
The Complexity of First-Order
Extensible Dependency Grammar

Ralph Debusmann
Programming Systems Lab
Universität des Saarlandes

Postfach 15 11 50
66041 Saarbrücken, Germany
rade@ps.uni-sb.de

Abstract

We rephrase the meta grammar formalism of Extensible Dependency Gram-
mar (XDG) (Debusmann 2006), so far formalized in higher-order logic, in terms
of first-order logic, and fill numerous gaps in the research onits complexity. In
particular, there were no upper bounds of the complexity of the universal and
fixed recognition problems. We prove that the universal recognition problem is
PSPACE-complete, and the fixed recognition problem NP-complete. We intro-
duce a new, practically relevant version of the universal recognition problem for
instancesof XDG, where only the lexicon is variable, and prove that it also is
NP-complete.

1 Introduction

Extensible Dependency Grammar (XDG) (Debusmann 2006) is a meta grammar for-
malism combining ideas from dependency grammar (Tesnière1959), model-theoretic
syntax (Rogers 1996), and the parallel grammar architecture (Jackendoff 2002). In
XDG, analyses are modularized into multiple levels of linguistic representation. This
modular architecture is utilized e.g. in (Duchier & Debusmann 2001) for an elegant ac-
count of German word order phenomena such as scrambling, in (Debusmann, Duchier,
Koller, Kuhlmann, Smolka & Thater 2004) for a relational syntax-semantics interface,
and in (Debusmann, Postolache & Traat 2005) for a modular version of the prosodic
account of information structure of Steedman (2000). XDG has also been used for ef-
ficient TAG-based generation in (Koller & Striegnitz 2002) and for parsing Polarized
Unification Grammars in (Lison 2006).

Research on XDG has so far focused on practical aspects such as the the model-
ing of linguistic phenomena and the constraint parser implementation. Even though
XDG has recently been formalized in higher-order logic (HOL) (Debusmann 2006),
not much is known about its formal properties, e.g. its complexity:

1. Debusmann (2006) proves that the fixed recognition problem of XDG is NP-
hard. But what is the upper bound of its complexity?

2. It follows that the universal recognition problem is alsoNP-hard. But how tight
is this lower bound? And what is its upper bound?

1

3. As a meta grammar formalism, we are interested in the complexity of instances
of XDG. But what is the corresponding recognition problem, and what is its
complexity?

In this paper, we present a new formalization of XDG in terms of First-Order Logic
(FOL) which enables us to answer these questions: we prove that the upper bound of
the fixed recognition problem is in NP (question 1), the universal recognition problem
PSPACE-complete (question 2), and we introduce a variant ofthe universal recognition
problem for instances of XDG, proving that it is also NP-complete (question 3). The
results are summed up in Table 1.

(Debusmann 2006) (HOL) this paper (FOL)

fixed RP lower bound NP-hard NP-hard
upper bound ? in NP

universal RP lower bound NP-hard PSPACE-hard
upper bound ? in PSPACE

instance RP lower bound ? NP-hard
upper bound ? in NP

Table 1: Complexity results for XDG recognition problems (RPs) in (Debusmann
2006) and this paper

2 Extensible Dependency Grammar

XDG is a description language for tuples of dependency graphs sharing the same set of
nodes, which are anchored by the same string of words. The components of the tuple
are calleddimensions, and XDG analysesmultigraphs.

Figure 1 shows an example multigraph with two dimensions:SYN provides a syn-
tactic analysis, andSEM a semantic analysis in terms of predicate-argument structure.
The nodes are identified by indices (1 to 6), and associated with words (e.g.Mary,
wants, etc.). The edge labels onSYN aresubj for “subject”, vinf for “full infinitive”,
part for “particle”, obj for “object” and adv for “adverb”. On SEM, ag stands for
“agent”,pat for “patient” andth for “theme”.

Contrary to other dependency-based grammar formalisms such as (Gaifman 1965),
XDG dimensions need not be projective trees, but can in fact be general graphs as in
Word Grammar (Hudson 1990). An example is theSEM dimension in Figure 1, which
is not a tree but a directed acyclic graph (DAG). Here,to, which does not have any
semantic content, has no ancestor, andMary, which is the agent of bothwantsandeat,
has two.

