
Scrambling as the Combination of
Relaxed Context-Free Grammars

in a Model-Theoretic Grammar Formalism

Ralph Debusmann
Programming Systems Lab
Universität des Saarlandes

Postfach 15 11 50
66041 Saarbrücken, Germany

rade@ps.uni-sb.de

1 Introduction

Five years after the first ESSLLI workshop on
Model-Theoretic Syntax (MTS), Pullum and Scholz
(2001) stated that since the work on MTS had largely
focused on reformulating existing GES frameworks,
in a sense, it had been done in the shadow of
Generative-Enumerative Syntax (GES).

In the following five years, the bulk of work in
MTS has still been invested in reformulations of
GES frameworks: of GB in (Rogers, 1996, 2003), of
LFG in (Blackburn and Gardent, 1995), of GPSG in
(Kracht, 1995) and (Rogers, 1996, 2003), of HPSG
in (Kepser, 2000) and (Kepser and Mönnich, 2003),
and of TAG in (Rogers, 2003).

Recently (Rogers, 2004), there have been attempts
to step out of the shadow of GES, and to use MTS
not only to reformulate and compare existing frame-
works, but to utilize the more declarative, clarify-
ing perspective of MTS to also exploreextensions
of them. This is what we set out to do as well.

We base our work on the model-theoretic meta
grammar formalism of Extensible Dependency

Grammar (XDG) (Debusmann, 2006). XDG can be
used to axiomatize grammatical theories based on
dependency grammar, to extend them, and to imple-
ment them using the constraint-based XDG Develop-
ment Kit (XDK) (Debusmann et al., 2004), (Debus-
mann and Duchier, 2007). XDG is novel in support-
ing the axiomatization ofmulti-dimensionalgram-
matical theories, where the linguistic aspects of e.g.
syntax and semantics can be modeled modularly by
separate dependency analyses.

This paper contributes a new, previously unpub-
lished formalization of XDG in first-order logic (sec-
tion 2), and the first results on the closure properties
of the string languages licensed by XDG (section 3).

In section 4, we recap the axiomatization of
Context-Free Grammar (CFG) of (Debusmann,
2006), which we employ as our launch pad to go be-
yond CFG in section 5. First, we explore therelax-
ation of the contiguity criterion of CFG, and second,
we explore theintersectionof CFGs. This brings
us into the position to formulate a simple and ele-
gant account of German scrambling loosely based on
(Duchier and Debusmann, 2001).

1

2 Extensible Dependency Grammar

XDG models sets of dependency graphs sharing the
same set of nodes, which are anchored by the same
string of words. The individual dependency graphs
are are calleddimensions, and entire XDG analyses
multigraphs.

Figure 1 shows an example multigraph with two
dimensions:SYN provides a syntactic, andSEM a se-
mantic analysis in terms of predicate-argument struc-
ture. The nodes are identified by indices (1 to 6),
and associated with words (e.g.Mary, wants, etc.).
The edge labels onSYN aresubj for “subject”, vinf

for “full infinitive”, part for “particle”, obj for “ob-
ject” andadv for “adverb”. OnSEM, ag stands for
“agent”,pat for “patient” andth for “theme”.

Contrary to other dependency-based grammar for-
malisms such as (Gaifman, 1965), XDG dimensions
need not be projective trees, but can in fact be gen-
eral graphs as in Word Grammar (Hudson, 1990). An
example is theSEM dimension in Figure 1, which is
not a tree but a directed acyclic graph (DAG). Here,
to, which does not have any semantic content, has no
ancestor, andMary, which is the agent of bothwants
andeat, has two.

Multigraphs are constrained bygrammarsspeci-
fying:

1. A multigraph typedetermining the possible di-
mensions, words, edge labels and additional at-
tributes associated with the nodes callednode
attributes.

2. A lexicondetermining a subset of the node at-
tributes of each node, depending on the associ-
ated word.

3. A set of principles stipulating the well-
formedness conditions of the multigraphs.

XDG is ametagrammar formalism.Instancesof

SYN:

1

Mary

2

wants

3

to

4

eat

5

spaghetti

6

today

advsubj vinf

objpar
t

SEM:

1

Mary

2

wants

3

to

4

eat

5

spaghetti

6

today

ag
th

ag pat

th

Figure 1: XDG multigraph forMary wants to eat
spaghetti today.

XDG are defined by fixing a multigraph type and a
set of principles, and leaving the lexicon variable.

XDG principles stipulate e.g. treeness, DAG-ness,
projectivity, valency and order constraints. They can
also constrain the relation of multiple dimensions,
which is used e.g. in the linking principle to con-
strain the relation between arguments onSEM and
their syntactic realization onSYN. Some principles
are lexicalized, i.e., they constrain the analysis with
respect to the lexicon.

The lexicon constrains all dimensions simultane-
ously, and thereby synchronizes them. Figure 2 de-
picts an example graphical lexical entry for the word
eat. On SYN, by the lexicalized valency principle,
the lexical entry licenses zero or one incoming edges
labeledvinf, precisely onepart, zero or oneobj, ar-
bitrary manyadv dependents, and no other incoming
and outgoing edges. By the order principle, thepart

dependents must precede the headeat, which must
precede theobj and theadv dependents. OnSEM,
the lexical entry licenses arbitrary many incomingth

edges, and requires precisely oneag dependent and
zero or onepat dependents (valency principle). It li-
censes no other incoming and outgoing edges. The

2

patient must be realized by the object (linking princi-
ple). The realization of the agent is not constrained.

SYN:

eat

↓

vinf?

part! adv*obj?

