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Abstract

We rephrase the meta grammar formalism of Extensible DegpaydGram-
mar (XDG) (Debusmann 2006), so far formalized in highereordgic, in terms
of first-order logic, and fill numerous gaps in the researctit®rcomplexity. In
particular, there were no upper bounds of the complexityhef universal and
fixed recognition problems. We prove that the universal ged@n problem is
PSPACE-complete, and the fixed recognition problem NP-¢et@p We intro-
duce a new, practically relevant version of the universebgaition problem for
instancesof XDG, where only the lexicon is variable, and prove thatlgoais
NP-complete.

1 Introduction

Extensible Dependency Grammar (XDG) (Debusmann 2006) ista grammar for-

malism combining ideas from dependency grammar (TesAi@s8), model-theoretic
syntax (Rogers 1996), and the parallel grammar architeqtiackendoff 2002). In
XDG, analyses are modularized into multiple levels of lilsgjo representation. This
modular architecture is utilized e.g. in (Duchier & Debusm&001) for an elegant ac-
count of German word order phenomena such as scramblingeiousmann, Duchier,
Koller, Kuhlmann, Smolka & Thater 2004) for a relational ®xsemantics interface,
and in (Debusmann, Postolache & Traat 2005) for a modulaiaeiof the prosodic

account of information structure of Steedman (2000). XD& &lao been used for ef-
ficient TAG-based generation in (Koller & Striegnitz 2002)dafor parsing Polarized
Unification Grammars in (Lison 2006).

Research on XDG has so far focused on practical aspects suble ghe model-
ing of linguistic phenomena and the constraint parser implgation. Even though
XDG has recently been formalized in higher-order logic (H@Rebusmann 2006),
not much is known about its formal properties, e.qg. its canity:

1. Debusmann (2006) proves that the fixed recognition protdé XDG is NP-
hard. But what is the upper bound of its complexity?

2. It follows that the universal recognition problem is aléB-hard. But how tight
is this lower bound? And what is its upper bound?



3. As a meta grammar formalism, we are interested in the cexitplof instances
of XDG. But what is the corresponding recognition problemd avhat is its
complexity?

In this paper, we present a new formalization of XDG in teriBicst-Order Logic
(FOL) which enables us to answer these questions: we praveita upper bound of
the fixed recognition problem is in NP (question 1), the urgaérecognition problem
PSPACE-complete (question 2), and we introduce a variaheafiniversal recognition
problem for instances of XDG, proving that it is also NP-cdetg (question 3). The
results are summed up in Table 1.

| (Debusmann 2006) (HOL]) this paper (FOL)

fixed RP lower boun NP-hard NP-hard
upper boun ? in NP

universal RP lower boun NP-hard PSPACE-hard
upper boun ? in PSPACE

instance RP  lower boun ? NP-hard
upper boun ? in NP

Table 1: Complexity results for XDG recognition problemsP@} in (Debusmann
2006) and this paper

2 Extensible Dependency Grammar

XDG is a description language for tuples of dependency graphring the same set of
nodes, which are anchored by the same string of words. Theaoemts of the tuple
are calleddimensionsand XDG analysesultigraphs

Figure 1 shows an example multigraph with two dimensiansy provides a syn-
tactic analysis, andemM a semantic analysis in terms of predicate-argument streictu
The nodes are identified by indices (1 to 6), and associatéddwards (e.gMary,
wants etc.). The edge labels @vN aresubj for “subject”, vinf for “full infinitive”,
part for “particle”, obj for “object” and adv for “adverb”. OnsgMm, ag stands for
“agent”, pat for “patient” andth for “theme”.

Contrary to other dependency-based grammar formalisnfsasuiGaifman 1965),
XDG dimensions need not be projective trees, but can in fagdneral graphs as in
Word Grammar (Hudson 1990). An example is #@v dimension in Figure 1, which
is not a tree but a directed acyclic graph (DAG). Hdm,which does not have any
semantic content, has no ancestor, Btadty, which is the agent of botivantsandeat,
has two.

In XDG, multigraphs are constrained Qyammars specifying:

1. A multigraph typedetermining the possible dimensions, words, edge labels an
additional attributes associated with the nodes cailade attributes

2. Alexicondetermining a subset of the node attributes of each nodendiapg on
the associated word.

3. A set ofprinciplesstating the well-formedness conditions.

XDG is ametagrammar formalisminstancesare defined by fixing a multigraph
type and a set of principles, and leaving the lexicon vaeabl
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Figure 1: XDG multigraph foMary wants to eat spaghetti today

Principles stipulate e.g. treeness, DAG-ness, projegtivalency and order con-
straints. They can also constrain the relation of multipteehsions, which is used e.g.
in the linking principle to constrain the relation betweeglanents orseEm and their
syntactic realization o3YN. Some principles arkexicalized i.e., they constrain the
analysis with respect to the lexicon.