In XDG, multigraphs are constrained bygrammars, specifying:

1. A multigraph typedetermining the possible dimensions, words, edge labels and
additional attributes associated with the nodes callednode attributes.

2. A lexicondetermining a subset of the node attributes of each node, depending on
the associated word.

3. A set ofprinciplesstating the well-formedness conditions.

XDG is ametagrammar formalism.Instancesare defined by fixing a multigraph
type and a set of principles, and leaving the lexicon variable.

2

SYN

1

Mary

2

wants

3

to

4

eat

5

spaghetti

6

today

advsub
j vinf

objpar
t

SEM

1

Mary

2

wants

3

to

4

eat

5

spaghetti

6

today

ag
th

ag pat

th

Figure 1: XDG multigraph forMary wants to eat spaghetti today.

Principles stipulate e.g. treeness, DAG-ness, projectivity, valency and order con-
straints. They can also constrain the relation of multiple dimensions, which is used e.g.
in the linking principle to constrain the relation between arguments onSEM and their
syntactic realization onSYN. Some principles arelexicalized, i.e., they constrain the
analysis with respect to the lexicon.

The lexicon constrains all dimensions simultaneously, andthereby synchronizes
them. Below, we show an example schematic lexical entry for the wordeat:

eat

↓

vinf?

part! adv*obj?

< obj < advpart < eat

th*

ag!
(obj)
pat?

(1)

On SYN, by the lexicalized valency principle, the lexical entry licenses zero or one
incoming edges labeledvinf, precisely onepart, zero or oneobj, arbitrary manyadv

dependents, and licenses no other edges. By the order principle, thepart dependents
must precede the headeat, which must precede theobj and theadv dependents. On
SEM, the lexical entry licenses arbitrary many incomingth edges, and requires pre-
cisely oneag dependent and zero or onepat dependents, and licenses no other edges
(valency principle). The patient must be realized an object(linking principle), the real-
ization of the agent is not constrained.

3 First-Order Extensible Dependency Grammar

The main innovation of this paper is a new formalization of XDG called FO XDG,
stated in FOL instead of HOL. This does not sacrifice the desired expressivity, as the
principles defined in earlier papers on XDG and (Debusmann 2006) all only use first-
order quantification.

3

3.1 Multigraph

We define multigraphs over thelabeled dominance relationcorresponding to the tran-
sitive closure of the labeled edge relation, where the labelof the first edge is given.
Only the inclusion of this relation allows us to stay in FOL: if we included only the
labeled edge relation, we could not express the transitive closure without extending the
logic with fixpoints or second-order quantification.

Definition 1 (Multigraph) Given a set of atoms At, a finite set of edge labels L⊆ At,
a finite set of dimensions D⊆ At, a finite set of words W⊆ At, a finite set of attributes
A⊆ At, a finite set of set types T , and a set of values U= ∪{t | t ∈ T}, a multigraph
M = (V,E+,<,nw,na) consists of a finite set of nodes V, a set of labeled dominances
E+ ⊆ V ×V × L× D, a strict total order< ⊆ V ×V on V, a node-word mapping
nw∈V →W, and a node-attributes mapping na∈V → D → A→U. We define V as
a finite interval of the natural numbers starting with1. A labeled dominance(v,v′, l ,d)
is an element of E+ iff on dimension d, the multigraph contains an edge from v to v′′

labeled l, and a path of arbitrary many edges from v′′ to v′ with any labels. Each value
u∈U is an element of a set type t∈ T, where t= 2Fd1×...×Fdn and Fdi ⊆ At. That is,
each value is a set of tuples whose components are atoms from finite domains.

3.2 Grammar

Definition 2 (Grammar) A grammar G= (MT, lexMT,A′ ,PMT) is made up of a multi-
graph type MT, a lexicon lexMT,A′ , and a set of principles PMT. The lexicon lexMT,A′ is
defined over multigraph type MT and a subset A′ ⊆ A of the attributes called lexical
attributes. The principles PMT are defined over the same multigraph type MT. We will
drop the subscripts whenever this is convenient.