< obj < advpart <

SEM:

eat

th*

ag!
(obj)
pat?

Figure 2: Lexical entry for the wordeat

2.1 Multigraph

We turn to the formalization of XDG. Contrary to
(Debusmann, 2006), which is higher-order, our for-
malization is first-order, and hence called FO XDG.
We begin with multigraphs. Multigraphs are formu-
lated over thelabeled dominance relation. This cor-
responds to the transitive closure of the labeled edge
relation, where the label is the label of the first edge.
The purpose of including this relation and not the
labeled edge relation itself is to stay in first-order
logic: if we included only the labeled edge relation,
we could not express the transitive closure without
extending the logic with fixpoints or second-order
quantification.

Definition 1 (Multigraph). Given a set of atoms At,
a finite set of edge labels L⊆At, a finite set of dimen-
sions D⊆ At, a finite set of words W⊆At, a finite set
of attributes A⊆ At, a finite set of set types T , and
a set of values U= ∪{t | t ∈ T}, a multigraph M=
(V,E+,<,nw,na) consists of a finite set of nodes V ,

a set of labeled dominances E+ ⊆V ×V ×L×D, a
strict total order<⊆V×V on V, a node-word map-
ping nw∈ V → W, and a node-attributes mapping
na∈V → D → A→U. We define V as a finite inter-
val of the natural numbers starting with1. A labeled
dominance(v,v′, l ,d) is an element of E+ iff on di-
mension d, the multigraph contains an edge from v
to v′′ labeled l, and a path of arbitrary many edges
from v′′ to v′ with any labels. Each value u∈ U is
an element of a set type t∈ T, where t= 2Fd1×...×Fdn

and Fdi ⊆ At. That is, each value is a set of tuples
whose components are atoms from finite domains.

2.2 Grammar

Definition 2 (Grammar). A grammar
G = (MT, lexMT,A′ ,PMT) consists of a multigraph
type MT, a lexicon lexMT,A′ , and a set of principles
PMT. The lexicon lexMT,A′ is defined over multigraph
type MT and a subset A′ ⊆ A of the attributes called
lexical attributes. The principles PMT are defined
over the same multigraph type MT. We will drop the
subscripts whenever this is convenient.

Definition 3 (Multigraph Type). Given a
set of atoms At, a multigraph type MT=
(D,W,L,dl,A,T,dat) consists of a finite set of
dimensions D⊆ At, a finite set of words W⊆ At, a
finite set of labels L⊆ At, a dimension-label map-
ping dl∈ D → 2L, a finite set of attributes A⊆ At, a
finite set of types T , and a dimension-attributes-type
mapping dat∈ D → A → T. The dimension-label
mapping determines which labels can be used on
which dimension, and the dimension-attributes-type
mapping determines values of which type can be
used for which attribute on which dimension. Each
t ∈ T is a set type2Fd1×...×Fdn, where Fdi ⊆ At. Each
multigraph type induces the set U= ∪{t | t ∈ T} of
values.

Definition 4 (Multigraph of Multigraph Type). A

3

multigraph M= (V,E+,<,nw,na), defined over the
sets L′ of edge labels, D′ of dimensions, W′ of words,
A′ of attributes, and T′ of types is of multigraph
type MT= (D,W,L,dl,A,T,dat) iff L ′ ⊆ L, D′ = D,
W′ ⊆W, A′ = A and T′ = T, all labeled dominances
on dimension d∈ D′ have only edge labels in dl d,
and all node attributes a∈ A′ on dimension d∈ D′

are properly typed, i.e., have a value in dat d a.

Definition 5 (Lexicon). The lexicon lexMT,A′

is defined over a multigraph type MT=
(D,W,L,dl,A,T,dat) and a subset A′ ⊆ A of
the attributes called lexical attributes. It is a
function from words to sets of lexical entries:
lexMT,A′ ∈ W → 2D→A′→U , where for all w∈ W,
if e ∈ lex w, then for all d∈ D, a ∈ A′, (e d a) is
properly typed, i.e., has a value in(dat d a).

Definition 6 (Principles). The principles
PMT are defined over a multigraph type
MT = (D,W,L,dl,A,T,dat). They are a finite
set PMT ⊆ φ of first-order formulas built from terms
t ::= c | x, where c is an individual constant and x an
individual variable.φ is defined as follows:

φ ::= ¬φ | φ1∧φ2 | ∃x : φ | t1 = t2 | ψ

where thepredicatesψ are defined further below.
We define the usual logical operators (∨, ⇒, ⇔,
∀, ∃!, 6=) as syntactic sugar, and allow to use
variables other than x for convenience (e.g. v for
nodes, l for labels, w for words and a for attributes
etc.). The constants and predicates of the logic
are defined with respect to a multigraph type MT=
(D,W,L,dl,A,T,dat). The constants are taken from
the set C:

C = D∪W∪L∪A∪F∪N

where F=∪{Fd1∪ . . .∪Fdn | 2Fd1×...×Fdn ∈ T} and
N is the set of natural numbers. The universe
of the logic is defined given a multigraph M=

(V,E+,<,nw,na), and equals C with the exception
that N is replaced by V, the actual set of nodes.
All constants are interpreted by the identity function.
As the universe contains only the nodes of the given
multigraph, only this finite subset of the natural num-
bers can be interpreted, i.e., a principle mentioning
node 42 can only be interpreted with respect to a
multigraph with at least42 nodes. The predicates
ψ are defined as follows:

ψ ::= v < v′

| v
l

−→d →
∗
d v′

| w(v) = w
| (t1 . . . tn) ∈ ad(v)

where v
l

−→d →
∗
d v′ is interpreted as the labeled

dominance relation, i.e.,(v,v′, l ,d) ∈ E+ and v< v′

by the strict total order<, i.e.,(v,v′) ∈ <. w(v) = w
is interpreted by the node-word mapping, i.e., nw v=
w, and(t1 . . . tn) ∈ ad(v) by the node-attributes map-
ping, i.e.,(t1, . . . , tn) ∈ na v d a.