The lexicon constrains all dimensions simultaneously, twedeby synchronizes
them. Below, we show an example schematic lexical entryHfemiordeat

vinf?
>\ th*
o e o
ag! pat?

eat (obj)

1 )
part < 1< obj < adv eat

On syN, by the lexicalized valency principle, the lexical entrgeihnses zero or one
incoming edges labelednf, precisely onepart, zero or oneobj, arbitrary manyadv
dependents, and licenses no other edges. By the ordergénttiepart dependents
must precede the headt which must precede thebj and theadv dependents. On
SEM, the lexical entry licenses arbitrary many incomithgedges, and requires pre-
cisely oneag dependent and zero or opet dependents, and licenses no other edges
(valency principle). The patient must be realized an oljetting principle), the real-
ization of the agent is not constrained.

3 First-Order Extensible Dependency Grammar

The main innovation of this paper is a new formalization of &Balled FO XDG,
stated in FOL instead of HOL. This does not sacrifice the ddsixpressivity, as the
principles defined in earlier papers on XDG and (Debusma®é@all only use first-
order quantification.



3.1 Multigraph

We define multigraphs over thabeled dominance relatiocorresponding to the tran-
sitive closure of the labeled edge relation, where the labéhe first edge is given.
Only the inclusion of this relation allows us to stay in FOf.wie included only the

labeled edge relation, we could not express the transikbgice without extending the
logic with fixpoints or second-order quantification.

Definition 1 (Multigraph) Given a set of atoms At, a finite set of edge labelsAt,

a finite set of dimensions D At, a finite set of words W At, a finite set of attributes
A C At, a finite set of set types T, and a set of values U{t |t € T}, a multigraph

M = (V,E™, <,nw,na) consists of a finite set of nodes V, a set of labeled dominances
ET CV xV xLxD, a strict total order< CV xV on V, a node-word mapping
nweV — W, and a node-attributes mapping g8/ — D — A— U. We defineV as
a finite interval of the natural numbers starting withA labeled dominancer,V,1,d)

is an element of E iff on dimension d, the multigraph contains an edge from V'to v
labeled |, and a path of arbitrary many edges frofite vV with any labels. Each value
ue U is an element of a set type=tT, where t= 2Fd1<--xFd and Fd C At. That is,
each value is a set of tuples whose components are atoms fidedidmains.

3.2 Grammar

Definition 2 (Grammar) A grammar G= (MT,lexyr o, Put) is made up of a multi-
graph type MT, a lexicon Igx , and a set of principlesyrt. The lexicon lexr 4 is
defined over multigraph type MT and a subsetA of the attributes called lexical
attributes. The principlesyp are defined over the same multigraph type MT. We will
drop the subscripts whenever this is convenient.

Definition 3 (Multigraph Type) Given a set of atoms At, a multigraph type MT
(D,W,L,dl,A T,dat) consists of a finite set of dimensionsTAt, a finite set of words
W C At, afinite set of labels L At, a dimension-label mapping dID — 2%, a finite
set of attributes AC At, a finite set of types T, and a dimension-attributes-tygeping
date D — A— T. The dimension-label mapping determines which labeldeamsed
on which dimension, and the dimension-attributes-typepimgpdetermines values of
which type can be used for which attribute on which dimendi@th te T is a set type
2Fdux..xFdn \where Fg C At. Each multigraph type induces the setJU{t [t € T}
of values.

Definition 4 (Multigraph of Multigraph Type) A multigraph M= (V,E ", <,nw,na)
which is defined over the set$ &f edge labels, Dof dimensions, Wof words, A of
attributes, and T of types is of multigraph type ME (D,W,L,dl,A T,dat) iff L’ C L,
D)=D,WCW,A=Aand T =T, all labeled dominances on dimensiored’
have only edge labels in dl d, and all node attributes A’ on dimension ¢ D’ are
properly typed, i.e., have a value in dat d a.

Definition 5 (Lexicon) The lexicon leyr o is defined over a multigraph type MF
(D,w,L,dl,A T,dat) and a subset AC A of the attributes called lexical attributes. It
is a function from words to sets of lexical entries: gy € W — 20—~ ~U where for
allw e W, if ec lex w, then for all de D, a€ A, (e d a) is properly typed, i.e., has a
value in(datd a.