Definition 3 (Multigraph Type) Given a set of atoms At, a multigraph type MT=
(D,W,L,dl,A,T,dat) consists of a finite set of dimensions D⊆ At, a finite set of words
W ⊆ At, a finite set of labels L⊆ At, a dimension-label mapping dl∈ D → 2L, a finite
set of attributes A⊆At, a finite set of types T , and a dimension-attributes-type mapping
dat∈ D → A→ T. The dimension-label mapping determines which labels canbe used
on which dimension, and the dimension-attributes-type mapping determines values of
which type can be used for which attribute on which dimension. Each t∈ T is a set type
2Fd1×...×Fdn, where Fdi ⊆ At. Each multigraph type induces the set U= ∪{t | t ∈ T}
of values.

Definition 4 (Multigraph of Multigraph Type) A multigraph M=(V,E+
,<,nw,na)

which is defined over the sets L′ of edge labels, D′ of dimensions, W′ of words, A′ of
attributes, and T′ of types is of multigraph type MT= (D,W,L,dl,A,T,dat) iff L′ ⊆ L,
D′ = D, W′ ⊆ W, A′ = A and T′ = T, all labeled dominances on dimension d∈ D′

have only edge labels in dl d, and all node attributes a∈ A′ on dimension d∈ D′ are
properly typed, i.e., have a value in dat d a.

Definition 5 (Lexicon) The lexicon lexMT,A′ is defined over a multigraph type MT=
(D,W,L,dl,A,T,dat) and a subset A′ ⊆ A of the attributes called lexical attributes. It
is a function from words to sets of lexical entries: lexMT,A′ ∈W → 2D→A′→U , where for
all w ∈W, if e∈ lex w, then for all d∈ D, a∈ A′, (e d a) is properly typed, i.e., has a
value in(dat d a).

4

Definition 6 (Principles) The principles PMT are defined over a multigraph type MT=
(D,W,L,dl,A,T,dat). They are a finite set PMT ⊆ φ of first-order formulas built from
terms t::= c | x, where c is an individual constant and x an individual variable. φ is
defined as follows:

φ ::= ¬φ | φ1∧φ2 | ∃x : φ | t1 = t2 | ψ

where thepredicatesψ are defined further below. We define the usual logical operators
(∨, ⇒, ⇔, ∀, ∃!, 6=) as syntactic sugar, and allow to use variables other than x for
convenience (e.g. v for nodes, l for labels, w for words and a for attributes etc.). The
constants and predicates of the logic are defined with respect to a multigraph type
MT = (D,W,L,dl,A,T,dat). The constants are taken from the set C:

C = D∪W∪L∪A∪F ∪N

where F= ∪{Fd1∪ . . .∪Fdn | 2Fd1×...×Fdn ∈ T} andN is the set of natural numbers.
The universe of the logic is defined given a multigraph M= (V,E+,<,nw,na), and
equals C with the exception thatN is replaced by V, the actual set of nodes. All con-
stants are interpreted by the identity function. As the universe contains only the nodes
of the given multigraph, only this finite subset of the natural numbers can be inter-
preted, i.e., a principle mentioning node42 can only be interpreted with respect to a
multigraph with at least42nodes. The predicatesψ are defined as follows:

ψ ::= v < v′

| v
l

−→d →
∗
d v′

| w(v) = w
| (t1 . . . tn) ∈ ad(v)

where v
l

−→d →∗
d v′ is interpreted as the labeled dominance relation, i.e.,(v,v′, l ,d) ∈

E+ and v< v′ by the strict total order<, i.e., (v,v′) ∈ <. w(v) = w is interpreted by
the node-word mapping, i.e., nw v= w, and(t1 . . . tn) ∈ ad(v) by the node-attributes
mapping, i.e.,(t1, . . . ,tn) ∈ na v d a.

