
(fixed and universal) for XDG. Both are NP-hard. If we redttie principles to the first order
fragment of XDG, as is the case for all principles used intiésis, the upper bound of model
checking and thus of XDG recognition is in PSPACE. If we riesturselves to principles
which can be tested in polynomial time, the overall compieaf the XDG recognition prob-
lems is NP-complete. For the principles used in this thekis,is certainly the case, as we
have implemented all of them as polynomially testable qair#ts in Mozart/Oz. We cannot
see applications of XDG to natural language where this wooldbe the case. With even
stronger restrictions, we hope that we can bring down thepbexity to be polynomial, as
e.g. for the grammar formalisms of TAG and CCG. We must leandirfg these restrictions to
future research.

86

Part Il.

Implementation

87

7. The XDK—A Development Kit for
XDG

We turn to the implementation of XDG, the XDG Development g{DK) (Debusmann &
Duchier 2006). In this chapter, we introduce its architextand the XDK description lan-
guage, which serves as a metagrammar for the descriptiamofrgars.

7.1. Architecture

The XDK consists of three main modules: tmetagrammar compilethe constraint parser
and thevisualizer which are held together by the XDK description language thedattice
functors This is illustrated in Figure 7.1.

Parsers Pickler

(UL => IL <= XML) \ / (SL —> File)
Metagrammar Compiler
Converters ¢ Encoder
(UL <= IL => XML) Type Checker (IL->SL) encode
top
w bot

glb

Constraint Parser Lattice Functors

Model Creator Principle Library Search Engines
select
(Sb) makeVar

Output Preparer Output Library

(IL<-SL->0L)

decode

Figure 7.1.: Architecture of the XDK

7.1.1. Metagrammar Compiler

The purpose of the metagrammar compiler is to transform grars in one of three supported
concrete input syntaxes of the XDK description language the Solver LanguagéSL) for

88

7. A Development Kit for XDG

further processing in the constraint parser. The threeagpstare:
» theUser Languag€UL), a custom syntax for handcrafted grammar development

» the XML Language(XML), based on XML, for automated grammar development in
general

* the Intermediate Languag@L), based on Mozart/Oz syntax, for automated grammar
development in Mozart/Oz, and for internal use in the XDK

For example, we show the definition of the lexical classn", repeated from (2.11), in
UL syntax in Figure 7.2, in XML syntax in Figure 7.3, and in Iirgax in Figure 7.4. The
examples clearly show that contrary to the UL, due to theidesity, the XML and IL syntaxes
are not usable for writing grammars by hand—they are instgsded towards automated
grammar development.

defclass "fin" Wrd Agrs {
dimlex {word: Word}
dimsyn {in: {root?}
out: {subj!}
order: <subj "~" obj vinf adv>

agrs: Agrs
agree: {subj}}}

Figure 7.2.: Lexical classfin" in UL syntax

The XDK implements parsers for UL and XML grammars into IL &pofor further internal
use in the XDK, and converters to transform grammars fronmta either UL or XML syntax.
The type checker performs static type checking on IL gramsrfiar precise and early error
detection, and the encoder encodes type checked IL gramm@ittie SL. Using the pickler,
compiled SL grammars can be written into files. A detailedspnéation of the metagrammar
compiler can be found in appendix B.

7.1.2. Constraint Parser

Given a compiled SL grammar and an input string, tiedel creatorof the constraint parser
sets up a CSP, and augments it with the principles used inrdmargar, which are taken
from the extensiblg@rinciple library of predefined principles. Constraint parsing amounts to
searching for solutions of the CSP using one of skarch enginesf Mozart/Oz, e.g. the
Oz Explorer(Schulte 1997), displayed in Figure 2.7,1Q@zSeF(Tack 2002). The constraint
parser will be explained in detail in chapter 8.

7.1.3. Visualizer

The visualizer transforms solutions (also partial onesinfthe constraint parser into IL or
Output Languag€OL) syntax using theutput preparer The extensibl@utput library pro-
vides functionality for actually visualizing the solutire.g. by displaying them as IL or OL
terms, graphically using Tcl/Tk (as displayed in Figure) 2d8 by generatingN[eX code for
them. We present the visualizer in detail in appendix C.

89

7. A Development Kit for XDG

<cl assDef id="fin">
<vari abl e data="Word"/>
<vari abl e data="Agrs"/>
<cl assConj >
<cl assDi nensi on idref="1ex">
<record>
<feature data="word">
<vari abl e data="Word"/>
</ feature>
</record>
</ cl assDi nensi on>
<cl assDi nmensi on idref="syn">
<record>
<feature data="in">
<set>
<constant Card data="root" card="opt"/>
</ set>
</ feature>
<feature data="out">
<set>
<constant Card data="subj" card="one"/>
</ set>
</feature>
<feature data="order">
<or der >
<constant data="subj"/>
<constant data="""/>
<constant data="obhj"/>
<constant data="vinf"/>
<constant data="adv"/>
</ or der >
</ feature>
<feature data="agrs">
<variabl e data="Agrs"/>
</ feature>
<feature data="agree">
<set>
<constant data="subj"/>
</ set>
</ feature>
</record>
</ cl assDi nensi on>
</ cl assConj >
</ cl assDef >

Figure 7.3.: Lexical classfin" in XML syntax

7.1.4. Lattice Functors

Lattice functors are Abstract Data Types (ADTSs) correspagntb the types of the XDK de-
scription language. They include methods to obtain latbpetop), lattice bottomkot) and
greatest lower boundgs(b) of a type, methods to encode IL into SL syntaxdode), and
to convert SL into IL fecode) or OL syntax pretty). The lattice operations and the en-
code method are used in the metagrammar compiler, and tbeelaad pretty methods in the
visualizer. The constraint parser makes use of the additimethods for the creation of con-
straint variablesnakeVar) and for the efficient selection of values from a set of akiues
(select). The lattice functors are explained in detail in appendix A

7.2. The XDK Description Language

The XDK is controlled by the XDK description language used fo

1. writing metagrammars:

90

7. A Development Kit for XDG

el em(t ag: cl assdef
i d: el en{tag: constant
data: ' fin")
vars:[elen{tag: vari abl e
data:’ Word")
el en(tag: vari abl e
data: ' Agrs’)]
body: el en{t ag: conj
args: [elen(tag:’ cl ass. di mensi on’
idref:elen(tag: constant
data:’ |l ex’)
arg: el em(tag: record
args: [el em(tag: const ant
data: word")#
el en(tag: vari abl e
data: " Word)]))
el em(tag: ' cl ass. di mensi on’
idref:elen(tag: constant
data:’ syn’)
arg: el em(tag: record
args: [el em(tag: const ant
data:’in)#
el em(tag: set
args: [el en(tag: const ant
data:'root’)#
elemtag: 'card.wild
arg:'?")1)
el em(t ag: const ant
data:’ out’)#
el em(tag: set
args: [el en(tag: const ant
data: ' subj’)#
elemtag: card.wi | d’
arg:' !’)])
el em(t ag: const ant
data:’ order’)#
el em(tag: order
args: [el en(tag: const ant
data: ' subj’)
el en(t ag: const ant
data: " "")
el em(t ag: const ant
data:’obj’)
el en(t ag: const ant
data:’vinf’)
el en(tag: const ant
data:’adv’')])
el em(t ag: const ant
data: ' agrs’)#
el em(tag: vari abl e
data: ' Agrs’)
el en(t ag: const ant
data: ' agree’)#
el en(tag: set
args: [el en(tag: const ant

data:’subj’)]1)]1))1))

Figure 7.4.: Lexical classfin" in IL syntax

* metagrammar type definitions
* lexicon description
* principle instantiations

2. writing principles: principle type definitions
3. modeling multigraphs

We will develop the XDK description language using the UL c@te syntax for clarity.

91

7. A Development Kit for XDG

7.2.1. Types

We begin by defining the types of the XDK description langyage showing how they are
applied in the type definitions of metagrammars and prieajafinitions.

Definition 28 (Types) Given a setA of atoms,DV of dimension variables, andlv of type
variables, we define the typeg of the XDK description language as follows:

ach

DeDvV

XeTv

TeTy = {ai...an} finite domain(n > 0)
| string string
| int integer
| 1list(T) list
| tuple(Ti...Tn) tuple(n>0) (7.1)
| {a1:T1...an:Tn} record (n > 0)
| set(T) set(accumulative lattice
| iset(T) set(intersective lattice
| card cardinality
| label(D) edge labels
[tv(X) type variable

Contrary to the types of XDG defined in section 3.2.1, the $ygfd¢he XDK description lan-
guage do not include functions, nor do they include typedémieans and nodes. In addition
to the types of XDG, they include types for strings, integésss, tuples, three types of sets
(set(T), iset(T), card)!, edge labels and type variables. That is, the XDK descrigto-
guage is only equipped for the description of data. Funstiand hence also principles cannot
be expressed. This is a deliberate design decision: we thatka grammar writer should not
be bothered with the non-trivial issues surrounding thestbgament of new principles using
Mozart/Oz constraint programming, but should instead pust them out from a library of
predefined ones. Thus, the XDK is designed as a “toolkit” fangmar development, where
the predefined principles act as “building blocks”. Since library is extensible, it can still
be augmented by new principles if this is really needed.

Definition 29 (Notational Conveniences for Typesj)Ve introduce notational conveniences
for:

* unions:
{ar...ax} | {axst. .2} & {ay...an) (7.2)
for0<k<n
* vectors:
vec({a1...an} T) B {ay 1 T.. 20 : T} (7.3)
forn>0

1As shown in appendix A, each type corresponds to a lattice.tfitee types do not differ on the level of types,
but only in the lattices that correspond to them.

92

7. A Development Kit for XDG
* valencies:
valency(T) dZEfmap(T card) (7.4)

Definition 30 (Interpretation of Types)Given a set of atoms and of dimensions, we inter-
pret the types as follows:

* {aj...ap} asthesefay,...,an fW{T, L}, whereT and_L are added to act as top and
bottom of the lattice corresponding to the type

* string as the set of all atoms plus and L: AwW{T, L}, i.e., the interpretation of
strings can be infinite (if is infinite), contrary to the interpretation of finite domain

» int as the set of all integers plus and L

* 1ist(T) for all n > 0 as the set of all n-tuples whose projections are elementeof t
interpretation ofT, plusT and L

 set(T) andiset(T) as the power set of the interpretationof
* card as the power set of the set of integers

* tuple(T;...T,) as the set of alh-tuples whoseith projection is an element of the
interpretation ofT; (for 1 <i <n)

e {a;:Ty...ay : Tp} as the set of all functions f with:

1. Dom f={ai,...,ap}
2. forall1<i <n, f a; is an element of the interpretation ©f

* label(D) as, given a binding of dimension varialildo dimension d, the type of edge
labels on d.

* tv(X) as, given a binding of type variabketo typeT, the interpretation of.

where thelabel(D) andtv(X) can only be used in principle type definitions, not in metagra
mar type definitions.

Metagrammar Type Definitions. In the metagrammar type definitions, we use the types
to specify for each dimension the types of edge labétsabeltype), lexical attributes
(defentrytype) and non-lexical attributesiéfattrstype). For convenience, in the meta-
grammar type definitions, a tyfgecan be named by writing:

deftypeaT (7.5)

93

7. A Development Kit for XDG

The type can be referenced by just writiag An example metagrammar type definition is
shown below, repeated from (2.8):

deftype "syn.label" {root subj part obj vinf adv}
deftype "syn.label 1" "syn.label" | {"""}

deftype "syn.person" {"1" "2" "3"}

deftype "syn.nunber" {sg pl}

deftype "syn.agr" tuple("syn.person" "syn.nunber")

def | abel type "syn. | abel " (7.6)
defentrytype {in: val ency("syn.|abel")

out: val ency("syn.label™)

order: set(tuple("syn.labell" "syn.|abel 1"))

agrs: iset("syn.agr")

agree: set("syn.label")}
defattrstype {agr: "syn.agr"}

Principle Type Definitions. Each principle in the XDK principle library is accompanied
with aprinciple definition As principles are parametrized, principle definitionscsfyeamong
other things described in chapter 8 below, the dimensitiesatguments and the types of the
arguments that the principle abstracts over (principle tgefinition). For example, consider
the following definition of the Valency principle (cf. prifpde 6 in chapter 4):

def principle "principle.val ency" {
dins {D}

.a.rés {I'n: val ency(l abel (D)) (7-7)
Qut: val ency(l abel (D))}
.}

The principle abstracts over one dimension with diraension variable®. It has two argu-
ments, represented by thegument variablegn and0Out. The type of the two arguments is
given by the expressiomlency(label(D)), which denotes a valency over the edge labels on
the dimension denoted by dimension variahle

As another example, consider the following definition of #greement principle (cf. prin-
ciple 9 in chapter 4):

def principle "principle.agreenent” {
dims {D}
args {Agrl: tv(X
Agr2: tv(X) (7-8)
Agree: set(label (D))}
S}

It abstracts over dimensianand has the three argumentg-1, Agr2 andAgree. The type of
Agr1 is not known beforehand—the only known fact is that it hassdm@e type asgr2. This
is expressed using the same type variablg) for bothAgr1 andAgr2.

7.2.2. Terms

In this section, we define the terms of the XDK descriptiorglaage and show how to apply
them for the description of the lexicon and for the instamdraof principles.

94

7. A Development Kit for XDG

Definition 31 (Terms) Given a set of atoms, a sel of integers and a sét of variables, the
termsTe of the XDK description language are defined as follows:

acAh

ieN

veV

teTe a
i
{t1...tn}
{i1~-~1n }
[t1...tn]

atom
positive integer
set
infinite set of integers
list or tuple
variable
record specification

|
|
|
|
|
|
| {:} empty record
| ¢ cardinality (7.9)
| {aici...apcn} valency
| top lattice top
| Dot lattice bottom
| t1&ts lattice greatest lower bound
| ti]te alternation
| $g set generator
| (t1...tn) order
| t1@to concatenation
| p feature path
| tuT type annotation
| (%) brackets
Cardinalities are a special syntax to describe sets of ietey
c =1 precisely ong{1})
| ? zeroorong({0 1})
| x zeroormorg{012...})
|+ one or more({12 ...}) (7.10)
| #{i1...in} set({iy ... in})
| #[11 ig] interval ({11 ce 12})
Set generatordescribe sets of tuples whose projections are finite donyaiest
g = a atom
| g1&gs conjunction
| gi]lga disjunction (7.11)
| (g) brackets
Feature pathdenote paths to the lexical or non-lexical attributes of @@o
p = _.D.entry.a;.....a, lexical feature path (daughters)
| “.D.entry.aj.....a, lexical feature path (mothers) (7.12)
| _.D.attrs.a;.....a, non-lexical feature path (daughters) '
| /.D.attrs.a;.....a, non-lexical feature path (mothers)

In addition to the usual expressions (atoms, integers,etefs the terms of the XDK de-
scription language include a number of extensions:

95

7. A Development Kit for XDG

* variables, which will be used for abstraction in the lexic®scription

* record specifications, which allow to specify records ipdyt by omitting any number
of attributes. Upon interpreting the terms, the omittedlaites are set to the default
value of the respective type, defined by the top value of itsesponding lattice (see
appendix A). For example, given the following record type:

{ in: set({subj obj})
out: set({subj obj}) } (7.13)

The record specificatiofout : {subj}} represents the following record:

{ in: top
out: {subj} } (7-14)

wheretop of the typeset({subj obj}) stands for the empty set, and thus (7.14) for:

{in {3
Iout: {subj} } (7.15)

« cardinalities and valencies, which are notational coremges for sets of integers and
for records whose values are cardinalities, allowing taewhte for instance:

{ subj: {1} obj: {1} adv: {012 ...} } (7.16)

as:
{ subj! obj! advx } (7.17)

* lattice operationst{op, bot, &)
* alternationst; | t, stands for the non-deterministic choice “eitheror t5”

* set generators for economically describing sets of ageaetples (cf. section 4.6). For
example, the set generatos, whose type must be any set of tuples of domains where
one of the projections includeg;, e.g.:

set (tuple({"1" "2" "3"} {sg pl})) (7.18)
denotes the set of tuples witlg at their second projection, i.e.:
{ ["1" sg] ["2" sg] ["3" sg] } (7.19)

and the set generator($1" |" 3") & sg denotes the set of tuples with either' or" 3"
at their first projection andg at their second:

{ ["1" sg] ["3" sq] } (7.20)

96

7. A Development Kit for XDG

* orders to abbreviate sets of tuples which represent giaitial orders, e.g.:

<subj "7" obj vinf adv> (7.21)

abbreviates the following set:

{ [subj "~"] [subj obj] [subj vinf] [subj adv]

["~" obj] [""A" vinf] ["~" adv] (7_22)
[obj vinf] [obj adv] [vinf adv] }

» concatenations of atoms of typering

* lexical and non-lexical feature paths to access the lésicd non-lexical attributes of
a node. As feature paths must be dynamically resolved dyanging, they can only
be used in principle instantiations but not in the lexicosalgtion, which must be
completely static. We will give examples for feature patakoty.

* type annotations to annotate terms with types

For the constraint parser, we will transform most of thesermsions intacore termsin the
interpretation step of the encoder of the lattice functappéndix A).

Definition 32 (Core Terms) Given a sett of atoms and a sat of integers, the term&Te of
the XDK description language are defined as follows:

acAh
ieN
teTe = a atom

| i positive integer
| {t1...tq} set (7.23)
| {i1...in ...} infinite set of integers
| [t1...ts) list or tuple
| {a1:ti...an:ty} totally specified record
| p feature path

wherep is defined as above in (7.12).

Lexicon Description. The terms of the XDK description language are mainly usedher
lexicon description of metagrammars, where the lexicorescdbed usingexical classesA
lexical class is a representation of a set of lexical entaesl can additionally abstract over
any number of variables, making them similar to templateger grammar formalisms such
as PATR-II (Shieber 1984) and LFG.

In the lexicon description, we distinguish betwdexical class definitionsvhere a lexical
class is named and the variables it abstracts over are definddexical classes per se.

Definition 33 (Lexical Class Definitions)Given a set of atoms and a set of variable¥,
a lexical classl nameda € A and abstracting over variables; ...v, € Vin 1 is defined as
follows:

defclassavy...vy {1} (7.24)

97

7. A Development Kit for XDG

Definition 34 (Lexical Classes)Given a sett of atoms and’ of variables, a lexical class is
defined as follows:

ach
veV
1 = dimat dimension specification (7.25)
| a{viiti...vpity} class reference)
| 1;&1, greatest lower bound
| 111, alternation

where the ampersand for greatest lower bound can be omittezbhvenience.

A dimension specificatiodim a t stands for the record specificatiga : t}, which de-
scribes the lexical attributes for dimensian A class reference {v; : ty...vy : t,} refers
to the lexical class definitiofiefclass a vy ...v, {1} with the same name, and represents
1%1/vi-ta/va j e, the result of substituting each variablein 1 by the termt; for 0 < i <n.
Greatest lower bound and alternation are lattice operatsrfor terms.

After defining the lexical classes describing the lexic@xjdal entries must be explicitly
generated by writing, given a lexical class

defentry {1} (7.26)

This generates all lexical entries describedLby
Here is an example. We first define the lexical classesb"
"fin", repeated from (2.12), (2.13), (2.14) and (2.11):

defclass "verb" {

di msyn {out: {advx}} (7.27)

dimsem{in: {root! thx}}}

"intrans", " trans" and

defclass "intrans" {

dim sem {out: {ag!'}} (7.28)
dimsynsem{arg: {ag: {subj}}}}

defclass "trans" {
"intrans"
dimsyn {out: {obj!'}} (7_29)
dimsem {out: {pat!}}
di msynsem {arg: {pat: {obj}}}}

defclass "fin" Wrd Agrs {
dimlex {word: Word}
dimsyn {in: {root?}
out: {subj!'} (7_30)
order: <subj "~" obj vinf adv>
agrs: Agrs
agree: {subj}}}

where the possibility of partially specifying records isly used, e.g., only theut attribute

of thesyn dimension is specified in (7.27). Then, we explicitly getethe lexical entries for
the wordeatby making use of the classes:

defentry {
"verb"
("intrans" | "trans") (7_31)
"fin" {Wrd: "eat"
Agrs: $ (("1"2") | ("3 &5s9))}}

98

7. A Development Kit for XDG

This results in the two lexical entries shown below, oneansitive (using the lexical class
"intrans") and one transitive'(trans"):

dimlex {word: "eat"}
dimsyn {in: {root?}
out: {subj! adv+}
order: <subj "~" obj vinf adv>
agrs: $ (("1"]"2") | ("3" & sg)) (7.32)
agree: {subj}}
dimsem {in: {root! thx}
out: {ag'}}
di msynsem{arg: {ag: {subj}}}

dimlex {word: "eat"}
dimsyn {in: {root?}

out: {subj! obj! adv+}

order: <subj "~" obj vinf adv>

agrs: $ (("1"]"2") | ("3" & sg))

agree: {subj}} (7-33)
dimsem{in: {root! thx}

out: {ag! pat!}}
di m synsem {arg: {ag: {subj}

pat: {obj}}}

where (7.33), for example, represents the following cone tevhere the valencies and cardi-
nalities (n andout attributes), ordersofrder) and set generatoragrs) are compiled out:

{lex: {word: "eat"}
syn: {in: {root: {0 1}}
out: {subj: {1} obj: {1} adv: {01 2 ...}}
order: {[subj "~"] [subj obj] [subj vinf] [subj adv]
[*A" obj] ["~" vinf] ["~" adv]
[obj vinf] [obj adv] [vinf adv]}
agrs: {["1" sg] ["2" sg] ["1" pl] ["2" pI] ["3" pl]} (7.34)
agree: {subj}}
sem {in: {root: {1} th: {012 ...}}
out: {ag: {1} pat: {1}}}
synsem {arg: {ag: {subj}
pat: {obj}}}}

Principle Instantiations. The second use of the terms of the XDK description language is
in principle instantiations. Upon instantiation, a prplei binds the dimension variables of its
principle definitions to actual dimensions, and the argumaniables to terms. For example,
here is an instantiation of the Valency principle, which wained in (7.7):

useprinciple "principle.val ency" {
dins {D: syn}

args {In: {root?} (7.35)
Qut: {subj! advx}} '

)

where the dimension variabieis bound to dimensionyn, and the argument variablés and
Out to valencies. As th@&n andOut arguments are interpreted for all nodes, this principle
instantiation stipulates that all nodes have the samedaimcoming and outgoing edges.
Clearly, this is not what we generally want. Instead, whatvaat is a lexicalized instanti-
ation of the Valency principle, where the licensed incomang outgoing edges are specified

99

7. A Development Kit for XDG

by the lexical entry of each node. This is precisely the psepaf the lexical feature paths in
the following principle instantiation:

useprinciple "principle.val ency" {
dins {D: syn}

args {In: _.Dentry.in (7 36)
Qut: _.D.entry.out})
..}

where the feature pathD.entry.in represents lexical attributen, and _.D.entry.out the
lexical attributeout on the dimension represented by dimension varibpie., syn.

For principles which quantify over edges instead of nodesfé¢ature paths need to distin-
guish the mother of the edge from the daughter. For example, ik the instantiation of the
Agreement principle, where for each edge, the valugefl is determined by the non-lexical
attributeagr of the mother{), andAgr2 by the value okgr of the daughter (_)Agree is not
lexicalized and set t§subj}:

useprinciple "principle.agreement"” {
dins {D: syn}
args {Agrl: ~. D attrs.agr
Agr2: _.D attrs.agr (7-37)
Agree: {subj}}
o}

7.3. Summary

In this chapter, we have presented the overall architeatitbe XDK and then turned our
attention to the XDK description language. We put its tymesge in the type definitions of
metagrammars and principle definitions, and then its temtise lexicon description and the
instantiation of principles.

100

8. Constraint Parser

This chapter describes the constraint parser, which iseghélart of the XDK, as can be seen
in Figure 8.1. We show how multigraphs can be modeled in texhimite sets of integers,
and how this idea is implemented in the actual constrairggraand the principles of the XDK
principle library. After a short excursion to generatiorg elose by discussing the runtime of
the parser.

Parsers Pickler

(UL => IL <= XML) ~. o , (SL—>File)

(Metagrammar Compiler)
- LN

Converters ‘ Encoder

(UL <= IL => XML) Type Checker (IL —=>SL) encode
(IL) bot
: glb
N\
Constraint Parser Lattice Functors

Model Creator Principle Library Search Engines
select
(CD) makeVar

Visualizer

v ~
Output Preparer Output Library

(IL <= SL -> OL) 4
pretty

decode

Figure 8.1.: The constraint parser in the XDK architecture

8.1. Modeling Multigraphs

The XDK constraint parser is based on the idea of modelingignaphs in terms ofinite sets
of integers and making use of the support fiimite set constraint programmingplemented
in Mozart/Oz (Schulte 2002). We begin by showing how to maddividual dependency
graphs, how to add attributes, and how to extend the modwingultigraphs.

101

8. Constraint Parser

8.1.1. Modeling Dependency Graphs

A dependency graph is a labeled directed graph whose nodddeattified by indices and
words, as in the example dependency graph for the senRateeeats todapelow:

/roo\ :

1 2 3 4

P
(@) :

Peter eats today

The graph consists of four nodes, including the additiooaith node for the full stop, which
is connected to the actual root of the analysis (the finite gat9 by an edge labele@ot. eat
has two daughters: the subjéterand the adverboday

We model graphs using sets of records, one for each node. reaehcontains a represen-
tation of its outgoing edges maughter setsFor example, the second noaaf9 corresponds
to the record below:

index= 2
word = eats
nodeSet= {1,2,3,4}

adv = {3}
model= { daughtersL= { root = {} } }
subj = {1}

(8.2)

where the attributendexrepresents the index of the node, amord the word. nodeSetep-
resents the entire set of nodes of the graph. Given an edgk thb daughter sets (attribute
daughterslin themodelsubrecord) denote the sets of indices of the daughters atretige
label. In the example, the set eflv daughters of node 2 contains node 3, the sebof
daughters is empty, and the sewolbj daughters contains node 1. Using Mozart/Oz syntax in
form of theSolver LanguagéSL), we can represent (8.2) as the following record catiede

record: _
o(index: 2
word: eats
nodeSet: {1 2 3 4} #4
nodel : o(daughtersL: o(adv: {3}#1 (8-3)
root: {}#0
subj: {1}#1)))

where theos are dummy record labels required because each record inuSzba labeled,
and sets are represented together with their cardinaligy{&}#1 stands for the set3} with
cardinality 1.

In practice, the XDK constraint parser makes use of many reetg, mainly to ease the
statement of constraints and to improve constraint prapagaThe sets are determined by
the freely extensible and also replaceaBi@ph principlefrom the XDK principle libraryt
The current version of the Graph principle makes use of thewiing sets, given a node

1The existence of the Graph principle in the principle lilgrar one of the few divergences of the XDK from
the formalization of XDG in part I: in XDG, graphs were harded into the formalization. In the XDK, they
are modularized into a principle, such that its implemeotetan easily be replaced, e.g. by a more efficient
one.

102

8. Constraint Parser

* mothers: the set of mothers of

* daughters: the set of daughters of

* up: the set of nodes abowe

* down: the set of nodes below

* eq: the set of nodes including onlyitself

* equp: the set of nodes equal or abowe

» eqdown: the set of nodes equal or belaw

» labels: the set of edge labels of the incoming edges of

» mothersL: the set of mothers of sorted according to their edge label

» daughtersL: the set of daughters ofsorted according to their edge label

» upL: the set of nodes abowesorted according to their edge label when enteving
» downL the set of nodes belowsorted according to their edge label when emanating

For node 2 in (8.1), these sets are instantiated as follows:

o(index: 2
word: eats
nodeSet: {1 2 3 4}#4
nodel : o(nothers: {4}#1
daughters: {1 3}#2
up: {4}#1
down: {1 3}#2
i ndex: 2
eq: {2}#1
equp: {2 4}#2
eqdown: {1 2 3}#3
| abel s: {5}#1
not hersL: o(adv: {}#0 (8-4)
root: {4}#1
subj: {}#0)
daughtersL: o(adv: {3}#1
root: {}#0
subj: {1} #1)
upL: o(adv: {}#0
root: {4}#1
subj: {}#0)
downL: o(adv: {3}#1
root: {}#0
subj: {1}#1)))

where the labels in the setbels are encoded as described in section A.1. Here, the edge
labelroot is represented by the integer

103

8. Constraint Parser

é/root
NN E}
sV . LN :
1 2 3 4
Mary eats today
“““ IRREE EEgl
N
\
\
\
\
in = {root?}

out= {subj!,adv«}
lex=< order= {(subj, 1), (subj,adv), (1,adv)}

agrs={(3.59)}
agree= {subj}
agr = (3,sg)

Figure 8.2.: Dependency graph with attributes

8.1.2. Modeling Attributes

In the next step, we extend our modeling of dependency graphsattributes, as in Figure 8.2,
where we display the graph (8.1) with attributes and hidttltge attributes of node 2.

We model attributes using thetrs subrecord representing the non-lexical attributes, and
theentry subrecord representing the lexical attributes. For exantipé record corresponding
to node 2 then becomés:

o(index: 2

word: eats

nodeSet: {1 2 3 4}#4

entryl ndex: 1

nmodel : o(daughtersL: o(adv: {3}#1
root: {}#0
subj: {1}#1))

attrs: o(agr: 6)

entry: o('in: o(adv: {0}#1 (8_5)
root: {0 1}#2
subj: {0} #1)
out: o(adv: {0 1 2 3}#4
root: {0}#1

subj : {1} #1)
order: {2 36 37}#3
agrs: {6}#1
agree: {6}#1))

where:

* the value of the non-lexicalgr attribute encodes the tup(8,sg) as the integes, cf.
section A.1

* the value of the lexicadrder attribute encodes the set of tuples

{(subj, 1), (subj,adv), (1,adv)} (8.6)

where2 represents the tuplg, adv), 36 the tuple(subj, T) and37 the tuple(subj, adv)

2The attribute in’ is a Mozart/Oz keyword and is thus has to be enclosed in singies.

104

8. Constraint Parser

* the value of the lexicalgrs attribute encodes the set of agreement tup(8ssg) }

+ the value of the lexicalgree attribute encodes the set of edge laHalsj}, wheresubj
is encoded as the integer

In addition, the attributentryIndex represents the selected lexical entry for the node. In the
example, the first lexical entry is selected.

8.1.3. Multigraphs

We now lift our encoding of dependency graphs to multigragiusthis end, we package the
components of the multigraph into subrecords. For exanmgles is how we model node 2 of
the multigraph displayed in Figure 8.3:

o(index: 2
word: eats
entryl ndex: 3
syn: o(nodel : o(daughtersL: o(adv: {3}#1
root: {}#0
subj: {1} #1)
attrs: o(agr: 6)
entry: o('in: o(adv: {0}#1
root: {0 1}#2

subj: {0} #1)
out: o(adv: {0 1 2 3}#4
root: {O}#1
subj : {1} #1)
order: {2 36 37}#3
agrs: {6}#1
agree: {6}#1)) (8_7)
sem o(nodel : o(daughtersL: o(ag: {1}#1
root: {}#0
th: {}#0))
attrs: o
entry: o('in: o(ag: {0O}#1
root: {1}#1

th: {0 1 2 3}#4)
out: o(ag: {1}#1
root: {O}#1
th: {0}#1)))
synsem o(attrs: o
entry: o(arg: o(ag: {3}#1
root: {}#0
th: {}#0)
"mod’: {}#0)))
As we assume that the models on #asem dimension are graphs without edges, as in the
example grammar in section 2.2.4, we can omit the represemtaf edges using daughter
sets for simplicity and efficiency. In fact, we can also omitmplementation of th&dgeless

principle: it suffices for all dimensions without edgesriot use the Graph principle.

8.2. Constraint Parsing

The constraint parser itself is realized asGmscript Oz scripts are programs that can com-
pute one or all solutions of a Constraint Satisfaction Rrwb(CSP), and are run aearch

105

8. Constraint Parser

(00\/(?
NN E}
sV . W :
1 2 3 4
Mary eats today
) LR g
N
\
\
\
\
in = {root?}

out= {subj!,advx}
lex= ¢ order= {(subj, 1), (subj,adv),(T,adv)}
agrs= {(3,50)}
agree= {subj}
SYN agr=(3,s9)

o :
1 2 3 4
Mary eats today
N
\
\
\
\
B in = {root!, thx}
SEM {e{onclan ™ })
o o o o
1 2 3 4
Mary eats today
BN
\
\
\
\
_ [arg={ ag={subj} }
SYNSEM {o{ mach) b

Figure 8.3.: Multigraph

enginesimplementing the propagate and distribute method. The XDppsrts the search
enginesSearchtheOz Explorer(Schulte 1997) antDzSeHTack 2002).

The constraint parser Oz script is generated by the funetitue displayed in Figure 8.4.
Given a list of wordsiordAs® and a compiled gramma it proceeds in three steps which we
elucidate in the following subsections:

1. create node records (lines 7-14)

2. do lexicalizatiofi (lines 16-23)

3We make use of a convention to suffix Oz variables with typerimftion, similar to e.g. the Hungarian
notation for G-+, which is explained in the XDK manual (Debusmann & Duchie®@@0 For examples
stands for an atoms for a list of atoms] for an integer and for a set.

4Note that contrary to the formalization XDG in part |, wheexitalization was realized as a principle (cf.

106

8. Constraint Parser

3. post principles (line 28)

1) fun {Make WordAs G
2) proc {$ Nodes}

(

(

(3 NodeSet M = {FS. val ue. make 1#{Length WordAs}}

(4 ! Nodes =

(5 {Li st. mapl nd Wor dAs

(6) fun {$ I ndexl WordA}

(7 Node = { G nodelLat. makeVar}

(8

(9 Node. i ndex = | ndexl

(10) Node. word = Wor dA

(11) Node. nodeSet = NodeSet M

(12)

(13) Entries = G |exicon. WrdA

(14) Node. entrylndex = {FD.int 1#{Length Entries}}
(15)

(16) for DIDA in G dlDAs do

(17) EntryLat = {G dl DA2EntryLat DI DA}

(18) DI DAEntries = {Map Entries

(19 fun {$ Entry} Entry. Dl DA end}
(20) in

(21) Node. DI DA. entry =

(22) {EntryLat.sel ect DI DAEntries Node.entryl ndex}
(23) end

(24) in

(25) Node

(26) end}

(27) in

(28) {G principles.post Nodes G

(29) end

(30) end

Figure 8.4.: The script generator realizing the constraamser

8.2.1. Creating Node Records

For each word in the list of word#&rdAs, the script creates the node recairdie in line 7 of
the script, using theakeVar method of the lattice functors (explained in detail in sgTih. 3).
Essentially, for the attributes in the node recatdkeVar creates correspondirgpnstraint
variables

In lines 9-11, the constraint variables of the&dex, word andnodeSet attributes are in-
stantiatedindex is set to the indeXndexI of the word in the list of wordsyord to the word
WordA, andnodeSet to the entire set of indices required for the list of words.

8.2.2. Lexicalization

The lexicon of a compiled grammar is a record which maps eamfd wo a list of lexical
entries for it. In line 13 of the script, we obtain the list ofteesEntries for word WordA

section 4.3), it is hardwired in the constraint parser ofXB&K. This is the result of a design decision, taken
because the existence of a lexicon is a central assumptitie XDK.

107

8. Constraint Parser

from the lexicon. Then, we instantiate the attribete ryIndex with a finite domain variable
ranging from 1 to the number of lexical entries farrdA (line 14). entryIndex represents
the selected lexical entry for the node, which is shared ldimlensions and thus synchronizes
their lexical selection.

Lexical entry selection itself is then implemented in lid#s-23. For each dimension iden-
tifier DIDA in the list of all dimensions of the gramm@rdIDAs, first the appropriate lattice
for the record of lexical attributeBntryLat is obtained (line 17), and second the list of en-
triesDIDAEntries (lines 18-19). Then, in lines 21-22, the lexical attribudesdimension
DIDA in theentry record are instantiated with the lexical attributes of theyeselected from
the lexicon using the entry index. It is here that we make dgbeselect method of the
lattice functors (explained in detail in section A.3). Thethod utilizes theselection con-
straint (Duchier 1999, Duchier 2003), which significantly improwasstraint propagation
and therefore also the treatment of lexical ambiguity. Téeigs behind the constraint is that
it makes the commonalities of the lexical entries of a wordilable for propagation as soon
as possible, long before the lexical entry is eventuallgctel.

8.2.3. Posting Principles

The final step consists of posting the principles of the gramfior nodediodes and grammar
G in line 28. The modeling of these principles is the topic & tiext section.

8.3. Modeling Principles

Most of the actual functionality of the constraint parsefaistored out into the principles. A
principle consists of:

 aprinciple definition
 a set ofnode constraint functors
 a set ofedge constraint functors

The principles are arranged in the extensfi@ciple library of the XDK.