For convenience, we define shortcuts for strict
dominance (with any label), labeled edge and edge
(with any label):

v→+
d v′

def
= ∃l : v

l
−→d →

∗
d v′

v
l

−→d v′
def
= v

l
−→d →

∗
d v′∧¬∃v′′ : v→+

d v′′∧v′′→+
d v′

v→d v′
def
= ∃l : v

l
−→d v′

where we define labeled edge as labeled dominance
between v and v′ with the restriction that there must
be no node v′′ in between.

2.3 Models

Definition 7 (Models). The models of a grammar
G = (MT, lex,P), m G, are all multigraphs of multi-
graph type MT which satisfy the lexicon lex and the
principles P.

Definition 8 (Lexicon Satisfaction). Given a
grammar G= (MT, lex,P), a multigraph M =

4

(V,E+,<,nw,na) satisfies the lexicon lex iff for all
nodes v∈ V, there is a lexical entry e for the word
of v, and for all dimensions d∈ D and all lexical at-
tributes a∈ A′, the value of the lexical attribute a on
dimension d for node v equals the value of the lexical
attribute a on dimension d of e:

∀v∈V : ∃e∈ lex (nw v) : ∀d ∈ D : ∀a∈ A′ :
(na v d a) = (e d a)

Definition 9 (Principles Satisfaction). Given a
grammar G= (MT, lex,P), a multigraph M =
(V,E+,<,nw,na) satisfies the principles P iff the
conjunction

V

φ∈P
φ of all principles in P is true.

2.4 String Language

To arrive at the string language of an XDG grammar,
we first define the yield of a multigraph.

Definition 10 (Yield of a Multigraph). The yield of a
multigraph M= (V,E+,<,nw,na) is the concatena-
tion of the words of the nodes, ordered with respect
to the strict total order<:

y M = nw pi . . . nw p|V|

where for all i, j,1≤ i < j ≤ |V|, (pi , p j) ∈ <.

Definition 11 (String Language). The string lan-
guage L G of a grammar G is the set of yields of
the models of G:

L G = {y M | M ∈ m G}

2.5 Recognition

Definition 12 (XDG Recognition Problem). Given a
grammar G and a string s, is s in L G?

We are given a grammarG = (MT, lex,P) and an
input strings = a1 . . .an. We need to find a multi-
graphM = (V,E+,<,nw,na) of multigraph typeMT
where:

1. V = {1, . . . ,n}

2. < = {(i, j) | i < j}

3. nw= {i 7→ ai | 1≤ i ≤ n}

As the only sets which are not determined by the in-
put string,E+ andna, are finite, we can enumerate
all multigraphs which satisfy the criteria 1., 2. and 3.
above. If among them we find one that is a model of
G, thens∈ L G, if not, thens /∈ L G.

In (Debusmann, 2007), we prove the complexities
of three flavors of the recognition problem using re-
sults from (Vardi, 1982):

1. Universal Recognition Problem where bothG
andsare variable:PSPACE-complete.

2. Fixed Recognition Problem whereG is fixed
ands is variable:NP-complete.

3. Instance Recognition Problem where the princi-
ples are fixed, and the lexicon andsare variable:
alsoNP-complete.

2.6 Parsing

Definition 13 (XDG Parsing Problem). Given a
grammar G and a string s, find all models M∈ m G
where y M= s.

Again we are given a grammarG = (MT, lex,P)
and an input strings= a1 . . .an. The parsing problem
is finding all multigraphsM = (V,E+,<,nw,na) ∈
m Gwhere:

1. V = {1, . . . ,n}

2. < = {(i, j) | i < j}

3. nw= {i 7→ ai | 1≤ i ≤ n}

5

That is, the set of nodes, the strict total order< and
the node-word mappingnware determined by the in-
put string. Parsing then consists of simply a) adding
a finite number of edges between these nodes and b)
finding an appropriate node-attributes mapping. Cru-
cially, no nodes need to be added. This so-called
fixed-size assumptionmakes XDG parsing amenable
to constraint programming (Schulte, 2002), (Apt,
2003), which we indeed use for the parser implemen-
tation in the XDG Development Kit (XDK) (Debus-
mann et al., 2004), (Debusmann and Duchier, 2007).

2.7 Generation

Definition 14 (XDG Generation Problem). Given a
grammar G and a bag of words b, find all models
M ∈ m G where y M= s and s is a linearization of b.

We are given a grammarG = (MT, lex,P) and
an input bag of wordsb = {a1, . . . ,an}. The gen-
eration problem is finding all multigraphsM =
(V,E+,<,nw,na) ∈ m Gwhere:

1. V = {1, . . . ,n}

2. nw= {i 7→ ai | 1≤ i ≤ n}

Thus, generation consists of a) adding a finite a fi-
nite number of edges between the nodes, b) finding
an appropriate node-attributes mapping, and, in ad-
dition to parsing, c) finding an appropriate strict total
order on the set of nodes.

2.8 Example Principles

We present a number of illustrative example princi-
ples. For generality, the principles are parametrized
by the dimensions that they constrain.

