
Movement as well-formedness conditions

Ralph Debusmann

University of Saarland

rade@coli.uni-sb.de

Abstract. We introduce a new formulation of dependency grammar recently
suggested in (Duchier and Debusmann 2001) (henceforth DD). DD shares with GB
(Chomsky 1986) a notion of movement. In GB, movement is carried out by tree
transformations. In DD, it is the effect of well-formedness conditions on dependency
trees and does not involve transformations. We illustrate both kinds of movement
by showing how both theories analyze German verb-second clauses. Then, we point
out the similarities between GB and DD, and raise the question whether GB’s
transformational notion of movement could be replaced by DD’s constraint-based
account of movement.

1 Introduction

In this article, we introduce a new formulation of dependency grammar re-
cently suggested by (Duchier and Debusmann 2001) (henceforth DD). One
of the key assets of DD is that its axiomatization can be (and has been)
turned into efficient constraint-based parsers. DD analyses consist of two
tree structures: a syntactic dependency tree (ID tree) and a topological de-
pendency tree (LP tree). The ID tree is a dependency tree in the spirit of
(Tesnière 1959) whose edges are labeled by grammatical roles. ID trees are
unordered (and hence in a sense non-projective), as opposed to LP trees
which are ordered and projective. The LP tree is inspired by topological
fields theory. Its shape is essentially a flattening of the ID tree, allowing us
to handle discontinuous constructions in free word order languages such as
German.

The approach taken in DD is very similar to other recent dependency-
based approaches tackling discontinuity, such as (Bröker 1998), (Kahane
et al. 1998) and (Gerdes and Kahane 2001). It is also reminiscent of HPSG-
based theories by (Reape 1994), (Kathol 2000) and (Müller 1999). DD’s
strong resemblance with Government-Binding (GB) theory (Chomsky 1986)
is probably less obvious. We will show that, above all, DD shares with GB
a notion of movement. In GB, movement is carried out by tree transforma-
tions, which have properties undesirable for parsing. In DD, movement is

1



the effect of well-formedness conditions on finite labeled trees and does not
involve transformations.

The outline of this article is as follows. We start out by presenting the
essentials of topological fields theory in section 2. In section 3, we introduce
the dependency-based theory proposed in (Duchier and Debusmann 2001),
and show how this theory handles German verb-second clauses. In section 4,
we explain an analysis of German verb-second clauses in GB, as put forward
by (Grewendorf 1988). Then, in section 5, we compare GB and DD, and
hint at the possibility to reformulate parts of GB, movement in particular,
in a constraint-based way. The conclusion in section 6 rounds up the article.

2 Topological fields theory

Both GB and DD use ideas from topological fields theory. Topological fields
theory has a long tradition in German linguistics reaching back to the works
of (Herling 1821) and (Erdmann 1886). As an example, consider the sentence
below:

Einen Mann hat Maria geliebt
A man(acc) has Maria loved

“A man, Maria has loved.”
(1.1)

Topological fields theory divides (1.1) into four parts, which are called fields:
Vorfeld, left parenthesis, Mittelfeld and right parenthesis:1

Vorfeld left parenthesis Mittelfeld right parenthesis

Einen Mann hat Maria geliebt.

where the finite verb hat in the left parenthesis and its verbal complement
geliebt (right parenthesis) form a bracket around the non-verbal material
in the Mittelfeld. The Vorfeld, left of the left parenthesis, can be occupied
by at most one topicalized constituent, whereas the Mittelfeld can host any
number of non-verbs. The order of the material in the Mittelfeld is almost
arbitrary.

3 Verb-second clauses: A DD analysis

3.1 ID and LP trees

DD distinguishes two tree structures: the unordered ID tree and the partially
ordered and projective LP tree. ID and LP trees share the same set of nodes,
which correspond one-to-one with words, but have different edges. Below,
we give an ID tree analysis of (1.1). Since ID trees are unordered, we can

1Actually, topological fields theory postulates one more field which is called Nachfeld

and hosts material right of the right parenthesis.

2



pick an arbitrary linear arrangement for display purposes. In the picture
below, we stick to the word order given in sentence (1.1).

ID tree:

einen Mann hat Maria geliebt

subj
vpast

obj

det

ID edges are labelled by grammatical functions like subj (for a nominative
subject), obj (for an accusative object) vpast (for a past participle comple-
ment) and det (for a determiner). The mother of a node in the ID tree is
called head and its daughters syntactic dependents. Here is the correspond-
ing topological dependency (LP tree) analysis:

LP tree:

einen Mann hat Maria geliebt

d
n

c
n v

vf
mf vc

df

The mother of a node in the LP tree is called host and its daughters topo-
logical dependents.