8.3.1. Principle Definitions

A principle definition is an XDK term defining the following:
* the identifier of the principle
* a set ofdimension variablesone for each dimension referred to by the principle
* the types of the arguments of the principle

* default values for the arguments

108

8. Constraint Parser

* the type of thanodel recordntroduced by the principle

* the set ofnode constraint functorsnplementing the principle, coupled with a priority
100, which determines when the constraint functor is postegllftgher the earlier)

* the set ofedge constraint functolismplementing the principle, coupled with the dimen-
sion, which determines which dimensions’ edges shall betcaimed. Edge constraint
functors always have priority00, i.e., they are posted after the node constraints with
priority > 100 and before those 100.

where the purpose of the constraint priorities is to enapterozation of the constraint solver
by determining the order in which they are posted. As an eXxanwe show the principle
definition of theGraph principlebelow:

def principle "principle.graph" {
dims {D}
args {:}
defaults {:}
nmodel {nothers: set(int)
daughters: set(int)
up: set(int)
down: set (int)
i ndex: int
eq: set(int)
equp: set(int) (8_8)
eqdown: set (int)
| abel s: set (Il abel (D))
not hersL: vec(l abel (D) set(int))
daught ersL: vec(l abel (D) set(int))
upL: vec(label (D) set(int))
downL: vec(l abel (D) set(int))}
constraints {"G aphMakeNodes": 130
"G aphCondi tions": 120
"GraphDi st": 90}
edgeconstraints {"G aphMakeEdges": D}}

The identifier of the principle iSprinciple.graph” . It constrains only one dimension rep-
resented by the dimension varialllgdims). The principle neither has arguments-¢s)
nor defaults defaults). The model recordmpdel) defines the types of the attributes in-
troduced in section 8.1.1. The principle is implemented oy mhode constraint functors
" GraphMakeNodes" (priority 130), " GraphConditions" (120), and" GraphDist" (90)°
(constraints), and the edge constraint functo&raphMakeNodes" (for edges on dimen-
sionD) (edgeconstraints).

5As we will see soon, this constraint functor does not impler®nstraints but controls distribution in the
Mozart/Oz search engine running the constraint parsegtscri

109

8. Constraint Parser

As a second example, we present the principle definition@Y#tency principlecf. prin-
ciple 6 in chapter 4):

def principle "principle.val ency" {
dins {D}
args {In: valency(label (D))
Qut: val ency(label (D))}

defaults {In: _.D.entry.in
Qut: _.D.entry.out} (8-9)
nodel {:}
constraints {"In": 130
"Qut" 130}

edgeconstraints {:}}

The Valency principle has two arguments, wheénestands for the valency specification for
the incoming edges, arthit for the outgoing edges. The default fot is the feature path
_.D.entry.in representing the lexical attributex on dimensiorD, and the feature path for
Out represents the lexical attribute@t on dimensior.

As athird example, here is the principle definition of &Agreement principlécf. principle 9
in chapter 4), which was already partially given in (7.8):

def principle "principle.agreenent” {
dims {D}
args {Agrl: tv(X
Agr2: tv(X)
Agree: set(label (D))}
defaults {Agrl: ~.D. attrs.agr (8_10)
Agr2: _.D. attrs.agr
Agree: ~.D.entry. agree}
nodel {:}
constraints {:}
edgeconstraints {"Agreenent": D}}

The principle abstracts over dimension variabland has three argumentsgr1, Agr2 and
Agree. Given an edge, the default fagr1 is the feature path denoting the non-lexical at-
tribute agr of the mother, forAgr2 the non-lexical attributegr of the daughter, and for
Agree the lexical attributeagree of the mother. It is implemented by the edge constraint
functor” Agreement” on dimensior.

8.3.2. Node Constraint Functors

Node constraint functors have the purpose of constrairiiegibdes of the analysis. They
directly implement Oz procedures (functions with no retuatue) calledConstraint, and
have four arguments:

1. Nodes: the list of node records of the analysis
2. G: the grammar
3. GetDim: a function mapping dimension variables to dimensions

4. GetArg2: a function mapping two arguments (hence #henamely, an argument vari-
able and a node record, to an argument

110

8. Constraint Parser

where the purpose @&etDim is to obtain the dimensions, and @tArg2 to obtain the argu-
ments of the principle, given a node record. Because tharagts can also be feature paths,
they have to be resolved, dynamically at runtime.

As a first example, Figure 8.5 shows the node constraint durictraphMakeNodes" ,
which is a part of the Graph principle. In line 2, it obtain® thimension represented by
dimension variable D’ , and in line 3 the set of all nodes of the analygigeSetM. Then, in
lines 5-24, it posts the following constraints on all nollese: the setsothers, daughters,
up anddown of the model record of the node are all subsets of the set ofoalés (lines 8—
11), theindex equals theindex of the node (line 13), andq is the singleton set containing
only the index (line 14). The sefup is the set of nodes equal or above the node (line 16),
andeqdown equal or below (line 17). The sabthers is the disjoint union of the sets in the
mothersL record (line 19), i.e., is a partition of this set, and analagly fordaughters (line
20). Finally,up is the union of the sets in thepL record (line 22), and analogously féswnL
(line 23).

1) proc {Constraint Nodes G DVA2DI DA}

2) DI DA = {DVA2DIDA ' D'}
3) NodeSet M = Nodes. 1. nodeSet

(

(

(

(4) in

(5 for Node in Nodes do

(6) Mbdel = Node. DI DA. nodel

(7 in

(8) {FS. subset Mbdel . not hers NodeSet M

(9 {FS. subset Mbdel . daught ers NodeSet M

(10) {FS. subset Mbdel . up NodeSet M

(11) {FS. subset Mddel . down NodeSet M

(12)

(13) Model . i ndex = Node. i ndex

(14) Model . eq = {FS. val ue. make Mddel . i ndex}

(15)

(16) Mbdel . equp = {FS. uni on Model .eq Model . up}

(17) Mbdel . eqdown = {FS. uni on Mddel . eq Mddel . down}
(18)

(19 Model . not hers = {FS. partition Mdel . not herslL}
(20) Model . daughters = {FS. partition Mdel.daughtersL}
(21)

(22) Mbdel . up = {FS. uni onN Model . upL}

(23) Model . down = {FS. uni onN Mbdel . downL}

(24) end

(25) end

Figure 8.5.!" GraphMakeNodes" node constraint functor

Figure 8.5 shows the node constraint fun¢téraphConditions" , also a part of the Graph
principle. It obtains the dimension represented by din@nsariable’ D' in line 2, and the
list LAs of edge labels on that dimension in lines 3-5. In lines 7—@reates lists of the
model records, theqdown sets, and thequp sets of the nodes, before it quantifies over the
model records in lines 11-22, where it makes repeated udeegktection union constraint
Select.union introduced in (Duchier 2003), whose declarative semartittee following for
1<i<n:

{Select.union [My ... My M} = UM (8.11)
ien

111

8. Constraint Parser

For all nodes, the set of nodes below the node equals the wfitre eqdown sets of the
daughters (line 12), and the set of nodes above the nodesatpealinion of thequp sets of
the mothers (line 13). Similarly, for all edge lab&ksin LAs, theLA downL set is the union of
theeqdown sets of the.A daughters (lines 15-17), and theupL set is the union of thequp
sets of the.A mothers (lines 18-20).

1) proc {Constraint Nodes G DVA2DI DA}
2) DI DA = {DVA2DI DA ' D'}

3) Dl DA2Label Lat = G dl DA2Label Lat
4) Label Lat = {DI DA2Label Lat DI DA}
5) LAs = Label Lat.constants

6)
7) Model s = {Map Nodes fun {$ Node} Node. DI DA nodel end}
8) EqdownMs = {Map Models fun {$ Mddel} Model . eqdown end}

(

(

(

(

(

(

(

(

(9 EqupMs = {Map Models fun {$ Model} Mdel.equp end}

(10) in

(11 for Mddel in Mdels do

(12) Model . down = {Sel ect. uni on EqdownMs Mbdel . daught er s}
(13) Model . up = {Sel ect. uni on EqupMs Model . not her s}

(14)

(15) for LAin LAs do

(16) Model . downL. LA = {Sel ect. uni on EqdownMs Mbdel . daught er sL. LA}
(17) end

(18) for LAin LAs do

(19) Model . upL. LA = {Sel ect. uni on EqupMs Mbddel . not her sL. LA}
(20) end

(21) end

(22) end

Figure 8.6.!" GraphConditions” node constraint functor

As another example, Figure 8.7 shows the node constraictduhIn”, which imple-
ments the first half of the Valency principle, dealing witle incoming edges of each node.
In lines 7-13, the constraint functor quantifies over all eeXbde and all edge labelsA
to constrain the set of mothers Béde according to the valency specification denoted by
the argument variableIn’ , which is obtained usingetArg2 (line 11). If* In’ denoted
the feature path.D.entry.in, as in the defaults of the Valency principle in (8.9), thedun
tion call {GetArg2 ' In’ Node} in line 11 would dynamically resolve it to the value of
Node.DIDA.entry.in, i.e., the lexical attributén on dimensiordIDA of nodeNode.

8.3.3. Edge Constraint Functors

Edge constraint functors have the purpose to constrainseafghe analysis. They have four
arguments, similar to node constraint functors:

1. Nodes: the list of node records of the analysis
2. G: the grammar
3. GetDim: a function mapping dimension variables to dimensions

4. GetArg3: a function mapping three arguments (hencelh@mamely, an argument vari-
able and two node records to arguments

112

8. Constraint Parser

1) proc {Constraint Nodes G GetD m Get Arg2}
2) DIDA = {GetDim’ D}

3) Dl DA2Label Lat = G dI DA2Label Lat

4) Label Lat = {DI DA2Label Lat DI DA}

(

(

(

(

(5 LAs = Label Lat.constants

(6) in

(G for Node in Nodes do

(8 for LAin LAs do

(9 {FS.incl ude

(10) {FS. card Node. DI DA. nodel . not her sL. LA}
(11) {GetArg2 "I n" Node}}
(12) end

(13) end

(14) end

Figure 8.7." In" node constraint functor

where the purpose dfetArg3 is to obtain the arguments of the principle, given two node
records (one for the mother and one for the daughter of the)edg

Contrary to node constraint functors, which directly impént constraints on the multi-
graph, edge constraint functors return procedures impléngeconstraints on labeled edges,
which still need to be executed to actually post the con#isaiAs an example, we show the
edge constraint functdrGraphMakeEdges" in Figure 8.8. The functor returns a procedure
with the argumentSode1, Node2 andLA, which does nothingsfip).