Definition 6 (Principles) The principles Rt are defined over a multigraph type MT
(D,W,L,dl,A T,dat). They are a finite sety} C ¢ of first-order formulas built from
terms t::= c | X, where c is an individual constant and x an individual vata ¢ is

defined as follows:

Qo = —elaAg|IXeltu=t]Y

where thepredicategp are defined further below. We define the usual logical opesato
(v, =, <, v, Jl, #) as syntactic sugar, and allow to use variables other thaorx f
convenience (e.g. v for nodes, | for labels, w for words andraftributes etc.). The
constants and predicates of the logic are defined with rdsfmea multigraph type
MT = (D,W,L,dl,A T,dat). The constants are taken from the set C:

C = DUWULUAUFUN

where F= U{Fd; U...UFd, | 2F9x--xFt ¢ T1 and N is the set of natural numbers.
The universe of the logic is defined given a multigrapk=MV,E™*, <,nw,na), and
equals C with the exception thittis replaced by V, the actual set of nodes. All con-
stants are interpreted by the identity function. As the ersg contains only the nodes
of the given multigraph, only this finite subset of the ndtmambers can be inter-
preted, i.e., a principle mentioning nod& can only be interpreted with respect to a
multigraph with at leastt2 nodes. The predicateg are defined as follows:

g = v<V
| vy =gV
W) =w
| (ti...th) €ag(v)
where v|—>d —4V is interpreted as the labeled dominance relation, ey, l,d) €
E™ and v< V by the strict total order, i.e., (v,V') € <. w(v) = w is interpreted by
the node-word mapping, i.e., nw=vw, and(t;...tn) € aq4(v) by the node-attributes
mapping, i.e.{t1,...,tn) €navd a.
For convenience, we define shortcuts for strict dominand @ny label), labeled
edge and edge (with any label):

def | .
V—>a'\/ =€ 3 Vg —jV
| f |
v—gv By L v AV vV AV SV

def

VgV = 3 v-Lsgv

where we define labeled edge as labeled dominance betweehw/ aith the restric-
tion that there must be no nodé i between.

3.3 Example Principles

To get a deeper understanding of the principles of FO XDG, m@vssome repre-
sentative example principles. For generality, the priles@are parametrized by the
dimensions that they constrain.

Definition 7 (Tree principle) Given a dimension d, the tree principle stipulates that
1) there must be no cycles, 2) there is precisely one nodeutith mother (the root),



3) all nodes have zero or one mothers, and 4) all differemheled subtrees must be
disjoint:

tregg =

Wi (V=g V) A

Jv:i=3V iV o VA

Wi (Vi V=g v) V(3 IV —4v)) A

WiwW vl :VI/:deﬂg\/ A de =5V = 1=l
Definition 8 (Projectivity principle) Given a dimension d, the projectivity principle
forbids crossing edges by stipulating that all nodes posiid between a head and a
dependent must be below the head.

projectivityy =

Y,V

V=gV AVV =W vV AV <V = v V) A
(V=gV AV <v=W iV <V AV <v=v— V)

For example, this principle is violated in Figure 1, whemntsis positioned between
eatandMary, but is not beloweat

To explain the lexicalized valency, order and linking piples, we show an ex-
ample concrete lexical entry faat which models the schematic lexical entry in (1)
above. We write the lexical entry as a feature structureesgrting one point in the
lexical mapping:

eat—
in : {(vinf,?)}
SYN : out : {(adv,x),(obj,?), (part,!)}
order : {(part, 1), (part,obj), (part,adv), (1,0bj),(T,adv), (obj,adv)}
in @ {(th,*)} ’
SEM : out: {(ag,!),(pat,?)}

link : {(pat,obj)}

Definition 9 (Valency principle) Given a dimension d, the purpose of the valency
principle is to constrain the incoming and outgoing edgesath node according
to the lexical attributes in and out of tygéd 9<{'.-+-2+} 'which models the function
(di d) — {!,+,?,x} from edge labels on d toardinalities where! stands for “one”,
+ for “more than one”,? for “zero or one”, andx for “arbitrary many”.

valency, =

YVl

(1,1 €ing(v) = 3V 1V —4v) A

((1,4) €ing(v) = 3V :V -5y A

((1,7) €ing(V) = =3V 1V —gv v 3V V- v) A

(=1 €ing(v) A =(1,4) €ing(v) A =(1,?) €ing(v) A

(%) €ing(v) = —V 1V —gv) A
((1,1) € outg(v) = IV 1v—oyV) A

The remaining part of the principle dealing with the outgpedges proceeds analo-
gously.