3.2 Ordering words in the LP tree

DD employs a set F of fields to determine the licensed linearizations. F =
Fext ] Fint, where Fext = {df, vf,mf, vc} is the set of external fields or LP
edge labels. Fint = {d, n, c, v} is the set of internal fields or LP node labels.2

F is totally ordered, which induces a partial order on LP trees:

1. The topological dependents of each node are ordered by their edge
labels or external fields.

2. Each node is positioned with respect to its topological dependents by
its node label or internal field.

2Note that for expository reasons, F only includes the fields needed to account for our
example. For a full account of German, more fields are required.

3



The order is partial and not total because if two words land3 in the same
external field, they remain unordered with respect to each other.

The set F of fields is essentially motivated by topological fields theory.
For example vf models the Vorfeld, c the left parenthesis, mf the Mittelfeld
and vc the right parenthesis (or verb cluster). df and n are used to determine
word order within noun phrases: e.g. df stands for determiner field and n

for noun field. The total order on F is given below:

d ≺ df ≺ n ≺ vf ≺ c ≺ mf ≺ vc ≺ v (1.2)

The global total order on F can be decomposed into local total orders.
For instance the local order df ≺ n requires determiners to precede their
corresponding nouns. Conversely, the sequence vf ≺ c ≺ mf ≺ vc requires
the Vorfeld (vf) to precede the left parenthesis (c) to precede the Mittelfeld
(mf) to precede the verb cluster or right parenthesis (vc).

In our example, the desired linearization is attained as follows:

1. Mann lands in the vf, Maria in the mf and geliebt in the vc of hat.
Since vf ≺ mf ≺ vc in (1.2), Mann must precede Maria and Maria
must precede geliebt.

2. The internal field of hat is c. Because vf ≺ c ≺ mf in (1.2), it must be
placed between the Mann in the vf and Maria in the mf.

3.3 Example lexicon

DD states well-formedness conditions for LP trees in a lexicalized fashion:
a lexical entry stipulates which external fields are offered for topological
dependents to land in and which are accepted. A node w ′ can land in an
external field f of host w iff w offers f and w′ accepts f. A lexical entry also
assigns a set of possible internal fields to each word. Here are the lexical
entries for our example4:

offers accepts internal

einen {} {df} {d}
Mann {df} {vf,mf} {n}
Maria {} {vf,mf} {n}
hat {vf?,mf∗, vc?} {} {c}

geliebt {} {vc} {v}

The set of fields offered by a node is given in wildcard notation: e.g. vf?
indicates that there can be at most one topological dependent in the vf (as
stated by topological fields theory), and mf∗ that any number of daughters
can land in the mf.

3A node is said to land in external field f iff its incoming edge is labeled with f.
4We display only the LP tree part of each lexical entry. Full lexical entries also comprise

ID tree information such as subcategorization and agreement.

4



3.4 Climbing

The well-formedness conditions for LP trees are further constrained by a
grammatical principle5:

Principle 1 a node must land on a transitive head

which states that the host w of a node w′ in the LP tree must be above
w′ in the ID tree. If a node lands above of its syntactic head, it is said to
have climbed. Below, we illustrate how Mann climbs into the vf of hat (as
indicated by the dashed arrow):

ID tree: LP tree:

Mann hat geliebt

vpast

obj
⇒

Mann hat geliebt

vcvf

Mann is forced to climb by the well-formedness conditions stated in the
lexicon: it cannot land on geliebt because geliebt offers no field.

3.5 Extending coverage

Note that the example lexicon has been designed to be as simple as possi-
ble, and is therefore not representative of DD’s coverage. In fact, we have
developed a German grammar for our prototype parser which also covers
e.g. verb-last sentences, partial verb phrase fronting and relative clauses. In
order to also handle verb-last sentences, we introduce separate lexical entries
for finite verbs that have internal field v and do not offer a vf. The intro-
duction of additional lexical entries does not really hamper the efficiency of
our approach as the parser uses a novel constraint-based treatment of lexical
ambiguity as introduced in e.g. (Duchier 1999).

In order to accomodate partial verb phrase fronting in the example lex-
icon, we would need an additional lexical entry for geliebt. If it lands in
the Vorfeld, i.e. if it accepts {vf}, then it should offer {mf∗}. An LP tree
analysis of the partial verb phrase fronting sentence Einen Mann geliebt hat
Maria would then look like the one depicted below:

5We only mention the first of the three principles given in (Duchier and Debusmann
2001).

5



LP tree:

einen Mann geliebt hat Maria

d

n
v

c
n

vf mf

mf

df

4 Verb-second clauses: a GB analysis

4.1 German sentence structure

There are two approaches to analyzing verb-second sentences in GB. We
choose the approach taken in (Grewendorf 1988), as originally suggested in
(Chomsky 1986). It assumes the following sentence structure for German:6

cp

xp c’

c s

np vp

The theory of topological fields can be mapped to the proposed GB struc-
ture as follows: the Vorfeld corresponds to the [CP,XP]-position and the
left parenthesis to [C’,C]. The right parenthesis and the Mittelfeld have no
equivalents in the above tree configuration.