1) fun {Constraint Nodes G Get Di m Get Arg3}

2) Proc = proc {$ Nodel Node2 LA} skip end
in

4) Proc

5) end

~~~—~
w
~

Figure 8.8.!" GraphMakeEdges" edge constraint functor

As another example, we show the edge constraint functoremehting the Agreement
principle in Figure 8.9. It implements the constraint (Bri®—12) that if the integérT encod-
ing the edge labdlA is in the set denoted by thelgree’ argument variable of the principle,
then the value denoted by thegr1’ argument variable must equal that' afgr2’ . Assum-
ing the defaults of the Agreement principle defined in (84l)ve,

{GetArg3 ' Agree’ Nodel Node2} (8.12)
in line 10 corresponds tode1.DIDA.entry.agree,

{GetArg3 ' Agri’ Nodel Node2} (8.13)
in line 12 toNode1.DIDA.attrs.agr, and

{GetArg3 ' Agr2’ Nodel Node2} (8.14)

also in line 12 tdlode2.DIDA.attrs.agr.

Where in the XDK constraint parser are the procedures retuby the edge constraint
functors executed? Edge constraints are executed by aakpaector callededge functoy
displayed in Figure 8.10. The edge functor has the folloveirguments:

113



8. Constraint Parser

1) fun {Constraint Nodes G Get Di m Get Arg3}
2) DIDA = {GetDim ' D}

3) Dl DA2Label Lat = G dI DA2Label Lat

4) Label Lat = {DI DA2Label Lat DI DA}

6) Proc =

7) proc {$ Nodel Node2 LA}

LI = {Label Lat. a2l LA}

9) in

10) {FS.reified.include LI {GetArg3 'Agree’ Nodel Node2}}
11) =<:

12) ({Get Arg3 "Agrl Nodel Node2}=:{GetArg3 'Agr2’ Nodel Node2?})
13) end

14) in

15) Proc

16) end

e R N R R R e N N N N e i T
~

Figure 8.9.!" Agreement” edge constraint functor

1. Nodes: the list of node records

2. G: the grammar

3. DIDA: the dimension whose edges shall be constrained

4. Procs: the procedures of all edge constraint functors for dim@mn3iDA

For each edge from moth&bde1 to daughteNode2 labeledLA, lines 23—-28 launch a thread
containing adeep guardwhich implements the following: either the edge is corgdiim the
graph, oritis not. Ifitis, then:

* the index of the daughter must be an element of the set ofldersggof the mother
labeledLA (line 24)

* the labelLA encoded as an integerI) must be an element of the set of incoming edge
labels of the daughter (line 25)

* the procedures of all edge constraint functors for din@mmBiDA are posted (line 26)

If the edge is not contained in the graph, then the index ofifughter must not be an element
of the set of daughters of the mother labeled(line 27). The idea of using deep guards
for edge constraints was introduced in (Duchier 1999). Téye ddvantage is that if any of
the constraints of the edge constraint functorBidncs is inconsistent for an edge, constraint
propagation can immediately infer that the edge is not ¢oatkin the graph.

The purpose of returning a function instead of directly iempénting the edge constraint
is to enable us to collect all edge constraints, and then értii®n in one piece in the deep
guards launched by the edge functor. That means that we chaalpedge constraint functors
using only one thread per possible edge, instead of havifeyitwh one thread for each edge
constraint functor.

114



8. Constraint Parser

1) proc {Edge Nodes G DI DA Procs}
2) Dl DA2Label Lat = G dI DA2Label Lat
3) Label Lat = {DI DA2Label Lat DI DA}

(

(

(

( 4) in

( 5 for Nodel in Nodes do

( 6) Mbdel 1 = Nodel. DI DA. node

(7 in

( 8 for Node2 in Nodes do

( 9 Model 2 = Node2. DI DA. node

( 10) in

(1) {FS.reified.include Mdel 2.index Mdel 1. down}=:

( 12) {FS.reified.include Mdel 1.index Mdel 2. up}

(13)

( 14) {FS.reified.include Mdel 2.index Mdel 1. daught ers}=

( 15) {FS.reified.include Mdel 1.index Mdel 2. not her s}

( 16)

(17) for LA in Label Lat.constants do

( 18) LI = {Label Lat. a2l LA}

( 19) in

( 20) {FS.reified.include Mdel 2.index Mdel 1. daught ersL. LA} =
( 21) {FS.reified.include Mdel 1.index Mdel 2. not hersL. LA}
( 22)

( 23) t hr ead

( 24) or {FS.include Mdel 2.index Mdel 1. daught ersL. LA}
( 25) {FS.include LI Mbdel 2.1 abel s}

( 26) for Proc in Procs do {Proc Nodel Node2 LA} end
( 27) [T {FS. exclude Model 2. i ndex Mbdel 1. daught ersL. LA}
( 28) end

( 29) end

( 30) end

( 31) end

( 32) end

( 33) end

Figure 8.10.: Edge functor

8.3.4. Distribution

Distribution, i.e., non-deterministic choice, is necegsa ensure completeness of constraint
parsing, as constraint propagation alone is not completethé XDK, distribution is not
realized by the constraint solver script but by the node traimg functors of the principle
which requires distribution. The reason for this is thatyothle principles themselves (but
not the script) know what attributes they are using and witlthese attributes must be
distributed.

In practice, distribution is almost solely necessary touemsompleteness of the Graph
principle, whose principle definition was displayed in j8aBove. Here, distribution is real-
ized by the node constraint functoéraphDist’ displayed in Figure 8.11 with prioritg0.6
" GraphDist’ distributes over the sets of mothers of each node (lines d4r@)the sets of
daughters sorted by their edge label (lines 8-11).

Factoring out distribution from the constraint solver ptimto node constraint functors en-
ables us to easily obtain a second Graph principleinciple.graphConstraints” without

The priority of distribution node constraint functors shibbe less than the lowest priority of the other node
constraint functors: this way, constraint propagatiorraged some time before distribution ensues.

115



8. Constraint Parser

1) proc {Constraint Nodes G Get Di m Get Ar g}
2) DIDA = {GetDim ' D}

3)
4) Mot her sMs = { Map Nodes
5) fun {$ Node} Node. DI DA. nodel . not hers end}

6) {Distributor.distributeM Mthershs}

8) Daught ersLMRecs = {Map Nodes

9) fun {$ Node} Node. DI DA. npdel . daught ersL end}
10) in
11) {Distributor.distributeVMRecs Daught er sLMRecs}
12) end

Figure 8.11." GraphDist" node constraint functor

distribution by simply adapting the principle definition:
defprinciple "principle.graphConstraints" {

constraints {"G aphMakeNodes": 130 (8.15)
"G aphCondi tions": 120}
edgeconstrai nts {"G aphMakeEdges": D}}

The effect is that the graph models the dimension on whichptiteciple is used are not
enumerated. The genius of this is that it givesunsglerspecificatiorfe.g. of PP-attachment,
scope etc.) for free without further stipulation: even opbrtial analyses already contain
information about dominance, encoded directly in thelaitesdown anddownL, for example.
We will make use of this in chapter 10 below for modeling scapderspecification, and for
the interface to CLLS in appendix E.

8.4. Example Principles

In this section, we present three additional example puiasifor further illustration: the
LinkingEnd principle demonstrates a constraint on mudtgimensions, and the Order princi-
ple and the Projectivity principle show how constraints lo@ érder of nodes are expressed.

8.4.1. LinkingEnd

The LinkingEnd principledemonstrates how multiple dimensions can be constraireab- |
stracts over three dimensionst( D2 andD3) and the argumeritinkEnd, whose type is a
vector used to map edge labels bnto sets of edge labels a. The principle, whose
declarative semantics are given in principle 10 in chaptés #mplemented by the edge con-
straint functor' LinkingEnd" over edges on dimensi@1i:
def principle "principle.linkingEnd" {

dins {DL D2 D3}

args {LinkEnd: vec(label (D1) set(label (D2)))}

defaul ts {LinkEnd: ~.D3.entry.|inkEnd} (8.16)

nodel {:}

constraints {:}
edgeconstraints {"LinkingEnd": D1}}

116



8. Constraint Parser

The edge constraint functOi.inkingEnd" is displayed in Figure 8.12. By the principle
definition in (8.16), it constrains the edges on dimengian It first obtains the value of
the argument LinkEnd’ in line 6 asLinkEndM, and then stipulates thatlifinkEndM is non-
empty (line 8), then there exists an edge label in the setohming edge labels of the daughter
Node2 on dimensiord2 which is an element dfinkEndM (lines 9-10).

1) fun {Constraint Nodes G GetD m Cet Arg3}
2) D2DI DA = {GetDim ' D2’}

(

(

( 3)

( 4 Proc =

( 5) proc {$ Nodel Node2 LA}

( 6) Li nkEndM = {Get Arg3 ' Li nkEnd” Nodel Node2}

(7

( 8 ({FS.reified. equal LinkEndM FS. val ue. enpty}=:0)=<:

( 9 {FS.reified.include

( 10) {FS.include $ Node2. D2DI DA. nodel . | abel s} Li nkEndM

( 11) end

(12) in

( 13) Proc

( 14) end

Figure 8.12." LinkingEnd" edge constraint functor

8.4.2. Order

The XDK provides two implementations of tl@rder principle one reflecting precisely the
declarative semantics of the Order principle given in pglec7 in chapter 4, and a non-
lexicalized and optimized implementation based on (Ducki®3). Since it is more straight-
forward to explain and more consistent with the declaraamantics, we explain the former.
The Order principle abstracts over a dimensibpgnd has one argumeriirder): a set
of pairs of edge labels oh plus the special anchor labél'". The set represents a strict
partial order on the edge labelsiéind the anchor labél"" standing for the node itself. The
principle is implemented by the node constraint fun€torder™ with priority 120.

defprinciple "principle.order" {

dins {D}

args {Order: set(tuple((label (D)|{"""}) (label (D)|{"""})))

defaults {Order: _.D.entry.order} (8.17)
nmodel {:} .

constraints {"Order": 120}
edgeconstraints {:}}

We show the node constraint functobrder” in Figure 8.13. What does it do? After
obtaining the list of edge labels\s on dimensionri D' (lines 2-5), lines 7—8 create a lattice
for the domain of edge labels plus the anchor labél, and line 9 creates a lattice for pairs
of this domain. Line 11 obtains the set of all nodesieSetM. Then, the node constraint
functor loops over all node recordisde (line 13), obtains the value of the argument variable
" Order’ for Node (line 14), and the model recottbdel (line 15). Then, for all labelsA1
andLA2, encoded as an integer in line 19, the functor creates th¢slias follows:

117



8. Constraint Parser

e if both LA1 andLA2 equal the anchor labél" , thenMs is empty—in this case, nothing
needs to be ordered (lines 22-23)

* if LA1 equals the anchor label, then the list orders the nede itself (i.e., itseq set)
before the daughters of the node with edge lalael (lines 24-25)

« if LA2 equals the anchor label, then the list orders the daughtiéinsedge labelLA1
before the node itself (lines 26—-27)

* else the daughters with edge label are ordered before the daughters with edge label
LA2 (lines 28-29)

Ms is then transformed into the lisis1 in lines 32—-42" For each set iffs, if the integerI
encoding the tupléLA1 LA2| is in the setOrderM, thenM is contained invs1, otherwise, it
is replaced by the empty set (lines 36—40). Then, the crdicial constraint is in line 44,
stipulating that for all element$1 andM2 in the listMs1, if M1 precede$12 in Ms1, then all
elements off1 must precede all elementsd.

8.4.3. Projectivity

The Projectivity principle(cf. principle 4 in chapter 4) abstracts over a dimensiyrafid is
implemented by the node constraint functétrojectivity” with priority 130:
defprinciple "principle.projectivity" {
dins {D}
args {:}

defaults {:} (8.18)
nmodel {:}

constraints {"Projectivity": 130}
edgeconstraints {:}}

The node constraint functdrProjectivity"” is displayed in Figure 8.14. For all nodes
Node, it stipulates that the set of nodes below or equal the nodst el convex, i.e., a set
without holes (line 5).

8.5. Generation

The constraint solver was so far only geared towards pardtrig however easy to make it
reversible and use it also for generation. To this end, wg oeéd to:

1. introduce the new model record attribgtes representing the eventual position of the
node

2. state all constraints on the order of nodes on the positistead of the indices

We realize this idea by creating reversible versions of thde©principle and the Projectivity
principle.

"The code in lines 32—44 could be less awkward if Mozart/Ozeued a reified version of the constraint
FS.int.seq.

118



8. Constraint Parser

1) proc {Constraint Nodes G CetD m Get Arg2}
2) DIDA = {GetDim' D}

3) Dl DA2Label Lat = G dl DA2Label Lat

4) Label Lat = { DI DA2Label Lat DI DA}

5) LAs = Label Lat. constants

6)

7) LAs1 = "~ | LAs

8) Label 1Lat = {Donmai n. neke LAs1}

(

(

(

(

(

(

(

(

(9 Label 1PairLat = {Tupl el. make [Label 1Lat Label 1Lat]}
( 10)

( 11) NodeSet M = Nodes. 1. nodeSet

( 12) in

( 13) for Node in Nodes do

( 14) OderM = {GetArg2 ' Order’ Node}

( 15) Model = Node. DI DA. npdel

( 16) in

(17) for LAL in LAs1l do

( 18) for LA2 in LAsl1l do

(19 I = {Label 1PairLat.as2l [LAl1 LA2]}

( 20)

( 21) Ms =

( 22) if LALl==""" andthen LA2==""" then

( 23) nil

( 24) el seif LA1l==""" then

( 25) [ Model . eq Model . daught er sL. LA2]

( 26) el seif LA2==""" then

( 27) [ Model . daught er sL. LA1 Model . eq]

( 28) el se

( 29) [ Model . daught er sL. LA1 Model . daught er sL. LA2]
( 30) end

( 31)

( 32) Msl = {Map M5

( 33) fun {$ M

( 34) ML = {FS. subset $ NodeSet M

( 35) in

( 36) {FS.reified.include | OderM=<:
( 37) {FS.reified. equal M M}

( 38)

( 39) ({FS.reified.include | OderM=:0)=<:
( 40) {FS.reified. equal ML FS.val ue. enpty}
( 41) ML

( 42) end}

( 43) in

( 44) {FS.int.seq M1}

( 45) end

( 46) end

( 47) end

( 48) end

Figure 8.13.!" Order" node constraint functor

8.5.1. Reversible Order Principle

To the principle definition (8.17) of the Order principle, agd the model record attribupes
whose type isnt, and the additional node constraint funckot-derDist for distributing on

119



8. Constraint Parser

1) proc {Constraint Nodes G Get D m Get Arg2}
2) DIDA = {GetDim ' D}

(

(

( 3) in

( 4) for Node in Nodes do

( 5 {FS.int.convex Node. Dl DA. nodel . eqdown}
( 6) end

( 7) end

Figure 8.14.!" Projectivity" node constraint functor

it. ROrder is the reversible version of the node constraint funotater:
def principle "principle.rOder" {

dims {D}

args {Order: set(tuple((label(D)|{"~"}) (label(Dy|{"*"})))

defaults {Order: _.D.entry.order}

nodel {pos: int} (8-19)

constraints {"ROrder": 120
"ROrderDist": 90}
edgeconstraints {:}}

Figure 8.15 shows the distribution functokOrderDist" , and Figure 8.16 the modifications
of the node constraint functér0rder” of Figure 8.13, which yield the reversibi&0rder"
node constraint functor.

1) proc {Constraint Nodes G GetDi m Get Arg}
2) DIDA = {GetDim' D}

(

(

( 3

( 4 PosDs = {Map Nodes

( 5) fun {$ Node} Node. DI DA. nodel . pos end}
( 6) in

(7 {Distributor.distributeDs PosDs}

( 8) end

Figure 8.15." ROrderDist" node constraint functor

The reversible node constraint functor defines the functiaiexM2PosM mapping sets of
indices to sets of positions (lines 6). The function is definsing the lisPosMs created in
lines 2-5, which encodes a mapping from indices to sets dfipos: theith list element
denotes the set containing only the position of the node indlexi. Given a set of indices
IndexM, IndexM2PosM uses the selection union constraint to efficiently obtagnuthion of all
positions corresponding to

8.5.2. Reversible Projectivity Principle

Making the Projectivity principle now works analogouslg,j it also makes use of the function
IndexM2PosM.

8.5.3. Reversible Constraint Parser

When we leave the positions the nodes underspecified bedtrimg, the constraint solver
does all the work for us, and finds the right positions of theds@automatically. By equating
the position of each node with its index, we can easily gebtgparsing behavior back.

120



8. Constraint Parser

1) proc {Constraint Nodes G Get D m Get Arg2}
2) PosMs = {Map Nodes

(

(

( 3 fun {$ Node}

( 4) {FS. val ue. make Node. DI DA. nodel . pos}
( 5 end}

( 6) fun {I ndexM2PosM I ndexM {Sel ect.union PosMs | ndexM end
(7

( 8 DIDA = {GetDim ' D'}

( 9 Ce

( 10) for LAL in LAsl1l do

( 11) for LA2 in LAsl1l do

( 12) | = {Label 1PairLat.as2l [LA1 LA2]}

( 13)

( 14) M =

( 15) if LA1=="7" andthen LA2==""" then

( 16) ni |

( 17) el seif LA1==""" then

( 18) [{I ndexM2PosM Mbdel . eq}

( 19) {1 ndexM2PosM Model . daught er sL. LA2}]
( 20) el sei f LA2==""" then

( 21) [{I ndexM2PosM Mbdel . daught er sL. LA1}
( 22) {I ndexM2PosM Mbdel . eq}]

( 23) el se

( 24) [{I ndexM2PosM Model . daught er sL. LA1}
( 25) {I ndexM2PosM Mbdel . daught er sL. LA2}]
( 26) end

( 27) Ce

( 28) end

Figure 8.16." ROrder" node constraint functor

The reversed constraint parser can be used e.g. for delgadgyngenerating all possible
linearizations for a multiset of words, the grammar writen qquickly spot overgeneration. It
can also be applied for generation from a set of semantralggbut here, it is not at all clear
how many words are required to realize the literals beforestaint solving. First attempts to
cope with this can be found in (Debusmann 200end (Pelizzoni & das Gracas Volpe Nunes
2005). Another smart approach based on TAG is describedahgik& Striegnitz 2002).

8.6. Runtime

In chapter 6, we have shown that XDG is NP-hard. However, acfce, the implementation
of XDG as the XDK constraint parser fares better than expedae least for handcrafted
grammars.

8.6.1. Handcrafted Grammars

Handcrafted grammars can already be parsed reasonahblyFaisexample, using a test set
of 60 sentences ranging from 4-44 words, we have profiled tAmigardiss.ul from the
XDK distribution, which implements the grammar of part Il the thesis, with all its ten
dimensions i, LP, ID/LP, PA, SC, PA/SC, PS, IS, ID/PA andPd1S). In the table below, we
show the minima, maxima and averages of the number of wdrdgirhe required for solving

121



8. Constraint Parser

(“Time (s)”), the number of solutions, failures and the sbatree depth (“Sol/Fail/Depth”),
the number of lexical entries per word, i.e., their lexicalaguity (“Amb”), and the number
of constraint variables (“Vars”) and propagators (“Prgpetroduced by the XDK constraint
parser on an AMD Athlon with 1.2 GHz and 512 MBytes of RAM:

| || Words| Time (s)| Sol/Fail/Depthl Amb [ Vars [ Props |

min 4 0480 |1/0/1 1 | 13547 | 63950 (8.20)
max 44 32880 |2/2/3 36 1342027 3501430 '
average| 9.22 | 2.440 1.05/0.2/1.25| 3.00 | 788997 | 2798790

TDG grammars, using only two dimensions (ID/LP), can be gdusore efficiently. For
example, the grammar developed in (Debusmann 2001), whkiclaliedDiplom.ul in the
XDK distribution, has the following profile:

| [| Words| Time (s)| Sol/Fail/Depth | Amb | Vars [ Props |

min 3 0.020 |0/0/1 1 |603 |2318 (8.21)
max 64 8.360 6/2/6 9 12803 | 338184
average| 7.89 |0.184 1.14/0.36/1.48| 2.12 | 158271 | 144369

Optimizing the XDK constraint parser was not in the focushefitesearch for thesis. Hence,
the parser is almost unoptimized, and there is ample roonegtimization, which we see
as our next steps. Our ideas include extensive profiling efpidwrser, the advent of global
constraints, and the use of the new and more effid@todeconstraint library (Schulte &
Stuckey 2004).

8.6.2. Automatically Induced Grammars

We have also applied the XDK constraint parser to grammaksced from treebanks. Bojar
(2004) describes a series of experiments of inducing adscgke grammar frorRrague De-
pendency Treebar(®DT) (Bohmova, Hajt, Hajicova & Hladka 2001) for Czech. His gram-
mars heavily overgenerated, which lead, in combinatioh wihaustive search of the XDK
parser, to a combinatorial explosion. Mohl (2004) induceghgmars from th&dIGER tree-
bank(Brants 1999) for German, using an induction technique logeel in (Korthals 2003),
but the resulting grammars could also only be parsed ineffisi by the XDK parser, and
suffered from undergeneration.

A major problem of the approaches of Bojar and M6hl was thk td@ny statistical sup-
port, e.g. byguided search To find out whether guided search can improve the efficiency
of XDK large-scale parsing, Narendranath (2004) expertetewith grammars induced from
the Penn TreebanKPTB) (Marcus, Santorini & Marcinkiewicz 1993) for English, elop-
ing for the first time the ideas for guided search developediG in (Dienes, Koller &
Kuhlmann 2003). Her grammars heavily overgenerated, ligg@is, but she could success-
fully show that guided search can considerably prune theckespace in comparison to ex-
haustive search: for unseen sentences, the time for entingeifze solutions could be reduced
by factor 5, the number of failures by factor 50, and the nunaibsolutions by factor 1000.
For already seen sentences, the effect was even more posifvtimes less solutions, 100
times less failures, and 1000 times less solutions. We camje that the addition of other

122



8. Constraint Parser

statistical techniques such aspertaggingJoshi & Bangalore 1994, Clark & Curran 2004)
could further boost the efficiency of XDK large-scale pagsin

8.7. Summary

This chapter introduced the constraint parser of the XDK.ilWstrated how to model multi-
graphs using finite sets of integers, and how the CSP for thsti@nt parser is set up by an
Oz script making use of both the functionality of the lattfoactors and the principles from
the extensible principle library of the XDK. The principlage realized using node and edge
constraint functors. The constraint parser can be adaptadttin a reversible way, i.e., also
for generation. The parser is already reasonably fast oflenmiaandcrafted grammars, but
could not be shown to scale up to large-scale parsing. Thmstisurprising given that the
parser is yet almost unoptimized, and lacks statisticapsttp The multitude of possibili-
ties for optimization makes us optimistic that large-sqadesing is possible with XDG, and
attempting this will be one of our next steps.

123



Part lll.

Application

124



9. Syntax

In this part of the thesis, we finally apply XDG to natural laage. We present an example
XDK metagrammar for a fragment of English, which covers thguistic aspects of syntax,
semantics and phonology. This grammar clearly demonsttlagemodularity of XDG with re-
spect to grammar development, allowing us to develop thedsions of syntax (this chapter),
semantics (chapter 10) and phonology (chapter 11) as indepémodules, whose relation we
establish subsequently through the syntax-semanticdaneeand the phonology-semantics
interface (chapter 12). We will show that by this modularihe phenomena covered by the
grammar need not be explicitly specified, but rather emexya the intersective demands of
its dimensions. The grammar covers control and raisingtoectsons, auxiliaries, passives,
guestions, topicalization, subordinate sentences aativeclauses. We have deliberately left
out coordination for simplicity. An account of coordinatisvithout ellipsis in XDG can be
found in (Bader et al. 2004). We must leave an account fordination including ellipsis to
future work.

This chapter introduces the dimensions of syntax, whosgi@o@ the overall architecture
of the grammatr is displayed in Figure 9.1. Following the artmf German syntax in TDG
described in (Duchier & Debusmann 2001, Debusmann 2001)ne&el syntax using the
following three dimensions:

1. Immediate Dominanc@D)
2. Linear Precedencé.P)
3. ID/LP

where thelD dimension models the hierarchical syntactic structurerbyrordered tree la-
beled bygrammatical functionsand theLp dimension models word order by ordered projec-
tive trees labeled by topological fields. TingLP dimension acts as the interface of tbeand

LP dimensions.

9.1. Immediate Dominance Dimension

The models of the Immediate Dominanage)(dimension are unordered trees whose edge
labels represent grammatical functions like subject anpelabb\We call anb analysisiD tree,

1in the original TDG account, the relation between thendLp dimensions is constrained without the defini-
tion of an additionalb/LP dimension, which we introduce here for modularity.

125



9. Syntax

Phonology

Figure 9.1.: Syntax in the overall architecture of the exiengpammar

and show an example tree of the sentence below in Figure §.2:

Peter admires the woman who smiles. (9.1)
0
,eu‘d\/?\obj\
2 : o B~
: o
1 2 3 4 5 6

Peter admires the woman who smiles

Figure 9.2.1D tree ofPeter admires the woman who smiles.

As in chapter 2, theD tree is equipped with an additional root node correspontiing
the end-of-sentence marker (here: the full stop), whictormected to the finite verb (here:
admireg by an edge labeleot. Peteris the subject ohdmires andwomanthe object.the
is the determiner oivoman andwomanis modified by the relative clause (edge laks] who
smiles In the relative clausesmilesis the head and the subjectigo,

Figure 9.3 shows another examyetree, this time of the question

Who does he say Mary thinks smiles? (9.2)

where the finite verloloeshas the subjedie and the base form infinitival complement (edge
labelvbse) say sayin turn is the head of the subordinate clause headdtibks which is the

2For visualization, we have to fix an order on the nodes. Faitgave choose the order of the corresponding
words in the sentence.

126



9. Syntax

head of another subordinate clause headeshtiles The subject othinksis Mary and that of
smilesis the wh-pronounwvha. This example demonstrates that simoerees are unordered,
no compromises have to be made to bring word order in line thghntuitive analysis of the
sentence in terms of grammatical functiobbounded dependencigsch as the dependency
betweersmilesand its subjecivhoare not considered “unbounded” at all, since order and thus
the distance between the words is simply irrelevant onthd@imension.

Who does he say Mary thinks smiles

Figure 9.3.1D tree ofWho does he say Mary thinks smiles?

As a third example, we show the analysis of the sentence
Peter persuades Mary to smile. (9.3)

in Figure 9.4. This is an example of a subject-to-object @monstruction, where the object
Mary of the control verlpersuadess regarded as the “deep subject” of the embedded verb
smile As the analysis shows, control relations are not repregemh theb dimension. We
think that they belong on the “deeper” dimensiompaédicate-argument structufea) instead
(see section 10.1), and not on the more “surface-orientediimension. Another reason is
that if we modeled control on th® dimension, we would have to give up the invariant that
ID analyses are trees, which would severely complicate tlegfatte between th» andLp
dimensions.

su‘d\/(?% vinf
g
: O/

e

(:)/

1 2 3 4 5

Peter persuades Mary to smile

Figure 9.4.1D tree ofPeter persuades Mary to smile.

9.1.1. Types

We continue the explanation of the dimension by introducing its types of edge labels and
attributes.

127



9. Syntax

Edge Labels. We define the type of edge labels on tbedimension as follows:

deftype "id.label" {adj adv conp det iobj obj part pnrod pobj1l pobj2 prepc
rel root sub subj vbse vinf vprt} (9_4)
def | abel type "id. | abel "

and show an overview of the edge labels and their correspgrgtiammatical functions in
Figure 9.5. They consist of:

standard grammatical functions: adjectiee), adverb &dv), determiner det), indi-
rect object {obj), direct object ¢bj), and subjectgubj)

comp, the complementizer of a subordinate clause (#hgt in Peter says that Mary
laughs)

edge labels concerned with prepositions. We distinguispgsitional objects (edge la-
belspobj1 or pobj2) and prepositional modifiergiod). The complement of a prepo-
sition has labeprepc (e.g.Peterin to Pete). We distinguishpobj1 andpobj2 for
examples likeA book is given to Peter by Marwhere two prepositional objects must
be distinguishedt¢ Peterandby Mary).

rel andsub, the incoming edge labels of finite verbs heading a relatimase and a
subordinate clause, respectively

vbse, vinf andvprt, the labels of non-finite verbsise: base form infinitiveyinf
full infinitive with particleto, vprt: past participle), angart, the label of particles

root, the incoming edge label of the finite verb heading the sesten

Attributes.  We define the attributes of the dimension with respect to the type afree-
ment tuple$ id.agr" consisting of person (first, second or third), number (sliagor plural),
gender (masculine, feminine, neuter) and case (nominatigecusative):

deftype "id.person" {first second third}

deftype "id.nunber" {sg pl}

deftype "id.gender" {masc fem neut} (9_5)
deftype "id.case" {nom acc}

deftype "id.agr" tuple("id.person" "id.nunmber" "id.gender" "id.case")

Furthermore, we define the typed.pagr" of preposition types, which consists of the prepo-
sitions covered by the grammar:

deftype "id.pagr"” {at by in of on to with} (9_6)

The non-lexical attributes consist of the two attribuigs (of type" id.agr" ) andpagr (of

type’

"id.pagr"). agr denotes the agreement tuple aragr the preposition type selected for

the node:

defattrstype {agr: "id.agr"
pagr: "id.pagr"} (9-7)

128



9. Syntax

| edge label  grammatical function

adj adjective

adv adverb

comp complementizer

det determiner

iobj indirect object

obj object

part particle

pmod prepositional modifier
pobjl prepositional object 1
pobj2 prepositional object 2
prepc | complement of a preposition

rel relative clause
root root

sub subordinate clause
subj subject

vbse base form infinitive
vinf full infinitive

vprt past participle

Figure 9.5.1D edge labels and corresponding grammatical functions

The lexical attributes include the attributés and out (representing the in and out valen-
cies of the word),agrs (the set of licensed agreement tuplegsjgrs (the set of licensed
preposition types), angbbj1 andpobj2 (the preposition types licensed fosbj1 andpobj2
dependents), respectively:
defentrytype {in: valency("id.|abel")

out: valency("id.label™)

agrs: iset("id.agr")

pagrs: iset("id. pagr") (9-8)

pobj 1: iset("id.pagr")

pobj 2: iset("id.pagr")}

9.1.2. Principles and Lexical Classes

TheID dimension is further characterized by a set of principlatlarical classes.

Models. We start by constraining the models on tlmedimension to be trees using the
Graph principleand theTree principle

useprinciple "principle.graph" { dinms {D: id} }
useprinciple "principle.tree" { dins {D. id} } (9-9)

Subcategorization, Modification and Categorization. With the Valency principle we
modelcategorizationsubcategorizatiomandmodification We apply the principle as follows,

using by the lexical attributeimn andout:
useprinciple "principle.val ency" {
dins {D: id}
args {In: _.D.entry.in (9-10)
Qut: _.D.entry.out}}

129



9. Syntax

Subcategorization determines the number of syntacticrabpes of a node using the lexical
attributeout. For example, the lexical classid fin" states that finite verbs always require
a subject:

defclass "id_fin" {
dimid {out: {subj!}}} (9.11)

Modification is also modeled using the Valency principler Example, the following lexi-
cal classes state that main verbs{ main") can be modified by arbitrary many adverbs and
prepositional modifiers, and that auxiliary verbs { aux") cannot be modified:

defclass "id_main" {
dimid {out: {adv+ pnod*}}}

(9.12)

defclass "id_aux" {
dimid {out: {}}}

Categorization states constraints on the incoming edgeadaih the nodes using the lexical
attributein. For example, a finite verb can either be the root of a senteaheehead of a
subordinate clause or the head of a relative clause, whicteyrire in the following lexical

classes: R
defclass "id fin_root" {

"id fin"
dimid {in: {root?}}}
defclass "id_fin_sub" {
“id fin"
dimid {in: {sub?} (9.13)
out: {conmp?}}}
defclass "id finrel" {
"id fin"
dimid {in: {rel?}}}
where as the root of a sentence, the finite verb must have ingoaage labekoot, as the
head of a subordinate clauseb3, and as the head of a relative clause.

Agreement. We realize the morphologicagreementf heads and dependents in terms of
person, number, gender and case usingireprincipleand theAgreement principléprinci-
ples 8 and 9 in chapter 4):

useprinciple "principle.agr" {
dims {D: id}
args {Agr: _.D. attrs.agr
Agrs: _.D.entry.agrs}}
useprinciple "principle.agreement" { (9_14)
dims {D: id}
args {Agrl: ~. D attrs.agr
Agr2: _.D attrs.agr
Agree: {det subj}}}

By the Agr principle, the value of the non-lexical attributger must be an element of the
lexical attributeagrs. By the Agreement principle, for all edges labelset andsubj, the
head must agree with its dependent, i.e., the values of thaxical attributeagr of the head

and its dependent must be the same to excludeeegearcherer most researcherSimilarly,
subjects must agree with their verbal heads to excludéHe gleepor They sleeps

3As the head of a subordinate clause, it can also have an aptiomplementizer.

130



9. Syntax

Government. Governments also concerned with agreement. In XDG, we define govern-
ment as describing the fact that some heads “govern” theeamet of their dependentsFor
instance, finite verbs govern the case of their subject tcob@mative. We model government
using theGovernment principlewvhich has the declarative semantics that for each edgevrom
toV labeled, the agreement tuple of the dependér{given by the non-lexical attribuiggr)
must be an element of the set of agreement tuples licensdeethetds for labell (given by

the lexical attributeyovern.

Principle 15 (Government)

governmenf= v,V : VI :

v—ogV = (d V).agr € (d v).lexgovernl (9.15)

In the XDK, we can specify the value gbvernnon-lexically to minimize the lexical de-
scription, stating that all subjects are governed to haveinative agreement, and all objects
and complements of a preposition to have accusative agreaem® other dependents are

constrained. - N
useprinci ple "principle.government" {

dims {D: id}
args {Agr2: _.D. attrs.agr
Govern: {subj: ($ non (9-16)

obj: ($ acc)
prepc: ($ acc)}}}

Our grammar reuses the idea of government to make verbsrgthepreposition of their
prepositional objects. For example, the ditransitive \gxe only licenses the prepositional
objectto for its pobj1 dependent, as indicated below:

Peter gives a book to Mary . 9.17)
*Peter gives a book at Mary . )

We model this using the Government principle a second timeagddition to a second use of

the Agr principle to select for each node a preposition typmfthe set of licensed preposition
types:
useprinciple "principle.agr" {
dins {D: id}
args {Agr: _.D attrs.pagr
Agrs: _.D.entry.pagrs}}
useprinciple "principle.government" { (9_18)
dims {D: id}
args {Agr2: _.D. attrs.pagr
Govern: {pobj1l: ~.D.entry.pobj1l
pobj 2: ~.D.entry. pobj 2}}}

Here, the lexical attributgobj1 determines the licensed preposition typesdeisj1 depen-
dents, angobj2 for pobj2 dependents. To model the contrast (9.17) abgieswould thus

set its lexically attributerobj1 to {to} to state that it only acceptsbjl dependents with
preposition typeo.

4Governmentis not uniformly defined in the literature. Ottiefinitions can be found e.g. for GB in (Chomsky
1981), or for MTT in (MelCuk 1988).

131



9. Syntax

9.2. Linear Precedence Dimension

We describe word order using the Linear Precedeneg dimension, whose models are
ordered and projective trees, and whose edges are labeléabblogical fields We call
LP analysed P trees Topological fields stem from German descriptive lingastfHerling
1821, Erdmann 1886), and have recently been rediscoverédrreworks such as HPSG
(Penn 1999, Kathol 2000) and MTT (Gerdes & Kahane 2001). énthleory, sentences are
subdivided into sequences of substrings, and these suipsare called topological fields. For
German, the basic topological field structure is the follayvi

| Vorfeld | left bracket| Mittelfeld | right bracket Nachfeld| (9.19)

where theVorfeld (“pre-field”) typically contains the subject, thMittelfeld (“mid-field”) the
other nominal complements such as indirect and direct tdhjand théNachfeld(“post-field”)
subordinate clauses or extraposed relative clauses. Thelfield is surrounded by the finite
verb, often called th&eft brackef and its non-finite verbal dependents in tight bracket In
the Mittelfeld, the nominal complements can be freely peadf

In (Duchier & Debusmann 2001) and (Debusmann 2001), topodbjelds theory serves
as the basis for an elegant analysis of German word ordeiopiema on thepP dimension of
TDG. Figure 9.6 shows an example TR@ analysis of the following German sentence:

Maria hat dem Mann heute einen Korb gegeben, der lacht.
Mary has the man today a basket given,  who laughs. (9.20)
“Mary has given the man who laughs a basket today.”

where the finite verlnatis in the left bracket. Its subjedfaria is in the Vorfeld (edge label
vf), and the Mittelfeld fnf) is filled by the indirect objeatem Mannthe advertheuteand the
direct objeckinen Korb The right bracketrpf) is filled by the past participlgegeberand the
Nachfeld qf) by the extraposed relative clauder lacht

an 0 )

: : O/de“/? f /¢e“/<f) f PR
: : . : : (@] : : 8 :
1 2 3 4 5 6 7 8 ) 10

Maria hat dem Mann heute einen Korb gegeben der lacht

Figure 9.6.: TDGLP tree ofMaria hat dem Mann heute einen Korb gegeben, der lacht.

In this thesis, we show that topological fields theory cao ks transferred to English. As
an example, Figure 9.7 shows the analysis of the translation of (9.20), where the finite
verbhasis in the left bracket, and its subjeltary in its Vorfeld, as in the German example.
The past participlgivenis however not in the right bracket but is also positionechia left
bracket (edge labébf). The indirect objecthe manand the direct objec basketare both in

SThis is a simplification: generally, the elements of the Mfttld can be freely permuted, but there are excep-
tions, e.g. the order of pronouns, which is fixed.

132



9. Syntax

the Mittelfeld (mf1 andmf2). As relative clauses cannot be extraposed in English glagive
clausewho laughdirectly follows the modified nouman The adverkiodaycannot be part
of the Mittelfeld. It is positioned at the end of the sentemte the field for adverbs of time
(tadvf).

/&\ L %y mfy T =tadvF
0 Y \/o\
: : z ST el P

: /“)‘0‘

1 2 3 a 5 6 7 8 9 10

Mary has given the man who laughs a basket today

Figure 9.7..LP tree ofMary has given the man who laughs a basket today.

9.2.1. Types

Edge Labels. The type of edge labels on the dimension is defined as follows:

deftype "I p.label" {adjf conpf detf fadvf |bf nfl nf2 nf padjf padvf prepcf
rbf relf root rprof tadvf vf vvf} (9_21)
defl abel type "I p. | abel "

We show an overview of the edge labels and their correspgndipological fields in Fig-
ure 9.8. They consist of:

» fields corresponding directly to the fields of topologicalds theoryvf (Morfeld), 1bf
(left bracket field)mf 1 andmf 2 (Mittelfeld), rbf (right bracket field) andf (Nachfeld).
Contrary to German, where the words in the Mittelfeld canrbelf permuted, English
permits less word order variation: indirect objects musiagis precede direct objects.
We capture this by splitting the Mittelfeld into two fieldsf 1 for indirect objects and
mf2 for direct objects. The left bracket fieldif) is the landing site for base form
infinitives and past participles, the right bracket fietf() for full infinitives, and the
Nachfeld @f) for subordinate clauses.

* the Vor-Vorfeld (“ pre-pre-field”) (vvf), to the left of the Vorfeld, for fronted material
such as wh-pronouns (e.gho in Who does Mary like? and for particles (e.go in