For convenience, we define shortcuts for strict dominance (with any label), labeled
edge and edge (with any label):

v→+
d v′

def
= ∃l : v

l
−→d →∗

d v′

v
l

−→d v′
def
= v

l
−→d →

∗
d v′∧¬∃v′′ : v→+

d v′′∧v′′→+
d v′

v→d v′
def
= ∃l : v

l
−→d v′

where we define labeled edge as labeled dominance between v and v′ with the restric-
tion that there must be no node v′′ in between.

3.3 Example Principles

To get a deeper understanding of the principles of FO XDG, we show some repre-
sentative example principles. For generality, the principles are parametrized by the
dimensions that they constrain.

Definition 7 (Tree principle) Given a dimension d, the tree principle stipulates that
1) there must be no cycles, 2) there is precisely one node without a mother (the root),

5

3) all nodes have zero or one mothers, and 4) all differently labeled subtrees must be
disjoint:

treed =
∀v : ¬(v→+

d v) ∧
∃!v : ¬∃v′ : v′→d v ∧
∀v : ((¬∃v′ : v′→d v)∨ (∃!v′ : v′→d v)) ∧

∀v : ∀v′ : ∀l : ∀l ′ : v
l

−→d →
∗
d v′ ∧ v

l ′
−→d →∗

d v′ ⇒ l = l ′

Definition 8 (Projectivity principle) Given a dimension d, the projectivity principle
forbids crossing edges by stipulating that all nodes positioned between a head and a
dependent must be below the head.

projectivityd =
∀v,v′ :
(v→d v′ ∧ v < v′ ⇒∀v′′ : v < v′′∧v′′ < v′ ⇒ v→+

d v′′) ∧
(v→d v′ ∧ v′ < v⇒∀v′′ : v′ < v′′∧v′′ < v⇒ v→+

d v′′)

For example, this principle is violated in Figure 1, wherewantsis positioned between
eatandMary, but is not beloweat.

To explain the lexicalized valency, order and linking principles, we show an ex-
ample concrete lexical entry foreat which models the schematic lexical entry in (1)
above. We write the lexical entry as a feature structure representing one point in the
lexical mapping:

eat 7→




























































SYN :







in : {(vinf,?)}
out : {(adv,∗),(obj,?),(part, !)}

order : {(part,↑),(part,obj),(part,adv),(↑,obj),(↑,adv),(obj,adv)}







SEM :







in : {(th,∗)}
out : {(ag, !),(pat,?)}
link : {(pat,obj)}





































, . . .































(2)

Definition 9 (Valency principle) Given a dimension d, the purpose of the valency
principle is to constrain the incoming and outgoing edges ofeach node according
to the lexical attributes in and out of type2(dl d)×{!,+,?,∗}, which models the function
(dl d) → {!,+,?,∗} from edge labels on d tocardinalities, where! stands for “one”,
+ for “more than one”,? for “zero or one”, and∗ for “arbitrary many”.

valencyd =
∀v : ∀l :

((l , !) ∈ ind(v) ⇒ ∃!v′ : v′
l

−→d v) ∧

((l ,+) ∈ ind(v) ⇒ ∃v′ : v′
l

−→d v) ∧

((l ,?) ∈ ind(v) ⇒ ¬∃v′ : v′
l

−→d v ∨ ∃!v′ : v′
l

−→d v) ∧
(¬(l , !) ∈ ind(v) ∧ ¬(l ,+) ∈ ind(v) ∧ ¬(l ,?) ∈ ind(v) ∧

¬(l ,∗) ∈ ind(v) ⇒ ¬∃v′ : v′
l

−→d v) ∧

((l , !) ∈ outd(v) ⇒ ∃!v′ : v
l

−→d v′) ∧
. . .

The remaining part of the principle dealing with the outgoing edges proceeds analo-
gously.

Given the concrete lexical entry in (2), the principle constrains nodeeaton SYN such
that there can be zero or one incoming edges labeledvinf, there must be precisely one
part dependent, zero or oneobj dependents, arbitrary manyadv dependents, and no
other incoming or outgoing edges.