Tree principle. Given a dimensiond, the tree prin-
ciple stipulates that 1) there must be no cycles, 2)
there is precisely one node without a mother (the

root), 3) all nodes have zero or one mothers, and 4)
all differently labeled subtrees must be disjoint:

treed =
∀v : ¬(v→+

d v) ∧
∃!v : ¬∃v′ : v′→d v ∧
∀v : ((¬∃v′ : v′→d v)∨ (∃!v′ : v′→d v)) ∧

∀v : ∀v′ : ∀l : ∀l ′ : v
l

−→d →
∗
d v′ ∧ v

l ′
−→d →

∗
d v′ ⇒ l = l ′

Projectivity principle. Given a dimensiond, the
projectivity principle forbids crossing edges by stip-
ulating that all nodes positioned between a head and
a dependent must be below the head.

projectivityd =
∀v,v′ :
(v→d v′ ∧ v < v′ ⇒∀v′′ : v < v′′∧v′′ < v′ ⇒ v→+

d v′′)∧
(v→d v′ ∧ v′ < v⇒∀v′′ : v′ < v′′∧v′′ < v⇒ v→+

d v′′)

For example, this principle is violated on theSEM di-
mension in Figure 1, wherewantsis positioned be-
tweeneatandMary, but is not beloweat.

To explain the lexicalized valency, order and link-
ing principles, we show an example concrete lexical
entry foreat in Figure 3, modeling the graphical lex-
ical entry in Figure 2.

Valency principle. Given a dimensiond, the va-
lency principle constrains the incoming and outgoing
edges of each node according to the lexical attributes
in andout of type 2(dl d)×{!,+,?,∗}, which models the
function (dl d) → {!,+,?,∗} from edge labels on
d to cardinalities, where ! stands for “one”,+ for
“more than one”, ? for “zero or one”, and∗ for “ar-

6

eat 7→




























































































SYN :























in : {(vinf,?)}
out : {(part, !),(obj,?),(adv,∗)}

order : {(part,↑),(part,obj),
(part,adv),(↑,obj),
(↑,adv),(obj,adv)}























SEM :







in : {(th,∗)}
out : {(ag, !),(pat,?)}
link : {(pat,obj)}





















































, . . .















































Figure 3: Concrete lexical entry foreat

bitrary many”.

valencyd =
∀v : ∀l :

((l , !) ∈ ind(v) ⇒ ∃!v′ : v′
l

−→d v) ∧

((l ,+) ∈ ind(v) ⇒ ∃v′ : v′
l

−→d v) ∧

((l ,?) ∈ ind(v) ⇒ ¬∃v′ : v′
l

−→d v ∨ ∃!v′ : v′
l

−→d v) ∧
(¬(l , !) ∈ ind(v) ∧ ¬(l ,+) ∈ ind(v) ∧ ¬(l ,?) ∈ ind(v) ∧

¬(l ,∗) ∈ ind(v) ⇒ ¬∃v′ : v′
l

−→d v) ∧

((l , !) ∈ outd(v) ⇒ ∃!v′ : v
l

−→d v′) ∧
. . .

The remaining part of the principle dealing with the
outgoing edges proceeds analogously. Given the
concrete lexical entry in Figure 3, the principle con-
strains nodeeat on SYN such that there can be zero
or one incoming edges labeledvinf, there must be
precisely onepart dependent, zero or oneobj depen-
dents, arbitrary manyadv dependents, and no other
incoming or outgoing edges.

Order principle. Given a dimensiond, the order
principle constrains the order of the dependents of
each node according to the lexical attributeorder of
type 2(dl d)×(dl d). Theorder attribute models a par-
tial order ondl d, where we require thatdl d includes
the special label↑. The only purpose of↑ is to de-
note the head the partial order specified by theorder

attribute, which is why the principle also stipulates
that there must not be any edges labeled with↑.

orderd =

∀v : ∀v′ : ¬v
↑

−→d v′ ∧
∀v : ∀l : ∀l ′ : (l , l ′) ∈ orderd(v) ⇒

(l = ↑ ⇒ ∀v′ : v
l ′

−→d v′ ⇒ v < v′) ∧

(l ′ = ↑ ⇒ ∀v′ : v
l

−→d v′ ⇒ v′ < v) ∧

(∀v′ : ∀v′′ : v
l

−→d v′ ∧ v
l ′

−→d v′′ ⇒ v′ < v′′)

For instance, given the concrete lexical entry in Fig-
ure 3, the order principle orders allpart dependents
to the left of the headeat, and to the left of theobj

andadv dependents ofeat. The head is ordered to
the left of its obj and adv dependents, and theobj

precede theadv dependents.

Linking principle. Given two dimensionsd1 and
d2, the linking principle requires for all edges from
v to v′ labeled l on d1 that if there is a labell ′ ∈
linkd1(v), then there must be a corresponding edge
from v to v′ labeledl ′ ond2. The lexical attributelink
of type 2(dl d1)×(dl d2) models the function(dl d1) →
2(dl d2) mapping labels ond1 to sets of labels ond2.

linkingd1,d2
=

∀v : ∀v′ : ∀l : ∀l ′ :

v
l

−→d1
v′ ∧ (l , l ′) ∈ linkd1(v) ⇒ v

l ′
−→d2

v′

7

This is only one instance of a family of linking prin-
ciples. Others are presented e.g. in (Debusmann,
2006). In the concrete lexical entry in Figure 3,
d1 = SEM and d2 = SYN, and the linking principle
stipulates e.g. that the patient ofeaton SEM must be
realized by its object onSYN.