to believd, a field for complementizers in subordinate clausesff), and a field for
relative pronouns in relative clauseetof)

* three fields for adverbs and prepositional modifiefsdvf for adverbs of frequency
(e.g.oftenin Peter often sleepspadvf for adverbs of place or manner (eagrefullyin
Peter reads the book carefullyandtadvf for adverbs of time (e.qiowin Peter reads
the book carefully noyv

133



9. Syntax

« four fields for noun phrases: the determiner fieldt(f), the adjective fieldddjf), the
field (padjf) for prepositional modifiers of nouns, which we cpiepositional adjec-
tives and the relative clause fieldd1f)

+ afield for the complement of a prepositigsrépct)

* root, the label of the edge from the root (e.g. the full stop) tofihiée verb

| edge label topological field |
adjf adjective field
compf complementizer field
detf determiner field
fadvf adverbs of frequency field
1bf left bracket field
mfl Mittelfeld 1
mf2 Mittelfeld 2
nf Nachfeld
padvf adverbs of place or manner field
padjf prepositional adjective field
prepcf | complement of a preposition field
rbf right bracket field
relf relative clause field
root root
rprof relative pronoun field
tadvf adverbs of time field
vf Vorfeld
vvf Vor-Vorfeld

Figure 9.8..LP edge labels and corresponding topological fields

Attributes.  TheLp dimension defines the following lexical attributes:

deftype "I p.label 1" "I p.label™ | {"""}
defentrytype {in: valency("lp.|abel")
out: valency("lp.label™) (9-22)

order: set(tuple("lp.labell" "lp.label1"))}

wherein andout stipulate the licensed incoming and outgoing edgesatdr a strict partial
order on the outgoing edges and the special anchor 1abel

9.2.2. Principles and Lexical Classes
Models. We constrain the models of the dimension to be projective trees:

useprinciple "principle.graph" { dins {D: Ip} }
useprinciple "principle.tree” { dins {D: |p} } (9_23)
useprinciple "principle.projectivity" { dins {D: |p} }

134



9. Syntax

Topological Valency and Order. We use thevalency principleand theOrder principle
(principle 7 in chapter 4) to constrain the topological stawe induced by the nodes. The
Valency principle is lexicalized by the lexical attributas andout, and the Order principle
by the lexical attributerder:

useprinciple "principle.val ency" {
dims {D: |p}
args {In: _.Dentry.in
Qut: _.D.entry.out}} (9_24)
useprinciple "principle.order" {
dims {D: |p}
args {Order: _.D.entry.order}}

In the following table, we show the topological structurduced by finite verbs and full
infinitives:

Vor-Vorfeld Vorfeld | left bracket | Mittelfeld | right bracket] Nachfeld \ (9 25)
compf | rprof | vvf v fadvf [1bf | mfl|[mf2 rbf padvf | tadvf | nf | ’

where the Vor-Vorfeld contains at most one fronted node:raptementizer in theompf of a
subordinate clause, a relative pronoun intheof of a relative clause, a particle in thef of
a full infinitive, or any other fronted node in tke f of a matrix clause. The Vorfeldf and the
Mittelfeld (mf 1 andmf2) contain subjects, indirect objects and direct objectpeetively. The
left bracket can be filled by arbitrary many adverbs of fregpyein thefadvf, followed by at
most one base form infinitive or past participle in the letidket fieldlbf. The right bracket
contains arbitrary many full infinitives or prepositionddjects in the right bracket fielgbf.
The Nachfeld contains arbitrary many adverbs of place omeaim the fieldbadvf, followed
by arbitrary many adverbs of time in thedvf, and followed by at most one subordinate
clause in thenf.

To realize this topological structure, we first define théoleing lexical class:

defclass "I p_fin" {
dimlp {out: {Ibf? fadvfs nf1? nf2? rbf* padvfs tadvfs nf?}}} (9.26)

where we state that finite verbs may have at most one depeindéastleft bracket field{bf),
arbitrary many dependents in the fields for adveflagi(f, padvf andtadvf), at most one in
mf1 and at most one imf2, arbitrary many in the right bracket fieldif) and at most one in
the Nachfeld {f).

Depending on their context, we further specify the topatafstructure of finite verbs by
the following lexical classes, whetép fin root" describes heads of matrix clauses, which
have incoming edge labebot and license at most one dependent in the Vor-Vorfeld and
precisely one (the obligatory subject) in the Vorfeldlp fin sub" describes finite verbs
heading a subordinate clause, which can be fronted intoah&dffeld or extraposed into the
Nachfeld, and which license at most one complementizer anabat one dependent in the
Vorfeld. Contrary to matrix clauses, the Vorfeld is not ghaliory since it could also be ex-
tracted, as in example (9.2), where the subjecoilesis extracted. Finally; 1p fin rel”
describes finite verbs heading a relative clause. They mrequie dependent in the relative

135



9. Syntax

pronoun field and license at most one in the Vorfeld:

defclass "l p_fin_root" {
"l p_fin"
dimlp {in: {root?}
out: {vvf? vfl}}}

defclass "I p_fin_sub" {
"lp_fin"
dimlp {in: {vvf? nf?} (9'27)
out: {conpf? vf?}}}

defclass "lIp fin rel" {
"l p_fin"
dimlp {in: {relf?}
out: {rprof! vi?}}}

Full infinitives (lexical class' 1p_vinf") can only land in the right bracket field. Their
topological structure is very similar to that of finite verlexcept that they do not license a
Vorfeld dependent. Base form infinitivesl(p_vbse" ) and past participles ((p_vprt") can
only land in the left bracket field and license at most one ouigedge to a dependent in their
left bracket field:

defclass "l p_vinf" {
dimlp {in: {rbf?}
out: {vvf! I bf? fadvfx nfl1? nf2? rbf* padvf* tadvfx nf?}}}

defclass "I p_vbse" {

dimlp {in: {Ibf?} (9.28)
out: {lbf?}}}

defclass "l p_vprt" {
dimlp {in: {Ibf?}
out: {lbf?}}}

The order of the topological dependents of verbs is definetthenfollowing three lex-
ical classes for main verb$ {p main"), auxiliaries ( 1p_aux") and question auxiliaries

(" 1p_gaux"). Their only difference is the position of the verb/'(') with respect to its de-
pendents:

1. Main verbs must be positioned to the right of the field foveatls of frequencyadvf
and to the left of the Mittelfeld (Figure 9.9):

Peter often admires Mary.
*Peter admires often Mary. (9.29)
*Peter Mary often admires.

defclass "l p_main" {

dimlp {order: <conpf rprof vvf vf fadvf "~" Ibf nfl nf2 rbf (9.30)
padvf tadvf nf>}}

2. Auxiliaries must be positioned directly to the left of thedvf. Their complement must
end up in the left bracket field to the right of thedvf (Figure 9.10):

Peter has often admired Mary.

*Peter has admired often Mary. (9.31)

136



9. Syntax

)
VfﬂfQ\mfz
v : ~,
o— 0 : 0
1 2 3 4
Peter often admires Mary

Figure 9.9.1LpP tree ofPeter often admires Mary.
Q
O/\I,‘/?Q%)m\%)o\;o
1 2 3 2 5

Peter has often admired Mary

Figure 9.10.LP tree ofPeter has often admired Mary.

defclass "I p_aux" {
dimlp {order: <compf rprof vvf vf "~" fadvf |Ibf nfl nf2 rbf (9.32)

padvf tadvf nf>}}

3. The position of question auxiliaries is even further te lift, between the Vor-Vorfeld
and the Vorfeld (Figure 9.11):
Whom has Peter often admired?

*Whom Peter has often admired? (9.33)
*Whom Peter often has admired?

®)
MW\
o 0 0 0
1 2 3 4 5
Whom has Peter often admired

Figure 9.11.1p tree ofWhom has Peter often admired?

defclass "l p_gaux" {
dimlp {order: <conmpf rprof vvf "2" vf fadvf |bf nfl nf2 rbf (9.34)

padvf tadvf nf>}}

We now turn to the topological structure induced by nounsiclviis much simpler: at

most one determiner is followed by arbitrary many adjestiviey the noun itself, at most
one prepositional adjective and at most one relative clatlitgre is an example, wheid
the researchers the prepositional adjective and the relative clawbé&ch humanodifies the

common nourproduct(Figure 9.12)°

a nice little product of the researcher which hums (9.35)

137



9. Syntax

= P

detf
o—o— o7

Prepe. mﬂ’ﬁ
—_
O/de“/(:)
1 2 3 4 5 6 7 8 9
a nice little product of the researcher which hums

Figure 9.12.1p tree ofa nice little product of the researcher which hums

We realize this topological structure with the followingieal class, which also states that
nouns can either be fronted into the Vor-Vorfeld, land inoefeld or in the Mittelfeld, or be
the complement of a preposition:

defclass "I p_noun" {
dimlp {in: {vvf? vi? nfl1? nf2? prepcf?}
out: {detf? adjf* padjf? relf?} (9-36)
order: <detf adjf "~" padjf relf>}}

Prepositions induce an even simpler topological struciurere the preposition must pre-
cede its complement in therepct:

defclass "lp_prep" {
dimlp {out: {prepcf?} (9.37)

order: <"~" prepcf>}}

Prepositional objects can either land in the right bracledd fior they can be fronted into the
Vor-Vorfeld or the relative pronoun field.

defclass "Il p_pobj" {

"I p_prep’ (9.38)
dimlp {in: {rbf? vvf? rprof?}}}

9.3. ID/LP Dimension

Theib/LP dimension constitutes the interface betweenthandLp dimensions, constraining
their relation. The models of the/LpP dimension are graphs without edges.

9.3.1. Types

Attributes.  We define only one lexical attribut@ilocks, whose type is a set ob edge

labels:
defentrytype {blocks: set("id.label")} (9_39)

5We will establish the partial agreement of the relative pramand its modified noun, which is responsible for
ruling out the analysis wherehich humsnodifiesresearcheiinstead oforoduct on theld/PA dimension in
chapter 12.

138



9. Syntax

9.3.2. Principles and Lexical Classes

Climbing.  The relation between th® andLP dimensions is mainly one of flatteningp
trees must be flatter thap trees. We express this using t@émbing principle(cf. princi-
ple 13 in chapter 5) to model the idea that nodes more deephgéded on thed dimension
can be extracted and land higher up onithelimension:

useprinciple "principle.clinbing" {

dims {D1: Ip (9_40)
D2: id}}

Without the Climbing principle, the relation between tibeandLP dimensions would be
too loose: for example, for the sentence below:

Peter likes a nice woman. (9.41)

we would license the wrong/LP analysis shown in Figure 9.13, where the adjectiia
modifiesPeterinstead oflvomanon theld dimension. The reason for this is thmtedoes not
not climb up to a transitive head (here: eitliReteror likes) on theid dimension.

Q
j /o\ . :
Suoy . ob]\
adjyde‘/?
O @) :
1 2 3 4 5
ID Peter likes a nice woman
Q
/o\ :
N\ : mf2
. \
o/ : de“/a&(?
o— o~ :

1 2 3 3 5

LP Peter likes a nice woman

Figure 9.13.: Wrongp/LP analysis ruled out by the Climbing principle

Barriers.  Climbing alone is not sufficient to bring the andLp dimensions together. For
example, we must to prevent adverbs from climbing out of sdibate clauses and relative
clauses, as in the analysis given in Figure 9.14 for the seatkelow:

Peter always likes Mary who smiles. (9.42)

where the adverlalwayshas wrongly been extracted out of a relative clause into tid fi
fadvf of the matrix verHikes

We realize restrictions like these with tlgarriers principle which has the declarative
semantics that for each nodeno node/’ betweerv and its transitive head on may “block”
v from migrating up. In the example, the nodes betwabkvaysand its transitive healikes
areMary andsmiles where the adverhlwaysis “blocked” by the finite vertsmiles

139



9. Syntax

)
i /Q\Ob'
o— : /\o\
: : S
: : adV 5\)‘0\ :
Of“‘“——f————_ : o :
1 2 3 4 5 6
1D Peter always likes Mary who smiles
)
‘/\,'\7(.)\/;7
o— o= 1 Mo
: : . : relf—uw-_
: : of
P
1 2 3 4 5 6
LP Peter always likes Mary who smiles

Figure 9.14.: Wrongp/LP analysis ruled out by the Barriers principle

Principle 16 (Barriers)

barriersy d,d, = YWV 1V =g V=WV =g VAV =G v

9.43
W Vv g v | ¢ (d3 V7). lexblocks (9.43)

In our metagrammar, we apply the Barriers principle usimggléxical attributeblocks:
useprinciple "principle.barriers" {
dins {Dl: Ip

D2: id (9.44)
D3: idlp}
args {Blocks: _.D3.entry.blocks}}

Using the Barriers principle, we can rule out the analysi§iglire 9.14 with the lexical
class" idlp fin", where we stipulate that finite verbs suchsasilesin Figure 9.14 block
adverbs, complementizers, prepositional modifiers, slibate clauses and non-finite verbs:

defclass "idlp_fin" {
dimidlp {blocks: {adv conp pnod sub vbse vinf}}} (9-45)

As another example, nouns block all their dependents, dirafurelative clauses, to model
that their extraction is forbidden in English:

defclass "idlp noun" { dimidlp {blocks: {det adj pnod rel}} } (9_46)

Linking.  Contrary to German, where grammatical functions can oftetigtinguished mor-
phologically, English crucially relies on word order to dhist As a result, in German, the order
of the remaining nominal complements in the Mittelfeld isefy and any nominal complement
(i.e., a subject, an indirect or a direct object) can thecay be positioned in the Vorfeld. In
English, on the contrary, the lack of inflection leads to whiefving two restrictions:

1. the order of the indirect and direct object in the Mittklfes fixed: the indirect must
precede the direct object

140



9. Syntax

2. the Vorfeld of a finite verb is reserved for its subject

We realize the first restriction with tHankingEnd principle(principle 10 in chapter 4) as

follows: - . -
useprinciple "principle.linkingEnd" {
dims {Dl: Ip

D2: id
D3: idl p} (9'47)
args {End: {nf1: {iobj}
nf2: {obj}}}}

That is, amf 1 dependent on ther dimension must be an indirect object on thedimension,
and amf2 dependent a direct object.

For the second restriction, that the Vorfeld of a finite venlsirbe reserved for its subject,
the LinkingEnd principle does not suffice: it can only be usedtate that the Vorfeld must
be filled by some subject, but this must not necessarily bants For example, consider the
analysis in Figure 9.15 of the sentence below:

Who does he say smiles? (9.48)

where the Vorfeld ofloeson theLpP dimension is filled by the wrong subject: not by its own
subjectwhobut by the subjedbe of smileson thelb dimension.

QO
5\)‘5\/(-)\ Vbse
: o
. S[/b\
0} :
o— -
1 2 3 4 5
1D Who does he say smiles
O
\N‘/M\ nf
: ~ =
o 0 —0 0
1 2 3 4 5
LP who does he say smiles

Figure 9.15.: WrongD/LP analysis ruled out by the LinkingDaughterEnd principle

We exclude such analyses using tlirekingDaughterEnd principlewhich has the following
declarative semantics. If for an edge frero V' labeled ond;, the value ofinkDaughterEnd
for vandl onds is non-empty, then for at least one edge ldbét this set, there must be an
edge fromvto V' ond, labeled!’.

Principle 17 (LinkingDaughterEnd)

linkingDaughterEng g, 4, = Vv,V 1 VI
v%dl\/ A (dg v).lexlinkDaughterEnd # 0 = (9.49)
3721’ € (ds v) lexlinkDaughterEnd A v—"y v

141



9. Syntax

In our grammar, we use the LinkingDaughterEnd principlecéiswvs:

useprinci pl e "principle.linkingDaughterEnd" {

dins {Dl: Ip
D2: id (9.50)
D3: idl p}

args {End: {vf: {subj}}}}

As a result, any edge labeled from any nodev to any other node’ on theLP dimension
must be accompanied by a corresponding edge frémv' labeledsubj on theid dimension.

9.4. Emerging Phenomena

At the beginning of this chapter, we claimed that our modataount of syntax would lead to
the emergence of a number of interesting syntactic phenaméhout further stipulation. In
this section, we substantiate this claim by demonstratiegeimergence of the phenomena of
topicalization wh questionsandpied piping(Ross 1967).

9.4.1. Topicalization

The grammar allows nhominal arguments of verbs to climb uptimé \Vor-Vorfeld of the matrix
verb:

1. The migration of the nominal arguments is not blocked l®yBhrriers principle, as can
be seen from the lexical classes in (9.45) and (9.46), wheitber subjects, objects,
indirect objects, nor prepositional objects are blocked.

2. The set of licensed incoming edge labels of nounsroimcludesvvt (9.36).

This leads to the emergence of the phenomenadwomtalization As an example, consider
the sentence below, analyzed in Figure 9.16, where the tdd@y is topicalized, i.e., climbs
up from being the object dind on theid dimension into the Vor-Vorfeld ofries on theLpP
dimension:

Mary, Peter tries to find. (9.51)

9.4.2. Wh questions

Wh questions are analyzed analogously to topicalizatioglow8 is an example, analyzed in
Figure 9.17, where the object wh pronowhomis fronted:

Whom does Mary say a man thinks she tries to find? (9.52)

The example also shows that the grammar covers arbitraggdted unbounded dependencies.

142



9. Syntax

Q
oY : Vinf\
. obj: oo
o— o
1 2 3 4 5
1D Mary Peter tries to find
O
O/V(V)‘/q‘ ’bf\
: : : NN
1 2 3 4 5
LP Mary Peter tries to find

Figure 9.16.1D/LP analysis ofMary, Peter tries to find.

O
TSGR vb
: /\5‘9\0\
: : sub\
: \5\/(:)\
/O /s\) : Sub\/o\
o . PR vinf
: : O : : o : —=0
: : : : obj T : : PR
© : 5 : z : z z : © :
1 2 3 4 5 6 7 8 9 10 11
1D Whom does Mary say a man thinks she tries to find
0
\N‘/(?an
: : : : -~ : nfBO\
8 : R : bt
o : o~ : —
: : : : : T
: : : QO :
1 2 3 4 5 6 7 8 9 10 11
LP Whom does Mary say a man thinks she tries to find

Figure 9.17.10/LP analysis oWhom does Mary say a man thinks she tries to find?

9.4.3. Pied Piping

Prepositional objects can also be fronted, leading to trergemce of the phenomenon of pied
piping. As in relative clauses, prepositional objects dan be fronted, we also obtain relative
clause pied piping. We give an example of this below and iratieysis in Figure 9.18:

Mary by whom Peter is persuaded to sleep smiles. (9.53)

143



9. Syntax

)
o( SUbj/(?
: re!\ :
: ‘d\/(:)\l/
o /5\) : Dr(\
/poij : : vint—____
. ‘Drep . . P
: C. . . Q
~
O : :
1 2 3 4 5 6 7 8 9
1D Mary by whom Peter is persuaded to sleep smiles
Q
vf/(;)

prof & . Iby. rbf
/ ! ve . \O \)
b : : : Pt
: : 0] : : : (@) : :
1 2 3 4 5 6 7 8 9

LP Mary by whom Peter is persuaded to sleep smiles

Figure 9.18.1D/LP analysis ofMary by whom Peter is persuaded to sleep smiles.

9.5. Summary

In this chapter, we have modeled the syntax of a fragment gli§n Our approach was based
on TDG, where topological fields theory formed the basis o&kgant account of German
word order. We have demonstrated that a similar analysisaspossible for English, where
word order is less variable, but still far from trivial. As DG, we have modularized the
dimensions of grammatical function and word order, whiakagly simplified the description
of syntax. In fact, phenomena such as topicalization and piging simply emerged from the
intersective demands of the individual dimensions, andhdichave to be explicitly specified.
As we will see, the modularity of the grammar design will gisove beneficial for the spec-
ification of the syntax-semantics interface in chapter t2eng we will be able to exclusively
concentrate on the> dimension of grammatical functions, while not having to waabout
word order at all.

144



10. Semantics

Turning to the semantics of natural language, we again adogtry modular approach:
we regard semantics not as a monolithic whole, but as maddathinto three dimensions:
Predicate-Argument structu(eA), SCope structurésc), andinformation Structuréis). “Se-
mantics” in the narrower sense, traditionally expresseadgusredicate logic or higher order
logic (Montague 1974), is modeled by tka and sc dimensions, where thea dimension
reflects the predicate-argument relations, andsthdimension scopal relations. The mutual
relation of therA andsc dimensions is constrained by means of #aésc dimension. Thes
dimension, represents theme/rheme and focus/backgrelattbnships, and thus corresponds
to “semantics” in a broader sense, close to pragmatics.

The position of the semantic dimensions in the overall &echure of the grammar is dis-
played in Figure 10.1. The modularity of XDG allows us to fadate the account of semantics
completely independently from syntax, which will signifitly simplify the syntax-semantics
interface in chapter 12.

Phonology

Semantics

Information Structure
PredwcatefArgume Scope Structure
Structure
>

Figure 10.1.: Semantics in the overall architecture of tteargle grammar

145



10. Semantics

10.1. Predicate-Argument Dimension

The PA dimension models predicate argument structure as a daglealldag whose edges
are labeled byhematic rolefPanenova 1974). We use a pragmatic, coarse-grained raftion
thematic roles, whose only purpose is to distinguish migtgsgguments of a node, and we do
not make any claims towards their linguistic adequacy, tiscproblematic (Dowty 1989).
We require that each dependent in thiedag can only fill precisely one thematic role of its
head. All nodes not serving a semantic purpose are “deleted’collected by the root node
with an edge labeledel. For example, we delete the prepositions of prepositiobgats,
since we consider them only as argument markers, and notnasnsie predicates as e.g.
Wechsler (1995). This is reflected in the dag of the sentence below in Figure 10.2, where
the prepositionio is deleted:

Peter gives a book to Mary. (10.2)

In the PA dag,Peteris the agent (edge labeg) of gives bookthe patient §at) andMary the
addresseefldr). ais the determinerdet) of book

)
/ag/(?‘@addrc‘)\) :
© : W z Q

1 2 3 4 6

Peter gives a book Mary
Figure 10.2.PA dag of the sentendeeter gives a book to Mary.

From another perspectiveA dags can be regarded as multisets of predicates and their
arguments. For example, tha dag of Figure 10.2 can be regarded as the following multiset:

book(x), give(p,x,m) (10.2)

where we regard the variabeas implicitly existentially quantified. The first argumeritioe
predicategyiveis its agent, the second its patient, and the third its addees

As thepA dimension reflects only semantic but not syntactic conatitars, contrary to the
ID dimension, passive constructions are analyzed preciselljear active counterparts. An
example is theeA analysis of the passive version (10.3) of (10.1) below iruFegl0.3, where
againPeteris the agentbookthe patient andary the addressee:

To Mary, a book is given by Peter. (10.3)

Contrary to the analyses of the dimensionpA analyses are dags and not trees, since we
require multiple incoming edges per node e.g. for the madedif control constructions. For
example, consider the following sentence:

Peter persuades Mary to sleep. (10.4)

which we schematically analyze as following multiset towhbat the argument represent-
ing Mary is both an argument of the predicatersuadeand of the predicatsleep

persuadép, m, sleegm)) (10.5)

146



10. Semantics

0  O0——0=__©
N ddr pa‘ . ag
z o— _o— : 0

ae .
2 3 4 : 6 ' 8

Mary a book given Peter

Figure 10.3.PA dag of the passive sentente Mary, a book is given by Peter.

This is reflected in thea dag in Figure 10.4, whemdary has two incoming edges: one labeled
pat from persuadesnd one labeledg from sleep

- O
?/ag/?w h\>o

Peter persuades Mary sleep

Figure 10.4.PA dag ofPeter persuades Mary to sleep.

A second difference afA to ID analyses is that the dependency relation between syntactic
heads and their modifiers is reversed: onfRéimension, modifiers take their syntactic heads
as their dependents. This is reflected inkh@lag shown in Figure 10.5 of the sentence below:

Peter loves a woman who often hums. (10.6)

where the adverbftentakes the modified verbumsas its theme dependent (edge laiheh
for “theme of a modifier”). TheeA dag also shows that relative pronouns play a double role
on thepA dimension:

1. As an argument of the finite verb heading the relative daagy.whois the agent of
humsin Figure 10.5.

2. As a modifier of their nounwhois connected tavomanby an edge labeleggm (stand-
ing for “agent of a modifier”) in Figure 10.5.

=)

7, /ég
\/o/a‘“/? |

g
o~ :

1 2 3 4 5 6 7

Peter loves a woman who often hums

Figure 10.5.PA dag ofPeter loves a woman who often hums

147



10. Semantics

In the following, we call prepositional modifiers of noupepositional adjectivesand of
verbsprepositional adverhsThey are modeled similarly: prepositional adjectivesttieir
modified noun as agm dependent and prepositional adverbs take their modificol agra
thm dependent. Both take their complement aatan (“patient of a modifier”) dependent, as
illustrated in the analysis of the following sentence inUf&10.6:

Every researcher of a company smiles with a woman. (20.7)
which models the following schematic multiset of predisate

researchefx), companyy), of (x,y),womartz), with(smilegx), z) (10.8)

: e SR : oot
AT : o7
O/ : : : : : : :

1 2 3 4 5 6 7 8 0

dev

Every researcher of a company smiles with a woman

Figure 10.6.PA dag ofEvery researcher of a company smiles with a woman.

10.1.1. Types

Edge Labels. The type of edge labels on tima dimension is defined below, and we give
an overview of the edge labels and their corresponding thiemwdes in Figure 10.7:

deftype "pa.label" {addr ag agm del det pat patmroot th thn}
def | abel type "pa. | abel " (10.9)

The edge labels include the traditional thematic roles ggetient and addressee, which we
use to denominate nominal arguments of verbs. For verbahagts, we use the role theme.
agm, patm andthm denote agents, patients and themes of modifiersdantds the edge label
of determinersdel marks nodes without a semantic contribution as to be “déflegsdroot
marks predicates.

Attributes.  ThePA dimension defines the following lexical attributes:

defentrytype {in: val ency("pa.label")

out: val ency("pa.label™) (10.10)
| ockDaughters: set("pa.label")}

wherein andout represent valencies andckDaughters iS a set ofPA edge labels.

148



10. Semantics

| edge label]  thematicrole |

addr addressee

ag agent of a verb
agm agent of a modifier
del deleted node
det determiner

pat patient of a verb
patm patient of a modifief
root root

th theme

thm theme of a modifier

Figure 10.7.PA edge labels and corresponding thematic roles

10.1.2. Principles and Lexical Classes

Models. The models on thea dimension are dags. As we require that each dependent
can only fill precisely one thematic role of its head, we needdranger version of th®ag
principle, with the additional constraint that no node camémore than one outgoing edge to
the same daughter. We call this stronger verflagDisjointDaughterprinciple.

Principle 18 (DagDisjointDaughters)Given a dimension d, the DagDisjointDaughters prin-
ciple is defined as:
dagDisjointDaughters = W:—(Vv—3Vv) A WV :iViglp: v|i>d\/Av|—2>d\/ = l1=13
(10.11)

In the XDK, the DagDisjointDaughters principle can be obgai by using the implementa-
tion of the Dag principle together with tlEe sjointDaughters option:

useprinciple "principle.graph" { dinms {D: pa} }
useprinciple "principle.dag" { dins {D: pa} (10.12)

args {Di sjointDaughters: true} }
Using this stronger version of the Dag principle, we can auefor example the analysis
of sentence (10.1) wheidary is both the addressee and the agergioés

Valency. ThePA dimension makes use of théalency principleto constrain the incoming
and outgoing edges of the nodes.

useprinciple "principle.val ency" {

dims {D: pa}
args {In: _.Dentry.in (10.13)
Qut: _.D.entry.out}}

The following four lexical classes constrain the incominges of nodes on thea dimen-
sion:

1. Predicates are all main verbs, adverbs, adjectives aqbgitional modifiers. They
require an incoming edge labeledot:

defcl ass "pa_pred" {

dimpa {in: {root!}}} (10-14)

149



10. Semantics

2. Words without a semantic contribution, i.e., auxiliagylvs, particles, complementizers
and prepositional objects, require an incoming edge lahrie, i.e., they are “deleted”:

defcl ass "pa_del " {

dimopa {in: {del!}}} (10.15)

3. Nouns can be the agent, patient or addressee of arbitramny rerbs, and can be the
agent or patient of arbitrary many adjectives, preposdiadjectives or relative clauses:

defcl ass "pa_noun" {
dimpa {in: {ag* pat* addr= agm patm}}} (10.16)

4. Determiners require an incoming edge labelett?

defcl ass "pa_det" {

dimpa {in: {det!}}} (10.17)

Turning to the out valencies of the words, root nodes can laalvigrary many predicate
dependents (labeletbot) and can collect arbitrary many deleted dependehis)(

defclass "pa_root" {

dimpa {in: {} (10.18)
out: {root* del*}}}

Adverbs are predicates, can be modified by arbitrary mangratverbs or prepositional
adverbs, and require a theme. Prepositional adverbs iti@udequire a patient:

defclass "pa_adv" {
"pa_pred"
dimpa {in: {thm}
out: {thm}}} (1019)
def cl ass "pa_padv" {
"pa_adv"
dimpa {out: {patm}}}

Similarly, adjectives are predicates and require an agamd, prepositional adjectives in
addition also require a patient:
defclass "pa_adj" {

"pa_pred"
dimpa {out: {agm}}}

_ (10.20)
defclass "pa_padj" {

"pa_adj"
dimpa {out: {patm}}}
Common nouns require a determiner:

defclass "pa_cnoun" {

"pa_noun" (10-21)
dimpa {out: {det!}}}
And finally, relative pronouns require an outgoing edge liedbegm to their modified noun:
defclass "pa_rel pro” {

"pa_noun" (10.22)
dimpa {out: {agm}}}

IWe can delete auxiliary verbs since our account does not ¢emse, nor aspect for simplicity.
2Alternatively, we could delete determiners on tiredimension. We have decided to keep them to simplify the
interface to CLLS, cf. appendix E.

150



10. Semantics

Locking. In control constructions, either the agent (in case of stilgentrol) or the patient
(object control) of the control verb is simultaneously tigeiat of at least one subordinate verb.
For example, in Figure 10.4 above, the patienp@fsuades also the agent of the subordinate
verbsleep

However, the subordinate verb cannot kneWvich of the dependents of the control verb
it may take. As an example, consider the wrong analysis aeser below in Figure 10.8,
where the agent cfleepis Peter, notMary.

Peter tries to persuade Mary to sleep. (10.23)

Peter tries persuade Mary sleep

Figure 10.8.: WrongpA dag ofPeter tries to persuade Mary to sleep.

To rule out such analyses, we must ensure that for objectamarbs, only the patient may
simultaneously be a dependent of a subordinate verb, buhaatgent or the addressee, and
similarly for subject control. All nominal arguments (aggenpatients and addressee) of the
verbs may however be a dependent of superordinate vertisatdacvia an edge labeled,
and they may be a dependent of a modifier (e.g. an adjectivestatave clause).

We realize this constraint using th@ckingDaughters principlewhich is defined on the
dimensiond;, d» andds, and has the following declarative semantics: for all nodethe
dependent¥’ reachable oml; via an edge labdlin the lexically specified sdockDaughters
are “locked”, i.e., orty, they cannot be a dependent of any node except:

l.v

2. those nodes aboweon d; reachable via edge label&édwherel’ is in exceptAbove

3. those mothers of ond, which enten/ via an edge labeled, wherel’ is in key
Principle 19 (LockingDaughters)

lockingDaughterg, 4, g, = Y,V : VI

v#dl\/ A | € (ds v).lexlockDaughterss W' : v/ — V' =

Vi=vov / (10.24)
(3" € (d3 v).lexexceptAbove v’ —g |—>le) v

(3" € (dz v).lexkeyA V' I—/>0|2\/)

151



10. Semantics

We apply the principle as follows:

useprinciple "principle.lockingDaughters" {
dins {Dl: pa
D2: pa

D3: pa} (10.25)
args {LockDaughters: _.D3.entry.|ockDaughters
Except Above: {th}

Key: {agm patn}}}

where we use th&xceptAbove argument to allow the nominal arguments to be simulta-
neously arguments of superordinate verbs reachable vialga labelecth. With theKey
argument, we allow the nominal arguments to also be argusoémbodifiers.

We instantiate th@ockDaughters attribute in the lexical classes for subject and object

control verbs below: _
defclass "pa_subjcr" {

di m pa {| ockDaughters: {pat addr}}}
(10.26)

defclass "pa_objcr" {
di m pa {l ockDaughters: {ag addr}}}

"pa_subjcr" (for “subject control/raising”) locks all nominal complemts except the agent,
i.e., patient and addressee, angh objcr" (“object control/raising”) all nominal comple-
ments except the patient, i.e., agent and addressee. Nowmwexclude the wrong analysis
shown in Figure 10.8: the object control vgsbrsuadeonly allows its patienMary to be-
come the dependent of a subordinate verb, and locks its &gémit As a result, onlyMary
can become the agent of the subordinate gébp but notPeter.

The LockingDaughters principle is not only useful for cahtrerbs, but also for “normal”
verbs, e.g. intransitive or transitive verbs. If the norhaxguments are not locked, they can
e.g. be “taken over” by verbs inside a relative clause, agentrong analysis of the sentence
below in Figure 10.9:

Mary sees a woman who tries to sleep. (10.27)

whereMary, the agent of the transitive veltbves is incorrectly simultaneously the agent
of the verbsleep We rule out such analyses with the lexical cldgs nocr” (“no con-
trol/raising”), which locks all nominal arguments:

defclass "pa_nocr" {
di m pa {l ockDaughters: {ag pat addr}}} (10-28)

1 2 3 4 5 6 ' 8

Mary sees a woman who tries sleep

Figure 10.9.: WrongpA dag ofMary sees a woman who tries to sleep.

152



10. Semantics

10.2. Scope Dimension

Turning to the dimension modeling scope, we begin with trengxe sentence below, which
is ambiguous between the reading where every man lovesametiman, and the reading
where the same woman is loved by every man:

Every man loves a woman. (10.29)

The two readings are shown in predicate logic in (10.30) &0d3(). In the former, it is the
universal quantifier which takes wide scope (weak readiagd, in the latter, the existential
guantifier (strong reading):

vx: man(x) = 3y : womary) A love(x,y) (10.30)

Jy : womarfy) A Vx: manx) = love(x,y) (10.31)

On thepA dimension, we have modeled the predicate-argument refatdthe semantic
representation, which are unambiguous and can be repeelsasithe following multiset:

man(x), womary), love(x,y) (10.32)

Complementary to thea dimension, thesCope structurésc) dimension is not concerned
with predicate-argument structure, but solely with scaphdtions. Ansc analysis is an un-
ordered tree calledc tree whose edges are labeled by scopal relationships. Figufé® 10.
shows arsc tree of the weak reading (10.30), whenanhas the quantifieevery(edge label
q) andwomanin its scope (edge labs), andwomanin turn has the quantifierandlovesin its
scope. Figure 10.11 shows aa tree of the strong reading, where the existentially quasatifi
womantakes wide scope.

o— o
3 4

Every man loves a woman

1 2 5

Figure 10.10.sctree ofEvery man loves a womafweak reading)

Every man loves a woman

Figure 10.11.sctree ofEvery man loves a woma(strong reading)

153



10. Semantics

For illustration, we represent the twgr analyses schematically as follows, omitting the
predicate-argument relations of (10.30) and (10.31):

¥ : man=- 3: womam love (10.33)

3:womam\V : man=- love (10.34)

As another example, adjectives on thedimension always end up in the restriction (edge
label r) of the noun they modify, as in the analysis of the sentendanben Figure 10.12,
where the adjectivesiceandlittle end up in the restriction of the noymmoduct

Every nice little product hums. (10.35)
Schematically, Figure 10.12 can be represented as follows:

V : niceA little A product=- hum (10.36)

/‘%O\

q T < : S
o—o— o ~~o
1 2 3 4 5

Every nice little product hums

Figure 10.12.sctree ofEvery nice little product hums.

Adverbs and verbs with verbal complements take scopethey, require ars dependent.
For example, consider thec trees in Figure 10.13 and Figure 10.14, which representibe t
readings of the following sentence:

Every man seems to laugh. (10.37)

which we schematically represent below:

v : man=- seenflaugh) (10.38)
seenfV : man=- laugh) (10.39)

Q

Q/Q\s O :

Figure 10.13.sc tree of Every man seems to laugliteading whereevery martakes wide
scope)

154



10. Semantics

Q
o .
o o
1 2 3 5

Every man seems laugh

Figure 10.14.sctree ofEvery man seems to laugftieading wherseemsakes wide scope)

10.2.1. Types

Edge Labels. The type of edge labels on tlse dimension are defined as follows:

deftype "sc.label" {del g r root s}
defl abel type "sc. | abel " (10.40)

whereq is the label for the quantifier of a common nounfor its restriction, ands for the
scope of a node. As on tim dimensiondel marks deleted nodesoot is the incoming
edge label of the node taking the widest scope. We give arvieveof the edge labels and
their corresponding scopal relations in Figure 10.15.

| edge label scopal relation

del deleted node
q quantifier
root root
r restriction
s scope

Figure 10.15.sc edge labels and corresponding scopal relations

Attributes.  The lexical attributes of thec dimension comprise the valency attributes
andout: _ i .
defentrytype {in: valency("sc.|abel")

out: val ency("sc.label")} (10-41)

10.2.2. Principles and Lexical Classes

Models. The models of thesc dimension must be trees:

useprinciple "principle.graph" { dinms {D: sc} }
useprinciple "principle.tree" { dins {D. sc} } (10-42)

Scopal Valency. Using theValency principle we constrain the incoming and outgoing
edges of the nodes on tse dimension, which we call thegcopal valency

useprinciple "principle.val ency" {
dins {D sc}
args {In: _.D.entry.in (10.43)
Qut: _.D.entry.out}}

We define three lexical classes for constraining the incgrattges of the nodes:

155



10. Semantics

1. Words with semantic content (main verbs, adverbs, adgs;tprepositional modifiers
and nouns) can either end up in the restriction or scope adhanmode, or they take

widest scope:
defclass "sc_cont" {

dimsc {in: {r? s? root?}}} (10-44)

2. Word without semantic content (auxiliary verbs, paes;lcomplementizers, preposi-
tional objects) are deleted:

defcl ass "sc_nocont" {

dimsc {in: {del!}}} (10.45)

3. Determiners are a special case: even though they are ledediethey do not inherit
from the class for words with semantic contést_cont" , since they cannot end up in
the restriction/scope of another word, but only as a quantifi a common noun with

incoming edge labei:3
defclass "sc_det" {

dimsc {in: {q?}}} (10.46)

The next classes constrain the outgoing edges of the nodesnBdes require one outgoing
edge labeledoot for the node taking widest scope and can collect arbitrargynteleted

nodes:
defclass "sc_root" {

dimsc {in: {} (10.47)
out: {root! del=*}}}
The class sc_sc" is used words taking scope: adverbs, prepositional adyveebiss with
verbal complements and nouns:

defclass "sc_sc" {

dimsc {out: {s!}}} (10.48)

Nouns not only have semantic content and take scope, buligésse arbitrary many out-
going edges labeledinto their restriction:

defclass "sc_noun" {
"sc_cont"

Bt (10.49)
dimsc {out: {r=}}}

In addition, common nouns require an outgoing edge labgfedtheir quantifier:

defclass "sc_cnoun" {

"sc_noun" (10.50)
dimsc {out: {q'}}}

3As on thepa dimension, we could also choose to delete determiners oadfmension, but keep them to
simplify the construction of a CLLS semantics, cf. appertlix

156



10. Semantics

10.3. PA/SC Dimension

The interface between tira andsc dimensions is specified by th/sc dimension, whose
models are graphs without edges. Basically,ARé&sc dimension states two constraints:

1. the nominal arguments of verbs patake scope over the verbs en

2. the mothers of verbs awn take scope over the verbs en

As an example for the former, Figure 10.16 shows an exaryilec analysis of the sentence