4.2 d- and s-structure

Two of the four levels of analysis that GB posits are of interest for our
purposes here: d- and s-structure. Here is a d-structure analysis of (1.1):

6For simplicity, we do not depict the IP- and I’-nodes from the original tree shown in
(Grewendorf 1988), p. 49.

6



d-structure:
cp

xp c’

c s

np vp

Maria v vp

hat np v

einen Mann geliebt

GB uses an operation called move-α to mediate between d- and s-structure.
Move-α moves nodes into landing sites, which are positions available for
movement to take place to. The number of landing sites is restricted by
constraints such as the θ-criterion and the Case-Filter. In the example,
[CP,XP] and [C’,C] function as landing sites. The XP-position [CP,XP] is a
landing site only for maximal projections, whereas [C’,C] is a head position
and therefore only available to heads. In the s-structure shown below, move-
α takes place into both landing sites: the NP einen Mann moves to [CP,XP]
(Vorfeld), and the finite verb hat to [C’,C] (left parenthesis):

s-structure:
cp

np c’

einen Manni c s

hatj np vp

Maria v vp

tj np v

ti geliebt

5 GB and DD: a comparison

5.1 Dependency

An obvious difference between GB and DD is that GB is a phrase structure-
based theory and DD dependency-based. But is no crucial difference: since
GB is based on X-bar theory (Jackendoff 1977), it also incorporates the
notion of a head : X-bar theory requires that every phrase has a head which
is a single word. (Covington 1990) argues that if a phrase structure analysis
(1) picks out one node as the head of each phrase and (2) has no labels
or features on non-terminal nodes (unless of course copied unchanged from

7



terminal nodes), it can be regarded as being equivalent to a dependency
analysis that specifies word order.

(Covington 1992) even goes one step further by attempting to simplify
GB theory by recasting it into a dependency formalism. He shows how to
convert GB’s X-bar-based phrase structure trees into equivalent dependency
trees and then redefines government in terms of dependency. As an example,
consider the GB phrase structure tree below:

n”

d”

d’

d

some

n’

adj”

adj’

adj

new

n’

n

pictures

p”

p’

p

of

n”

n’

n

us

The head of the phrase is pictures, which has a specifier (some), an
adjunct (new) and a complement (of ). The complement of of is us. Here
is an equivalent dependency tree:

some new pictures of us

sp adj co

co

where sp stands for specifier, adj for adjunct and co for complement. With
respect to a dependency tree, GB’s notion of government is now much easier
to define:

Definition 1 A governs B iff B is an immediate dependent of A.

By using dependency trees rather than phrase structure trees, not only
principles such as government become easier to define. From a computa-
tional point of view, dependency grammar also has the advantage of pos-
tulating fewer nodes, i.e. exactly one node per word. Fewer nodes lead to
improved performance because the trees to be processed are smaller.

8



5.2 Valency

GB and DD and in fact most linguistic theories to date share a notion of
valency. Both GB and DD state valency requirements in the lexicon: GB
uses subcategorization frames to specify the required θ-roles, and a DD
lexicon includes ID tree and LP tree valency. ID tree valency is encoded
by stating which syntactic roles a word offers and is very similar to GB’s
subcategorization frames. For example, a finite transitive verb offers subj

and obj. On the opposite, LP tree valency specifies which fields a word
offers.

5.3 Constituency

While GB includes the notion of dependency as a derived notion only, con-
stituency is incorporated as a first class citizen. Constituents or phrases in
GB are contiguous substrings of the analyzed sentence. DD includes con-
stituency as a derived notion in both the ID and LP tree. In the ID tree,
the set of nodes equal or below a head can be viewed as a constituent, but
one which is not required to be contiguous (since the ID tree is unordered
and non-projective). In the LP tree, the set of nodes equal or below a host
forms a contiguous substring constituent (because LP trees are ordered and
projective).

5.4 Movement

Both theories use a notion of movement to relate a deep or syntactic struc-
ture (d-structure in GB, ID tree in DD) to a surface or topological structure
(s-structure, LP tree). But while in GB, move-α is a primitive operation
modelled by tree transformations, climbing is a derived notion in DD: it de-
scribes the effect of well-formedness conditions. These well-formedness con-
ditions are axiomatized in a constraint-based fashion, as outlined in (Duchier
1999) and (Duchier 2000), and can be easily turned into a parser.