6

Definition 10 (Order principle) Given a dimension d, the order principle constrains
the order of the dependents of each node according to the lexical attribute order of type
2(dl d)×(dl d). The order attribute models a partial order on dl d, where we require that
dl d includes the special label↑. The only purpose of↑ is to denote the head the partial
order specified by the order attribute, which is why the principle also stipulates that
there must not be any edges labeled with↑.

orderd =

∀v : ∀v′ : ¬v
↑

−→d v′ ∧
∀v : ∀l : ∀l ′ : (l , l ′) ∈ orderd(v) ⇒

(l = ↑ ⇒ ∀v′ : v
l ′

−→d v′ ⇒ v < v′) ∧

(l ′ = ↑ ⇒ ∀v′ : v
l

−→d v′ ⇒ v′ < v) ∧

(∀v′ : ∀v′′ : v
l

−→d v′ ∧ v
l ′

−→d v′′ ⇒ v′ < v′′)

For instance, given the concrete lexical entry in (2), the order principle orders allpart

dependents to the left of the headeat, and to the left of theobj andadv dependents of
eat. The head is ordered to the left of itsobj andadv dependents, and theobj precede
theadv dependents.

Definition 11 (Linking principle) Given two dimensions d1 and d2, the linking prin-
ciple requires for all edges from v to v′ labeled l on d1 that if there is a label l′ ∈
linkd1(v), then there must be a corresponding edge from v to v′ labeled l′ on d2. The
lexical attribute link of type2(dl d1)×(dl d2) models the function(dl d1) → 2(dl d2) map-
ping labels on d1 to sets of labels on d2.

linkingd1,d2
=

∀v : ∀v′ : ∀l : ∀l ′ :

v
l

−→d1
v′ ∧ (l , l ′) ∈ linkd1(v) ⇒ v

l ′
−→d2

v′

This is only one instance of a family of linking principles. Others are presented e.g. in
(Debusmann 2006). In the concrete lexical entry in (2),d1 = SEM andd2 = SYN, and
the linking principle stipulates e.g. that the patient ofeaton SEM must be realized by
its object onSYN.

3.4 Models

Definition 12 (Models) The models of a grammar G= (MT, lex,P), m G, are all
multigraphs of multigraph type MT which satisfy the lexiconlex and the principles
P.

Definition 13 (Lexicon Satisfaction) Given a grammar G= (MT, lex,P), an XDG
multigraph M= (V,E+,<,nw,na) satisfies the lexicon lex iff for all nodes v∈V, there
is a lexical entry e for the word of v, and for all dimensions d∈ D and all lexical at-
tributes a∈ A′, the value of the lexical attribute a on dimension d for node vequals the
value of the lexical attribute a on dimension d of e:

∀v∈V : ∃e∈ lex (nw v) : ∀d ∈ D : ∀a∈ A′ :
(na v d a) = (e d a)

Definition 14 (Principles Satisfaction) Given a grammar G= (MT, lex,P), a multi-
graph M= (V,E+,<,nw,na) satisfies the principles P iff the conjunction

∧

φ∈P
φ of all

principles in P is true.

7

3.5 String Language

To arrive at the string language of an XDG grammar, we first define the yield of a
multigraph.

Definition 15 (Yield of a Multigraph) The yield of M= (V,E+,<,nw,na) is the con-
catenation of the words of the nodes, ordered with respect tothe strict total order<:

y M = nw pi . . . nw p|V|

where for all i, j,1≤ i < j ≤ |V|, (pi , p j) ∈ <.

Definition 16 (String Language) The string language L G of a grammar G is the set
of yields of the models of G:

L G = {y M | M ∈ m G}

Although parsing is not the topic of this paper, this definition already suggests
that for parsing, the set of nodes is determined by the input string s: there are always
as many nodes as words in the input string. Parsing then consists of adding a finite
number of edges between these nodes, but crucially, no nodesare added.

4 Recognition Problems and their Complexity

Definition 17 (XDG Recognition Problem (RP)) Given a grammar G and a string s,
is s in L(G)?