(10.29), where correctly, both nominal argumemiznandwomanof loveson PA take scope
over it onsg, i.e., both dominatéoveson sc.

Q
/a% pﬁt\)o
v : O
o : o
1 2 3 4 5
PA every man loves a woman
Q
S/QQ
— O/ :
k//q///gk\\s\\‘ :
O : o : :
1 2 3 4 5
SC every man loves a woman

Figure 10.16.pA/sc analysis ofEvery man loves a woman.

Figure 10.17 shows an analysis of the example sentence bslweve the motherseems
andtodayof laughon PA both take scope over it ac:

Every man seems to laugh today. (10.51)

10.3.1. Types

Attributes.  The lexical attributes on thea/sc dimension include the three vectors used to
mapPA edge labels to sets st edge labels:

defentrytype {linkAboveEnd: vec("pa.label" set("sc.|label"))
I'inkBel owStart: vec("pa.label" set("sc.|abel")) (10.52)
| i nkDaught er End: vec("pa.label" set("sc.label"))}

10.3.2. Principles and Lexical Classes

LinkingAboveEnd.  We use thd.inkingAboveEnd principléo state that the nominal argu-
ments of nodes (oRA) take scope over them. The principle has the declarativastes that
if for an edge fromv to V' labeledl on d;, the value oflinkAboveEndfor v andl on dz is
non-empty, then for at least one edge ldbai this sety must be above ond,, and the path
from v to V' must end with an edge labelé&d

157



10. Semantics

Q
o—__0 . :
: >o/m
/O/ag f :
A . : :
O/ oe : :
1 2 3 5 6
PA Every man seems laugh today
o)
o~ 0 :
/5 :
Q/;OA/\ES \
o : : 0 :
1 2 3 5 6
SC Every man seems laugh today

Figure 10.17.pA/sc analysis ofEvery man seems to laugh today.

Principle 20 (LinkingAboveEnd)

linkingAboveEng g, 4, = Y,V : VI
V=g,V A (d3v).lexlinkAboveEnd # 0 = (10.53)
JI":1" € (d3 v).lexlinkAboveEnd A \/I—,>d2 — g,V

We apply the principle as follows:

useprinciple "principle.linki ngAboveEnd" {
dims {Dl: pa

D2: sc (10.54)
D3: pasc}

args {End: ~.D3.entry.!|inkAboveEnd}}

where thelinkAboveEnd attribute is used in the lexical class for main verbs definelds,
where all possible nominal argumenig(pat andaddr) onPA are constrained t® dominate

their verbs orsc:* _
defclass "pasc_main" {

di m pasc {linkAboveEnd: {ag: {s}

pat: {s} (10.55)
addr: {s}}

linkBelowStart: {th: {s}}}}

The attributel inkAboveEnd is also used in the lexical claSgasc_modn" for “modifiers of
nouns” (relative pronouns, adjectives and prepositiodpdaives), where the modified noun
is constrained te dominate its modifiers:

defcl ass "pasc_nodn" {
di m pasc {linkAboveEnd: {agm {r}}}} (10-56)

As an example, consider the underspecifiedsc analysis of the sentence below in Fig-
ure 10.18:

A nice woman often sleeps. (10.57)

158



10. Semantics

0)
Sk\\ CL\\mm
L, =
: /\o‘/ag
det :
o— :
1 2 3 4 5
PA A nice woman often sleeps
O
AAAAAAAA sl :
o) Qs
a— : :
1 2 3 4 5
SC A nice woman often sleeps

Figure 10.18.: Underspecifigah/sc analysis forA nice woman often sleeps.

where the noun modified by the adjectiviee on PA, i.e.,woman r dominatesiiceon sc.

Prepositional adjectives and prepositional adverbs ase h second argument in addition
to the agent of a modifiengm) of adjectives and the theme of a modifienf) of adverbs: the
patient of a modifiepatm, which is also a nominal argument. Using the LinkingAbovedEn
principle, we constrain it te dominate its preposition:

defcl ass "pasc_pnod" {
di m pasc {linkAboveEnd: {patm {s}}}} (10-58)

LinkingBelowStart.  To state that nodes always take scope over their verbal angisnon
PA), we make use of theinkingBelowStart principle The principle is symmetric to the
LinkingAboveEnd principle: the only differences are thiaé tdaughtew of v on d; must
be belowv ond,, and that the path fromto V' on d, must start instead of end with an edge
labeled!’.

Principle 21 (LinkingBelowStart)

linkingBelowStarg, 4, 4, = Vv,V : VI :
v#dl\/ A (d3Vv).lexlinkBelowStart # 0 = (10.59)
JI":1" € (d3 v).lexlinkBelowStard A v'—>d2 —gV

We apply the principle using the lexical attributénkBelowStart:

useprinciple "principle.linkingBelowstart" {
dins {D1: pa

D2: sc (10.60)
D3: pasc}

args {Start: ~.D3.entry.linkBelowStart}}

We apply this attribute in the lexical class for modifiers eftys below, which states that on
sc, each node must dominate its theme:

def cl ass "pasc_nodv" {
di m pasc {linkBel owStart: {thm {s}}}} (10.61)

4The meaning of the attributeinkBelowStart is given shortly.

159



10. Semantics

The class is applied for adverbs and prepositional advedlssan example, reconsider Fig-
ure 10.18, where the verbal modifigitencorrectlys dominates its themgleeps

LinkingDaughterEnd.  The third principle applied on thea/sc dimension is thé.inking-
DaughterEnd principleused with lexical attribut@inkDaughterEnd:
usepri nci pl e "principle.linkingDaughterEnd" {

dims {Dl: pa

D2: sc (10.62)
D3: pasc}

args {End: ~.D3.entry.!|inkDaughterEnd}}

We use the principle only to ensure that the quantifier of amomnoun orsc corresponds
to its determiner omA:

def cl ass "pasc_cnoun" {
di m pasc {linkDaughterEnd: {det: {q}}}} (10-63)

10.4. Information Structure Dimension

Information structure is not concerned with the truth ctiods of a sentence, but rather with
its felicity in the discourse. This is of crucial importanice e.g. Content-To-Speech systems
(CTS, where IS improves the quality of the speech output (Pte&dSteedman 1994), and
Machine TranslationfMT), where IS improves target word order, especially for fremdv
order languages (Stys & Zemke 1995).

We adopt the approach of Steedman (20@vhere information structure divides each
utterance into two partsthemé@ andrheme The theme relates the utterance to the prior
discourse, and the rheme adds or modifies information abeutheme. Steedman (2G£)0
further differentiates themes and rhemes fiosimusandbackground the focus is theccented
word of a theme or rheme, whereas the remaining words cotestlie background.

As an example, consider the following sentence:

Peter_L+H* loves_LH% Mary_H* LL% (10.64)

where we prosodically annot&tthe words according to (Pierrehumbert 1980) and (Steedman
200Qa) by:

1. theirpitch accents
2. theboundary tone$ollowing them

In the examplePeter_L+H*has the pitch acceht+H* , loves_LH%is followed by the bound-
ary toneLH%, andMary_H* LL% has the pitch accemt* and the directly following bound-
ary toneLL%. The pitch accent+H* indicates the focus of a theme, aRd the focus of a
rheme. The boundary torhé1% marks the end of a theme, ahtd% the end of arheme. As a

5This “theme” is different from the thematic role called “the” on thera dimension.
SFor our purposes, it suffices to know that hérstands for “low” andH for “high” accent/tone.

160



10. Semantics

result, the theme of the sentenc®eter lovesand the rhem&lary, and within the themeRe-
ter is the focus andbvesthe background. This information structure is felicitonsicontext
where the question M/ho does Peter love®here the themPeter lovess already mentioned
in the context, and the rhenMary is not. It is however not felicitous in the conteBy whom
is Mary loved? whereMary is already mentioned.

On theis dimension, we model this structure using ordered projedtes whose edge la-
bels reflect the theme/rheme and focus/background digtivctFollowing (Jackendoff 2002),
we position thas dimension within the semantics in the overall architecfreur grammar
(cf. Figure 10.1). We call ars analysiss tree Figure 10.19 shows an exampéetree of sen-
tence (10.64). Here, the additional node correspondinggduil stop has outgoing edges into
the focus of the theme (edge lakk) Peterand into the focus of the rhemeh{ Mary. Peter
in turn has an outgoing edge into its backgroulsg) {(oves Hence Peter lovess the theme of
the sentence, andary the rheme. We call the theme and rheme subtirdfesmation struc-
tural constituentgis constituents For examplePeterandMary constitute thes constituent
corresponding to the theme of the sentence,Mady the1s constituent corresponding to the
rheme.

: \O :
1 2 3
Peter_L+H* loves_LH% Mary_H*_LL%

Figure 10.19.1s tree ofPeter_L+H* loves LH% Mary H* LL%

Figure 10.20 shows another examdree. HereMary is again the rheme arféeter loves
the theme. However, contrary to the previous example, théhis arunmarked themenot
marked by a pitch accent, and thus not having focus. Thidliscted in theis tree by each
word in the unmarked theme having an incoming edge laheted.

o— o o—

th I\
1 2 3

Peter loves Mary_H*_LL%

Figure 10.20.1s tree ofPeter loves Mary_H* LL%.

10.4.1. Types

Labels. The type of edge labels on the dimension containgg for backgroundrh for
rheme,th for theme, anadimth for unmarked theme:

deftype "is.label” {bg rh th unth} (10.65)

We give an overview of the edge labels and their correspgnidiformation structural cate-
gories in Figure 10.21.

161



10. Semantics

| edge label information structural categorly

bg background
rh rheme
th theme

umth unmarked theme

Figure 10.21.1s edge labels and corresponding information structurabcates

Attributes.  The lexical attributes of thes dimension include the valencies andout:

defentrytype {in: valency("is.|abel")
out: valency("is.|abel")} (10.66)

10.4.2. Principles and Lexical Classes

Models. The models of thes dimension are ordered and projective trees, but with no par-
ticular order on the outgoing edges of the nodes:

useprinciple "principle.graph" { dins {D: is} }

useprinciple "principle.tree" { dins {D: is} }

useprinciple "principle.projectivity" { dims {D. is} }

useprinciple "principle.order" { (10-67)
dins {D is}
args {Oder: <>}}

Information Structural Valency. We use thevalency principleto constrain the incoming
and outgoing edges, which we cadformation structural valency
useprinciple "principle.val ency" {
dins {D is}
args {In: _.D.entry.in (10-68)
Qut: _.D.entry.out}}

For roots, we define the lexical classs root":
defclass "is_root" {

dimis {in: {} (10.69)
out: ({th* rh+}|{unthx rh+})}}

stating the following two constraints:
1. Each sentence must have at least one rheme.

2. The rheme can be accompanied by arbitrary many themeswarikad themes, but not
by both, i.e. an analysis cannot contain themes and unménketes at the same time.

The focus of a theme can only have an incoming edge labeleshd licenses arbitrary
many dependents in its background:

defclass "is_tf" {

dimis {in: {th?} (10.70)
out: {bg+}}}

162



10. Semantics

The focus of a rheme can only have an incoming edge labgleahd licenses arbitrary

manybg dependents:
defclass "is_rf" {

dimis {in: {rh?} (10.71)
out: {bgx}}}

Non-foci can either become background of the focus, or gahanmarked theme:

defclass "is_nf" {

dimis {in {bg? umth?}}} (10.72)

10.5. Emerging Phenomena

The separation of predicate-argument structure and sdopsge allows us, in combination
with the XDK constraint parser, to selectively postpone ¢hemeration of readings which
differ only in their scope structure, which bringssmope underspecificatidar free, without
any further stipulation.

10.5.1. Scope Underspecification

As explained in section 8.3.4 of chapter 8, the XDK constrparser is able to selectively
postpone the enumeration of readings on any of the the ohaidimensions. If we decide
to enumerate the readings only on thre dimension, but not on thec dimension, we get
scope underspecificatidor free: a scopally underspecified semantic analysis is siraply
aPA/sc analysis consisting of:

* atotalpA analysis
* a partialsc analysis

where the partiabc analysis includes edges already determined by the comispaiser and
additional information, e.g. stating which nodes are alyelenown to dominate which other
nodes.

As an example, Figure 10.22 shows an underspedifigsic analysis of (10.29). The partial
sc analysis includes the edges labetettom manto everyand fromwomanto a which are
already determined, and the information thetnandwomanboths dominaté loves which
is indicated by curved dotted edges. In appendix E, we shawtbanake use of partiadc
analyses in an interface to the Constraint Language for ldangtructures (CLLS).

10.6. Summary
In this chapter, we have modeled natural language semarsiicg the XDK. Inspired by the

parallel grammar architecture of Sadock (1991) and Jack&(20002), we took a modular
view on semantics, and distinguished the dimensions ofigaegtargument structure4),

A nodev | dominates another nodif there is a path fronv to V' starting with an edge labeléd

163



10. Semantics

Q
a%/Q\Pat
o : o
1 2 3 4 5
PA every man loves a woman
(O]
. g :
‘s
L Q/O — o‘/o
o keg o
1 2 3 4 5
SC  every man loves a woman

Figure 10.22.: Underspecifigah/sc analysis ofEvery man loves a woman.

scope structuresC) and information structurei§). The pPA/sc dimension constrained the
relation between thea andsc dimensions. Our approach is one of the first to model “deep
semantics” (including not only predicate-argument sticetbut also scope structure) in a
dependency-based grammar formalism. In combination WwighdDK constraint parser, our
approach gave us scope underspecification for free, wifluotler stipulation.

164



11. Phonology

In this chapter, we add phonology to our example grammalngridrm of theProsodic Struc-
ture (PS) dimension. Dealing only with prosody, we cover only a vanadl subset of phonol-
ogy, leave out many other aspects, e.g. rhythm, stress dladisystructure. Our account of
prosody follows (Pierrehumbert 1980) and (Steedman @0Gihd will lead, together with
our model of information structure in section 10.4 of chaf®, to a modular version of the
prosodic account of information structure introduced iteé8man 200&). We display the po-
sition of thepsdimension in the overall architecture of the example gramimgigure 11.1.

Phonology

Syntax

edence )

Dominance
— .
~

Linear Pre \
- 4 - /
/ g
— Semantics T
/ S N
/ \ T S ture ) \
\ | I— S
N\ ( Predicate-Argument X (o Structure )
AN Structure . //
N - P

nform

Figure 11.1.: Phonetics in the overall architecture of tkengple grammar

11.1. Prosodic Structure Dimension

We regard prosody as dividing sentences into substringsvia&all prosodic constituentsr
Ps constituentdor short. PS constituents are delimited by boundary tones: as an example
consider the following prosodically annotated exampldesare:

Peter_L+H* loves_LH% Mary H*_LL%. (11.2)

where Peter carries the pitch accernt+H*, lovesis followed by the boundary toneH%,
andMary both carries the pitch acceht* and is followed by the boundary tond.%. The

165



11. Phonology

boundary tone followindovesdelimits thers constituentPeter lovesand the boundary tone
following Mary the Ps constituenMary.

We model this structure on tHerosodic Structurdps) dimension, whose models are or-
dered and projective trees calledtrees In pstrees, all words followed by boundary tones
are connected to the additional root node correspondinge®ihd-of-sentence marker, and
the remaining words are connected to the next word followed boundary tone to the right.
The words followed by boundary tones and their dependemtstitote thers constituents of
the sentence.

Figure 11.2 shows an examistree of (11.1), whertoves followed by the boundary tone
LH%, is connected to the additional root node by an edge laliglegtanding for “boundary
tone 17, andMary, carrying pitch accent* and followed by the boundary torg %, by an
edge labele@a2bt2 (“pitch accent 2 and boundary tone 2Beter, carrying the pitch accent
L+H*, is connected to the next word followed by a boundary tdoee§ by an edge labeled
pal (“pitch accent 1”). The resultings constituent$eter lovesandMary correspond to the
subtrees ofovesandMary.

Peter_L+H* loves_LH% Mary_H*_LL%
Figure 11.2.pstree ofPeter_L+H* loves_LH% Mary H* LL%.

As another example, Figure 11.3 showssitree for the sentence below, which contains
only one prosodic constituent, i.d&eter loves Mary Mary has incoming edge labgh2bt2
standing for “pitch accent 2 and boundary tone 2”. The otherds are unaccented and
connected to the next word followed by a boundary tdviaty, by edges labeledh.

Peter loves Mary_H* LL%. (11.2)
o’ﬂ“‘l/(?
o— o

1 2 3
Peter loves Mary_H*_LL%

Figure 11.3.pstree ofPeter loves Mary_H* LL%.

11.1.1. Types

Edge Labels. The type of edge labels on tlrs dimension is defined as:

deftype "ps.label"™ {btl bt2 pal palbtl pa2 pa2bt2 ua}
def | abel type "ps. | abel " (11.3)

and includes:

166



11. Phonology

1. bt1, bt2 for the two boundary tondsH% andLL% covered by the grammar
2. pal, pa2 for the twopitch accents L+H*andH*

3. palbti, for the combination opal andbt1 andpa2bt2 for the combination opa2
andbt?2

4. vwa for unaccented

We give an overview of the edge labels and the correspondiogpdic categories in Fig-
urel1l1l.4.

| edge label prosodic category |

bt1 followed by boundary tone 1
bt2 followed by boundary tone 2
pal carrying pitch accent 1

palbtl | carrying pitch accent 1 and followed by boundary tone 1
pa2 carrying pitch accent 2

pa2bt2 | carrying pitch accent 2 and followed by boundary tone 2
ua unaccented

Figure 11.4.psedge labels and corresponding prosodic categories

Attributes.  The lexical attributes include the valenciasandout and the sebrder, rep-
resenting a strict partial order on the outgoing edges amdplecial anchor label" :

deftype "ps.|abel 1" "ps.label™ | {"""}
defentrytype {in: val ency("ps.|abel")
out: valency("ps.|abel") (11-4)

order: set(tuple("ps.labell" "ps.label1"))}

11.1.2. Principles and Lexical Classes
Models. The models of thesdimension are projective trees:

useprinciple "principle.graph" { dins {D: ps} }
useprinciple "principle.tree" { dins {D: ps} } (11.5)
useprinciple "principle.projectivity" { dims {D. ps} }

Prosodic Valency and Order. We use thé/alency principleo constrain the incoming and
outgoing edges of the nodes, which we gablsodic valencyand we use th®rder principle
to order the dependents of boundary tones to their left:

useprinciple "principle.val ency" {
dins {D: ps}
args {In: _.D.entry.in
Qut: _.D.entry.out}} (11.6)
useprinciple "principle.order" {
dins {D: ps}
args {Order: _.D.entry.order}}

167



11. Phonology

The Valency principle is applied using the lexical attrgsin andout, and the Order princi-
ple using the lexical attributerder.

The additional root node (corresponding to the end-ofeserdg marker) is characterized by
the following lexical class:

defclass "ps_root" {
dmps {'oﬂi : {ibt 1% bt2+ palbtis pa2bt 2} (11.7)
order: {[btl "~"] [bt2 "~"] [palbtl "~"] [pa2bt2 "~"]1}}}

That is, it does not license any incoming edge, and arbitnaany edges to nodes which
correspond to words followed by boundary tones (eitheréahies 1, bt2, palbtl or pa2bt?2).
By the order attribute, the root is constrained to follow its dependefitse order among its
dependents is not constrained.

Words followed by any boundary tone (variald€) license at most one incoming edge
labeled byBT, arbitrary many outgoing edges to words carrying pitch ateg& and arbitrary
many outgoing edges to unaccented words. It must precedependents:

defclass "ps_bt" BT PA {
dimps {in: {BT?}
out: {PAx uax} (11-8)
order: {[PA """] [ua """]}}}

Thus, words followed by a boundary tone only license outga@dges to either unaccented
words or to words carrying a specific pitch accent, i.e., pdasconstituents may only include
words which carry appropriate pitch accents. For exampbeds/followed by boundary tone
1 only license outgoing edges to unaccented words or wondgicg pitch accent 1, and

similarly for boundary tone 2 and for combinations of bourydanes and pitch accents:
defclass "ps_bt1" { "ps_bt" {BT: btl PA: pal} }

defclass "ps_bt2" { "ps_bt" {BT: bt2 PA: pa2} }

(11.9)
defclass "ps_palbt1l" { "ps_bt" {BT: palbtl PA: pal} }

defclass "ps_pa2bt2" { "ps_bt" {BT: pa2bt2 PA pa2} }

These lexical classes exclude sentences such as the ongaeédyzed in Figure 11.5), where
the prosodic constituent delimited lgves followed by boundary tone 1¢H%), includes
Petercarrying the unappropriate pitch accent#{:

Peter_H* loves_L+H% Mary_ H* LL%. (11.10)

Words carrying any pitch acceRa only license an incoming edge labelet, and no out-
going edges:
defclass "ps_pa" PA{
dimps {in: {PA?}}} (11.11)
We instantiate this lexical class as follows for the two Ipiéczcents covered by the grammar:

defclass "ps_pal" { "ps_pa" {PA pal} }

(11.12)
defclass "ps_pa2" { "ps_pa" {PA pa2} }

Unaccented words only license an incoming edge labedeathd no outgoing edges:
defclass "ps_ua" {

dimps {in: {ua?}}} (11.13)

168



11. Phonology

=0
PG

a’l/(:)/ :
O/ ° : :
1 2 3
Peter_H* loves_LH% Mary_H*_LL%

Figure 11.5.pstree of the ill-formed sentendeeter_H* loves_L+H% Mary H* LL%.

11.2. Summary

We have developed a simplified model of prosody following aélseount of (Pierrehumbert
1980) and (Steedman 208)0 Prosody will play an important role in the phonology-seitizs
interface developed in the next chapter, which realizegptisodic account of information
structure introduced in (Steedman 2@p0

169



12. Interfaces

This chapter introduces theyntax-semantics interfacd# the example grammar, realized by
the ID/PA dimension, and thphonology-semantics interfacehich is realized by thedis
dimension. ThebD/PA dimension characterizes the relation betweenith@imension of
grammatical functiongnd thepa dimension ofthematic rolesdy constraining how seman-
tic arguments must be realized syntactically. P#8s dimension completes our version of
the prosodic account of information structure introduce(Steedman 20@() by constraining
the relation between thesandis dimensions. We display the position of the interfaces in the
overall architecture of the example grammar in Figure 12.1.

Phonology

Figure 12.1.: The interfaces in the overall architecturthefexample grammar

12.1. Syntax-Semantics Interface

The modularity of XDG allows us to specify the syntax-sent@interface solely in terms of
theID andPA dimensions on theo/PA dimension. In particular, we do not need to take word
order, scopal relationships, information structure orspay into account. This is not to say
that the syntax-semantics interfaceistbe unrelated to these dimensions—only that it does
not have to, which considerably reduces the complexity esgntax-semantics interface and
makes it less error-prone.

170



12. Interfaces

12.1.1. Types

Attributes.  The lexical attributes of thev/PA dimension consist of five vectors used to map
PA edge labels to sets ob edge labels for the linking principles, two setsraf edge labels
for the LinkingMother principleand thePartialAgreement principlédefined shortly), and a
set ofID labels for thd_ockingDaughters principle
defentrytype {linkDaughterEnd: vec("pa.label" set("id.label"))

I'i nkBel owlor2Start: vec("pa.label" set("id.|abel"))

I'inkBel owStart: vec("pa.label" set("id.label"))

I i nkAboveBel owlor 2Start: vec("pa.label" set("id.|abel"))

| ockDaught ers: set("id.|abel ") (12.1)

I'i nkMot her: set("pa.label")

I'i nkAboveEnd: vec("pa.label" set("id.|abel"))
agree: set("pa.label")}

12.1.2. Principles and Lexical Classes

The syntax-semantics interface is divided into four parts:
1. verbal arguments
2. modifiers
3. common nouns

4. relative clauses

Verbal Arguments.  The largest part of the syntax-semantics interface cansishodeling
the syntactic realization of verbal arguments. Given a vextbev on thepPA dimension, its
semantic argumem can be realized o either:

1. as the dependent wfor as the dependent of a dependent of
2. as the dependent or as the dependent of a dependent ofrarsiuege verb of/
3. as a node below

As an example for the first possibility, consider tingPA analysis in Figure 12.2 of the
following sentence:
Peter assigns every task to a researcher. (12.2)

where the agenPeterand the patientask of assignson thepA dimension are syntactically
realized as dependents (subject and objecssigns The addresseesearcheiis realized as
the dependent of the dependéemt

We implement the first possibility with theinkingBelowlor2Start principlewhich has
the following declarative semantics: if for an edge frerto V' labeledl on d;, the value of
linkBelowlor2Starfor v andl on ds is non-empty, then for at least one edge ldbéh this
set, there must either be an edge directly going fudow ond, labeled’, or an edge labeled
I” going fromv to another nod&”, and one from/’ to V.

171



12. Interfaces

O
suﬁx/?\mpobj;\
: o ?\pfepc
aev
: O‘/
1 2 3 4 5 6 7
1D Peter assigns every task to a researcher
Q
. o :
/&N[Ml\addr :
o : TT—0
: : RC : O/de‘/?
1 2 3 4 ' 6 7
PA Peter assigns every task a researcher

Figure 12.2.1D/PA analysis ofPeter assigns every task to a researcher.

Principle 22 (LinkingBelowlor2Start)

linkingBelowlor2Stag 4, 4, = Vv,V : VI :
v#dl\/ A (dzV).lexlinkBelowlor2Start # 0 =

3" :1" € (d3 v).lexlinkBelowlor2Start A (12.3)
v VAV v VAV S v
We apply this principle as follows:
useprinciple "principle.linkingBel owlor2Start" {
di ns {DL1: pa
b2: id (12.4)
D3: idpa}

args {Start: ~.D3.entry.linkBel owlor2Start}}

and specify the lexical attribute in the lexical cldssipa_pat_obj" which states that the
patient is realized as an object, 0tdpa_addr_iobj" which states that the addressee is
realized by the indirect object:

defclass "idpa_pat_obj" {
dimidpa {linkBel owlor2Start: {pat: {obj}}}}

. . (12.5)
defclass "idpa_addr_iobj" {

dimidpa {linkBel owlor2Start: {addr: {iobj}}}}

The lexical class idpa_addr pobj1" states that the addressee is realized by prepositional
object 1. For passives, we define the classpa_ag pobj2" stating that the agent is realized
by prepositional object 2:

defclass "idpa_addr_pobj 1" {
dimidpa {linkBel owlor2Start: {addr: {pobj1}}}}
. . (12.6)
defclass "idpa_ag_pobj 2" {
dimidpa {linkBel owlor2Start: {ag: {pobj2}}}}

172



12. Interfaces

The second possibility for the realization of verbal argateas by a superordinate verb.
An example is the sentence below, whaséA analysis is displayed in Figure 12.3:

Peter seems to laugh. (22.7)

Here, the agen®eterof laughis realized as the subject of the superordinate subjechgais
verbseem®n thelb dimension.

Q
su‘i\/Q\w‘nf
. —
o“ : =0
N
o
1 2 3 4
1D Peter seems to laugh
Q
O\g :
: _/\O
__ag i :
O/ : :
1 2 4
PA Peter seems laugh

Figure 12.3.1D/PA analysis ofPeter seems to laugh.

The agents of subordinate verbs need not always be real&zedgects. In the example
below, analyzed in Figure 12.4, the PP control vappealsrealizes the agent ddughas its
prepositional object:

Peter appeals to Mary to laugh. (12.8)
O
'/%v'
/5\)\3\ : 1 inf
Q . (:)\ﬁr@p a“/(:)
: : : N Ve :
1 2 3 2 5 6
1D Peter appeals to Mary to laugh
0
O .
O/ag ad: th\
: : 7’\ a'g/?
: : : O/ : :
1 2 a 6
PA Peter appeals Mary laugh

Figure 12.4.1D/PA analysis ofPeter appeals to Mary to laugh.

We implement this second possibility for the syntacticieedion of verbal arguments with
the LinkingAboveBelowlor2Start principlelts declarative semantics are analogous to the
LinkingBelowlor2Start principle, with the exception ttat all nodes fromv to V' onds, vV
not necessarily has to be the dependent (or the dependenliepeaadent) of on d,, but can
also be the dependent of a superordinate ndas v ond,.

173



12. Interfaces

Principle 23 (LinkingAboveBelowlor2Start)

linkingAboveBelowlor2Staty, 4, = Vv,V : VI

v#dl\/ A (dz v).lexlinkAboveBelowlor2Statt£ 0 =
JI”:1" € (d3 v).lexlinkAboveBelowlor2StattA

Y R (S RVAVE VL VSRRV

(12.9)

We apply the principle as follows:

useprinci ple "principle.linkingAboveBel owlor2Start" {
dins {Dl: pa
D2: i d (12.10)
D3: idpa}
args {Start: ~.D3.entry.linkAboveBel owlor2Start}}

and use it in the lexical classidpa_ag_super”, which states that the agent can be realized
either as a subject, an object, an indirect object or a preépoal object of the verb itself or a
superordinate verb:

defclass "idpa_ag_super" {
dimidpa {linkAboveBel owlor2Start: {ag: {subj obj iobj pobjl pobj2}}}}  (12.11)

This lexical class rules out e.g. the wrong analysis of timesece below given in Figure 12.5,
wheretriesincorrectly takesviary and notPeteras its agent:

Peter tries to persuade Mary to sleep. (12.12)

The analysis is ruled out becaugry neither is a syntactic dependent or a syntactic depen-
dency of a syntactic dependenttaesitself, nor of any superordinate verb.

®)
/Su‘d\/?\vinf\
patt Ob/\o vinf
: : oot
1 2 3 4 5 6 7
1D Peter tries to persuade Mary to sleep

PA Peter tries persuade Mary sleep

Figure 12.5.: WrongD/PA analysis ofPeter tries to persuade Mary to sleep.

Verbs in passive form do not realize their agent but theilepatas the subject of a super-
ordinate verb, as in the example below, analyzed in Figuré, Iizhere the patient d?eterof
lovedis realized as the subject of the superordinate passivéiays:

Peter is loved by Mary. (12.13)

174



12. Interfaces

We capture this in the lexical class below:

defclass "idpa_pat _super" {
di midpa {linkAboveBel owlor2Start: {pat: {subj obj iobj pobj1l pobj2}}}} (12-14)

®)
‘o'\/Q\v
S\ : Dr[\
T T Pop,.
: b2
: T brg
: Pe.
: : : : =0
1 2 3 4 5
1D Peter is loved by Mary
O
O __O— O :
pal : ag
o— " : o
1 3 5
PA  Peter loved Mary

Figure 12.6.1D/PA analysis ofPeter is loved by Mary.

The third possibility for the syntactic realization of vattarguments concerns themes,
which can be realized either by infinitives or by subordirdéeises. In the examples above,
e.g. in Figure 12.4, it seems that the theme argument is alvemlized by the corresponding
full infinitive dependent. The analysis in Figure 12.7 of #entence below however shows
that the theme of a verb can also be realized further below:

Peter seems to have been persuaded to sleep. (12.15)

Here, the themgersuadedof seemds not realized as a syntactic dependenseémsbut
further below.
We capture this realization possibility with thenkingBelowStart principlewhich we ap-

ply as follows:
useprinciple "principle.linkingBelowStart" {

dins {D1: pa
D2: id (12.16)
D3: idpa}

args {Start: ~.D3.entry.linkBelowStart}}

and use the lexical classidpa_th vinf" to state that the theme must be realized below the
full infinitive dependent on thed dimension:

defclass "idpa_th_vinf" {
dimidpa {IinkBel owsStart: {th: {vinf}}}} (12.17)

It seems as if the linking principles presented so far sufficeonstrain the realization of
the semantic arguments of verbs. But this is not quite truensitier the correct analysis
in Figure 12.8 of the sentence below, where the object gigambbelievesdoes not have a
patient on theeA dimension, but only an agent:

Peter believes Mary to laugh. (12.18)

175



12. Interfaces

vinf\
va“/o
1 2 3 4 5 6 7 8

1D Peter seems to have been persuaded to sleep

PA  Peter seems persuaded sleep

Figure 12.7.1D/PA analysis ofPeter seems to have been persuaded to sleep.

According to the lexical classidpa_ag super” (12.11) above, the agent can be realized by
any nominal grammatical function on tihe dimension. But this means that the agent could
also be realized by the object bélievesleading to the wrong analysis shown in Figure 12.9,
where in addition, the agent &fughis Peterand notMary.

Q
SUYS\/Q%WM
o : 0 —0
. . art .
: : O/Q :
1 2 3 2 5
1D Peter believes Mary to laugh
o)
— 0 :
o . th ~
O : :
. . ag/(:)
: o— . :
1 2 3 : 5
PA Peter believes Mary laugh

Figure 12.8.1D/PA analysis ofPeter believes Mary to laugh.

How can we rule out this analysis? The idea is to reusd_tekingDaughters principle
(cf. principle 19 in chapter 10). Why can we not state thisstaint on thePA dimension,
where we also applied the LockingDaughters principle? @madimension alone, we could
only say that the agent dfelievesmay not simultaneously be the agent of a subordinate
verb. But this constraint is satisfied in Figure 12.9: thera@éary of believess in fact not
simultaneously the agent of the subordinate Vatgh What we need to state instead is a
constraint spanning over both tira dimension and thed dimension that the subject can

176



12. Interfaces

Q
suﬁ\/(?%vinf
: ~, T
(:)/ : O Qa‘\ /O
1 2 3 a 5
1D Peter believes Mary to laugh
Q
oa\ h O :
T 9 § X
: ~
: I —
0/69 ; : :
1 2 3 : 5
PA Peter believes Mary laugh

Figure 12.9.: Wrongp/PA analysis ofPeter believes Mary to laugh.

realize a semantic argument of the verb itself, but not ofteoslinate verb. As a result, the
subjectPeterof believescan only the agent of itself, and not of the subordinate {euigh

We realize this idea by applying the LockingDaughters ppiec and using the lexical
attribute lockDaughters. As the dependents are locked on tbedimension, which is a
tree, we can safely s€kceptAbove to the empty set: there can be no nodes above on the
ID dimension which are also mothers of the locked dependengsth@&argumenkey, we
stipulate that the locked dependents may still be modified:

useprinciple "principle.lockingDaughters" {

dims {Dl: id
D2: pa
D3: i dpa} (12.19)

args {LockDaughters: _.D3.entry.|ockDaughters
Except Above: {}

Key: {agm patn}}}

The lexical clas$ idpa_objcr" for object raising verbs such aslievesn the example above
locks the subject and the indirect object:

defclass "idpa_objcr" {
dimidpa {lockDaughters: {subj iobj}}} (12.20)

Modifiers.  The arguments of modifiers on tira dimension are realized by their syntactic
heads on thed dimension. As an example, consider the sentence belowyzathin Fig-
ure 12.10:

With Peter, a pretty woman smiles today. (12.21)

where the agent of the adjectipeettyis realized by its syntactic head, the nonmaomanon
theiD dimension. Similarly, the theme of the adveddayand the prepositional advevtith
are both realized by their syntactic head, the \@riiles

We implement this idea using thhénkingMother principle

177



12. Interfaces

Q
O/ pmod -%su“\o\ adv\o
o Prepe det—ad) : : i
1 2 3 4 5 6 7
1D With Peter a pretty woman smiles today
O
R d
: - - 5 R\
: ¢} : o,
| : >
o/‘de&
1 2 3 4 5 6 7
PA With Peter a pretty woman smiles today

Figure 12.10.1D/PA analysis ofWith Peter, a pretty woman smiles today.

useprinci ple "principle.linkingMther" {
dims {Dl: pa

D2: id (12.22)
D3: idpa}
args {Wiich: ~.D3.entry.|inkMWther}}
and define the following lexical classes. For adjectives,dlass’ idpa_adj" stipulates that
the agent of the adjective is realized by its syntactic head:

defclass "idpa_adj" {

dimidpa {linkMther: {agn}}} (12.23)

The class idpa_adv" states the analogue for adverbs:

defclass "idpa_adv" {

dimidpa {linkMther: {thn}}} (12.24)

The patient of prepositional modifiers is realized as the#pc dependent on the dimen-
sion. For example, in Figure 12.10, the patient of the prigjposl modifierwith onPA is real-
ized by itsprepc dependeniPeteronID. This is expressed in the following two lexical classes
for prepositional adjectives (dpa_padj") and prepositional adverb${dpa_padv"):

defclass "idpa_padj" {

"idpa_adj"
di midpa {linkDaughterEnd: {patm {prepc}}}}

. (12.25)
defclass "idpa_padv" {

"i dpa_adv"
dimidpa {linkDaughterEnd: {patm {prepc}}}}

Common Nouns.  The determiner of a common noun en is realized syntactically also
as the determiner of the noun, as can be seen e.g. in Figur2 4Bove. We state this simple

178



12. Interfaces

constraint using theinkingDaughterEnd principle
usepri nci pl e "principle.linkingDaughterEnd" {
dins {Dl: pa
D2: id (12.26)
D3: idpa}
args {End: ~.D3.entry.!|inkDaughterEnd}}

and using the lexical class below:

defclass "idpa_cnoun" {
di midpa {IinkDaughter End: {det: {det}}}} (12.27)

Relative Clauses. In our example grammar, we analyze relative clauses sucheafl
lowing as shown in Figure 12.11:

Mary sees a woman who smiles. (12.28)

That is, on theD dimension, the finite verb (heremiled heading the relative clause ixal
dependent of the modified nowwvgmar). On thepA dimension, the modified noun is agm
dependent of the relative pronoun (hengo).

O
5\)6\/(?\ obj
O : \/O\
o - rel—w0
,s““\/?
1 2 3 4 5 6
1D Mary sees a woman who smiles
O
a%/?\ aQ/o
o : Pat ,/O“/
. \ 2™
Pl
1 2 3 4 5 6
PA  Mary sees a woman who smiles

Figure 12.11.1D/PA analysis oMary sees a woman who smiles.

With respect to relative clauses, the syntax-semantiesfate stipulates:

1. partial agreement of the relative pronoun witheiga dependent, i.e., the modified noun

2. the syntactic realization of the agent of the relativenpto as a node above the relative
pronoun, where the path to the node ends with an edge labeled

Partial agreement of the relative pronoun with the modifieaimis motivated by the follow-
ing contrast, which is caused by the relative pronoun ananbeified noun having a gender

mismatch:
Mary sees a woman who smiles.
Mary sees a woman that smiles. (12.29)
*Mary sees a woman which smiles.

179



12. Interfaces

In the light of the notion of agreement in our grammar, whegeeement tuplesclude also
case, the agreement of relative pronouns and modified neuwmsyi partial. For example, the
cases of the personal pronoun and the modified noun do nottbawatch: inMary sees a
woman who smilesvomanis accusative and’ho nominative. To express partial agreement,
we introduce thdPartialAgreement principlewhich is defined analogously to tAgreement
principle (cf. principle 9 in chapter 4), but stipulates that only a setbof the projections
(lexical attributeprojs) of the agreement tuple must agree.

Principle 24 (Partial Agreement)

partialAgreemenf, 4, 4, = Vv,V : VI :
v#dl\/ Al € (dzVv).lexagree= (12.30)
Vi € (dz v).lexprojs: (dz v).agr.i = (dz V).agr.i

We apply the principle as follows, where we 8eb js, the set of projections of the agree-
ment tuple which must agree, to the set containing 8r{lyender):

useprinciple "principle.partial Agreement” {
dinms {Dl: pa

D2: id
D3: idpa}
args {Agrl: ~.D2.attrs.agr (12.31)

Agr2: _.D2. attrs.agr
Agree: ~.D3.entry. agree
Projs: {3}}}

By the lexical class' idpa relpro_agree", we then state that thegm dependent of the
relative pronoun on thea dimension must agree with it in gender:

defclass "idpa_rel pro_agree" {

dimidpa {agree: {agnm}} (12.32)

The syntax-semantics interface is secondly concernedthglsyntactic realization of the
agent of the relative pronoun. As can be seen from the asalydtigure 12.11 above, the
agent of the relative pronoun, i.e., the modified noun, caiobed above the relative pronoun
on theIlD dimension, and the last edge on the path from the relativequo to the modi-
fied noun is labeledel. We express this in our grammar applying the LinkingAboweEn

principle:
useprinciple "principle.linki ngAboveEnd" {
dins {Dl: pa

D2: id (12.33)
D3: idpa}
args {End: ~.D3.entry.linkAboveEnd}}

and the accompanying lexical classdpa relpro link":

defclass "idpa_relpro_link" {
dimidpa {linkAboveEnd: {agm {rel}}}} (12.34)

This linking specification also covers more complex caseb agpied pipingconstructions.
Consider the pied piping example below, where the relatired@un is a dependent of the
prepositional adveriwith:

Mary sees a woman with whom Peter smiles (12.35)

180



12. Interfaces

We show an analysis of the sentence in Figure 12.12. Herentitified noun is also above
the relative pronoun on th® dimension, and the last edge on the path to it is also labeled
with rel.

o}
S“m/(?\obj\‘/o—\
o/de\ rel>o
: pmod 5\)‘0\ .
o, o :
T ’D'e‘Dc :
. ~
: o
1 2 3 4 5 6 7 8
1D Mary sees a woman with whom Peter smiles