2.9 Example Grammars

To illustrate how XDG grammars look like, we
present two example grammars. The first,G1, mod-
els the string languageL1 of equally manyas,bs and
cs, in any order:

L1 = {s∈ (a∪b∪c)+ | |w|a = |w|b = |w|c}

This grammar demonstrates how to docounting. On
its sole dimension calledID (for “immediate domi-
nance”, in analogy to GPSG), we count using a chain
of as, each of which is required to take oneb and one
c. An example analysis is depicted in Figure 4. Here,
thea with index 1 builds a chain with thea with in-
dex 6. The firsta takes theb with index 3 and thec
with index 4, and the seconda theb with index 2 and
thec with index 5.

ID:

1

a

2

b

3

b

4

c

5

c

6

a

cb

cb a

Figure 4:G1 ID example analysis ofa b b c c a

G1 makes use of the tree principle and the va-
lency principle, where the latter does the counting.
The lexicon is depicted graphically in Figure 5. The
chain ofas is built by the lexical entry fora licensing
zero or one incoming and outgoing edges labeleda.
In addition, we require eacha to take precisely one
b and precisely onec dependent. The lexical entries

for b andc require precisely one incoming edge la-
beled resp.b andc.

ID:

a

a?

b!
a?

c!

b

b! c!

c

Figure 5:G1 lexical entries fora, b andc

The second example grammar,G2, models the
string languageL2 of arbitrary manyas followed by
arbitrary manybs followed by arbitrary manycs:

L2 = a+b+c+

With this grammar, we demonstrate how to door-
dering. On its sole dimensionLP (for “linear prece-
dence”), the idea is for the leftmosta to be the root,
having arbitrary many outgoing edges to arbitrary
many otheras (labeled1), andbs (2) andcs (3) to
its right. We show an example analysis in Figure 6.

LP:

1

a

2

a

3

b

4

c

5

c

6

c

7

c

333321

Figure 6:G2 LP example analysis ofa a b b c c

G2 makes use of the tree, valency and order prin-
ciples. The lexical entries for the latter two are de-
picted in Figure 7. Here, the worda is lexically am-
biguous: it can either be a root (leftmost lexical en-
try), or a dependent (second from the left). As the
grammar uses the tree principle, only onea will ever
become the root, as which it licenses arbitrary many
1 dependents, followed by and one or more2 depen-
dents, followed by one or more3 dependents.

8

LP:

< 1 < 2 < 3

a

↓

1*
2+

3+

↓

1!

a

↓

2!

b

↓

c

3!

Figure 7:G2 lexical entries fora, b andc

3 Closure Properties

In this section, we will present our first results on
the closure properties of XDG. We will see that the
string languages licensed by XDG are closed under
intersection and union.

3.1 Multigraph Restriction

As a prerequisite, we define what it means for a
multigraph to be restricted to a subset of the dimen-
sions of its multigraph type.

Definition 15 (Multigraph Restriction). Given a
multigraph M = (V,E+,<,nw,na) of multigraph
type MT= (D,W,L,dl,A,T,dat), we define its re-
striction to dimensions D′ ⊆ D as:

M|D′ = (V,E+
|D′ ,<,nw,na|D′)

where E+
|D′ is the set of edges restricted to D′:

E+
|D′ = {(v,v, l ,d) | (v,v, l ,d) ∈ E+∧ d ∈ D′}

and na|D′ is the node-attributes mapping restricted to
D′, which we define as follows for all v∈V:

na|D′ v = {d 7→ {a 7→ u | u∈ na v d a} | d ∈ D′}

3.2 Intersection

We first define the notion ofgrammar intersection,
i.e., the combination of two grammarsG1 andG2 to

a new grammarG such that the set of models ofG is
the intersection of the set of models ofG1 and the set
of models ofG2.

Definition 16 (Grammar Intersection). We define
grammar intersection given the following two gram-
mars:

G1 = (MT1, lex1,P1)
G2 = (MT2, lex2,P2)

where:

MT1 = (D1,W1,L1,dl1,A1,T1,dat1)
MT2 = (D2,W2,L2,dl2,A2,T2,dat2)

We write G= G1 ∩G2 for the combined grammar
G = (MT, lex,P). For the set of models m G, it holds
that:

m (G1∩G2) = m G1∩m G2

and, equivalently, for all multigraphs M:

M ∈ m (G1∩G2) ≡ M ∈ m G1 ∧ M ∈ m G2 (1)

The preconditions for grammar intersection are:

1. the sets of dimensions must be disjoint: D1 ∩
D2 = /0

2. the sets of words must be equal: W1 = W2

The multigraph type MT= (D,W,L,dl,A,T,dat)
of G is defined as follows:

D = D1∪D2

W = W1

L = L1∪L2

dl = dl1∪dl2
A = A1∪A2

T = T1∪T2

dat = dat1∪dat2

The lexicon lex of G is defined such that for each
word w∈W, lex w contains the product of the lexical

9

entries for w from G1 and G2:1

lex w = {e1∪e2 | e1 ∈ lex1 w ∧ e2 ∈ lex2 w}

The principles P of G conjoin the principles of G1

and G2:

P = {
V

φ1∈P1

φ1 ∧
V

φ2∈P2

φ2}

We can now proceed to prove that the string lan-
guages licensed by XDG are closed under intersec-
tion.