We distinguish the following three flavors of the RP, including the newinstance recog-
nition problemfor instances of XDG:

1. universal recognition problem (URP): bothG andsare variable

2. fixed recognition problem (FRP):G is fixed ands is variable

3. instance recognition problem (IRP): the principles are fixed, and the lexicon and
sare variable

Definition 18 (Generate and Test Recognition)A simple recognition algorithm for
XDG is generate and test: given a grammar G= (MT, lex,P) and a string s, we 1)
non-deterministically guess a multigraph for s of multigraph type MT, and 2) verify
whether the multigraph satisfies the lexicon1 and the principles. Since both are in FO,
verifying amounts to FOmodel checking.

For model checking, Vardi (1982) distinguishes three complexity measures:data
complexity(defined with respect to the model size),expression complexity(formula
size), andcombined expressivity(model and formula size). For FOL, data complexity
is in LOGSPACE, and expression and combined complexity in PSPACE. For FOL
without quantifiers, all three measures are in LOGSPACE.

We use Vardi’s results to establish upper bounds of the complexity of the verifica-
tion step of Definition 18 for all three flavors of RPs:

1We only need to consider the part of the lexicon for the words in s.

8

1. URP:G ands are variable. VariableG corresponds to variable formula size of
the lexiconlexand the principles inP, and variables to variable model size of the
guessed multigraph fors. The relevant measure is FOL combined complexity.

2. FRP:s is variable, corresponding to variable model size of the guessed multi-
graph fors. Relevant measure: FOL data complexity.

3. IRP: lex ands are variable. Variablelex corresponds to variable formula size of
the lexicon. Testing for lexicon satisfaction can obviously be done in linear time.
Variables corresponds to variable model size of the guessed multigraph for s,
measurable by FOL data complexity.

We now turn to establishing the complexity of the three flavors of RPs. First, we
prove that the URP is PSPACE-hard by a reduction of the QSAT problem.

Definition 19 (Quantified Satisfiability Problem (QSAT)) An instance of QSAT is a
quantified Boolean formula with no free variables:

Q1X1 . . .QnXnF

where Q stands for either∃ or ∀, and F for a boolean formula. The QSAT problem is
to decide whether the quantified formula is true.

Lemma 1 (The URP is PSPACE-hard)For this lemma, we construct a polynomial-
time reduction from instances of QSAT to instances of the URP. For each new string
s, the URP allows us to construct a new grammar G, and in particular, to construct
new principles. As QSAT formulas f can be rephrased in FOL with equality, we can
for each rephrased QSAT formula f′ construct a grammar G= (MT, lex,{ f ′}), where
the rephrased QSAT formula is the only principle. The question whether any QSAT
formula f is true can then be reformulated as the URP for the constructed grammar G
and an arbitrarily chosen string s.

Lemma 2 (The URP is in PSPACE)The relevant measure for the complexity of the
verification step of the URP is FOL combined complexity, which is in PSPACE. The
combination of non-deterministically guessing a multigraph and verifying it is hence
in NPSPACE, which is =PSPACE by Savitch’s Theorem.

Theorem 1 (The URP is PSPACE-complete)Follows from lemma 1 and Lemma 2.

Lemma 3 (The FRP is NP-hard) This is proven in (Debusmann 2006) using a reduc-
tion of the Satisfiability problem (SAT) to a fixed XDG grammar. We can rephrase the
grammar in FO XDG (not shown here for lack of space), and thus re-use the result.

Lemma 4 (The FRP is in NP) The relevant measure for the complexity of the verifi-
cation step of the FRP is FOL data complexity, which is in LOGSPACE, i.e., in P. The
combination of non-deterministically guessing a multigraph and verifying it is hence
in NP.

Theorem 2 (The FRP is NP-complete)Follows from Lemma 3 and Lemma 4.

Lemma 5 (The IRP is NP-hard) Follows from Lemma 3.

Lemma 6 (The IRP is in NP) The IRP verification step can be done in polynomial
time: 1) testing for lexicon satisfaction can be done in linear time, and 2) FOL data
complexity is in LOGSPACE. The combination of non-deterministically guessing a
multigraph and verifying it is hence in NP.