o)
D . x
o/ az\ s )o © /O
/O/ . : O/
e : : :

1 2 3 4 5 6 7 8
a

PA Mary sees

woman with whom Peter smiles

Figure 12.12.1D/PA analysis oMary sees a woman with whom Peter smiles.

12.2. Phonology-Semantics Interface

We realize the Phonology-Semantics interface byr#es dimension, which constrains the
relation of prosodic structurer$) and information structureg). Its position in the overall
architecture of the grammar is displayed in Figure 12.1 epanrd it purpose is twofold:

1. As pitch accents and boundary tones are characteristieittoer theme or rheme, to
ensure that words carrying theme pitch accents and worlisviedl by theme boundary
tones only occur in themes, and analogously for rhemes.

2. Ensure thats constituentsare always contained s constituents

Theps, Is andpg/Iis dimensions constitute a modular adaptation of the prosactount of
information structure of Steedman (2@)0It is not connected with the account of information
structure for TDG developed in (Kruijff & Duchier 2003), wdfi also integrates other sources
of information in addition to prosody.

12.2.1. Principles and Lexical Classes

Pitch Accents and Boundary Tones. Ouir first task is to ensure that words carrying theme
pitch accents or words followed by theme boundary tones méyaccur in themes. To this

181



12. Interfaces

end, we define the following lexical classes:

defclass "psis_th_pa" {
"ps_pal"
"is_tf"}

defclass "psis_th_pabt" {
"ps_palbt 1" (12.36)

"is tf"}

defclass "psis_th_bt" {
"ps_bt 1"
"is_nf"}

where" psis_th pa" states that words carrying pitch accent 1 can only be thesfofwa
theme," psis_th _pabt" that words simultaneously carrying pitch accent 1 and vedio
by boundary tone 1 can also only be the focus of a theme,"asds th bt" that words
followed by boundary tone 1 must be non-foci.
The following classes state the analogues for rhemes:
defclass "psis_rh_pa" {

"ps_pa2"
"is_rf"}

defclass "psis_rh_pabt" {
"ps_pa2bt 2" (12.37)

"is rf"}

defclass "psis_rh_bt" {
"ps_bt 2"
"is_nf"}

Unaccented words are covered by the lexical clgssis ua", which stipulates that they

must be non-foci: _
defclass "psis_th_ua" {

"ps_ua"
s nf'} (12.38)
As an example, consider the analysis in Figure 12.13 of theesee below, wher®arcel
carries a theme pitch acceptovesis followed by a theme boundary tone, atmmpleteness
simultaneously carries a rheme pitch accent and is folldwea rheme boundary tone. Both
Marcelandprovesare correctly in the theme of the analysis, andompleteness the rheme:

Marcel_L+H* proves_LH% completeness_H* LL%. (12.39)

IS and PS Constituents.  On thels dimension, words carrying pitch accents are the heads
of IS constituents, and on tires dimension, words followed by boundary tones are the heads
of Psconstituents. The relation betweenconstituents anés constituents is constrained as
follows: eachis constituent must either correspond tesconstituent or be contained in one.
For example, consider the sentence below:

Marcel_LH% proves completeness_H*_LL%. (12.40)

The sentence licenses two analyses, which we show in Figuid And Figure 12.15, where:

182



12. Interfaces

e v ’
al .
O/ v :
1 2 3
PS Marcel_L+H* proves_LH% completeness_H* LL%
/th 7‘0
o _
: o :
1 2 3
| S Marcel_L+H* proves_LH% completeness_H*_LL%

Figure 12.13.pg/Is analysis oMarcel _L+H* proves LH% completeness_H* LL%.

1. In Figure 12.14, thes andpsconstituentdarcel andproves completenessnverge.

2. InFigure 12.15, thes constituenMarcel converges with thesconstituentMarcel, and
the Is constituentgprovesandcompletenesare contained in thes constituenfproves
completeness

o/ bﬂ/o/w
: ua :
: o— :
1 2 3
PS Marcel_LH% proves completeness_H* LL%
O/umW
: g
1 2 3
1S Marcel_LH% proves completeness_H* LL%

Figure 12.14.pg/Is analysis oMarcel_LH% proves completeness_H* LL%.

O/ btl’/mZ :
O/ua .
1 2 3
PS Marcel_LH% proves completeness_H*_LL%
umth—— \Jrr\‘\W¢1\='\-7—(:3
/"‘ :
o— o—— o—
1 2 3
1S Marcel _LH% proves completeness_H*_LL%

Figure 12.15.pg/Is analysis oMarcel _LH% proves completeness H* LL%.

We express this relation betwees and IS constituents using th8ubgraphs principle
which has the following declarative semantics: given thdigeensionsd;, d> andds, for all

183



12. Interfaces

nodesv andV and for all edge labelsond, if V' is below an edge labelddemanating from
v ond; and the lexically specified sstibgraphsStaris non-empty foi, then it must contain
at least one edge labElandVv must also be below an edge labelédn dy, also emanating
fromv.

Principle 25 (Subgraphs)

subgraphg, g, 4, = Y,V : VI
v%dl —>§1\/ A (dz v).lexsubgraphsStait # 0 = (12.41)
31" 1" € (d3 v).lexsubgraphsStait A v'—>d2 —g,V

We apply the principle as follows, stating that all elemeantthe theme must be contained
in the correspondings constituent headed by a word followed by boundary tone 1 aawadt
ogously for the rheme:

useprinciple "principle.subgraphs" {
dins {Dl: is
D2: ps
D3: psi s} (12-42)
args {Start: {th: {btl palbt1}
rh: {bt2 pa2bt2}}}}

We do not need to constrain unmarked themes since the conaisyy IS constituents al-
ways consist of precisely one word, which is always conthimeone of the availables
constituents.

As an example, Figure 12.16 shows an ill-fornmefis analysis excluded by the Subgraphs
principle. Theps analysis is the same as in Figure 12.13 above, defining sloenstituents
Marcel provesandcompletenessTheis analysis has thenmMarcel and rhemeompleteness
and the latter haprovesin its background. The resulting constituents ar®&arcel (theme)
andproves completenegsheme). This is wrong, since the rheme constituerroves com-
pletenesss not contained in the correspondirgconstituentompleteness

/m\?_;

/btlo/

o— " f
1 2 3

PS Marcel_L+H* proves_LH% completeness_H*_LL%

/th W
o /o/
: O/bg :
1 2 3
IS Marcel_L+H* proves_LH% completeness_H*_LL%

Figure 12.16.: Wron@<d/Is analysis oMarcel_L+H* proves_LH% completeness_H* LL%

184



12. Interfaces

12.3. Emerging Phenomena

The syntax-semantics interface of our grammar coversrariyt complicated control, raising
and auxiliary constructions, and in combination with thekKBonstraint solver, supports e.g.
attachment underspecification out of the box.

12.3.1. Control, Raising and Auxiliary Constructions

An example complicated case of control, raising, and aarxilconstructions is shown in the
analysis of the sentence below in Figure 12.17. The sentectedes the perfect auxiliary
(hag, the subject raising verlséemeyl the passive auxiliarytg bg, the object control verb

(persuadediand the subject control verbo(try):

Peter has seemed to be persuaded to try to sleep by Mary. (12.43)

The analysis of this sentence in our grammar is shown in Ei@@rl17. In fact, our grammar
correctly licenses precisely this analysis and no othettidddhe simplicity in particular of
the PA analysis of this very complicated construction: it is easgde thaPeteris the patient
of persuadegdand the agent dfy andsleep Mary is the agent opersuadedandsleepis the
theme oftry, which is the theme gbersuadedwhich is the theme adeemed

Q
5\)‘5\/?\"0”\ :
: (?\vinf
o“ : \%pomz\)
. O‘/\)‘a‘\ Vin f\ ; Prg, DC\O
/9&‘\/?
i 5 5 i 6 7 8 5 o i1 2
1D Peter has seemed to be persuaded to try to sleep by Mary

PA Peter seemed persuaded try sleep Mary

Figure 12.17.: Underspecifiad/PA analysis ofPeter has seemed to be persuaded to try to
sleep by Mary.

185



12. Interfaces

12.3.2. PP-Attachment Underspecification

In combination with the XDK constraint parser, our grammat only supports the under-
specification of scope as in (10.5.1), but also of any othegyulistic aspect. For instance, it
is possible to postpone the enumeration of models omttadPA dimensions, which gives
us underspecification of PP-attachment for free. As an elgropnsider the sentence below,
which is ambiguous between the reading where the PP (ptepadiphraseyvith a telescope
modifies the verlseesor the nourman

Mary sees the man with a telescope. (12.44)

If we postpone the enumeration of models onithandrA dimensions, we get the underspec-
ified ID/PA analysis shown in Figure 12.18, where the constraint patsssdy knows that the
PP must eventually be beloseedqas indicated by the dotted edge framego with). Under-
specified analyses like this could be a starting point faaugisiguation, e.g. using statistically
drivenoracles

O
0oy
° . j\ Y)\
: e : Prepc
@ : : =0
: ae .
: O/ :
1 2 3 4 5 6 7
1D Mary sees the man with a telescope
®]
ag/o\pat o\patm
: 0 oY :
O (@] :

PA Mary sees the man with a telescope

Figure 12.18.: Underspecified/PA analysis ofMary sees the man with a telescope.

12.4. Summary

We have introduced the syntax-semantics interface andhbegbogy-semantics interface of
the example grammar. The syntax-semantics interface iglsiand elegant, while covering
very complicated control, raising, and auxiliary constigs, and leading to the emergence
of PP-attachment underspecification. The simplicity ofititerface is the result of the modu-
larity of XDG, which allows us to concentrate entirely on Byatactic realization of semantic
arguments, and to factor out all other issues such as woet,@dope, information structure
and prosody. It is of course possible to bring these factack In and e.g. add constraints to
reduce the number of scopal readings for certain word orteitsthe basic interface would
remain the same.

186



13. Conclusion

This chapter sums up the thesis and points out ideas forefutark.

13.1. Summary

We have developed the grammar formalism of Extensible Dagrery Grammar (XDG), com-
bining dependency grammar, model-theoretic syntax ankedaoff's (2002) parallel gram-
mar architecture. This combination yields a novel, radlycadodular design allowing to de-
scribe arbitrary many linguistic aspects within the sammmfdism, but at the same time largely
independently from each other. This significantly simpdifiee modeling of linguistic phe-
nomena, since individual aspects such as grammaticalifunsgtword order or predicate-
argument structure can also be modeled individually. Fangde, although word order
variation is irrelevant for the interface from syntax to gicate-argument structure, previous
approaches still have to take it into account, which unrssréyg complicates their syntax-
semantics interface. In XDG, both aspects can be compleissociated. This approach
makes many otherwise problematic linguistic phenomenh agextraction, scope ambigui-
ties and control and raising simply fall out as by-produatshout any further stipulation.

This thesis contained three contributions in order to st XDG is not only an abstract
idea, but that it can also be concretely realized: the firsh&dization of XDG as a multigraph
description language in higher order logic, the first impdatation of XDG within an exten-
sive grammar development system, and the first applicafitmosystem to natural language.

The first formalization of XDG was developed in part |, where also showed how the
core concepts of dependency grammar, including lexidabzavalency and order, can be
realized in XDG. This prepared the ground for first invedimas of the expressivity and the
computational complexity of XDG. XDG is at least as expresss context-free grammar,
and that also non-context-free languages suchB&" and linguistic benchmarks such as
cross-serial dependencies and scrambling can be elegaodgled. The price for this degree
of expressivity is that the XDG recognition problem is NR¢ha

Despite this high complexity, the XDG constraint parserafieped in part 1l of the thesis
is reasonably fast on smaller, handwritten grammars. Addbe parser, we built an exten-
sive grammar development environment, the XDG Developri@n¢XDK), which allows
to comfortably create grammars by hand or automaticallythed to test them. The XDK
is important not only for the development of the XDG gramntegary, but it has also been
successfully used for teaching.

In part 1ll, we developed a grammar for a fragment of Englishjch modeled syntax,
semantics and also phonology. We demonstrated how cortgaliggnenomena such as ex-
traction (including pied piping) in syntax, scope ambigstin the semantics, and control

187



13. Conclusion

and raising in the syntax-semantics interface simply fatl @ by-products of the modular
grammar description, and do not have to be explicitly stifad.

13.2. Future Work

In this thesis, we have shown that XDG is perfectly able to eh@thd process smaller frag-
ments of e.g. English, and due to its modularity, very eldgao. Whether it is possible to
model and process realistic grammars in XDG remains an opestign. Finding an answer
to this question must be the next step. There are two reasdmesdptimistic: firstly, the com-
plexity of established grammar formalisms like GPSG and lis@t least as high (Barton,
Berwick & Ristad 1987), while theganbe efficiently processed in practice, and secondly, the
basic design principle of XDG, modularity, clearly speaksavor of scalability.

We plan to answer the question from two directions. In the, fire algorithmic direction,
we want to deepen our understanding of the expressivity laadamputational complexity
of XDG, and its relation to other multi-dimensional gramrf@malisms such as LFG, STAG
and Generalized Multitext Grammar&GMTG) (Melamed, Satta & Wellington 2004). Our
goal is to find restrictions of XDG which on the one hand leasemaich of the expressivity
intact, but on the other hand significantly reduce the corigylef XDG parsing. For instance,
it would be interesting to see how much of XDG could be caroedr to GMTG, which is
also multi-dimensional, but contrary to XDG parsable inypoimial time.

In the second direction, that of constraint programming,pas to profile the constraint
parser of the XDK to find out what has gone wrong previously mwhevas used for large-
scale parsing (Mohl 2004, Bojar 2004), to rewrite the pansang the new and more efficient
Gecodeconstraint library (Schulte & Stuckey 2004), and to find glbtonstraints for XDG
parsing—so far, the constraint parser does not use a single @lobal constraints are usu-
ally indispensable for efficient constraint programminglBceanu & Contjean 1994, Henz,
Mdller & Thiel 2004), hence this line of future work could pevery fruitful.

Further future work includes the continuation of work on thstribution strategyof the
constraint parser to optimize the shape of the search tsdleasbeen shown by a prototype
of the NEGRAproject (Smolka & Uszkoreit 1996—-2001) by Denys Duchier dimbrsten
Brants (p.c.). This could be complemented by continuinglitieeof work onguided search
(Dienes et al. 2003, Narendranath 2004), where the autlser&usearch to find the optimal
solution first. We also consider optimizing the parser ushgtechnique otupertagging
(Joshi & Bangalore 1994, Clark & Curran 2004) to reduce lab@mbiguity, and by using the
technique osegmentatioproposed in (Kubon 2001).

XDG grammar theory is also far from complete—interestirtgfe work includes finding an
account ofcoordination and ellipsisAlso, it is not at all clear how to best do XDggammar
inductionfrom treebanks (Korthals 2003, Bojar 2004). Finally, theersibility of XDG has
already been exploited fgenerationn combination with TAG in (Koller & Striegnitz 2002),
but pure XDG generation, first discussed in (Debusmann 20@hd (Pelizzoni & das Gra-
cas Volpe Nunes 2005), would have the advantage that the gamenar could be used for
parsing and for generation.

188



Appendix

189



A. Lattice Functors

In this appendix, we describe thagtice functorsof the XDK, which provide functionality for
the metagrammar compiler, the constraint parser and tliahzer of the XDK, as displayed
in Figure A.1.

Parsers Pickler

(UL => IL <= XML) ~. - , (SL—>File)
(Metagrammar Compiler)
& B EN
Converters ‘ Encoder
(UL <= IL => XML) Type Checker (IL —>SL) encode
top
(L) bot
N glb
(Constraint Parser ) Lattice Functors
# { ~ |
Model Creator Principle Library Search Engines |
select
G S makeVar
(Visualizer
» ~
Output Preparer Output Library
(IL<-SL->0L) ’
~ pretty

decode

Figure A.1.: The lattice functors in the XDK architecture

Each type of the XDK description language corresponds th adattice functor, which is
an ADT implementing the following methods:

* encode: encode IL terms into sets of SL core terms

* top, bot, glb: top, bottom and greatest lower bound of SL core terms
» makeVar: create an SL constraint variable

» select: efficiently select one SL core term from a list of SL core term
* decode: convert SL core terms into IL core terms

* pretty: convert SL core terms into OL terms (for pretty printing)

In the following, we will writelf T for the lattice functor of typ&. In our explanations of
the methods, we use Mozart/Oz pseudo code instead of thal &ttzart/Oz code for better
readability.

190



A. Lattice Functors

A.1l. Encode

The lattice functors support the encoding of terms in IL ayrihto set$ of core terms in SL
syntax, proceeding in two steps

1. interpretation: terms are interpreted as sets of conester

2. compilation: the core terms are compiled into SL syntaxfdiother processing in the
constraint solver

Given a lattice functorLat, the encode method of the lattice functors is thus defined as:

Lat.encode t = {Lat.compile t’|t’ € Lat.interpret t} (A.1)

A.1.1. Interpretation

The interpretation functiobat.interpret is defined as follows.
» atoms and integers, givénat =If {a;...a,} orLat =If string orLat =If int:
Lat.interpret t = {t} (A.2)
That is, the interpretation of termsof these types is the singleton set containing
* sets, giverLat = If set(T) orLat =If iset(T),Lat' =If T:

Lat.interpret {ti...ty} = (A3)
{{t}...tL} |t} € Lat’.interpret ti,...,t, € Lat’.interpret t,} '

The interpretation of a set is the set of all sets describatl Bypr example:

Lat.interpret {(subj|obj) adv} = {{subj adv},{obj adv}} (A.4)

* infinite sets of integers, giverat = If set(int), Lat =If iset(int) orLat =If card:
Lat.interpret {ij...in ...} = {{i1...in...}} (A.5)
The interpretation of an infinite sets of integeris the singleton set containing
* lists, givenLat = If 1ist(T) andLat’ =If T:

Lat.interpret [ti...ty]= (A6)
{[t}...tL] |t} € Lat’.interpret ty,...,t] € Lat’.interpret t,} '

A list is interpreted as the set of lists which is describes.

In the actual implementation, the sets are implementedtss li
2Contrary to the actual implementation, which interleavestivo steps for efficiency, we present them sepa-
rately here for clarity.

191



A. Lattice Functors

tuples, giverLat = If tuple(T;...Ty), Laty =If Ty,...,Lat, = If Ty:

Lat.interpret [tig...tn) = (A7)
{[t}...t}] |t} € Lat;i.interpret ti,...,t, € Lat,.interpret t,} '

A tuple is interpreted as the set of tuples which it describes

record specifications and empty records, given = If {a; :Ty...a,: Ty}, Lat; =
If Ty,...,Lat, =If Tp,t ={a} :t1...2} : tx}, and writingt.a for the value of attribute
a of t:

Lat.interpret t =
{{at:t1...an:tn} | for1<i<n, t; =Lats.topif a; ¢ {al,...,ar}, (A.8)
otherwiset; € Lat;.interpret t.a;}

That is, any omitted attribute is set to the top value of itsda. Otherwise, the values
of the attributes are set to those described in the recowdfaion.

cardinalities, givef.at = If card:

Lat.interpret ! = {{1}}
Lat.interpret ? = {{0 1}}

Lat.interpret * = {{0 1 2...}} (A.9)
Lat.interpret + = {{1 2...}} '
Lat.interpret #{ii...in} = {{i1...in}}
Lat.interpret #[i; i5] = {{i}...i%}}

The interpretation of a cardinalityis the singleton set containing
valencies, givenat = If valency(T) andLat’ = If card:

Lat.interpret {aj; ci...apcn} = Lat.interpret {aj:ci...an:cCn} (A.10)
Valencies are interpreted as records.

tops, bottoms and greatest lower bounds, given= If T:

Lat.interpret top = {Lat.top} (A.11)
Lat.interpret bot = {Lat.bot} (A.12)
Lat.interpret t; &ty = (A 13)

{Lat.glb t} t} |t)| € Lat.interpret ti,t, € Lat.interpret ts}

That is, the greatest lower bound of two termsandt, is interpreted as the set of core
terms described by it.

alternations, givehat = If T:
Lat.interpret ti|ty = (Lat.interpret t;)U(Lat.interpret t,) (A.14)

An alternation between; andt, is interpreted as the set union of the interpretations of
tq andtg.

192



A. Lattice Functors

» set generators, given Lat = If set(tuple(T;...Tp)) oOr Lat =
If iset(tuple(Ty...Ty)), Laty =If Ty, ..., Laty, =If Ty:

Lat.interpret $ g = {Lat.gInterpret g} (A.15)

whereLat.gInterpret is defined as:

{la1...an) | forl<i<mn,a; =aifacTy, (A.16)

Lat.gInt t = ,
at-ginterpret a otherwisea; € T; }

That is, the interpretation of the atoanis the set of tuples with at projectioni if a
is in the domairt; of that projection, and with any of the elementsTgfat the other
projections.

Lat.gInterpret g1 &go = (Lat.glnterpret gi)N(Lat.glnterpret g») (A.17)

Lat.gInterpret gi|gs = (Lat.gInterpret g;)U(Lat.gInterpret gs) (A.18)

It is important that the interpretation of conjunctions (&nd disjunctions () within a
set generator is different from that outside a set gener§ltdghin, they are interpreted
as a single term: the set of tuples licensed by the set gemef@utside, they are inter-
preted as a set of terms: the set of core terms described lbgrtheéo be interpreted. As
a consequence, using disjunctions outside a set generattyplias the number of gen-
erated lexical entries, and should therefore be used witharg whereas set generator
disjunctions do not.

« orders, giverLat = If set(tuple(T T)) orLat =If iset(tuple(T T)),Lat' =If T:

(t1...ta) = (A.19)
{{It5 ti] 11 <i’'<j"<n} |t} €Lat.interpret ti,...,t; € Lat.interpret tn} '

That is, the interpretation of an ordér; ... t,) is the set of all sets of pairs whose first
projection precedes the right projection(ith ...t. ), wheret!, € Lat.interpret t;
forall1 <i<nm.

» concatenations, givetat = If string:

! 4! / .
{tity, | t} €Lat.interpret ty, (A.20)

Lat.interpret t ty = .
P 1@t t, € Lat.interpret to}

« feature paths:
Lat.interpret p = {p} (A.212)

* type annotations:
Lat.interpret t T = {t} (A.22)

i.e., we simply discard the type annotations in the integtien step.

193



A. Lattice Functors

A.1.2. Compilation

In the second step, we compile the core terms obtained imtbgpretation into Mozart/Oz SL
syntax for further processing the constraint solver. Hiature pathdring in a slight com-
plication, as they can only be resolved dynamically duriagspg. We solve this complication
by lifting the type of a compiled core term to a function exjreg two node records

Here is the definition of compilation, where we write, ..., x,. e for an Oz function ab-
stracting ovek,...,x, in e, ande e; ...e, for the application of functior to the arguments

eq..

.€en.

atoms from a finite domain, givetat = If {a;...a,}, where the atoms; ...a, are in
lexical order (defined by the functidlalue.” <’ of Mozart/Oz):

Lat.compile a; = \v,v.1i (A.23)
That is, we encode thih element of the sorted finite domain as the integer
atoms of typestring, givenLat = If string:

Lat.compile a = \v,v.a (A.24)
We encode atoms of typering simply as themselves.
integers, give.at = If int:

Lat.compile i = \v,v.1i (A.25)
Likewise, integers are also encoded simply as themselves.
sets, giverLat = If set(T) orLat =|If iset(T),Lat' =If T:

Lat.compile {ti...ty} =
/ / : / / : /
\v,v'. FS.value.make [(Lat’.compile t;) v v'...(Lat’.compile t,) v V']

(A.26)

whereFS.value.make iS @ Mozart/Oz function creating a finite set of integers tamnis
from a set description, in this case, a list of integers. 8ets domains which cannot be
compiled into integers are not supported.

infinite sets of integers, givetat = If set(int), Lat =If iset(int) orLat =If card:

Lat.compile {ij...i, ...} =
\v,v'. FS.value.make [ij...i,#FS.sup] (A.27)

whereFS.sup denotes the greatest possible element of a set in the actnzdi/Oz
implementation, with which we approximate infinity.

lists, givenLat = If 1ist(T), Lat’' =If T:

Lat.compile |t1...tah| =
\v,v. [(Eat’.ciu:pilen]tl) v v'...(Lat’.compile t,) v V| (A.28)

194



A. Lattice Functors

e tuples (projections are exclusively finite domains), give Lat =
If tuple(Ty...Ty), Laty =If Ty, ..., Lat, =If Ty:

Lat.compile [aj...an] =

\v,v'. 1—|-'21(((Lat.compile ai) v v)—1)x ﬁ (]T|* 1) (A.29)

j=i+1

Hence, we encode tuples whose projections are exclusivig ilomains into integers.
This is an optimization for the constraint parser, sinceMiozart/Oz constraint system
can only yield propagation on integers and finite sets ofjertg, but not e.g. on lists. As
an example, here is the encoding of the tuples in the typee({1 2 3} {sg pl}):

[EIEN
n
o]

(A.30)

N
el
—

w )
n 2]
/0, 708, =08,

1171111

[
[
[
[
[
[

OO WN P

3 pl

* other tuples, givehat = If tuple(T;...Ty), Laty =If Ty, ... Laty, =If Ty:

Lat.compile [ti...ty]= (A.31)
\v,v’. [(Lati.compile ti) v v'...(Lat,.compile t,) v V'] '

Tuples whose projections are not exclusively finite domges are encoded as lists.
* records, giverhat =If {a; :Ty...ay : Ty}, Laty =If Ty, ..., Laty, = If Ty:

Lat.compile {aj:ti...ap:tn} = (A.32)
\v,v'. o(aj:(Latj.compile ti) v v'...a,: (Lat,.compile t,) v V') '
Records are encoded as Oz records with the dummy ¢abel

« feature paths, where the functidbnt takes a recor@ and a list of attributea; ... ay,
and returns the valuga;. ... .a;:

Lat.compile _.D.entry.aj. ... .ap = \v,v.Dot v'.D.entry [aj...ay] (A.33)
Lat.compile ".D.entry.aj. ... .a, = \v,v.Dot v.D.entry [aj...ay] (A.34)
Lat.compile _.D.attrs.aj. ... .ap = \v,v.Dot v'.D.attrs [aj...ay] (A.35)
Lat.compile ".D.attrs.aj. ... .a, = \v,v.Dot v.D.attrs [aj...ay] (A.36)

That is, we postpone the encoding of feature paths by retganfunction expecting two
node records andv’ as arguments. When applied during parsing, the functiammst
the actual value of lexical or non-lexical attributevodr v'.

195



A. Lattice Functors

A.2. Top, Bot and Glb

The lattice functors implement lattice top, bottom and tgstlower bound for each type of
the XDK.2 Given the lattice functotat = If T, we write:

* Lat.top for the top value (as a core term)
* Lat.bot for the bottom value (as a core term)
* Lat.glb t; to for the greatest lower bound of two core termsandt,

The purpose of lattice top is to act as the default value ferattributes omitted in a record
specification, lattice bottom represents inconsistenay, the greatest lower bound of two
terms represents a term which is at least as restrictiverenviagleast as restrictive” is defined
depending on the principle which acts on the term.

The inhabitants of finite domain, string, integer and ligtdy are arranged in flat lattices.
Sets can either be arranged in accumulative lattices sitéve lattices or cardinality lattices.
Lattices for tuples and records are are defined inductively.

A.2.1. Flat Lattices

As already mentioned in Definition 30, the interpretationeath finite domain, string, int
or list type includes the additional atonisand L. We useT and_L as the top and bottom
values of the lattice corresponding to the type. For exantipéelattice corresponding to finite
domain{a; ...a,} is displayed in Figure A.2.

0
a a,
0
Figure A.2.: Flat lattice for finite domaifay, . ..,an}

The top, bottom and greatest lower bound methods of flatésttare defined as follows:

. top:
Lat.top = T (A.37)

e bottom:
Lat.bot = L (A.38)

SWe do not implement least upper bound since it is simply neteywhere in the XDK.

196



A. Lattice Functors

* greatest lower bound:

tq if to=T
Lat.glb t; ty = Ej :]]: ti ::2 (A.39)
1 otherwise

As a practical example, the greatest lower bound of the dtem" and lattice top yields

eat .
Lat.glb "eat" T = "eat" (A.40)

and the greatest lower bound of the atdmest” and" want" yields L, i.e., inconsistency:

Lat.glb "eat" "want" = L (A.41)

A.2.2. Accumulative Lattices

Accumulative latticeSaccumulate” their elements from top to bottom: the top eatd an
accumulative set lattice for typeet(T) is the empty set, and the bottom value the full set, i.e.,
the interpretation of. Greatest lower bound corresponds to set union. We illiesthas in
Figure A.3.

s
o

full set

Figure A.3.: Accumulative lattice

For a lattice functoLat = If set(T), the methods of flat lattices are defined as:

. top:
Lat.top = {} (A.42)

* bottom:
Lat.bot = t (A.43)

wheret is the interpretation of thg, the domain of the accumulative set.

 greatest lower bound:
Lat.glb t1ty = t3Uty (A.44)

Accumulative lattices are convenient e.g. for the attelagfree of the Agreement principle,
which represents the set of edge labels describing withiwdiéeighters the node must agree.
The more elements this set has, the more restrictive it besom

197



A. Lattice Functors

A.2.3. Intersective Lattices

Intersective latticegre exactly the mirror image of accumulative lattice: thep value is the
full set, their bottom value the empty set, and greatestid@eand corresponds to intersection.
Figure A.4 illustrates this.

full set

7N
N

Figure A.4.: Intersective lattice

For a lattice functoLat = If iset(T), the methods of flat lattices are defined as:

. top:
Lat.top = t (A.45)

wheret is the interpretation of thg, the domain of the accumulative set.

* bottom:
Lat.bot = {} (A.46)

* greatest lower bound:
Lat.glb t;ty = tiMNty (A.47)

Intersective lattices are useful e.g. for thgers attribute of the Agreement principle, which
represents the sets of agreement tuples of a node. Contrtrg sets of thegree attribute,
which became more restrictive the more elements they awdasets of agreements become
more restrictive the less elements they contain.

A.2.4. Cardinality Lattices

The lattice operations afardinality latticesare illustrated in Figure A.5: top is defined as the
set{0}, bottom as the empty set, and greatest lower bound as setdot®n (except when
one of the arguments is top).

GivenLat = If card, the lattice functor methods are defined as:

. top:
Lat.top = {0} (A.48)

e bottom:
Lat.bot = {} (A.49)

198



A. Lattice Functors
{0}
7N
~N
0

Figure A.5.: Cardinality lattice

* greatest lower bound:

t1 if to= {O}
Lat.glb t; ty = Ej :; E 21{:2} (A.50)

t1 Nty oOtherwise

Cardinality lattices are specifically designed for Waency principleusing valency types,
i.e., vectors used to map edge labels to cardinalities. @éyecardinalities become more
restrictive the less elements they contain, e.g. thé Selicensing precisely one edge is more
restrictive than the s€0 1} licensing zero or one edges. That is, generally, the grelatesr
bound of two cardinalities is their intersection. But thetny can we not simply model them
using intersective lattices? The motivation for introggca new lattice is that we want lattice
top of cardinalities not to be the set of all integers but thie{8}, because this gives us the
intuitive interpretation of valencies that if a cardinglis missing for an edge label, no edge
with that label is allowed: as valencies are interpretedeasnd specifications, all omitted
edge labels are automatically set to lattice top of the oafity lattice, i.e.,{0}.

A.2.5. Tuple Lattices

We define the lattices for tuples inductively. Given a tuplitite functorLat defined as:
Lat = If tuple(Ty...Ty) (A.51)

with lattice functord.at; ...Lat, for its projections defined as:

Laty = If Ty
(A.52)
Lat, = If T,
we define:
Lat.top = |[Latj.top...Laty.top] (A.53)
Lat.bot = [Latj.bot...Laty.bot] (A.54)
Lat.glb [ti...tq) [t]...th] = [Lati.glb tq1t}...Lat,.glb tyth] (A.55)

199



A. Lattice Functors

A.2.6. Record Lattices

Record lattices are defined analogously to tuple latticeserGa record lattice functdrat
defined as:

Lat = If {a1:Ty...ay: Ty} (A.56)
with lattice functord.at; ...Lat, for attributes, we define:

Lat.top = {aj:Lati.top...a,:Laty.top} (A.57)

Lat.bot = {aj:Latj.bot...a,:Laty.bot} (A.58)

Lat.glb {aj:ty...an:tn} {a1:t]...an:th} ={as :Lat;.glb t; t}...a,:Laty.glb t, t,}
(A.59)

A.3. Constraint Variable Creation, Lexical Selection

For the constraint parser, the lattice functors implemieaitivo methodsakeVar for the cre-
ation of constraint variables, asdlect for the selection of values from a set of alternatives.

A.3.1. MakeVar

 atoms from a finite domain, givarat =If {a;...a,}:
Lat.makeVar = FD.int 1#n (A.60)

whereFD.int is a Mozart/Oz function creatingfanite domain constraint variabliEom
a specification of a finite domain. Here, the finite domain esfgom1 to n.

» atoms of typestring, givenLat = If string:
Lat.makeVar = _ (A.61)
where _ createslagic variablein Mozart/Oz.
* integers, giverLat = If int:
Lat.makeVar = FD.int 1#FD.sup (A.62)
whereFD.sup is the greatest natural number for integers in Mozart/Oz.
* sets, giverLat = If set(T) orLat =If iset(T):
Lat.makeVar = FS.var.upperBound 1#n (A.63)

where n is the cardinality of the interpretation ofT, and where
FS.var.upperBound creates dinite set constraint variablérom a specification of its
upper bound, i.e., the set including its potential elemémse: {1,...,n}).

200



A. Lattice Functors
* infinite sets of integers, givetat = If set(int), Lat =If iset(int) orLat =If card:
Lat.makeVar = FS.var.upperBound 1#FS.sup (A.64)

o list: Lat = If 1ist(T),Lat' =If T:

Lat.makeVar = |[Lat’.makeVar...Lat'.makeVar] (A.65)

» tuples (projections are exclusively finite domains), give Lat =
If tuple(Ty...Ty), Laty =If Ty, ..., Lat, =If Ty:

B

Lat.makeVar = FD.int 1#([]|Ti|) (A.66)
i=1

n
where |_| |T;| is the cardinality off.
i=1

* other tuples, givehat = If tuple(T;...Ty), Laty =If Ty, ..., Lat, = If Ty:

Lat.makeVar = [Latj.makeVar...Lat,.makeVar] (A.67)

* records, givehat =If {a; :Ty...ay: Ty}, Laty =If Ty, ..., Laty, = If Ty:

Lat.makeVar = o(a;:Latj.makeVar...a,:Lat, .makeVar) (A.68)

A.3.2. Select
 atoms from a finite domain, givarat =If {a;...a,}:
Lat.select [ij...in] 1 = Select.fd [ij...ip] i (A.69)

whereiy,...,i, are integers encoding the finite domain elements.a,, and where
Select.fd is theselection constrain(Duchier 1999, Duchier 2003) for finite domain
constraint variables. Its declarative semantics is tocsdlee ith element of a list
[i1...1,] Of finite domain constraint variables. During constrainvsw, the selectot

is often underspecified. In this case, the selection canss@nificantly improves con-
straint propagation, as all commonalities of the remairilbgrnatives are immediately
propagated to the selected value.

» atoms of typestring, lists, givenLat = If string orLat = If 1ist(T):
Lat.select [s1...Sn]1 = Sselect.fd [is..in] 4 (A.70)
wheresy, ..., sy are SL strings or lists.

* integers:
Lat.select [ij...in] i = Select.fd [ij...ip] i (A.71)

201



A. Lattice Functors

* sets, infinite sets of integers:
Lat.select [s1...sy] i = Select.fs [s1...sy] 1 (A.72)

whereSelect.fs is the selection constraint for finite set constraint vdaab

* tuples (projections are exclusively  finite domains): Lat =
If tuple(T1 ...Tn), Laty =If Ty, ..., Lat, =If T,, andT; = {}, B {}

Lat.select [i1...in]1 = Select.fd [i1...is)1 (A.73)

Hence, for tuples whose projections are exclusively findmdins, we can use the se-
lection constraint for finite domain constraint variabl&his yields much better propa-
gation than if we had not encoded such tuples as integerg icaimpilation step above.

* other tuples, givehat = If tuple(T;...Ty), Laty =If Ty, ..., Laty, =If Ty:

Lat.select [[s},....sl]...[sk,...,sX]] i=
[Lati.select [si...s%] i...Laty.select [sl...s¥] i] (A.74)

* records, givelhat =If {a; :Ty...ay: Ty}, Laty =If Ty, ..., Laty, = If Ty:

Lat.select [o(as :s],...,an:s})...0(as:sf,...,an:s5)] i= (A.75)

o(aj :Laty.select [si...s¥] i...a,:Lats.select [sl...s¥] i)

A.4. Decode and Pretty

Thedecode method decodes SL terms back into IL syntax, whereagthety decodes SL
into OL syntax for pretty printing. For sets of tuples whosejgctions are exclusively finite
domains into OL syntax, the conversion of SL into OL involhaefunction to convert sets
usingset generators

A.5. Summary

We introduced the lattice functors of the XDK, which providectionality for all modules
of the XDK, i.e, the metagrammar compiler, the constrainseaand the visualizer. For
the metagrammar compiler, it provides methods for encodietagrammars into Mozart/Oz
syntax. For the constraint parser, it provides methods dmstraint variable creation and
selection, and for the visualizer, methods for decodingmetty printing of analyses.

202



B. Metagrammar Compiler

This appendix deals with themetagrammar compileof the XDK. Metagrammars are de-
scriptions of grammars. The task of the metagrammar comgiléhe XDK is to compile
these descriptions into actual grammars usable in the r@amissolver. Figure B.1 shows the
position of the metagrammar compiler within the overalhétecture of the XDK.

Parsers Pickler

(UL => IL <= XML) ~_ (SL —> File)

/
Metagrammar Compiler
/ \

Converters ‘ Encoder

(UL <= IL => XML) Type Checker (IL->SL) encode
top
(L bot
glb
(Constraint Parser ) (Lattice Functors)
# { ~ |
Model Creator Principle Library Search Engines
select
(sb) - makeVar

Visualizer

» ~
Output Preparer Output Library

(IL <= SL->0L) g
~ pretty

decode

Figure B.1.: The metagrammar compiler in the XDK architestu

Metagrammar compilation starts from a metagrammar in on@ree concrete syntaxes:
UL, XML or IL, and proceeds in four steps:

1. parsing the metagrammar if it is in UL or XML syntax

2. converting the parsed metagrammar into IL

3. type checking the IL metagrammar

4. compiling out the IL metagrammar and encoding it into the S

Encoded grammars can then either be pickled, i.e., writiemfiles, or used for constraint
parsing. The metagrammar compiler is assisted byetliede method and the methods im-
plementing the lattice operationsofp, bot andglb) of thelattice functors

203



B. Metagrammar Compiler

B.1. Parsers and Converters

The task of the parsers and converters is to bring grammaws £ or XML into IL syntax.
Because of the modular interface of the parsers and conseda¢he XDK, adding new con-
crete syntaxes is easy. The converters are bi-directio®a):also able to convert grammars
from IL back to UL or XML. As a result, via the IL, the XDK also pports conversion of UL
into XML and vice versa. For parsing UL metagrammars, we useficient LALR parser
written in Mozart/Oz by Denys Duchier. For parsing XML matagmars, we apply the effi-
cient XML parser from the Mozart/Oz Standard Library, alsitten by Denys Duchier.

B.2. Type Checker

In this section, we define the type checker for the full seteofnis of the XDK description
language. It is defined in terms of inference rules for tymlgjuents (e.g. Pierce 2002). We

write
M-t:T (B.1)

for the type judgment stating that tertnhas typeT under the environmert. I is a set
containing the following four functions:

* [y : V— Te maps variables to terms. The mapping is defined upon refereilexical
classes in the lexicon description.

* [4:DV — D mapsdimension variableg dimensions im. The mapping is defined upon
principle instantiation.

* ['p:D— {entry,attrs} — A* — Ty returns the type of the feature path ... a, € A*
starting from the lexicaldntry) or non-lexical éttrs) attributes of dimension € D.