Proof. Consider the two grammars:

G1 = (MT1, lex1,P1)
G2 = (MT2, lex2,P2)

where:

MT1 = (D1,W1,L1,dl1,A1,T1,dat1)
MT2 = (D2,W2,L2,dl2,A2,T2,dat2)

andD1∩D2 = /0 andW1 = W2. The intersection of
their string languages is:

L G1∩L G2

By Definition 11, this is equivalent to:

{y M | M ∈ m G1}∩{y M | M ∈ m G2}

As G1 is restricted toD1 andG2 to D2, we get the
following using Definition 15:

{y M|D1 | M|D1 ∈ m G1}∩{y M|D2 | M|D2 ∈ m G2}

SinceG1 does not make use of the dimensionsD2,
andG2 does not make use ofD1, we can safely write:

{y M|D1∪D2 | M|D1∪D2 ∈ m G1}∩{y M|D1∪D2 | M|D1∪D2 ∈ m G2}

1This clarifies why we demand thatG1 andG2 have the same
set of words—otherwise, parts of the lexicon ofG could not be
defined.

which is equivalent to:

{y M|D1∪D2
| M|D1∪D2

∈ m G1 ∧ M|D1∪D2
∈ m G2}

which is in turn equivalent to:

{y M | M ∈ m G1 ∧ M ∈ m G2}

Using equation (1) from Definition 16, we get:

{y M | M ∈ m (G1∩G2)}

That is, we have that with grammar intersection, we
can obtain the intersection of the string languages of
G1 andG2:

L G1∩L G2 ≡ {y M | M ∈ m (G1∩G2)}

3.3 Union

First, we definegrammar union, analogously to
grammar intersection.

Definition 17 (Grammar Union). We write G= G1∪
G2 for the combination of G1 and G2 where:

m (G1∪G2) = m G1∪m G2

and, equivalently, for all multigraphs M:

M ∈ m (G1∪G2) ≡ M ∈ m G1 ∨ M ∈ m G2 (2)

Grammar union is defined analogously to grammar
intersection (Definition 16). The only difference con-
cerns the definition of the principles P of G, which
are combined disjunctively instead of conjunctively:

P = {
V

φ1∈P1

φ1 ∨
V

φ2∈P2

φ2}

The proof that the string languages licensed by
XDG are closed under union then proceeds analo-
gously to that for intersection.

10

3.4 Example

As an example, we present the intersection of the two
grammarsG1 andG2 from section 2 to obtain the lan-
guageL3 = L1∩L2 of n as followed byn bs followed
by n cs.

L3 = L1∩L2 = {s∈ anbncn | n≥ 1}

The models ofG3 are multigraphs with two di-
mensions: the dimensionID from G1, and the dimen-
sion LP from G2. ID ensures that there are equally
manyas, bs andcs, whereasLP ensures that theas
precede thebs precede thecs. We depict an example
analysis in Figure 8.

ID:

1

a

2

a

3

b

4

b

5

c

6

c

cb

cba

LP:

1

a

2

a

3

b

4

b

5

c

6

c

33221

Figure 8:G3 ID/LP example analysis ofa a b b c c

The lexicon ofG3 is the product of the lexicons of
G1 andG2. We depict it in Figure 9. Note that the
product construction of the lexicon yields two lexical
entries fora which are different onLP, but equal on
ID.

4 LCFGs as XDGs

(Debusmann, 2006) includes a constructive proof
based on (McCawley, 1968) and (Gaifman, 1965)
that reformulates lexicalized CFGs (LCFGs) as
XDGs. LCFGs are CFGs where each rule has pre-
cisely one terminal symbol on its right hand side.

ID:

a

a?

b!
a?

c!

a

a?

b!
a?

c!

b

b! c!

c

LP:

< 1 < 2 < 3

a

↓

1*
2+

3+

↓

1!

a

↓

2!

b

↓

c

3!

Figure 9:G3 lexical entries fora, b andc

Given an LCFGG, it is easy to construct an XDG
G′ with one dimension calledDERI (for “derivation
tree”). The derivation trees of the LCFG stand in the
following correspondence to the models onDERI:

1. The non-terminal nodes in the derivation tree
correspond to the nodes onDERI.

2. The labels of the non-terminal nodes in the
derivation tree are represented by the incom-
ing edge labels of the corresponding nodes on
DERI, except for the root, which has no incom-
ing edge.

3. The terminal nodes in the derivation tree corre-
spond to the words onDERI.

We depict an example LCFG derivation tree and the
corresponding XDGDERI tree in Figure 10.

The constructed XDG grammar uses the tree, pro-
jectivity, valency and order principles. The lexicon
includes for each ruleA→ B1 . . .BkaBk+1 . . .Bn (1≤
k≤ n) of the LCFG, given that each non-terminal oc-
curs at most once on the RHS, and given thatA is not
the start symbol, a lexical entry graphically depicted
in Figure 11. Here, the anchor is the terminal symbol
a of the RHS of the LCFG rule. We require precisely
one incoming edge labeled by the LHS of the rule,

11

a

a b

b

S

B

BS

1

a

2

a

3

b

4

b

S

B

B

Figure 10: LCFG derivation tree (left) and corre-
sponding XDGDERI tree (right)

i.e., A.2 As for the outgoing edges, we require pre-
cisely one for each non-terminal on the RHS of the
rule. The order requirements reflect the order among
the non-terminals and the anchor.

B1! Bn!

Bk! Bk+1!

B1<...<Bk< <Bk+1<...<Bn

...

a

A!

↓

...

Figure 11: Lexical entry for LCFG ruleA →
B1 . . .BkaBk+1 . . .Bn

5 Scrambling as the Combination of
Relaxed LCFGs

In German, following the theory oftopological
fields, the word order in subordinate sentences is
such that all verbs are positioned in the so-called
verb-clusterat the right end, preceded by the non-
verbal dependents (e.g. NPs) in the so-calledMit-
telfeld. In the verb cluster, the heads follow their de-
pendents. We show an example in Figure 12, where
the subscripts indicate the dependencies between the

2If A is the start symbol, we license zero or one incoming
edges labeledA instead of precisely one.