Given the concrete lexical entry in (2), the principle coaists nodesaton SYN such
that there can be zero or one incoming edges labetgdthere must be precisely one
part dependent, zero or orgbj dependents, arbitrary manyyv dependents, and no
other incoming or outgoing edges.



Definition 10 (Order principle) Given a dimension d, the order principle constrains
the order of the dependents of each node according to thedlexitribute order of type
2(dld)x(did) The order attribute models a partial order on dl d, where wquire that

dl d includes the special labél The only purpose dfis to denote the head the partial
order specified by the order attribute, which is why the pipie also stipulates that
there must not be any edges labeled with

orderg =

W:V\/:ﬁvi»d\//\

YWivl vl (L) € orderg(v) =

(I=17= V\/:de\/ = V<V)A
I'=1= V\/:v#d\/ = V<V)A

(W W vV A vV = v < V)

For instance, given the concrete lexical entry in (2), thdeoprinciple orders apart
dependents to the left of the heaal and to the left of thebj andadv dependents of
eat The head is ordered to the left of ibj andadv dependents, and thebj precede
theadv dependents.

Definition 11 (Linking principle) Given two dimensions;cand @&, the linking prin-
ciple requires for all edges from v td labeled | on d that if there is a label’l
linkg, (v), then there must be a corresponding edge from V taheled [ on &,. The
lexical attribute link of type2(d! d1)x(dl &2) models the functiofdl di) — 29! %) map-
ping labels on ¢gto sets of labels ond

linkingy, o, =
Wi vl
Vg VA (1L17) € linkg, (V) = Vg V

This is only one instance of a family of linking principlesth@rs are presented e.g. in
(Debusmann 2006). In the concrete lexical entry in ()= SEm andd, = SYN, and
the linking principle stipulates e.g. that the patieneaton SEM must be realized by
its object onsyN.

3.4 Models

Definition 12 (Models) The models of a grammar & (MT,lex P), m G, are all
multigraphs of multigraph type MT which satisfy the lexidex and the principles
P.

Definition 13 (Lexicon Satisfaction) Given a grammar G= (MT,lex,P), an XDG
multigraph M= (V,E™, <,nw, na) satisfies the lexicon lex iff for all nodesW , there
is a lexical entry e for the word of v, and for all dimensions @ and all lexical at-
tributes ac A, the value of the lexical attribute a on dimension d for no@guals the
value of the lexical attribute a on dimension d of e:

WweV:Jeclex(nwv):VdeD:VaeA':
(navdg=(eda

Definition 14 (Principles Satisfaction) Given a grammar G= (MT,lex, P), a multi-
graph M= (V,E*, <,nw,na) satisfies the principles P iff the conjunctioh ¢ of all

@eP
principles in P is true.



3.5 String Language

To arrive at the string language of an XDG grammar, we firstnéefhe yield of a
multigraph.

Definition 15 (Yield of a Multigraph) The yield of M= (V,E*, <,nw, na) is the con-
catenation of the words of the nodes, ordered with respettigstrict total order<:

yM = nwp ...nwpy,
where forall i, j,1<i < j < V], (pi,pj) € <.

Definition 16 (String Language) The string language L G of a grammar G is the set
of yields of the models of G:

LG = {yM|MemG}

Although parsing is not the topic of this paper, this defimitialready suggests
that for parsing, the set of nodes is determined by the ininigss: there are always
as many nodes as words in the input string. Parsing thenstertfi adding a finite
number of edges between these nodes, but crucially, no rodesided.

4 Recognition Problems and their Complexity

Definition 17 (XDG Recognition Problem (RP)) Given a grammar G and a string s,
issinLG)?

We distinguish the following three flavors of the RP, inchglthe newinstance recog-
nition problemfor instances of XDG:

1. universal recognition problem (URP): baBands are variable
2. fixed recognition problem (FRPG is fixed andsis variable

3. instance recognition problem (IRP): the principles atedj and the lexicon and
sare variable

Definition 18 (Generate and Test Recognition)A simple recognition algorithm for
XDG is generate and tesgiven a grammar G= (MT,lex,P) and a string s, we 1)
non-deterministically guess a multigraph for s of multiginatype MT, and 2) verify
whether the multigraph satisfies the lexié@md the principles. Since both are in FO,
verifying amounts to F@nodel checking

For model checking, Vardi (1982) distinguishes three caxip} measuresdata
complexity(defined with respect to the model sizexpression complexitfformula
size), anccombined expressivifynodel and formula size). For FOL, data complexity
is in LOGSPACE, and expression and combined complexity iRAZE. For FOL
without quantifiers, all three measures are in LOGSPACE.