The types of the lexical and non-lexical attributes of a disien are provided by the
type definitions of the metagrammalefentrytype anddefattrstype.

» 't : TV — Ty maps type variables to types.

The type checker is used for both lexicon description anacple instantiations.
The inference rules of the type checker are defined as fallows

e atoms from a finite domain: ‘ \
a€qag...an
N-a:{a;...an} (B.2)

» atoms of typestring, given a set of atoms:

ach
-a:string (8:3)

204



B. Metagrammar Compiler

integers:

i>0

MN=1i:int (B.4)
The XDK supports only natural numbers. This allows us to éeal numbers as finite
domain integers in Mozart/Oz, which must be greater thao.zer

variables:

M=v:T

(B.5)

Variables can only be used inside lexical classes, not imcgpie instantiations. They
are instantiated upon reference of the lexical classes.

sets: _ _
e e (56)
The rule forisets is defined analogously.
infinite sets of integers:
T ety 1)
The rules foriset(int) andcard are defined analogously.
lists: L e
e (®8)
tuples:
e e ey (89
record specifications and empty records:
{a),...,a} C{ay,...,an}
Mty Tyif agzai (B.10)

1<j<k, 1<i<n
F-{aj:ti...a} it} :{a1:T1...an: Tn}

In record specifications, any number of attributes can betedi In order to be well-
typed, the attributes of a record specification must be aegwbshe full set of attributes
of its record type, and the value of each given attribute rhage the appropriate type.

cardinalities: (120 4)
ce itk +
N+c:card (B'll)

ME#{i;...ip} : card

Miy:int @Fip:int
M+ #[11 ig} . card

(B.13)

205



B. Metagrammar Compiler

valencies: . .
MF{a ccll.'. C: in} .:.x./alenc;(n{.a:,a.r.c.lan}) (B.14)
lattice tops:
FFeopT (B.15)
lattice bottoms:
TFoot T (B.16)
lattice greatest lower bounds:
R ®17)
alternations: _ _
[ #;1'_.; | 2;1}2 ' T (B.18)
set generators:
Ty ={ai,...,an} Tn={al,...,a} atomsgCTiW...WT, (B.19)

MN-$g:set(tuple(Ty...Ty))

whereatoms g returns the set of atoms in set generagtofl hat is, the type%,,..., Ty
must all be finite domains, and the atoms occurring must be a subset of their atoms.
In addition,T4, ..., T, must be disjoint to avoid ambiguous set generators.

The rule forisets is defined analogously.

orders:

a;:T ... an:T
TF (ai...an) : set(tuple(TT)) (B.20)

The type of an order must be a set whose domain is a pair offtype
The rule forisets is defined analogously.

concatenations:

-ty :string [ Fty:string
M-t @ty : string (B'Zl)

feature paths:

Mp(FgD) entryay,...,an =T
I+ _.D.entry.aj.....an:T (B-22)

The type of a feature path can be inferred from the metagrartypa definitions.
The rules for the other feature paths are defined analogously
type annotations:

Et:T

FrE(tsT):T (B.23)

206



B. Metagrammar Compiler

* type variables:
MEt:T
MriU{X—T}t:tv(X)

(B.24)

i.e., when we can prove that tererhas typeT, we can instantiate the type variablg (
with typeT.

B.3. Encoder

The encoder compiles the metagrammar into SL syntax fordhstraint solver. To this end, it
uses the encode method of the lattice functors (cf. secti@h After encoding, each resulting
lexical entry is checked for integrity, i.e.:

it must define théaex dimension
it must define therord attribute on thé ex dimension

* no finite domain, string, int or list may remain undefined) (or may have become
inconsistent ()

B.4. Pickler

The task of the pickler is to write compiled out SL grammats iiiles calledpickles Before
pickling, all stateful values, i.e., lattice functors, @ynically linked principles from the prin-
ciple library and outputs from the output library, must bensformed into stateless values.
The largest part of a typical SL grammar, the lexicon, can thewritten in two ways:

* as a Mozart/Oz record
* into a database, using the Mozart/Oz GNU GDBM interface

The former is more compatible across platforms than thertagtg., the GNU GDBM library
is only standardly installed on Unix-ish platforms but natMicrosoft Windows. Grammars
written as a Mozart/Oz record are also more compact thare thsing the GNU GDBM inter-
face. The big advantage of the latter is however the sigmifiganore efficient treatment of
large lexicons.

B.5. Runtime

We compiled the handcrafted metagrammatss.ul (part lll of this thesis),Diplom.ul
(Debusmann 2001koftproj.ul (Bader et al. 2004), and a large metagrammar automati-
cally generated by the system described in (Bojar 2004) ¢dk\abD Athlon with 1.2 GHz and
512 MBytes of RAM. The runtimes include all components of thetagrammar compiler,

207



B. Metagrammar Compiler

i.e., the parsers, converters, the type checker, encodethanpickler. As can be seen, the
metagrammar compiler is fast:

' Name | Length (KB)| Entries| Time (s)]

Diplom.ul 30414 190 2.29

diss.ul 51587 122 |54 (B.25)
softproj.ul 90066 423 | 6.85

test.l.chunkl.xdk.xml | 8561336 492 279

B.6. Summary

We described the metagrammar compiler of the XDK, compgipiarsers and converters for
metagrammars, a static type checker, an encoder and ampit¥edefined the type checker
using inference rules. For the encoder, we could simply malecof the encode method of
the lattice functors defined in appendix A. The result of @eg is a grammar in SL syntax
suitable for the constraint parser.

208



C. Visualizer

This appendix explains theisualizerof the XDK, whose purpose is to visualize the solu-
tions of the constraint parser. Figure C.1 displays thetjposof the visualizer in the overall

architecture of the XDK.

Parsers
(UL => IL <= XML) ~. . , (SL—>File)

(Metagrammar Compiler)
-
Encoder

Converters ‘
(IL->SsL) encode
top

(UL <= IL => XML) Type Checker
(IL) . bot
\ glb
N\

( Lattice Functors)

(Constraint Parser )

v ‘ ~
Model Creator Principle Library Search Engines
select

makeVar

CR S

Output Preparer Output Library
pretty

(IL<-SL->0L)
decode

Figure C.1.: The metagrammar compiler in the XDK architeztu

C.1. Output Preparer
The purpose of theutput prepareris to prepare (possibly partial) solutions for visualieati
by theoutput functorsof the XDK output libraryby:

1. decoding the solution from SL into IL arf@utput Languag€OL) syntax

2. creating aredge recordepresenting the determined edges and dominance relaifisns

of the (possibly partial) solution

As a result, the output preparer hides the internal reptagen of the nodes in the constraint
parser (see section 8.1.1) from the developers of the ofupators, making their task con-

siderably easier.

209



C. Visualizer

C.1.1. Decoding

Decoding is done using thiecode andpretty methods of the lattice functors described in
appendix A, where the OL syntax is a blend of UL and IL syntaatcary to the UL, it uses
Oz syntax for better integration with the Mozart/Oz outpadl$, but it is at the same time
more readable than the IL in order to ease debugging. Weadigsi example analysis in IL
syntax in Figure C.2, and in OL syntax in Figure C.3.

1#
[o(args:[el en(data: entryl ndex tag: constant)#el en(data: 1 tag:integer)
el en(dat a: i ndex tag: constant)#el em(data: 1 tag:integer)
el enm(data: word tag: const ant) #el en( dat a: every tag: constant)
el en(dat a: sc tag: constant)#
el en(
args:[elen{data:attrs tag: constant)#el enm(args: nil tag:record)
el en{data:entry tag:constant)#
el en(
args:[elen{data:’in" tag:constant)#
el em(
args: [el en{data: del tag:constant)#el en{args:nil tag: card.set’)
el en{data: q tag: constant)#el em(arg:’?" tag:'card.wild")
elen{data:r tag:constant)#elen(args:nil tag: card.set”)
el en{data: root tag:constant)#el en{args:nil tag: card.set’)
el en{data:s tag: constant)#el en{args:nil tag:’ card.set’)]
tag: record)
el en{dat a: out tag:constant)#
el em(
args:[el en{data: del tag:constant)#elen(args:nil tag:’ card.set’)
el en{data: q tag: constant)#el en(args: nil tag:'card.set’)
el en{data:r tag:constant)#elenm(args:nil tag: card.set’)
el en{data: root tag:constant)#el en{args:nil tag: card.set’)
elen{data:s tag: constant)#elen(args:nil tag: card.set’)]
tag:record)]
tag: record)
el en{ dat a: nodel tag:constant)#
el en(
args: [ el en{ dat a: daughters tag: constant)#el en(args: ni| tag:set)
el en( dat a: daught ersL tag: constant)#
el en(
args:[el en{data: del tag:constant)#el en{args:nil tag:set)
el en{data: q tag: constant)#el en(args: ni| tag:set)
elen{data:r tag:constant)#el en(args: nil tag:set)
el en(data:root tag:constant)#elen{args:nil tag:set)
el en(data:s tag: constant)#el en(args:nil tag:set)]
tag: record)
el en(dat a: down tag: constant)#el en(args: nil tag:set)
el en( dat a: downL tag: constant)#
el en(
args: [el en{data: del tag:constant)#el en{args:nil tag:set)
el en{data: q tag: constant)#el en(args: nil tag:set)
el en(data:r tag:constant)#el en(args:nil tag:set)
el en{data: root tag:constant)#elen{args:nil tag:set)
el en(data:s tag: constant)#el en{args:nil tag:set)]
tag: record)
el en{data: eq tag: constant)#
elem(args: [el em(data: 1 tag:integer)] tag:set)
el en( dat a: eqdown tag: constant) #
elem(args: [el em(data: 1 tag:integer)] tag:set)
el en(dat a: equp tag: constant) #
elen(args: [[1#2 6] [1#2 5#6] 3#4] tag: ')

Figure C.2.: Analysis in IL syntax (first node, partial)

C.1.2. Edge Record Creation

In this step, the output preparer creates a record cellige recordcontaining for all dimen-
sions of the multigraph, the edges ahmininance edgedetermined by the constraint parser
for the (possibly partial) solution.

210



C. Visualizer

1#
[o(entryl ndex: 1
index: 1
sc:o(attrs:top
entry:o('in :o(q:'?"))
nodel : o(eq: [ 1]
eqdown: [ 1]

equp:’ ' ([1#2 6] [1#2 5#6] 3#4)
index: 1
| abel s: [q]

ot hers: [ 2]
nmot hersL: o(qg:[2])
up:’ ' ([2 6] [2 5#6] 2#3)
upL:o(q:’" ' ([2 6] [2 5#6] 2#3))))
wor d: every)
o(entryl ndex: 1
i ndex: 2
sc:o(attrs:top
entry:o(’in :o(r:’? root:'?" s:'?") out:o(q:'!" r:'x" s:'1"))
nodel : o(daughters:’ ' ([1] [1 3 5] 2)
daughtersL:o(q:[1] s:"_"(nil [3 5] 1))
down:’ ' ([1 3] [1 3#5] 2#4)
downL:o(q:[1] s:’'_'"([3] [3#5] 1#3))
eq:[2]
eqdown:’ ' ([ 1#3] [1#5] 3#5)
equp:’ ' ([2 6] [2 5#6] 2#3)
i ndex: 2
labels:” " (nil [root#s] 1)
mothers:’ ' (nil [5#6] 1)
nmot hersL:o(root:" " (nil [6] O0#1) s:' _'(nil [5] 0#1))
up:’ ' ([6] [5#6] 1#2)
upL:o(root:” ' (nil [6] O#1) s:' _'(nil [5#6] 0#2))))
wor d: man)
o(entryl ndex: 9
i ndex: 3
sc:o(attrs:top
entry:o('in :o(r:’? root:'? s:'?))
nodel : o(eq: [ 3]
eqdown: [ 3]
equp:[2 3 5 6]
index: 3
| abel s: [s]
nmothers:’ " (nil [2 5] 1)
nothersL:o(s:’ " (nil [2 5] 1))
up:[2 5 6]
upL:o(s:[2 5 6])))
wor d: | oves)

Figure C.3.: Analysis in OL syntax (first three nodes)

Edges. For each dimension, the edge record contains three kindsgefse which are rep-
resented in the following lists:

1. Edges: the list of recordssdge(I1 I2) representing the determined edges from node
indexI1 to node indext2. We obtain this information from the lower bounds of the
daughters sets of the nodes. For example, consider the underspecifadgsss dis-
played in Figure C.3, where thiaughters set of the node with inde® is defined

as:
daughters:’ ' ([1] [1 3 5] 2) (C.1)

which indicates (by the underscore) that this set is not yiy tletermined. What the
constraint solver already knows about this set is that:
a) the list of elements which the set is already known to ikel(its lower bound) is
[1], i.e., itincludes at least the node

b) the list of elements which the set may still include (itpepbound) includes, 3
ands

c) the cardinality of the set is already determined t@be

211



C. Visualizer

That is, from the lower bound, we can infer the following edgel add it to the list of
already determined edges:
edge(2 1) (C.2)

The upper bound and the cardinality are not considered.

2. LEdges: the list of recordssdge(I1 I2 LA) of the determined labeled edges fram
to I2 labeledLA, obtained from the lower bounds of theughtersL sets of the nodes.
For example, in Figure C.3, thiéaughtersL sets for node indicate that node is
already known to be the daughter and that the set of daughters with edge lalbels
cardinality1, i.e., it contains precisely one node, which is either 5:

daughtersL:o(qg:[1] s:’_'(nil [3 5] 1)) (C_3)

Since the upper bounds and the cardinalities of the setsaireonsidered, this only
allows us to add the following labeled edge to the list of @iy determined labeled
edges:

edge(2 1 q) (C.4)

3. LUSEdges: the list of records:dge(I1 I2) representing the determined edges frbm
to 12 whose edge label is not yet determined.

Dominance Edges.  Also for each dimension, the edge record contains threeslohdom-
inance edges:

1. DEdges: the list of recordsiom(I1 I2) representing the determined dominance edges
from I1to I2. We obtain this information from the lower bounds of thwem sets of the
nodes. For any node with indé&t whosedaughters set is not yet determined, we add
dominance edges to all nodesin the lower bound of théown set ofI1 which:

a) have an underspecifi@dthers set

b) are not in any of theown sets of the nodes in thivwn set ofI1
where the latter condition excludes redundant dominangesdhich are already en-
tailed by transitivity. Why? As an example, consider an usgecified graph with three
nodes with indiced, 2 and3, where thelown set of nodet contains bott2 and3, and2
contains3. That is, if we would not exclude redundant dominance edgesyould add
the three dominance edgésn(1 2), dom(1 3) anddom(2 3). We represent the “dom-

inance graph” containing these dominance edges belowewbedraw the dominance
edges in a curved and dotted form:

"“b (C.5)

Clearly, the dominance edge from natleo 3 is redundant, and is thus excluded.

212



C. Visualizer

As an example for finding the dominance edges, consideddhe set of node2 in

Figure C.3:
down:’ ' ([1 3] [1 3#5] 2#4) (C.6)

The lower bound of the set contains the nodesd3, wherel is already a daughter of
node2 as we know from théaughters setin (C.1). Thus3 remains the only possible
endpoint for a dominance edge from In fact, it is an endpoint for the following
dominance edge:

dom(2 3) (C.7)

because node has an underspecifiaththers set (see Figure C.3) and is not entailed
by transitivity: there is no other node in tdewn set of node2 which has3 in its down
set.

2. LDEdges: the listof recordslom(I1 I2 LA) of the determined labeled dominance edges
from I1toI2 labeledLA. ForanyIi, I2 andLA, dom(I1 I2 LA)isinLDEdges if:

a) I2isinthe lower bound of theownL set ofI1 for edge labeLA
b) dom(I1 I2)isinthe listLDEdges

For example, théownL sets of node in Figure C.3 is the following:
downlL:o(q:[1] s:’ ' ([3] [3#5] 1#3)) (C_8)

The downL set for edge labej containsi, which is not added as a labeled dominance
edge sincelom(2 1) is not in DEdges. The lower bound of the set for edge lakel
contains only nod&, which is added as the following labeled dominance edgegesin
dom(2 3) is in fact contained iDEdges:

dom(2 3 s) (C.9

3. LUSDEdges: the list of recordsiom(I1 I2) of dominance edges fromd to I2 whose
edge label is underspecified.

The dominance edges will prove beneficial for our examplengnar in part 11l of the
thesis, and in particular for its interface to CLLS, where ave interested in transforming
partial, underspecified analyses obtained by the XDK camdtparser to CLLS constraints,
i.e., underspecified semantic representations. The eanlw$ redundant dominance edges,
e.g. entailed by transitivity, will help us to avoid stiptifey redundant CLLS constraints.

C.2. Output Library

The extensible output library contains functors for vasiinds of visualizations:
» Decode decoded solution (IL syntax), as in Figure C.2 above

 Pretty. pretty printed solution (OL syntax), as in Figure C.3 above

213



C. Visualizer

» Dag: graphical display of multigraphs using Tcl/Tk, see Figarg above

» Latex graphical display of multigraphs a&TEX code, used for all multigraph illustra-
tions in the thesis.

» CLLS visualizing (underspecified) solutions graphically asLSLconstraints, using
uDraw(Graph) (Bernd Krieg-Brueckner's Group 2005). This output functerex-
plained in more detail in appendix E.

All textual output of the output functors can be redirectedtandard 1/O, into a file, into
the Oz Browseror theOz Inspecto(Brunklaus 2000).

C.3. Summary

This appendix introduced the visualizer of the XDK. Visaation of the solutions of the
constraint parser proceeds in two steps: output prepar&lowed by invoking a subset of
the output functors from the extensible output library. flisaeven the visualizer of the XDK
is very modular and thus easily extensible.

214



D. Programs

This appendix deals with the programs which expose the ifumality of the XDK: the meta-
grammar convertetdkconv, the metagrammar compiledkc, the constraint solverdks, and
the GUIxdk. We also describe the additional features of the XDK: therga grammars, a
set of useful shell scripts, and its extensive documentatio

D.1. Metagrammar Converter

The metagrammar converteékconv converts metagrammars between the three metagram-
mar input syntaxes UL, XML and IL. For example, to convertgnemmamut1.ul from UL
into XML syntax, it is called as follows:

$ xdkconv.exe -g Granmars/nutl.ul -o G anmmars/nut 1. xm
Converting granmar file "Granmars/nutl.ul" to "Grammars/nutl.xm"... done. (30mns)

(D.1)

D.2. Metagrammar Compiler

The metagrammar compiledkc compiles metagrammars, and is also able to merge a set of
grammars into a single one, given that their type definitemeghe same. Compiled grammars
can then either be saved into Mozart/Oz records or into a GIWBK3 database. For example,

to compile the grammarut1.ul and save it into a GNU GDBM databaselkc is called as

follows:
$ xdkc.exe -g Grammars/nutl. xm -w db

Conpi ling granmmar "Granmars/nutl.xml" ... done. (110ns) (D.Z)
Saved conpil ed grammar as "G amars/ nut 1. sl p_db".

D.3. Constraint Solver

The constraint solvexdks is a shell-based constraint parser. Input grammars caerdih
newly compiled using the metagrammar compiler or read imfppecompiled pickleszdks
parses all sentences from a list of example sentences amig prit comprehensive parsing
statistics using XML to standard I/O. To parse all sententast1.txt using the precompiled
grammamut 1. sl p_db, and save the parsing statistics in the filet 1. st at . xm , the
program is called as follows:

$ xdks.exe -g Granmars/nut1.slp_db -e Grammars/nutl.txt >nutl.stat.xm (D.3)

We show parts of the filaut1 statistics.xml in Figure D.1 (grammar) and Figure D.2
(individual parses and aggregate counts). The statistatsde:

215



D. Programs

information about the grammatr, including its dimensiodM({ tag dimensions) and
principles principles)

grammar profiling informationgprofile): the number of constraint variables created
for each node, the number of entries in the lexicon etc.

information about the individual parsestfing), including the number of choices, the
depth of the search tree, the number of failed and succeemtBgbnthe parsing time

individual parses profiling informatiorsprofile): the number of constraint variables
and propagators used for parsing, and the number of entrasgole

aggregate counts and averages of the parsesi{s)

aggregate counts and averages of the profiling informdtiost ilecounts)

<?xni version="1.0" encodi ng="1SO 8859-1"7?>
<! DOCTYPE statistics SYSTEM "Extras/statistics.dtd">
<statistics>
<grammar dat a=" G ammars/nut 1. sl p_db"/>
<exanpl es data="G ammars/nut1.txt" count="13"/>
<date data="Feb 24, 2006 14:51:12"/>
<sol utions data="9999"/>
<reco data="1"/>
<di nensi ons>
<di nensi on data="lex"/>
<di mensi on data="seni'/>
<di mensi on data="syn"/>
<di nensi on dat a="synsent'/>
</ di mensi ons>
<principl es>
<principle data="syn principle. graph (syn)"/>
<principle data="syn principle.tree (syn)"/>
<principle data="syn principle. valency (syn)"/>
<principle data="syn principle.agr (syn)"/>
<principle data="syn principle.agreenent (syn)"/>
<principle data="syn principle. order3 (syn)"/>
<principle data="syn principle.parse (syn)"/>
<principle data="sem principle.graph (sem"/>
<principle data="sem principle.dag (sem"/>
<principle data="sem principle.val ency (sem"/>
<principle data="synsem principle.linkingEnd (semsyn)"/>
<principle data="synsem principle.linking\ther (semsyn)"/>
</ principles>
<gprofile fd="5" fs="101" fdfs="106" entries="16">
<gpnode fd="2" fs="1" fdfs="3"/>
<gpattrs fd="1" fs="0" fdfs="1">
<gpdi nensi on data="lex" fd="0" fs="0" fdfs="0"/>
<gpdi nensi on data="seni fd="0" fs="0" fdfs="0"/>
<gpdi nensi on data="syn" fd="1" fs="0" fdfs="1"/>
<gpdi nensi on data="synsent fd="0" fs="0" fdfs="0"/>
</ gpattrs>
<gpentry fd="0" fs="31" fdfs="31">
<gpdi nensi on data="lex" fd="0" fs="0" fdfs="0"/>
<gpdi nensi on data="sen! fd="0" fs="10" fdfs="10"/>
<gpdi nensi on data="syn" fd="0" fs="15" fdfs="15"/>
<gpdi nensi on data="synsent fd="0" fs="6" fdfs="6"/>
</ gpentry>
<gpnodel fd="2" fs="69" fdfs="71">
<gpdi nensi on data="lex" fd="0" fs="0" fdfs="0"/>
<gpdi nensi on data="seni fd="1" fs="28" fdfs="29"/>
<gpdi mensi on data="syn" fd="1" fs="41" fdfs="42"/>
<gpdi nensi on data="synsent fd="0" fs="0" fdfs="0"/>
</ gpnodel >
<gpl abel >
<gpdi mensi on data="|ex" |abel="0"/>
<gpdi nensi on data="seni |abel ="5"/>
<gpdi nensi on data="syn" | abel ="6"/>
<gpdi nensi on data="synseni |abel ="0"/>
</ gpl abel >
</ gprofile>

Figure D.1.: XML parsing statistics and profiling (grammar)

216



D. Programs

<string id="string6">

<wor ds>

Peter wants Mary to eat spaghetti today .

</ wor ds>

<out put s>

</ out put s>

<choi ces data="3"/>

<depth data="3"/>

<failed data="0"/>

<succeeded data="4"/>

<time data="110"/>

<sprofile fd="536" fs="2171" fdfs="2707" pr="16056" entries="1.5" words="8">
<spnode index="1" word="Peter" entries="1" fd="5" fs="101" fdfs="106" pr="31"/>
<spnode index="2" word="wants" entries="2" fd="5" fs="101" fdfs="106" pr="31"/>
<spnode index="3" word="Mary" entries="1" fd="5" fs="101" fdfs="106" pr="31"/>
<spnode index="4" word="to" entries="1" fd="5" fs="101" fdfs="106" pr="31"/>
<spnode index="5" word="eat" entries="4" fd="5" fs="101" fdfs="106" pr="31"/>

<spnode index="6" word="spaghetti” entries="1" fd="5" fs="101" fdfs="106" pr="31"/>
<spnode index="7" word="today" entries="1" fd="5" fs="101" fdfs="106" pr="31"/>
<spnode index="8" word="." entries="1" fd="5" fs="101" fdfs="106" pr="31"/>
</ sprofile>
</string>
<count s>

<cchoi ces nmin="0" max="3" average="0.461538"/>
<cdepth min="1" nax="3" average="1.38462"/>
<cfailed mn="0" max="1" average="0.384615"/>
<csucceeded nin="0" max="4" average="1.07692"/>
<ctinme mn="0" nmax="150" average="60.0"/>

</ count s>

<profilecounts>
<cfd min="126" max="536" average="278.615"/>
<cfs min="816" max="2171" average="1378.85"/>
<cfdfs mn="942" max="2707" average="1657.46"/>
<cpr mn="4646" max="16056" average="9060.0"/>
<cwords min="3" max="8" average="5.07692"/>
<centries nin="1" max="4" average="1.60606"/>

</ profilecounts>

</statistics>

Figure D.2.: XML parsing statistics and profiling (indivialyparses and aggregate counts)

D.4. Graphical User Interface

The GUIxdk offers a convenient front-end for all the main functionabf the XDK: meta-
grammar conversion, metagrammar compilation, mergingparkding, constraint solving and
the generation of parsing statistics. In addition, the Gitdre a variety of additional functions
for grammar debugging. For instance, dimensions and pliegican be individually switched
off and on again, th@enerate all ordering$unction helps to spot overgeneration, and the
graphical search engines Oz Explorer and I0zSeF give awieweof the search space of the
constraint parser.

D.5. Example Grammars, Scripts and Documentation

The XDK comes with a large number of handcrafted example grars. This includes:

all grammars described in this thesis

the German grammars described in (Duchier & Debusmann)2(D&busmann 2001)
and (Bader et al. 2004):

the German grammars described in the ESSLLI 2004 course

the Dutch grammar described in (Debusmann & Duchier 2002)

the English grammar used for the CHORUS project demomstrat April 2004, which
is partly described in (Debusmann, Duchier, Koller, KuhimgSmolka & Thater 2004)

217



D. Programs

* the English grammar described in (Debusmann )04
* the English grammar described in (Debusmann et al. 2005)
* the Arabic grammar described in (Odeh 2004)

Moreover, the XDK provides a number of shell scripts e.g.the convenient creation of
pictures displaying multigraphs or metagrammars for isidn in papers and presentations:

* xdag2eps, xdag2jpg, xdag2pdf: generate EPS, JPG or PDF files from #igK code
obtained using the visualizer for solutions of the constrparser, using théTgX style
file xdag.sty also provided by the XDK

* code2pic, generate EPS, JPG or PDF files from th&X code obtained from the
scriptsozcolor (for Mozart/Oz code)ulcolor (UL), xmlcolor (XML)

* ulterse: minimize UL metagrammars
» diffnotime: compare parsing statistics

* addprinciple, mvprinciple, rmprinciple: add, rename or remove principles to, in,
or from the principle library

Many of these tools, and the additional GNU Emacs marel, have already been used to
prepare this thesis.

The XDK is comprehensively documented by a manual whichés 800 pages long written
using texinfo. It is available as an online version (in eitAd ML or info) and as an offline
version for printing (in either PDF and Postscript). Evenrenm-depth documentation is
available on the XDG website in form of slides of the ESSLL02@ourse.

D.6. Summary
This appendix presented the programs of the XDK, the praved@mple grammars, the set

of useful shell scripts, and its documentation. All gramsrdescribed in this thesis are imple-
mented in XDK and can be tested “live”.

218



E. Interface to CLLS

In this chapter, we build an interface from the semanticsutedf our grammar to th€on-
straint Language for Lambda StructuréSLLS (Egg et al. 2001). The interface covers the
entire example grammar developed in this part of the thesis,for each analysis, it yields
a corresponding CLLS constraint. We realize this interfagentroducing thecLLs dimen-
sion to gather the necessary data to visualize underspgkedisc analyses as CLLS con-
straints, and th€LLSoutput functor to implement the visualization, using theyr visualizer
uDraw(Graph)(Bernd Krieg-Brueckner’s Group 2005).

E.1. CLLS

This section gives a very brief and informal introductioi©ioLS. A more detailed description
of CLLS can be found e.g. in (Egg et al. 2001). CLLS is a desicmplanguage for lambda
terms based odominance constrain{®arcus, Hindle & Fleck 1983). Compared to other for-
malisms for semantic underspecification sucl@assi Logical Form(QLF) (Alshawi 1991),
Hole SemanticéBos 1996) andMinimal Recursion Semanti¢IRS (Copestake et al. 2004),
CLLS has a number of advantages:

* descriptions from other formalisms, e.g. Hole Semantidd RS, can be converted into
CLLS (Koller, Niehren & Thater 2003, Fuchss, Koller, Nieht& Thater 2004)

* CLLS has by far the best algorithmic properties of the aldé formalisms

* CLLS has an open-source implementati®iool (Koller, Kuhlmann & Thater 2005),
not only offering services to translate descriptions frotimeo formalisms into CLLS,
but also to solve them very efficiently

E.1.1. Constraints

For simplicity, we restrict ourselves to a fragment of CLL&leding parallelism constraints.
Here is its syntax:

o = X:if(Xy,... . Xn) [ XY [AX)=Y | AP’ (E.1)

X1 f(Xg,...,Xn) is alabeling constraint It constrains the node variab} to have labelf,
and daughterXs, ..., X (in this order). X <*Y is adominance constraintequiring thatX
dominatesr. A(X) =Y is abinding constrainand requiring thak is bound byY, whereX
must have labelar for “variable”, andY must have labdbm for “lambda binder”.

219



E. Interface to CLLS

E.1.2. Example

As an example, we create a CLLS description of the two readafig
Every man loves a woman (E.2)

in a step-by-step fashion. In the first step, we assign to eaectd a CLLS constraint called
fragmentwhich describes its semantic contribution. To the deteensi@veryanda, we assign
the following trivial labeling constraints:

X1 : every
% a (E.3)

To the nourman we assign the fragment below, where @ stands for “apptinéti

X1 1 @(X2,Xg) A Xz 1 @(X3,Xa) A Xa <I* X5 A Xs © @(Xe, X7) A (E.4)
Xe:manA Xz :varAXg : lam(Xg) AA (X7) = Xg '

The nourwomanis assigned the same fragment except for the labeling of Kede

CLLS constraints can be represented more perspicuouslyaghgy A representation of
(E.4) is shown in Figure E.1, where unlabeled nodes have Igleiges are drawn as solid
(black) lines going downward, dominance constraints aseddblue) lines also going down-
ward, and binding constraints by dotted (green) lines gaipgyard. Anchor nodes of the
fragments, labeled by the words to which they corresporedhigrhlighted (in yellow).

2N

X2:@ X8:lam

SN

X9:_

v 3
X5:@ .

| >

X6:man X7:var

Figure E.1.: Graph representation of CLLS constraint (Eb4jhe nounman

The CLLS fragment for the transitive veltives graphically represented in Figure E.2, rep-
resents the binary predicdt®/e(x,y), wherex corresponds to the variab¥g in the fragment
(the agent), ang to Xs (the patient):

X1: @(X3,X2) AXa: @(Xs,Xq) A Xg : lOveA Xs : varA Xz : var (E.5)
In the second step, we combine the constraints of the detersnand nouns by:
1. conjoining them

2. adding a dominance constraint from quantifier ngglef the noun constraint to the root
nodeX; of the determiner constraint

220



E. Interface to CLLS

X1.@

/N

X2:@ X3:var

RN

X4:love X5:var

Figure E.2.: Graph representation of CLLS constraint (Ebbjhe transitive verlboves

To make the nodes of the individual fragments distinct, walgamate the names of the node
variables with the corresponding words. For instanteof the fragment oimanbecomes
Xg"@" The resulting constraint faevery manrepresented graphically in Figure E.3, is the

following:
X{nan @()(é'ﬂan7 Xeman) A Xgmn @(Xénan’ erl’nan>/\
XFanq* xsman/\ x5man @(xﬁman’ X7man)/\
Xgnan: mana Xman: var A Xg@": lam(Xg"aM A (E.6)
A (Xgman) — XSman/\
X7V everyn xnan < x 2V

X1-man:@

N

X2-man:@ X8-man:lam

/N N

X3-man:_ X4-man:_ . X9-man:_

v v |

X1-every:every X5-man:@ .

I

X6-man:man X7-man:var

Figure E.3.: Graph representation of CLLS constraint (Eb6jhe noun phrasevery man

Intuitively, the constraint representganeralized quantifiewhere the restriction is already
instantiated: the constraint f@very marnfor instance represents the following generalized
guantifier:

AQ.¥x.manx) = Q (E.7)
where the restriction is already instantiated witAnx), but the scop& is not. The combi-

nation ofa andwomanproceeds analogously.
In the third step, we combine the constraints for the Vevieswith those forevery marand

a woman This amounts to:
1. again conjoining them

2. adding dominance constraints from the scope ned# the noun fragments to the root
nodeX; of the verb fragment

3. adding binding constraints from the variable nodlgsand X5 of the verb fragment to
the lambda binder nodés of the noun fragments.

221



E. Interface to CLLS

The combined CLLS constraint, displayed graphically indfeE.4, is the following:

K G ) X GO X1
XN XA XA @ (X" XM A
Xgan: manA X7 var A Xg": lam(Xg" M A
A (Xman) — ymany
xc(-zve7ry_n) X8 man _.x y every

1 reveryA Xt XA
Xi/voman: @(xé/voman’ xéNomar) A Xé/voman: @(x:\%/vomarl xz\l/vomar)/\
x‘\‘/vomanq* x%/voman/\ X%Noman: @(xf\j/vomarl x%/vomar)/\
Xg”"ma”: woman\ XyomMan: var A Xg'oman: lam(Xg'oman A
)\ (X%Nomarv — Xé/voman/\
X}a Jan xgvolmanq* IXf‘/\ | | |
xlOVES: @( X30VES’ X20V65> /\ XZOVES: @(XSOVES, x40ves> /\
X1OVeS: loven XiOves: var A X[9Ves: vara
Xgman 9% X{oves A xé/voman T Xioves/\

A (X:Isove% — x8man/\ A (XéoveS) _ Xé’voman

The constraint reflects the intuition that the nominal argota of the verb both take scope
over it, that the agent-variable of the verb is bound by tHgexi fragment corresponding to
every manand the patient by the object fragment correspondirgwmman

(E.8)

X1-woman:@ X1-man:@

X2-woman:@ X8-woman:lam X2-man:@ X8-man:lam
/ \ A \ / \ / AR
X3-woman:_  X4-woman:_ o X9-woman:_ X3-man:_ X4-man:_ _X9-man._
X1l-aa X5-woman:@ X1-loves:@ Xl1-every:every o0 X5-man:@ -
X6-woman:woman X7-woman:var . X2-loves:@ X3-loves:var X6-man:man X7-man:var

X4-loves:love X5-loves:var

Figure E.4.: Graph representation of CLLS constraint (EoBjhe sentenc&very man loves
a woman.

CLLS constraints such as the one developed above desctibefseees, which can be
enumerated by solving the CLLS constraint. We display the gelved form=f constraint
(E.8) in Figure E.5 (weak reading) and Figure E.6 (stronglireg). Solved forms directly
correspond to lambda terms.

E.2. CLLS Dimension

To integrate CLLS into our example grammar, we introducedhes dimension, whose pur-
pose is to provide the information required to construct &&€ktonstraint from an underspec-
ified PA/sc analysis. As a result, we will always be able to visualizegbmantic part of an
analysis as a CLLS constraint, using the specialized CLUSudunctor of the XDK output
library. The models of theLLs dimension are graphs without edges.

222



E. Interface to CLLS

X1-man:@

/

X2-man:@
X3-man:_ X4-man:_
Y v

X1-every:every X5-man:@

/N

T~

X8-man:lam

AT

X9-man:_

v

X1-woman:@

.

X6-man:man X7-man:var X2-woman:@ X8-woman:lam

N Ere

X3-woman:_  X4-woman:_ . X9-woman:_
v v : v
Xl-aa X5-woman:@ X1-loves:@

X6-woman:woman X7-woman:var X2-loves:@ X3-loves:var

N

X4-loves:love X5-loves:var

Figure E.5.: Weak reading &very man loves a woman.

X1-woman:@

— T

X2-woman:@

/N

X8-woman:lam

S

X3-woman:_  X4-woman:_ X9-woman:_
Y v v
Xl-aa X5-woman:@ : X1-man:@
X6-woman:woman ~ X7-woman:var X2-man:@ X8-man:lam
l \ AX
X3-man;_ X4-man:_ : X9—man:_.*
v N i v :
X1-every:every X5-man:@ ./ Xl-loves:@ ‘3
X6-man:man X7-man:var X2-loves:@ X3-loves:var
X4-loves:love X5-loves:var

Figure E.6.: Strong reading &very man loves a woman.

223



E. Interface to CLLS

E.2.1. Types

The lexical attributes on theLLs dimension are defined as follows, making use of the type
" clls.var" of CLLS node variables:

deftype "clls.var" {x1 x2 x3 x4 x5 x6 x7 x8 x9}
defentrytype {cons: string
anchor: string
roots: set("clls.var") (E.9)
dom vec("sc.|abel" set("clls.var"
lam vec("pa.label" set("clls.var"
var: vec("pa.label" set("clls.var"

~— — —
~— — —

The attributes consist of:

* cons IS a string which represents the fragment assigned to the,noldere we write
label(f x1 ... xn) for the labeling constrainX : f(Xi,...,X,), dom(x1 x2) for the
dominance constrain; <* Xy, lambda(x1 x2) for the binding constraink (X;) = X,
and use concatenation for conjoining constraints

* anchor IS a string representing the anchor of the fragment
* roots is a set of node variables denoting the roots of the fragment

* dom is a vector used to magpc edge labels to sets of node variables. These node vari-
ables are typically leaves of the fragments, and are thépsiats of the dominance
constraints corresponding B edges. The endpoints of these dominance constraints
are always the roots of other fragments.

e lam andvar are vectors used to map edge labels to sets of node variablesr maps
PA edge labels likeg andpat to the corresponding node variables in the CLLS con-
straint. For example, in the CLLS constraint forvesin Figure E.2,ag corresponds
to nodeXs andpat to Xs. These node variables are the startpoints of the binding con
straints corresponding e edges. Their endpoints are lambda binders, whose position
is specified by the attributeam, a vector used to mapa edge labels to lambda binder
node variables.

E.2.2. Lexical Classes

We use lexical classes to assign CLLS constraints to nodebid section, we describe only
the lexical classes needed to account for the running exaofghis appendix. In the actual
grammar, we have defined CLLS constraints for all other wasiwell.

Words without semantic content are assigned an empty CLbStint without a root and

with anchoraA:
defclass "clls_nocont" A {
dimclls {cons: ""

anchor: A (E.10)
roots: {}}}

1As the fragments in the example grammar have at most 9 nbdess.var” contains the 9 variablesl, . . .,
x9 representing, ..., Xo.

224



E. Interface to CLLS

To determiners, we assign a fragment defining only one madabeled by the anchay:?

defclass "clls_det" A {
dimclls {cons: "label (x1 anchor)"
anchor: A (E-ll)
roots: {x1}}}

We describe common nouns with the following lexical class:

defclass "clls_cnoun" A {
dimclls {cons: "label (x1 '@ (x2 x8)) label (x2 '@ (x3 x4))
dom( x4 x5) label (x5 @ (x6 x7)) |abel (x6 anchor)

| abel (x7 var) |abel (x8 | anbda(x9)) | anm(x7 x8)"
anchor: A

roots: {x1}
dom {q: {x3}
r: {x4} (E.12)
s: {x9}}
lam {ag: {x8}
pat: {x8}
addr: {x8}
agm {x8}
patm {x8}}}}

The CLLS constraint of the lexical class corresponds todah@E.4), and graphically displayed
in Figure E.1 above, except that its anchor (node variab)eis variable. The root of the
fragment isx1. By thedom attribute, its quantifier node i3, its restrictionx4 and its scope

x9. By thelam attribute, the endpoint for binding constraints from veflg pat andaddr)
and modifiers of the nouragm andpatm) is x8.

Transitive verbs are described as follows:

defclass "clls_trans" A {

dimclls {cons: "label (x1 '@ (x2 x3)) label(x2 @ (x4 x5))

| abel (x4 anchor) | abel (x5 var) |abel (x3 var)"
anchor: A

(E.13)
roots: {x1}
var: {ag: {x3}

pat: {x5}}}}

where the CLLS constraint corresponds to that of (E.5), lgegtly displayed in Figure E.2.
The root of the fragment is1. By thevar attribute, its agent corresponds to node variaBile

and its patient tas

E.3. CLLS Output Functor

The purpose of th€LLS output functors to:

1. from a (possibly underspecifieeld/sc analysis, construct the corresponding CLLS con-

straint, utilizing the information provided by the lexicatributes on the&LLs dimen-
sion

2Before visualization, the CLLS output functor replaceso@iturrences oénchor in the constructed CLLS
constraint by the respective anchor of the node.

225



E. Interface to CLLS

2. visualize the CLLS constraint in the graph visualip@&raw(Graph) (Bernd Krieg-
Brueckner’'s Group 2005)

The construction of the CLLS constraint to be visualizeccpeals in four steps:
1. preprocessing the fragments of the nodes provided bgithe dimension
2. concatenating them

3. adding dominance constraints corresponding to edged@méhance edges on tlse
dimension

4. adding binding constraints corresponding to the edgebesn dimension

For the visualization itself, we apply the interface to ul{@raph) provided by Joachim
Niehren.

As an example, we give a walkthrough of the construction @@hLS constraint foEvery
man loves a womainom the underspecifiedla/sc analysis shown in Figure E.7.

0]
o —0
e : R
1 2 3 4 5
PA Every man loves a woman

o ez o
1 2 3 4 5

SC Every man loves woman

Figure E.7.: Examplea/sc/cLLs analysis

E.3.1. Preprocessing the Fragments
Preprocessing consists of two steps:

1. instantiating the anchor nodes of the fragments with #selform of the corresponding
word

2. making the node variables of the fragments unique by amadging them with the
corresponding node index

As an example, theons value of the determinegveryon thecLLs dimension is defined as