NPs and the verbs:JohnandMary are dependents of
sah, Peterof helfenandTiereof füttern.

Mittelfeld verb cluster
(dass) John1 Mary1 Peter2 Tiere3 füttern3 helfen2 sah1

(that) John1 Mary1 Peter2 animals3 feed3 help2 saw1

Figure 12: German subordinate clause version of the
English sentence(that) John saw Mary help Peter
feed animals.

Figure 13 shows an LCFG calledGID which gen-
erates this word order. The problem with this gram-
mar is that it generates only one analysis for the ex-
ample sentence, shown in Figure 14 (left), whereas
12 are grammatical. This is because the NPs in the
Mittelfeld can occur in any permutation3 irrespec-
tively of the positions of their verbal heads.4 In or-
der to correctly model this so-calledscramblingphe-
nomenon, we would also have to also license e.g. the
discontinuous analysis shown in Figure 14 (middle).
But how can we do that, given that LCFG derivations
are always contiguous?

S → NP NP VPsah VP → NP VPhelfen
VP → NP füttern NP → John
NP → Mary NP → Peter
NP → Tiere

Figure 13: LCFGGID

3Any permutation isgrammatical, though some are strongly
marked.

4Why 12? The verbfüttern has 4 possibilities to fill its NP
argument slot, there remain 3 forhelfen, and 1 forsah.

12

S

NP

John

NP

Mary

VP

NP VP

PeterNP

helfen

sah

füttern

Tiere

S

NP

John

NP

Mary

VP

NP VP

PeterNP

helfen

sah

füttern

Tiere

S

NP

John

NP

Mary

VP

VPNP

Peter NP

sah

füttern

Tiere

helfen

Figure 14: Derivation trees

5.1 Relaxing LCFGs

Our first idea is to reformulateGID in XDG. In XDG,
we can then relax the global contiguity constraint by
simply dropping the projectivity principle.

But this is not quite the solution as it leads to over-
generation: although the rules for VPs still position
their verbal dependents to their left, material from
verbs higher up in the tree can now interrupt them, as
in Figure 14 (right), where the VPPeter Tiere f̈uttern
helfenis interrupted by the NPsJohnandMary, and
as a result, the verbfüttern wrongly ends up in the
Mittelfeld.

5.2 Topological LCFG

Our second idea is to create a new,topologicalLCFG
calledGLP in the spirit of topological fields theory,
as in (Kathol, 1995), (Gerdes and Kahane, 2001),
(Duchier and Debusmann, 2001).GLP basically or-
ders all NPs to the left of the verbs. We use the
non-terminals MF standing for “Mittelfeld” and VC
for “Verb Cluster”. The grammar is depicted in Fig-
ure 15, and an example analysis in Figure 16.

However, solely using theGLP is not viable: al-
though we get precisely the correct string language,
the derivation trees do not represent the syntactic de-
pendencies between verbs and their non-verbal de-
pendents, e.g. betweensahandJohnandMary. This

S → MF VC sah VC → VC helfen
VC → füttern MF → John
MF → JohnMF MF → Mary
MF → Mary MF MF → Peter
MF → PeterMF MF → Tiere
MF → TiereMF

Figure 15: Topological LCFGGLP

S

MF

MF

VC

VCMF

MFJohn

Mary

Peter

sah

helfen

füttern

Tiere

Figure 16: Topological derivation tree for(dass)
Tiere3 John1 Mary1 Peter2 füttern3 helfen2 sah1.

renders the grammar practically useless: it is impos-
sible to determine the semantics of a sentence with-
out these syntactic dependencies.

13

5.3 Intersecting LCFGs

To recap our two previous ideas, relaxingGID lead
to overgeneration, and the sole use of the topological
LCFG GLP made us lose essential syntactic depen-
dencies. Our third idea is now tointersect GID and
GLP. An analysis of the resulting grammarGID /LP =
GID∩GLP is a pair of two derivation trees, or, in terms
of XDG, two dimensions: one derivation tree forGID

called ID tree, and one derivation tree forGLP called
LP tree. We show an example in Figure 17.

ID:
S

NP

John

NP

Mary

VP

NP VP

PeterNP

helfen

sah

füttern

Tiere

LP:
S

MF

MF

VC

VCMF

MFJohn

Mary

Peter

sah

helfen

füttern

Tiere

Figure 17: Analysis ofGID /LP

This idea combines the best of both worlds:
throughGLP, we avoid overgeneration, andGID rep-
resents the essential syntactic dependencies. That is,
the two intersected grammars can be considered as
“helping out” each other.

6 Use or Abuse of Intersection?

A related approach to model scrambling by intersec-
tion has been put forward in the context of Range
Concatenation Grammars (RCG) (Boullier, 2000).
Here, the structures generated by the two combined
grammars are correlated only by their yields. In his
paper “Uses and abuses of intersected languages”,
Chiang (2004) observes that from the point of view
of strong generative capacity, this use of intersection
amounts to only constraining the tail end of other-
wise independent parallel processes, which he calls
weak parallelism. He argues that it is easy to over-
estimate how much control this kind of parallelism
offers. He argues that the treatment of scrambling in
(Boullier, 2000) is not general enough, as it relies on
nonexistent information in the surface string.