Theorem 3 (The IRP is NP-complete)Follows from Lemma 5 and Lemma 6.

9

5 Conclusions and Related Work

Taking advantage of a new formalization of XDG in FOL, we haveestablished lower
and upper bounds for three flavors of the XDG RP. The results are useful for comparing
XDG with other grammar formalisms, where mostly their URP isconsidered. The URP
for other grammar formalisms is however not directly comparable with the URP for
XDG, which is about XDG as ametagrammar formalism. The better choice is the IRP
for instancesof it. NP-completeness of the IRP places XDG right between a number
of more complex and a number of less complex grammar formalisms. For unification-
based grammars such as HPSG, the URP is generally undecidable (Trautwein 1995).
The URP for mildly context-sensitive grammar formalisms such as CCG and TAG on
the other hand is in P. Interestingly, even for the “intractable” grammar formalisms
such as HPSG and LFG there exist parsers which are efficient inpractice. Similarly,
the XDG constraint parser is efficient for smaller-scale handcrafted grammars and the
large-scale XTAG grammar (Debusmann, forthcoming).

The new complexity results also shed light on theexpressivityof XDG. As for
context-sensitive grammars (CSG), the URP for XDG is PSPACE-complete. How-
ever, for CSG, the FRP is also PSPACE-complete, whereas the FRP for XDG is NP-
complete. This suggests that context-sensitive languagesprovide a strict upper bound
for the expressivity of XDG.

Acknowledgments

I’d like to thank Prof. Gert Smolka from Programming SystemsLab in Saarbrücken,
the people from the CHORUS project, and the International Graduate College (IGK)
Saarbrücken/Edinburgh for supporting my research over the years.

References

Debusmann, R. (2006), Extensible Dependency Grammar: A Modular Grammar For-
malism Based On Multigraph Description, PhD thesis, Universität des Saarlan-
des.

Debusmann, R., Duchier, D., Koller, A., Kuhlmann, M., Smolka, G. & Thater, S.
(2004), A relational syntax-semantics interface based on dependency grammar,
in ‘Proceedings of COLING 2004’, Geneva/CH.

Debusmann, R., Postolache, O. & Traat, M. (2005), A modular account of information
structure in Extensible Dependency Grammar,in ‘Proceedings of the CICLING
2005 Conference’, Springer, Mexico City/MX.

Duchier, D. & Debusmann, R. (2001), Topological dependencytrees: A constraint-
based account of linear precedence,in ‘Proceedings of ACL 2001’, Toulouse/FR.

Gaifman, H. (1965), ‘Dependency systems and phrase-structure systems’,Information
and Control8(3), 304–337.

Hudson, R. A. (1990),English Word Grammar, B. Blackwell, Oxford/UK.

Jackendoff, R. (2002),Foundations of Language, Oxford University Press.

10

Koller, A. & Striegnitz, K. (2002), Generation as dependency parsing,in ‘Proceedings
of ACL 2002’, Philadelphia/US.

Lison, P. (2006), Implémentation d’une interface sémantique-syntaxe basée sur des
grammaires d’unification polarisées, Master’s thesis, Univesité Catholique de
Louvain.

Rogers, J. (1996), A model-theoretic framework for theories of syntax,in ‘Proceedings
of ACL 1996’.

Steedman, M. (2000), ‘Information structure and the syntax-phonology interface’,Lin-
guistic Inquiry31(4), 649–689.

Tesnière, L. (1959),Eléments de Syntaxe Structurale, Klincksiek, Paris/FR.

Trautwein, M. (1995), The complexity of structure sharing in unification-based Gram-
mars,in W. Daelemans, G. Durieux & S. Gillis, eds, ‘Computational Linguistics
in the Netherlands 1995’, pp. 165–179.

Vardi, M. Y. (1982), The complexity of relational query languages,in ‘Proceedings of
the fourteenth annual ACM symposium on Theory of Computing’, ACM Press,
San Francisco/US, pp. 137–146.

11