follows by lexical class11s_det in (E.11) above:

"l abel (x1 anchor)" (E_14)

226



E. Interface to CLLS

After preprocessing, the anchor has been instantiatedewitlhy, and the node variabtel
has been made unique by the suffix_(wheref stands for “fragment”):

"l abel (x1_f1 every)" (E.15)

E.3.2. Concatenating the Fragments

In the second step, the CLLS output functor concatenatgsépeocessed fragments, yielding
the following CLLS constraint, which we display graphigailh Figure E.8.

"l abel (x1_f1 every)

label (x1_f2 ' @(x2_f2 x8_f2)) label (x2_f2 "' @(x3_f2 x4_f2))

dom(x4_f2 x5 f2) label (x5 f2 '@ (x6_f2 x7_f2)) label (x6_f2 man)

| abel (x7_f2 var) |abel (x8_f2 | anbda(x9_f2)) |anm(x7_f2 x8_f2)

| abel (x1_ f3 '@ (x2_f3 x3_f3)) label (x2_f3 ' @(x4_f3 x5_f3))
| abel (x4 3 | ove) label (x5 f3 var) |abel (x3 f3 var) (E.16)

| abel (x1 _f4 a)
| abel (x1_f5 '@ (x2_f5 x8_f5)) label (x2_f5 "' @(x3_f5 x4_f5))

donm(x4_f5 x5 f5) label (x5 f5 " ' @(x6_f5 x7_f5)) |abel (x6_f5 wonman)
| abel (x7_f5 var) label (x8 f5 | anbda(x9 _f5)) lamx7_f5 x8 f5)"

x1_f5:@ x1_fz.@
x2_f5:@ x8_f5:lam x2_f2.@ x8_f2:lam
x3_f5:_ x4_f5:_ ! x9_f5:_ x3_f2:_ x4_f2:_ x9_f2:_ ' n
v f Tea :
x1_fd:a X5_{5:@ = x1_{3:@ x1_fl:every X5_f2@ .
x6_f5:woman x7_f5:var x2_f3:@ x3_f3:var x6_f2:man x7_f2:var

x4_f3:love x5_f3:var

Figure E.8.: Graphical representation of CLLS constrdin1 )

E.3.3. Adding Dominance Constraints

In the third step, the output functor adds dominance coimssraorresponding to the edges
and the dominance edges on the (possibly underspec#ed)mension. For each edge or
dominance edge from to V' labeledl, the startpoint of the corresponding dominance con-
straint is specified by the lexical attributem for v and label, and the endpoint by the lexical
attributeroots for v.

227



E. Interface to CLLS

For example, consider the edge labedgdom manto everyin the underspecifiedc anal-
ysis in Figure E.7. Asnanis a common noun, it is characterized by lexical clasks cnoun
(E.12), and the set of startpoints of dominance constréamtsnanand labelq is x3. The
set of roots of the determinerery characterized by lexical clagd1ls det (E.11), contains
only x1. As a result, the dominance constraint corresponding tedige goes froa3 of man
(unigue namex3_£2) to x1 of every(x1_f£1). Similarly, the edge fromvomanto a induces
a dominance constraint from8 f5 to x1_f4. The two additional dominance constraints are
displayed below:

"dom(x3_f2 x1_f1) dom(x3_f5 x1_f4)" (E.17)

As another example, consider the dominance edges labdtedn manto lovesand from
womanto lovesin Figure E.7. The startpoint for dominance edges from commuuns and
labels isx9 (E.12), hence the startpoints of the dominance edgeate for manandx9_f5
for woman Both times, the endpoint is the root of the fragment ofoves i.e.,x1_f3. The
result are the following two added dominance constraints:

"dom(x9_f2 x1_f3) dom(x9_f5 x1_f3)" (E.18)
Together with the four additional dominance constraintsegponding to the twg edges

and the twos dominance edges, the CLLS constraint (E.16) is graphicalyyesented in
Figure E.O9.

x1_f5:@ x1_f2:@

x2_f5:@ x8_f5:lam x2_f2.@ x8_f2:lam
x3_f5:_ x4_f5:_ ! x9_f5:_ x3_f2:_ x4_f2:_ . x9_f2:_
v v 1 Vo N N 3
x1_f4:a x5_f5:@ . J x1_f3:.@ x1_fl:every x5_f2:@ N .
x6_f5:woman X7_f5:var x2_f3:.@ x3_f3:var x6_f2:man X7_f2:var

x4_f3:love x5_f3:var

Figure E.9.: Graphical representation of CLLS constraihtl§) with the additional domi-
nance constraints (E.17) and (E.18)

In the output functor, we implement this idea of adding dasmnite constraints as follows.
As explained in section C.1.2 of appendix C, thegput prepareprovides, among other things:

1. the listNodeOLs of the nodes of the analysis in OL syntax

2. the listLEdges of determined labeled edgedge(I1 I2 LA) of the analysis for each
dimension

228



E. Interface to CLLS

3. the listLDEdges of determined labeled dominance edges(I1 I2 LA) of the analysis
for each dimension

where the listLDEdges of dominance edges excludes redundant dominance edgesi\alre
entailed by “proper” edges or by transitivity. This ensuttest the CLLS output functor does
not add redundant dominance constraints.

The three lists are used in the functid@dDomCons, which returns the list of dominance
constraints to be added:

1) fun {AddDonCons NodeOLs LEdgesSC LDEdgesSC}
2) for Edge in {Append LEdgesSC LDEdgesSC} collect: Collect do

(

(

( 3 |1 = Edge. 1

( 4) |2 = Edge. 2

( 5) LA = Edge. 3

( 6)

(7 NodeOL1 = {Nth NodeOLs |1}

( 8) NodeOL2 = {Nth NodeOLs |2}

(9

( 10) Var Asl = NodeOLl.clls.entry.dom LA

( 11) Var As2 = NodeOL2.clls.entry.roots (E.19)
( 12) in

( 13) if {Length VarAsl==1} andthen {Length VarAs2==1} then
( 14) VarAl = {Nth VarAsl 1}# ' #l1

( 15) VarA2 = {Nth VarAs2 1}# ' #12

( 16) in

( 17) {Col I ect 'don(’ #Var Al# ' #Var A2# )’}
( 18) end

(19 end

( 20) end

( 21)

The function iterates over all determined labeled edggizesSC and all determined la-
beled dominance edg@®EdgesSC on thesc dimension (line 2). The starting point of the
edge/dominance edge s is 11, the endpoint2, and the labelA (lines 3-5). In lines 7 and
8, we obtain the node records of the nodésandI2 in OL syntax. In line 10, we access the
lexical attributedom for NodeOL1 and edge labdlA on thecLLs dimension to obtain the list
of atomsvVarAs1, which is the OL representation of the set of startpointshefdominance
constraints for labelA. In line 11, we accessoots Of NodeOL2 to obtainVarAs2, the OL
representation of the set of roots of the fragmentafe0L2, which serve as the endpoints of
the dominance constraints. If both lists contain preciselg node variable, line 17 adds the
dominance constraint from the startpoint node variahteA1 to the endpoinvarA2, where
VarA1 is the first element dfarAs1, made unique by the suffixf 1 (line 14), and analogously
for varA2 (line 15).

E.3.4. Adding Binding Constraints

In the fourth and last step, we turn our attention to phedimension and add binding con-
straints corresponding to the determined edges on the galssibly underspecifieda di-
mension. For each edge (not dominance edge) fvamV labeledl, the startpoint of the
corresponding binding constraint is specified by the Ieatizibutevar for v and label, and
the endpoint by the lexical attributem for V' andl.

229



E. Interface to CLLS

For instance, consider the edge labedgdfrom lovesto manin Figure E.7. Adlovesis
a transitive verb, it is characterized by the lexical classs trans (E.13), stating that the
startpoint of binding constraints for labeg is x3. manis characterized bylls cnoun
(E.12), stating that the endpoint of binding constraintddbelag is its node variables. As
a result, the binding constraint corresponding to the edgs fromx3 of loves(x3 £3) to x8
of man(x8_£2). Similarly, thepat edge fromovesto womanadds a binding constraint from

x3 f3t0x8 f5:
"| anbda(x3_f3 x8_f2) |anmbda(x5 f3 x8 f5)" (E.20)

We show the resulting CLLS constraint in Figure E.10.

x1_f5:@ x1_fz.@
x2_f5:@ x8_f5:lam x2_f2.@ x8_f2:lam
/ \ A \ / \ / AR
x3_f5:_ x4_f5:_ i x9_f5:_ x3_f2:_ x4_f2:_ LLox9f2 L
v v s Vo N A :
x1_fd:a x5_f5:@ R x1_f3:@ x1_fl:every . x5 _f2z@
x6_f5:woman x7_f5:var Ll x2_f3:.@ x3_f3:var x6_f2:man x7_f2:var

x4_f3:love x5_f3:var

Figure E.10.: Graphical representation of CLLS constréini6) with the additional dom-
inance constraints (E.17) and (E.18), and the additionadlibg constraints
(E.20)

We realize this idea as follows by the functiséddBindingCons displayed below:

1) fun {AddBi ndi ngCons NodeOLs LEdgesPA}
2) for edge(l1 12 LA) in LEdgesPA collect: Collect do

(

(

( 3 NodeOL1 = {Nth NodeOLs |1}

( 4 NodeOL2 = {Nt h NodeOLs |2}

(5

( 6) Var Asl = NodeOLl.clls.entry.var.LA

(7 Var As2 = NodeOL2.clls.entry.lam LA

( 8) in

( 9) i f {Length VarAsl==1} andthen {Length VarAs2==1} then (E.21)
( 10) VarAl = {Nth VarAsl 1}# f #1

( 11) VarA2 = {Nth VarAs2 1}# f'#2

( 12) in

( 13) {Col l ect '| anbda(’ #Var Al# ' #Var A2# )’}
( 14) end

( 15) end

( 16) end

The function iterates over the determined labeled edggs(I1 I2 LA) in LEdgesPA on the
PA dimension (line 2). It then obtains the startpoint and emagmf the binding constraint
corresponding to the edge (lines 3-7), and, if both are gigdds the binding constraint in
line 13.

230



E. Interface to CLLS

E.4. Summary

As the XDK constraint solver can selectively postpone thenggration of readings on the
individual dimensions, our approach supports scope updeification out of the box, without
any further stipulation. This has opened the door for anrfiate to CLLS, for which we
have introduced theLLs dimension to gather the necessary information to constr@itL S
constraint from a (possibly underspecifiedysc analysis. The CLLS constraint was then
constructed by the CLLS output functor. By showing that i ¢e related to the state-of-
the-art in underspecified semantics, we demonstrated tinahodel of semantics in terms of
the two dimensions of predicate-argument structure andesstructure is not such a radical
departure from state-of-the-art semantic representatsrit might first have seemed.

231



Bibliography

Ajdukiewicz, K. (1935), Die Syntaktische Konnexitét,S. McCall, ed., ‘Polish Logic 1920-
1939, Oxford University Press, pp. 207-231. TranslatednfiStudia Philosophica, 1,
1-27.

Alshawi, H. (1991), ‘Resolving quasi logical form&€omputational Linguisticd6(3), 133—
144.

Andrews, P. B. (2002)An Introduction to Mathematical Logic and Type Theory: Taoitfr
Through Proof Kluwer Academic Publishers.

Apt, K. R. (2003),Principles of Constraint Programmin@ambridge University Press.

Bader, R., Foeldesi, C., Pfeiffer, U. & Steigner, J. (2008)pdellierung grammatischer
Phanomene der deutschen Sprache mit Topologischer Depagrdenmatik’. Software-
projekt, Saarland University.

Bar-Hillel, Y. (1953), ‘A quasi-arithmetical notation fayntactic description’Language
29, 47-58.

Barton, G. E., Berwick, R. & Ristad, E. S. (198Qpmputational Complexity and Natural
LanguageMIT Press.

Becker, T., Rambow, O. & Niv, M. (1992), The derivational geative power, or, scrambling
is beyond LCFRS, Technical report, University of Pennsyiaa

Beldiceanu, N. & Contjean, E. (1994), ‘Introducing globahstraints in CHIP’Mathematical
and Computer Modellingp. 97-123.

Bernd Krieg-Brueckner's Group (2005), ‘uDraw(Graph)’. tdw/www.informatik.uni-
bremen.de/uDrawGraph/en/index.html.

Blackburn, P. & Gardent, C. (1995), A specification langufagéexical functional grammars,
in ‘Proceedings of EACL 1995’, Dublin/IE.

Bohmova, A., Hag, J., Hajcova, E. & Hladka, B. (2001), The Prague Dependency Tree-
bank: Three-level annotation scenaiio,Treebanks: Building and Using Syntactically
Annotated Corpora’, Kluwer Academic Publishers.

Bojar, O. (2004), Problems of inducing large coverage cairgtbased dependency gram-
mar,in ‘Proceedings of the International Workshop on ConstranttiSg and Language
Processing’, Roskilde/DK.

232



Bibliography

Bos, J. (1996), Predicate logic unpluggéd,'Proceedings of the 10th Amsterdam Collo-
quium’, pp. 133-143.

Brants, T. (1999)Tagging and Parsing with Cascaded Markov Models — AutomatfdCor-
pus AnnotationSaarbricken Dissertations in Computational Linguistitd Language
Technology, DFKI Saarbriicken.

Bresnan, J. (2001),exical Functional SyntgBlackwell.

Bresnan, J. & Kaplan, R. (1982), Lexical-Functional Gramm#aformal system for gram-
matical representatiom J. Bresnan, ed., ‘The Mental Representation of Grammatical
Relations’, The MIT Press, Cambridge/US, pp. 173-281.

Bresnan, J. W., Kaplan, R. M., Peters, S. & Zaenen, A. (19838pss-serial dependencies in
dutch’, Linguistic Inquiry 13pp. 173-281.

Broker, N. (1999)Eine Dependenzgrammatik zur Kopplung heterogener Wigsefien Lin-
guistische Arbeiten 405, Max Niemeyer Verlag, Tubingen/DE

Brunklaus, T. (2000), Der Oz Inspector — Browsen: Interadti einfacher,
effizienter, Diploma thesis, Saarland University. httpwiv. ps.uni-
sb.de/Papers/abstracts/OzInspector.html.

Butt, M. & King, T. H. (1998), Interfacing phonology with LE@ ‘Proceedings of the LFG98
Conference’, Brisbane/AU.

Candito, M.-H. (1996), A principle-based hierarchical negentation of LTAG|n ‘Proceed-
ings of COLING 1996’, Kopenhagen/DK.

Candito, M.-H. & Kahane, S. (1998), Can the TAG derivatia@etrepresent a semantic graph?
An answer in the light of Meaning-Text Theoriy ‘Fourth International Workshop
on Tree Adjoining Grammars and Related Frameworks’, Usiterof Pennsylvania,
Philadelphia/US, pp. 25-28.

Carpenter, B. (1992) he Logic of Typed Feature Structuy€ambridge Tracts in Theoretical
Computer Science, 32 edn, Cambridge University Press.

Chomsky, N. (1957)Syntactic Structureslanua linguarum, Mouton, The Hague/NL.
Chomsky, N. (1965)Aspects of the Theory of SyntdIT Press, Cambridge/US.

Chomsky, N. (1981)l.ectures on Government and Binding: The Pisa Lecturesis Publi-
cations.

Church, A. (1940), ‘A formulation of the simple theory of 8%, Journal of Symbolic Logic
5, 56—68.

Clark, S. & Curran, J. R. (2004), The importance of supeltagdor wide-coverage CCG
parsing,in ‘Proceedings of COLING 2004, pp. 282—-288.

233



Bibliography

Copestake, A. & Flickinger, D. (2000), An open-source granuaievelopment environment
and broad-coverage English grammar using HP®BGConference on Language Re-
sources and Evaluation’, Athens/GR.

Copestake, A., Flickinger, D., Pollard, C. & Sag, I. (2008)inimal recursion semantics. an
introduction.’,Journal of Language and Computatioffo appear.

Crabbé, B. (2005), Grammatical development with XNMi&GProceedings of LACL 05’, Bor-
deaux/FR.

Crabbé, B. & Duchier, D. (2004), Metagrammar redinx;Proceedings of the International
Workshop on Constraint Solving and Language ProcessimagkiRtlie/DK.

Dalrymple, M., Lamping, J., Pereira, F. & Saraswat, V. (19®@%ear Logic for meaning as-
sembly,in ‘Proceedings of the Workshop on Computational Logic forudaltLanguage
Processing’, Edinburgh/UK.

Debusmann, R. (2001), A declarative grammar formalism émesthdency grammar, Diploma
thesis, Saarland University. http://www.ps.uni-sb.a@pts/abstracts/da.html.

Debusmann, R. (20@4, ‘Modeling natural language with Topological Dependeti@am-
mar’. Fortgeschrittenenpraktikum/Softwareprojekt, Wnsemester 2003/2004.

Debusmann, R. (20®), Multiword expressions as dependency subgrapmsProceed-
ings of the ACL 2004 Workshop on Multiword Expressions: greging Processing’,
Barcelona/ES.

Debusmann, R. & Duchier, D. (2002), Topological dependeatglysis of the Dutch verb
cluster, Technical report, Saarland University.

Debusmann, R. & Duchier, D. (2004), ‘A comparative introtimic to extensible dependency
grammar’. Introductory course at the 16th European Summigo@ in Logic, Language
and Information, ESSLLI 2004, Nancy, http://www.ps.ubige/~rade/talks.html.

Debusmann, R. & Duchier, D. (2006), ‘XDG development kit’. ttph//www.mozart-
oz.org/mogul/info/debusmann/xdk.html.

Debusmann, R., Duchier, D., Koller, A., Kuhimann, M., Sn&lks. & Thater, S. (2004), A
relational syntax-semantics interface based on depegdgammarjn ‘Proceedings of
COLING 2004’, Geneva/CH.

Debusmann, R., Duchier, D. & Kruijff, G.-J. M. (2004), Exs#ole Dependency Grammar: A
new methodologyin ‘Proceedings of the COLING 2004 Workshop on Recent Advances
in Dependency Grammar’, Geneva/CH.

Debusmann, R., Duchier, D., Kuhlmann, M. & Thater, S. (2004G as dependency gram-
mar,in ‘Proceedings of TAG+7’, Vancouver/CA.

234



Bibliography

Debusmann, R., Postolache, O. & Traat, M. (2005), A modulaoant of information struc-
ture in Extensible Dependency Grammiar,Proceedings of the CICLING 2005 Con-
ference’, Springer, Mexico City/MX.

Dienes, P., Koller, A. & Kuhlmann, M. (2003), Statistical Adependency parsingn
‘Prospects and Advances in the Syntax/Semantics Intésfdaacy/FR.

Dowty, D. R. (1989), On the semantic content of the notiontbématic role”,in G. Chier-
chia, B. H. Partee & R. Turner, eds, ‘Properties, Types andrigs’, Vol. 2, Kluwer,
Dordrecht/NL, pp. 69-129.

Duchier, D. (1999), Axiomatizing dependency parsing usiagconstraintan ‘Proceedings
of MOL 6’, Orlando/US.

Duchier, D. (2003), ‘Configuration of labeled trees undeidalized constraints and princi-
ples’,Research on Language and Computatlgd—4), 307-336.

Duchier, D. & Debusmann, R. (2001), Topological dependdress: A constraint-based ac-
count of linear precedenci ‘Proceedings of ACL 2001’, Toulouse/FR.

Duchier, D., Le Roux, J. & Parmentier, Y. (2004), The Metagnaar compiler: An NLP appli-
cation with a multi-paradigm architecturie, ‘Proceedings of the MOZ04 Conference’,
Vol. 3389, Springer, Charleroi/BE.

Earley, J. (1970), ‘An efficient context-free parsing algon’, Communications of the ACM
13(2), 451-455.

Egg, M., Koller, A. & Niehren, J. (2001), ‘The Constraint Lgumage for Lambda Structures’,
Journal of Logic, Language, and Information

Erdmann, O. (1886)3rundzlige der deutschen Syntax nach ihrer geschichtlienesicklung
dargestellf Erste Abteilung, Stuttgart/DE.

Frank, A. & Erk, K. (2004), Towards an LFG syntax-semantidsiface for frame semantics
annotationjn A. Gelbukh, ed., ‘Computational Linguistics and Intellig&ext Process-
ing’, Lecture Notes in Computer Science, Springer Verlag.

Frank, A. & van Genabith, J. (2001), GlueTag. Linear Logaséd semantics for LTAG—and
what it teaches us about LFG and LTAB,M. Butt & T. H. King, eds, ‘Proceedings of
the LFGO1 Conference’, Hong Kong/HK.

Fuchss, R., Koller, A., Niehren, J. & Thater, S. (2004), Mial recursion semantics as domi-
nance constraints: Translation, evaluation, and analysiBroceedings of ACL 2004,
Barcelona/ES.

Gaifman, H. (1965), ‘Dependency systems and phrase-gtaisystems’Jnformation and
Control 8(3), 304—-337.

235



Bibliography
Gardent, C. & Kallmeyer, L. (2003), Semantic constructionFATAG, in ‘Proceedings of
EACL 2003’, Budapest/HU.

Gazdar, G., Klein, E., Pullum, G. & Sag, I. (1988¢neralized Phrase Structure Grammar
B. Blackwell, Oxford/UK.

Gerdes, K. & Kahane, S. (2001), Word order in German: A fordegendency grammar using
a topological hierarchyn ‘ACL 2001 Proceedings’, Toulouse/FR.

Goldsmith, J. (1979), Autosegmental Phonology, PhD tha4lis.
Goldsmith, J. (1990)Autosegmental and Metrical Phonolqodlackwell, Cambridge/US.

Grabowski, R., Kuhlmann, M. & Mdhl, M. (2005), Lexicalised@figuration Grammarsn
‘Proceedings of the Second International Workshop on CaimstSolving and Language
Processing’, Springer, Sitges/ES.

Gross, M. (1964), On the equivalence of models of languagd ursthe fields of mechanical
translation and information retrievah ‘Information Storage and Retrieval’, Harvard
University, pp. 43-57.

Harary, F. (1994)Graph Theory Addison-Wesley, Reading/US.

Harper, M. P., Hockema, S. A. & White, C. M. (1999), Enhancedstraint dependency
parsersjn ‘Proceedings of the IASTED International Conference onfigral Intelli-
gence and Soft Computing’, Honolulu/US.

Hays, D. G. (1964), ‘Dependency theory: A formalism and sabgervations’L.anguage
40, 511-525.

Heinecke, J., Kunze, J., Menzel, W. & Schrdder, I. (1998inktative parsing with graded
constraintsin ‘Proceedings of COLING/ACL 1998’, Montréal/CA, pp. 526-53

Hentenryck, P. V. & Saraswat, V. (1996), ‘Strategic direns in constraint programming’,
ACM Computing Survey&3(4), 701-726.

Henz, M., Mlller, T. & Thiel, S. (2004), ‘Global constraintsr round robin tournament
scheduling’ European Journal of Operational Research (EJORS)

Herling, S. (1821), ‘Uber die Topik der deutschen Sprache’.

Higgins, D. (1998), Parsing parallel grammatical représt@oms,in ‘Proceedings of COL-
ING/ACL 1998’, Montréal/CA.

Holan, T., Kubon, V., Oliva, K. & Platek, M. (2000), ‘On conmgXity of word-order’, Journal
t.a.l. pp. 273-301.

Hudson, R. A. (1990)nglish Word GrammarB. Blackwell, Oxford/UK.

236



Bibliography

lordanskaja, L. & MelEuk, 1. (2005), Towards establishing an inventory of suefagntactic
relations: Valency-controled surface-syntactic depatslef verb in french. to appear.

Jackendoff, R. (1977X Syntax: A Study of Phrase Structumember 2n ‘Linguistic Inquiry
Monographs’, MIT Press, Cambridge/US.

Jackendoff, R. (2002Joundations of Languag®xford University Press.

Jaffar, J. & Lassez, J.-L. (1988), From unification to ccenstis,in ‘Proceedings of the 6th
Conference on Logic programming '87’, Springer, Tokyofj#, 1-18.

Jaffar, J. & Maher, M. M. (1994), ‘Constraint Logic Programmgr A survey’,The Journal of
Logic Programmindgl9/2Q 503-582. Special Issue: Ten Years of Logic Programming.

Joshi, A. K. (1987), An introduction to tree-adjoining gnemars,in A. Manaster-Ramer, ed.,
‘Mathematics of Language’, John Benjamins, Amsterdam/i.,87—-115.

Joshi, A. K. & Bangalore, S. (1994), Disambiguation of suparts of speech (or supertags):
Almost parsingijn ‘Proceedings of COLING 1994, Kyoto/JP.

Joshi, A. K., Levy, L. & Takahashi, M. (1975), ‘Tree Adjunct&nmars’,Journal of Com-
puter and System SciencBX1).

Joshi, A. K. & Shanker, V. K. (1999), Compositional semasitigth Lexicalized Tree Ad-
joining Grammar (LTAG): How much underspecification is nesay?,jn H. C. Blunt
& E. G. C. Thijsse, eds, ‘Proceedings of the Third InternadioNMorkshop on Computa-
tional Semantics (IWCS-3)’, Tilburg/NL, pp. 131-145.

Kahane, S. (2001), ‘A fully lexicalized grammar for frencased on Meaning-Text Theory’,
Computational Linguistics

Kallmeyer, L. & Joshi, A. K. (2003), ‘Factoring predicategament and scope semantics:
Underspecified semantics with LTAGResearch on Language and Computatigt—
2), 3-58.

Kathol, A. (2000) Linear SyntaxOxford University Press.

Kay, M. (1980), Algorithm schemata and data structures mtagtic processing, Technical
report, Xerox Palo Alto Research Center. CSL-80-12.

Koller, A., Kuhimann, M. & Thater, S. (2005), ‘utool: The ssg army knife of underspecifi-
cation’. http://utool.sourceforge.org/.

Koller, A., Niehren, J. & Thater, S. (2003), Bridging the dagtween underspecification for-
malisms: Hole semantics as dominance constraintroceedings of EACL 2003,
Budapest/HU.

Koller, A. & Striegnitz, K. (2002), Generation as dependeparsing,jn ‘Proceedings of ACL
2002’, Philadelphia/US.

237



Bibliography

Korthals, C. (2003), Unsupervised learning of word orddesuMaster’s thesis, Saarland
University. Diploma thesis.

Kruijff, G.-J. M. & Baldridge, J. (2004), Generalizing dimsionality in Combinatory Cate-
gorial Grammarin ‘Proceedings of COLING 2004’, Geneva/CH.

Kruijff, G.-J. M. & Duchier, D. (2003), Information structa in Topological Dependency
Grammarjn ‘Proceedings of EACL 2003’, Budapest/HU.

Kubon, V. (2001), Problems of Robust Parsing of Czech, Pla3i# Institute of Formal and
Applied Linguistics, Prague/CZ.

Kunze, J. (1975)Abhéangigkeitsgrammatildkademie Verlag, Berlin/DE.

Marcus, M. P., Hindle, D. & Fleck, M. M. (1983), D-theory: katg about talking about trees,
in ‘Proceedings of ACL 1983’, pp. 129-136.

Marcus, M. P., Santorini, B. & Marcinkiewicz, M. A. (1993),uBding a large annotated
corpus of English: the Penn Treebank, Technical reportyéisity of Pennsylvania.

Maruyama, H. (1990), Structural disambiguation with coaist propagationn ‘Proceedings
of ACL 1990, Pittsburgh/US, pp. 31-38.

McCawley, J. D. (1968), ‘Concerning the base component afamdformational Grammar’,
Foundations of Languagé 243—-269.

Melamed, I. D., Satta, G. & Wellington, B. (2004), GeneratiaMultitext Grammardn ‘Pro-
ceedings of ACL 2004’, Barcelona/ES.

Mel’ Cuk, I. (1988) Dependency Syntax: Theory and Practi8eate Univ. Press of New York,
Albany/US.

Mel Cuk, I. & Polguere, A. (1987), ‘A formal lexicon in the MeagiText Theory (or how to
do lexica with words)’ Computational Linguistic§3(3—4), 261-275.

Menzel, W. (1998), ‘Constraint satisfaction for robustgiag of spoken languagelpurnal of
Experimental and Theoretical Artificial Intelligend€(1), 77—89.

Menzel, W. & Schroder, 1. (1998), Decision procedures fopeatelency parsing using
graded constraintsn ‘Proceedings of the COLING/ACL 1998 Workshop Processing
of Dependency-based Grammars’, Montréal/CA.

Mohl, M. (2004), ‘Modellierung natdrlicher Sprache mit fdéilvon Topologischer Depen-
denzgrammatik’. Fortgeschrittenenpraktikum, Saarlami/&rsity, http://www.ps.uni-
sb.de/ rade/papers/related/Moehl04.pdf.

Montague, R. (1974), The proper treatment of quantificatimrdinary Englishin R. Thoma-
son, ed., ‘Formal Philosophy: Selected Papers of Richardtdpue’, Yale University
Press.

238



Bibliography

Montanari, U. (1970), Networks of constraints: Fundamleptaperties and application to
picture processing, Technical report, Carnegie Mellonversity.

Mozart Consortium (2006), ‘The Mozart-Oz website’. hthgww.mozart-oz.org/.

Narendranath, R. (2004), ‘Evaluation of the stochastiemsibn of a constraint-based depen-
dency parser’. Bachelorarbeit, Saarland University.

Odeh, M. (2004), ‘Topologische Dependenzgrammatik flrabégche’. Forschungsprak-
tikum, Saarland University.

Owens, J. (1988)An Introduction to Medieval Arabic Grammatical Thep&tudies in the
History of Language Sciences, 45 edn, John Benjamins.

Panenova, J. (1974), ‘On verbal frames in Functional Geiwer@escription’ Prague Bulletin
of Mathematical Linguistics

Peirce, C. S. (1898Reasoning and the Logic of Things: The Cambridge Confereactires
1898 Harvard University Press, Cambridge/US. published 1992.

Pelizzoni, J. & das Gracas Volpe Nunes, M. (2005), N:M magpmXDG - the case for
upgrading groupsn ‘Proceedings of the International Workshop on Constraottifg
and Language Processing’, Sitges/ES.

Penn, G. (1999), A generalized-domain-based approachrbm-seoatian second-position
clitic placement,in G. Bouma, E. Hinrichs, G.-J. M. Kruijff & R. Oehrle, eds, ‘Con
straints and Resources in Natural Language Syntax and $iesia@SLI Publications,
Stanford/US, pp. 119-136.

Pierce, B. (2002)Types and Programming Languag&8i T Press.

Pierrehumbert, J. (1980), The Phonetics and Phonology gfigknintonation, PhD thesis,
Massachusetts Institute of Technology, Bloomington/US.

Pollard, C. & Sag, I. A. (1987)Information-Based Syntax and Semantics. Volume 1: Funda-
mentals CSLI, Stanford/US.

Pollard, C. & Sag, I. A. (1994)Head-Driven Phrase Structure Grammaudniversity of
Chicago Press, Chicago/US.

Prevost, S. & Steedman, M. (1994), Information based irttonaynthesisin ‘Proceedings
of the ARPA Workshop on Human Language Technology’, PriowaéiS.

Pullum, G. K. & Scholz, B. C. (2001), On the distinction beememodel-theoretic and
generative-enumerative syntactic framewoiksp. de Groote, G. Morrill & C. Retoré,
eds, ‘Logical Aspect of Computational Linguistics: 4thdmtational Conference’, Lec-
ture Notes in Artificial Intelligence, Springer, Berlin/Dgp. 17-43.

239



Bibliography
Rogers, J. (1996), A model-theoretic framework for thené syntax,in ‘Proceedings of
ACL 1996'.

Rogers, J. (1998), A descriptive characterization of &id@ining languagesn ‘Proceedings
of COLING/ACL 1998’, Montréal/CA.

Ross, J. R. (1967), Constraints on Variables in Syntax, PleBi$, MIT.
Sadock, J. M. (1991 Autolexical SyntaxUniversity of Chicago Press.
Saraswat, V. (1993 oncurrent Constraint ProgramminilIT Press.

Sarkar, A. (2000), Practical experiments in parsing usireeAdjoining Grammarsn ‘Pro-
ceedings of TAG+5’, Paris/FR.

Schulte, C. (1997), Oz Explorer: A visual constraint prognaing tool,in L. Naish, ed.,
‘Proceedings of the Fourteenth International Conferemceagic Programming’, MIT
Press, Leuven/BE, pp. 286—-300.

Schulte, C. (2002Rrogramming Constraint Servicegol. 2302 ofLecture Notes in Artificial
Intelligence Springer-Verlag.

Schulte, C. & Stuckey, P. J. (2004), Speeding up constranpiggationin ‘Tenth International
Conference on Principles and Practice of Constraint Progmag’, Vol. 3258 ofLecture
Notes in Computer Scienc8pringer-Verlag, Toronto/CA, pp. 619-633.

Sgall, P., Hajicova, E. & Panevova, J. (198B))e Meaning of the Sentence in its Semantic and
Pragmatic Aspectd. Reidel, Dordrecht/NL.

Shanker, V. K. & Weir, D. (1994), ‘The equivalence of four exsions of context-free gram-
mars’,Mathematical Systems Thed®y(6), 511-546.

Shieber, S. M. (1984), The design of a computer languagerfguistic informationjn ‘Pro-
ceedings of COLING 1984, pp. 362—-366.

Shieber, S. M. (1985), ‘Evidence against the context-fessmf natural language’jnguistics
and Philosophyg, 334-343.

Shieber, S. M. & Schabes, Y. (1990), Synchronous Tree AtljgiGrammarsin ‘Proceedings
of COLING 1990, Helsinki/FI.

Smolka, G. (1995), The Oz programming model,J. van Leeuwen, ed., ‘Computer Sci-
ence Today’, Lecture Notes in Computer Science, vol. 10pAn§er-Verlag, Berlin/DE,
pp. 324-343.

Smolka, G. & Uszkoreit, H. (1996—-2001), ‘NEGRA project oéttollaborative research cen-
tre (SFB) 378'. Saarland University.

240



Bibliography
Steedman, M. (209, ‘Information structure and the syntax-phonology ireed’,Linguistic
Inquiry 31(4), 649-689.
Steedman, M. (2004), The Syntactic ProcesMIIT Press, Cambridge/US.

Steele, S. M. (1978), Word order variation: A typologicalds,in J. Greenberg, ed., ‘Univer-
sals of Human Language’, Stanford University Press, Stdfifts, pp. 585—-624.

Stys, M. & Zemke, S. (1995), Incorporating discourse asp@dEnglish-polish MT: Towards
robust implementationn ‘Recent Advances in NLP’, Velingrad/BG.

Sutherland, 1. E. (1963), Sketchpad: A man-machine grapltiemmunication systemn
E. C. Johnson, ed., ‘Proceedings of the 1963 Spring JointiDten Conference’, Vol. 23
of AFIPS Conference Proceedingsmerican Federation of Information Processing So-
cieties, Spartan Books, Baltimore/US, pp. 329-346.

Tack, G. (2002), 10zSeF - the integrated Oz search fact@ghiical report, Saarland Uni-
versity.

Tesniere, L. (1959kIéments de Syntaxe Structurafdincksiek, Paris/FR.

Trautwein, M. (1995), The complexity of structure sharinginification-based Grammais,
W. Daelemans, G. Durieux & S. Gillis, eds, ‘Computationatduistics in the Nether-
lands 1995’, pp. 165-179.

Valin, R. D. V. & LaPolla, R. (1997)Syntax: Structure, Meaning and Functjddambridge
University Press.

Wallace, M. (1996), ‘Practical applications of constrggnbgramming’,Constraints Journal
1(2).

Waltz, D. L. (1975), Understanding the line drawings of sewith shadowsn P. Winston,
ed., ‘The Psychology of Computer Vision’, McGraw-Hill.

Wechsler, S. (1995), The Semantic Basis of Argument StracfehD thesis, University of
Chicago.

Weir, D. J. (1988), Characterizing Mildly Context-SenstiGrammar Formalisms, PhD the-
sis, University of Pennsylvania.

White, M. (2004), Reining in CCG chart realizatian,'Proceedings of the 3rd International
Conference on Natural Language Generation’.

XTAG Research Group (2001), A Lexicalized Tree Adjoininga@mar for English, Technical
Report IRCS-01-03, IRCS, University of Pennsylvania.

241



Index

Abhangigkeitsgrammatik, 19
accented, 160

accumulative lattice, 92, 197
agreement, 130

agreement tuple, 28, 63, 128, 180
anchor, 32

anchor label, 27, 62
argument variable, 94
attribute, 27

Autolexical Syntax, 20
Autosegmental Phonology, 20

background, 160
binding constraint, 219
boundary tone, 160

cardinality, 27, 59, 92

cardinality lattice, 198

Categorial Grammar, 20

categorization, 129

CCG, 19

CDG, 19

CFG, 18

chart parsing, 22

CLLS, 24, 219

Combinatory Categorial Grammar, 19

compatibility, 51

configuration, 58

constituent, 16

Constraint Dependency Grammar, 19

Constraint Language for Lambda Structures,
24,219

constraint parser, 88

constraint parsing, 22

constraint programming, 22

constraint satisfaction problem, 22

242

constraint variable, 22, 107
Content-To-Speech system, 160
Context-Free Grammar, 18
coordination and ellipsis, 188
core term, 97

CP, 22

cross-serial dependencies, 72
CSP, 22

CTS, 160

dag, 28
daughter set, 102
deep guard, 22, 114
dependency grammar, 16
dependency graph, 16
dependency relation, 16
dependency tree, 16
dependent, 16
derivation dimension, 68
derivation tree, 39
derived tree, 39
DG, 16
dimension, 29, 31, 38
SEM, 29
CLLS, 219, 222
DERI, 68
ID, 23, 125
ID/LP, 125, 138
ID/PA, 170
IS, 23, 145
LP, 23,125
PA, 23, 127, 145
PA/SC, 145, 157
PL, 82
PS, 23, 165, 166
PS/IS, 170, 181



Index

SC, 23, 145, 153 mfl, 134
SYN, 29 mf2, 134
SYNSEM, 29 nf, 134
dimension variable, 94, 108, 204 padjf, 134
directed acyclic graph, 28 padvf, 134
distribution, 22 prepcf, 134
distribution strategy, 188 rbf, 134
dominance constraint, 219 relf, 134
dominance constraints, 219 root, 134
dominance edge, 210 rprof, 134
) tadvf, 134
edge constraint functor, 108, 109 vf. 134
edge functor, 113 wi. 134
edge label PA
ID ) addr, 149
adj, 129 ag, 18, 149
adv, 17, 129 agm 149
comp, 129 del, 149
det, 75, 129 det. 149
'Ob_J’ 129 pat, 18, 149
Obj, 17,129 patm, 149
part, 17, 129 root. 149
pmod, 129 th, 18, 149
pobj2, 129 bt1, 167
prepc, 129 bt2, 167
rel, 129 pal 167
root, 129 palbtl, 167
SUb, 129 pa2 167
subj, 17,129 pa2bt2, 167
Vbse, 75, 129 ua. 167
vinf, 17, 129 sc
vprt, 129 del, 155
IS g, 155
bg, 162 r, 155
rh, 162 root, 155
th, 162 s. 155
umth, 162 edge record, 209, 210
LP ) emergence, 21
adjf, 134 English Resource Grammar, 43
detf, 134 Extensible Dependency Grammar, 23
ngvlféis‘l eXtensible MetaGrammar, 42

243



Index

FB-TAG, 41 information structural constituent, 161
feature path, 95, 194 information structural valency, 162
Feature-Based Tree Adjoining Grammar, 41 information structure, 23, 145

FGD, 18 Intermediate Language, 89

finite domain constraint variable, 200 intersective lattice, 92, 198

finite set constraint programming, 101 |0zSeF, 89, 106

finite set constraint variable, 200 IS constituent, 161, 181

finite set of integers, 101 IS tree, 161

focus, 160

labeled edge relation, 48
labeling constraint, 219
lattice functor method
bot, 90, 190, 203
decode, 90, 190, 202, 210
encode, 90, 190, 203

FODG, 19

fragment, 58, 220

fragment pair, 72

Free Order Dependency Grammar, 19
Functional Generative Description, 18

GB, 16 glb, 90, 190, 203
Gecode, 122,188 makeVar, 90, 107, 190, 200
Generalized Multitext Grammars, 188 pretty, 90, 190, 202, 210
Generalized Phrase Structure Grammar, 16 select, 90, 108, 190, 200
generalized quantifier, 221 top, 90, 190, 203
generate all orderings, 217 lattice functors, 88, 190, 203
generate and test, 22 LCFG, 68
Generate-Enumerative Syntax, 19 LCFRS, 79
generation, 188 LCG, 71
GES, 19 lexical attribute, 27, 32
Glue Semantics, 21, 40 lexical attributes, 57
GNF, 68 lexical attributes type, 56
government, 131 lexical class, 35, 97
Government and Binding, 16 lexical class definition, 97
GPSG, 16 lexical entry, 19, 32
grammar induction, 188 Lexical Functional Grammar, 16
grammatical function, 16, 125, 170 Lexicalised Configuration Grammars, 71
Greibach Normal Form, 68 Lexicalized Context-Free Grammar, 68
group, 43 Lexicalized Tree Adjoining Grammar, 42
guided search, 122, 188 lexicon, 19, 32

LFG, 16
head, 16 Linear Context-Free Rewriting Systems, 79
Head-driven Phrase Structure Grammar, 16  |inear precedence, 23, 125
hippo sentence, 74 linking principles, 64
Hole Semantics, 219 logic variable, 200
HPSG, 16 logical constant, 52

LP tree, 132
ID tree, 125 ’
IL, 89 LTAG, 42
immediate dominance, 23, 125 Machine Translation, 160

244



MC-TAG, 79

Meaning Text Theory, 18
metagrammar, 23, 34, 42
metagrammar compiler, 88, 203
mildly context-sensitive, 74
Minimal Recursion Semantics, 22, 219
model creator, 89

model record, 109
Model-Theoretic Syntax, 19, 20
modification, 129

Mozart/Oz, 22

MRS, 22, 219

MT, 160

MTS, 19, 20

MTT, 18

Multi-Component TAG, 79
multigraph, 27, 29, 46
multigraph constant, 52
multigraph type, 49

multiword expressions, 43

NEGRA, 188

node admissibility conditions, 71
node constraint functor, 108, 109
node record, 102, 194
node-attributes mapping, 46
node-word mapping, 46
non-lexical attribute, 28
non-lexical attributes, 57
non-projective, 18

OL, 89, 209
OpenCCQG, 44
oracle, 186
ordered configuration, 61
ordered fragment, 60
output functor, 209
CLLS, 214, 219, 225
Dag, 214
Decode, 213
Latex, 214
Pretty, 213
Output Language, 89, 209
output library, 89, 209

Index

245

output preparer, 89, 209, 228
Oz Browser, 214

Oz Explorer, 37, 89, 106

Oz Inspector, 214

Oz script, 105

PA dag, 146

parallel grammar architecture, 20, 38

PDT, 122

Penn Treebank, 122

phonology-semantics interface, 24, 170

phrase, 16

phrase structure grammar, 16

phrase structure tree, 16

pickle, 207

pied piping, 142, 180

pitch accent, 160, 167

Prague Dependency Treebank, 122

precedence relation, 48

predicate-argument structure, 18, 23, 127,

145

prepositional adjective, 134, 148

prepositional adverb, 148

principle, 31, 54
Agr, 33, 63,130
Agreement, 33, 63, 110, 130, 180
Barriers, 139
Climbing, 76, 139
CSD, 76
Dag, 33, 55, 149
DagDisjointDaughters, 149
Edgeless, 34, 55, 105
Government, 131
Graph, 102, 109, 129
Lexicalization, 34, 57
LinkingAboveBelowlor2Start, 173
LinkingAboveEnd, 157
LinkingBelowlor2Start, 171
LinkingBelowStart, 159, 175
LinkingDaughterEnd, 141, 160, 179
LinkingEnd, 34, 64, 116, 141
LinkingMother, 34, 65, 171, 177
LockingDaughters, 151, 171, 176
Order, 33, 62, 117, 135, 167



PartialAgreement, 171, 180
PL, 85

Projectivity, 33, 56, 62, 118
Subgraphs, 183

Tree, 31, 33, 55, 129

Index

Valency, 31, 33, 59, 110, 129, 135, 149,

155, 162, 167, 199
principle definition, 94, 108
principle library, 34, 89, 108
projection edge, 17
projective, 18
propagate and distribute, 22
propagation, 22
propositional logic, 82
prosodic constituent, 165
prosodic structure, 23, 165, 166
prosodic valency, 167
PS constituent, 165, 181
PS tree, 166
PSG, 16
PTB, 122

QLF, 219
Quasi Logical Form, 219

recognition problem

fixed, 81

universal, 81
record, 27
rheme, 160
rigid word order language, 17
Role and Reference Grammar, 20
RRG, 20

SC tree, 153

scopal valency, 155

scope structure, 23, 145, 153
scope underspecification, 163
scrambling, 72

Search, 106

search engine, 89, 106
segmentation, 188

selection constraint, 108, 201
selection union constraint, 111
set generator, 95, 202

246

SL, 88, 102

solved form, 222

Solver Language, 88, 102
STAG, 39

strict dominance relation, 48
subcategorization, 129
supertagging, 123, 188
Synchronous TAG, 39

syntactic category, 16
syntacto-centric architecture, 20
syntax-semantics interface, 170

TAG, 16
TDG, 19, 23
thematic role, 18, 146, 170
theme, 160
TIGER treebank, 122
topicalization, 142
Topological Dependency Grammar, 19, 23
topological field, 132
left bracket, 132
Mittelfeld, 75, 132
Nachfeld, 132
right bracket, 132
\or-\Vorfeld, 133
\orfeld, 132
Tree Adjoining Grammar, 16

uDraw(Graph), 214, 219, 226
UL, 89

unaccented, 167

unbounded dependency, 127
underspecification, 116
unmarked theme, 161

User Language, 89

Utool, 219

valency, 18
in valency, 19
out valency, 19
vector, 33
verb cluster, 75
visualizer, 88, 209

WG, 19



Index

wh question, 142
Word Grammar, 19

XDG, 23

XDG Development Kit, 23
XDK, 23

xdk, 215

XDK description language, 23, 34
xdkc, 215

xdkconv, 215

xdks, 215

XMG, 42

XML, 89

XML Language, 89
XTAG, 43

247