Intersection in XDG offers more fine-grained con-
trol as Boullier’s, and we argue that it thus does
not fall into the category of “abuse”. First, the di-
mensions of XDG are synchronized by the input
string and the corresponding nodes, which are shared
among all dimensions. Second, XDG allows to stip-
ulate any number of additional constraints to corre-
late the two intersected grammars, such as the link-
ing principle. Linking constraints could e.g. be used
to synchronize the rules of the two combined CFGs.
For instance, we could use it to require that spe-
cific rules in one of the combined CFGs can only be
used synchronously with specific rules in the other
CFG, similar to Multitext grammars (Melamed et al.,
2004).

7 Conclusions

We have shown that XDGs can becombinedusing
grammar composition, such that the string language
of the resulting grammar is e.g. theirintersection.
Using a model-theoretic axiomatization of LCFG in

14

XDG, we could then explore therelaxation of the
LCFG contiguity criterion, and, crucially, theinter-
sectionof LCFGs. Together, these two ideas lead us
to a model of one of the most complicated phenom-
ena in syntax as the combination of two grammars
formulated in one of the simplest of all grammar for-
malisms.

Acknowledgments

I’d like to thank Prof. Gert Smolka from Program-
ming Systems Lab in Saarbrücken, the people from
the CHORUS project, and the International Graduate
College (IGK) Saarbrücken/Edinburgh for support-
ing my research over the years. I’d also like to thank
the anonymous reviewers of this paper for their valu-
able suggestions.

References

Apt, Krzysztof R. (2003).Principles of Constraint
Programming. Cambridge University Press.

Blackburn, Patrick and Claire Gardent (1995). A
specification language for Lexical Functional
Grammars. InProceedings of EACL 1995.
Dublin/IE.

Boullier, Pierre (2000). Range Concatenation Gram-
mars. InProceedings of the Sixth International
Workshop on Parsing Technologies (IWPT 2000),
pp. 53–64. Trento/IT.

Chiang, David (2004). Uses and abuses of inter-
sected languages. InProceedings of TAG+7, pp.
9–15. Vancouver/CA.

Debusmann, Ralph (2006). Extensible Depen-
dency Grammar: A Modular Grammar Formalism
Based On Multigraph Description. Ph.D. thesis,
Universität des Saarlandes.

Debusmann, Ralph (2007). The complexity of First-
Order Extensible Dependency Grammar. Techni-
cal report, Saarland University.

Debusmann, Ralph and Denys Duchier (2007).
XDG Development Kit. Http://www.mozart-
oz.org/mogul/info/debusmann/xdk.html.

Debusmann, Ralph, Denys Duchier, and Joachim
Niehren (2004). The XDG grammar development
kit. In Proceedings of the MOZ04 Conference,
volume 3389 ofLecture Notes in Computer Sci-
ence, pp. 190–201. Springer, Charleroi/BE.

Duchier, Denys and Ralph Debusmann (2001).
Topological dependency trees: A constraint-based
account of linear precedence. InProceedings of
ACL 2001. Toulouse/FR.

Gaifman, Haim (1965). Dependency systems and
phrase-structure systems.Information and Con-
trol, 8(3):304–337.

Gerdes, Kim and Sylvain Kahane (2001). Word or-
der in German: A formal dependency grammar
using a topological hierarchy. InACL 2001 Pro-
ceedings. Toulouse/FR.

Hudson, Richard A. (1990).English Word Grammar.
B. Blackwell, Oxford/UK.

Kathol, Andreas (1995).Linearization-Based Ger-
man Syntax. Ph.D. thesis, Ohio State University,
Ohio/US.

Kepser, Stephan (2000). A coalgebraic modelling of
Head-driven Phrase Structure Grammar. InPro-
ceedings of AMiLP 2000.

Kepser, Stephan and Uwe Mönnich (2003). Graph
properties of HPSG feature structures. In Gerhard
Jäger, Paola Monachesi, Gerald Penn, and Shuly
Wintner, eds.,Proceedings of Formal Grammar
2003, pp. 115–124.

15

Kracht, Marcus (1995). Syntactic codes and gram-
mar refinement.Journal of Language, Logic and
Information, 4:41–60.

McCawley, J. D. (1968). Concerning the base com-
ponent of a Transformational Grammar.Founda-
tions of Language, 4:243–269.

Melamed, I. Dan, Giorgio Satta, and Benjamin
Wellington (2004). Generalized Multitext Gram-
mars. InProceedings of ACL 2004. Barcelona/ES.

Pullum, Geoffrey K. and Barbara C. Scholz (2001).
On the distinction between model-theoretic and
generative-enumerative syntactic frameworks. In
Philippe de Groote, Glyn Morrill, and Christian
Retoré, eds.,Logical Aspect of Computational
Linguistics: 4th International Conference, Lec-
ture Notes in Artificial Intelligence, pp. 17–43.
Springer, Berlin/DE.

Rogers, James (1996). A model-theoretic framework
for theories of syntax. InProceedings of ACL
1996.

Rogers, James (2003). Syntactic structures as multi-
dimensional trees.Journal of Research on Lan-
guage and Computation, 1(3/4).

Rogers, James (2004). On scrambling, another per-
spective. InProceedings of TAG+7. Vancou-
ver/CA.

Schulte, Christian (2002).Programming Constraint
Services, volume 2302 ofLecture Notes in Artifi-
cial Intelligence. Springer-Verlag.

Vardi, Moshe Y. (1982). The complexity of relational
query languages. InProceedings of the fourteenth
annual ACM symposium on Theory of Computing,
pp. 137–146. ACM Press, San Francisco/US.

16