GB’s tree transformational account of movement severely restricts the
computational usability of the theory. As (Covington 1990) argues, because
transformations are tree-to-tree mappings, a parser can only undo a trans-
formation if it has already parsed the tree structure that represents the
output of the transformation. That is, the only way to parse a transformed
sentence is to undo the transformation — but the only way to undo the
transformation is to parse the sentence first.

GB restricts the applicability of move-α by providing a fixed set of kinds
of movement, including wh- and NP-movement. Movement is further con-
strained by general principles such as the Case Filter and the θ-criterion.
For instance, only θ-positions7 may function as landing sites for movement

7A θ-position is a position which is not assigned a θ-role.

9



in GB. XP-positions are landing sites for maximal projections only (e.g.
[CP,XP]) and head-positions for heads.

DD constraints movement in a lexicalized way. Only a small number of
grammatical principles are postulated and the remaining work is done in
the lexicon: a lexical entry stipulates which fields are offered and which are
accepted. Making the connection to GB again, the notion of offered fields is
very similar to GB’s landing sites.

6 Conclusion

The new dependency grammar-based framework described in DD employs
concepts which are strikingly similar to concepts in GB theory. Above all,
both GB and DD use a notion of movement to mediate between levels of
syntax and linear precedence. But while GB models movement as tree trans-
formations, movement in DD is the consequence of well-formedness condi-
tions.

We demonstrated with analyses of verb-second clauses that on a descrip-
tive level, the notions of movement in GB and DD are yet very similar. This
suggests that GB’s approach to movement could be reformulated in a way
similar to DD’s constraint-based approach. A non-transformational account
of movement based on well-formedness conditions would make GB much
more attractive from a computational point of view, and could make use of
techniques developed for DD, including an efficient treatment of ambiguity
using finite-set constraints.

10



Bibliography

Bröker, N. (1998). Separating Surface Order and Syntactic Relations in a
Dependency Grammar. In COLING-ACL 98 - Proc. of the 17th Intl.
Conf. on Computational Linguistics and 36th Annual Meeting of the
ACL., Montreal/CAN.

Chomsky, N. (1986). Barriers. Linguistic Inquiry Monograph 13. Cam-
bridge/MA: MIT Press.

Covington, M. A. (1990). A Dependency Parser for Variable-Word-Order
Languages. Research Report AI-1990-01, Artificial Intelligence Pro-
grams, University of Georgia, Athens/GA.

Covington, M. A. (1992). GB Theory as Dependency Grammar. Re-
search Report AI-1992-03, Artificial Intelligence Program, University
of Georgia, Athens/GA.

Duchier, D. (1999). Axiomatizing Dependency Parsing Using Set Con-
straints. In Sixth Meeting on the Mathematics of Language, Or-
lando/FL.

Duchier, D. (2000). Configuration Of Labeled Trees Under Lexicalized
Constraints And Principles. To appear.

Duchier, D. and R. Debusmann (2001). Topological Dependency Trees:
A Constraint-based Account of Linear Precedence. In 39th Annual
Meeting of the Association for Computational Linguistics (ACL 2001),
Toulouse/FRA. To appear.

Erdmann, O. (1886). Grundzüge der deutschen Syntax nach ihrer
geschichtlichen Entwicklung dargestellt. Stuttgart/FRG: Erste
Abteilung.

Gerdes, K. and S. Kahane (2001). Word Order in German: A Formal
Dependency Grammar Using a Topological Hierarchy. In 39th Annual
Meeting of the Association for Computational Linguistics (ACL 2001),
Toulouse/FRA. To appear.

Grewendorf, G. (1988). Aspekte der deutschen Syntax. Eine
Rektions-Bindungs-Analyse. Studien zur deutschen Grammatik
33. Tübingen/FRG: Gunter Narr.

Herling, S. (1821). Über die Topik der deutschen Sprache.

11



Jackendoff, R. (1977). X̄ Syntax: A Study of Phrase Structure. Number 2
in Linguistic Inquiry Monographs. Cambridge/MA: MIT Press.

Kahane, S., A. Nasr, and O. Rambow (1998). Pseudo-projectivity: a poly-
nomially parsable non-projective dependency grammar. In 36th An-
nual Meeting of the Association for Computational Linguistics (ACL
1998), Montreal/CAN.

Kathol, A. (2000). Linear Syntax. Oxford University Press.

Müller, S. (1999). Deutsche Syntax deklarativ. Head-Driven Phrase
Structure Grammar für das Deutsche. Linguistische Arbeiten 394.
Tübingen/FRG: Max Niemeyer Verlag.

Reape, M. (1994). Domain Union and Word Order Variation in German.
In J. Nerbonne, K. Netter, and C. Pollard (Eds.), German in Head-
Driven Phrase Structure Grammar, pp. 151–197. Stanford/CA: CSLI.

Tesnière, L. (1959). Eléments de Syntaxe Structurale. Paris/FRA: Klinck-
siek.

12