We use Vardi's results to establish upper bounds of the cexitglof the verifica-
tion step of Definition 18 for all three flavors of RPs:

1We only need to consider the part of the lexicon for the wonds i



1. URP:G ands are variable. Variabl& corresponds to variable formula size of
the lexiconlexand the principles i, and variables to variable model size of the
guessed multigraph fa The relevant measure is FOL combined complexity.

2. FRP:sis variable, corresponding to variable model size of thesged multi-
graph fors. Relevant measure: FOL data complexity.

3. IRP:lexands are variable. Variabléex corresponds to variable formula size of
the lexicon. Testing for lexicon satisfaction can obvigus done in linear time.
Variables corresponds to variable model size of the guessed multigi@ps,
measurable by FOL data complexity.

We now turn to establishing the complexity of the three flawor RPs. First, we
prove that the URP is PSPACE-hard by a reduction of the QSAblpm.

Definition 19 (Quantified Satisfiability Problem (QSAT)) An instance of QSAT is a
guantified Boolean formula with no free variables:

QuX1...QnXnF

where Q stands for eithet or v, and F for a boolean formula. The QSAT problem is
to decide whether the quantified formula is true.

Lemma 1 (The URP is PSPACE-hard) For this lemma, we construct a polynomial-
time reduction from instances of QSAT to instances of the. B&Peach new string
s, the URP allows us to construct a new grammar G, and in padicto construct
new principles. As QSAT formulas f can be rephrased in FOh ®eadfuality, we can
for each rephrased QSAT formuladonstruct a grammar G= (MT,lex,{ f'}), where
the rephrased QSAT formula is the only principle. The qoasthether any QSAT
formula f is true can then be reformulated as the URP for thestmicted grammar G
and an arbitrarily chosen string s.

Lemma 2 (The URP is in PSPACE) The relevant measure for the complexity of the
verification step of the URP is FOL combined complexity, tidcin PSPACE. The
combination of non-deterministically guessing a multjgvaand verifying it is hence
in NPSPACE, which is =PSPACE by Savitch’s Theorem.

Theorem 1 (The URP is PSPACE-completeJollows from lemma 1 and Lemma 2.

Lemma 3 (The FRP is NP-hard) This is proven in (Debusmann 2006) using a reduc-
tion of the Satisfiability problem (SAT) to a fixed XDG gramnvse can rephrase the
grammar in FO XDG (not shown here for lack of space), and tleugse the result.

Lemma 4 (The FRP is in NP) The relevant measure for the complexity of the verifi-
cation step of the FRP is FOL data complexity, which is in LB&SE, i.e., in P. The
combination of non-deterministically guessing a multjghvaand verifying it is hence
in NP.

Theorem 2 (The FRP is NP-complete)Follows from Lemma 3 and Lemma 4.
Lemma 5 (The IRP is NP-hard) Follows from Lemma 3.

Lemma 6 (The IRP is in NP) The IRP verification step can be done in polynomial
time: 1) testing for lexicon satisfaction can be done indingme, and 2) FOL data
complexity is in LOGSPACE. The combination of non-detastidally guessing a
multigraph and verifying it is hence in NP.

Theorem 3 (The IRP is NP-complete)Follows from Lemma 5 and Lemma 6.



5 Conclusions and Related Work

Taking advantage of a new formalization of XDG in FOL, we hasgéablished lower
and upper bounds for three flavors of the XDG RP. The resudtaseful for comparing
XDG with other grammar formalisms, where mostly their URBdasidered. The URP
for other grammar formalisms is however not directly conapée with the URP for
XDG, which is about XDG as metagrammar formalism. The better choice is the IRP
for instancesof it. NP-completeness of the IRP places XDG right betweenraler
of more complex and a number of less complex grammar formalig-or unification-
based grammars such as HPSG, the URP is generally undexidaautwein 1995).
The URP for mildly context-sensitive grammar formalismstsas CCG and TAG on
the other hand is in P. Interestingly, even for the “intrbtga grammar formalisms
such as HPSG and LFG there exist parsers which are efficigoraitice. Similarly,
the XDG constraint parser is efficient for smaller-scaledwaafted grammars and the
large-scale XTAG grammar (Debusmann, forthcoming).

The new complexity results also shed light on theressivityof XDG. As for
context-sensitive grammars (CSG), the URP for XDG is PSRAGEplete. How-
ever, for CSG, the FRP is also PSPACE-complete, whereasRRefér XDG is NP-
complete. This suggests that context-sensitive languagesde a strict upper bound
for the expressivity of XDG.
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