
A grammar formalism for dependency parsing

with word order domains

Ralph Debusmann

Advisors: Denys Duchier and Joachim Niehren

September 19, 2002

Abstract

Recently, Duchier (1999) presented a new, constraint-based axiomati-
zation of dependency parsing. We propose to develop an abstract gram-
mar formalism for Duchier’s axiomatization. In addition, we propose to
formulate on a high level of abstraction statements for expressing con-
straints on linear precedence. We believe that we can solve this part
by adapting for dependency parsing Reape’s (e.g. Reape 1994) notion of
word order domains, which has already been thoroughly investigated in
the context of HPSG for German.

Contents

1 Introduction 2

1.1 Goal 1: Towards a declarative grammar formalism 2
1.2 Goal 2: A new formulation of word order domains 3

2 Duchier’s dependency parser 3

2.1 Dependency grammar . 3
2.2 A non-projective dependency grammar 3
2.3 The dependency tree . 4
2.4 Role constraints . 5
2.5 Lexical economy . 5
2.6 An example analysis . 6
2.7 Constraint-based axiomatization and parsing 6
2.8 Evaluation . 7

3 Towards a declarative grammar formalism 7

3.1 The lexicon . 7
3.2 An example lexicon specification 8
3.3 Role constraints . 9

4 An introduction to Reape’s word order domains 9

4.1 Motivation . 10
4.1.1 A traditional phrase structure analysis 10
4.1.2 A revised phrase structure analysis 11

4.2 Introducing word order domains 13

1

4.3 Sequence union . 14
4.4 Obtaining LP trees . 14
4.5 A first example . 15
4.6 Language specific principles . 17
4.7 Linear precedence . 18
4.8 A thorough example . 18
4.9 VP extraposition . 20
4.10 Problems with Reape’s analysis 21

4.10.1 Partial VP extraposition 21
4.10.2 Relative clause extraposition 22

5 A new formulation of word order domains 23

5.1 ID and LP trees . 23
5.2 The intuition . 23
5.3 Tree structures . 25
5.4 Licensing conditions . 25
5.5 Transitive heads and barriers . 26
5.6 Landing fields and field valency 26
5.7 An example grammar . 27
5.8 Scrambling . 29
5.9 VP extraposition . 29
5.10 Partial VP extraposition . 30
5.11 Relative clause extraposition . 31

A Goals 32

1 Introduction

My thesis pursues two major goals1:

1. The development of a grammar formalism for Duchier’s (1999) dependency
parser, excluding issues of word order (section 3). Duchier’s dependency
parser and the accompanying grammar formalism form what we call the
ID framework2.

2. The development of a theory of word order, integrated into Duchier’s
(1999) axiomatization of dependency grammar (sections 4 and 5). We call
this part of our proposal the LP framework 3.

Both are enhancements of Duchier’s axiomatization of dependency parsing,
which we summarize in section 2.

1.1 Goal 1: Towards a declarative grammar formalism

A practical shortcoming of (Duchier 1999) is the lack of a formalism for declar-
ative grammar development. Therefore, the first contribution of my thesis will
be the development of a grammar formalism made up of two languages: One for

1A more detailed list of goals can be found in appendix A.
2ID stands for “immediate dominance”.
3LP stands for “linear precedence”.

2

specifying the lexicon and another for stating grammatical conditions. Section
3 presents an overview of the grammar formalism envisaged.

A further goal is to write a parser generator (using the Gump parser gen-
erator) that takes a grammar specification (in our grammar formalism) as its
input and returns an executable dependency parser for this grammar.

1.2 Goal 2: A new formulation of word order domains

Duchier’s (1999) formulation of dependency parsing lacks a theory of word order.
Constraints on word order are stated in an ad-hoc fashion to make the parser
undergenerate. A finer-grained account of word order is needed to be able to
describe word order more adequately. Therefore, the second contribution of
my thesis is an adaptation of Reape’s (e.g. Reape 1994) notion of word order
domains for dependency grammar. Word order domains have proven to be an
adequate means for describing German word order within HPSG. For instance,
(Müller 1999) and (Kathol 1995) both make use of Reape’s word order domains
in their theories of German grammar. An introduction to the concept of word
order domains is given in section 4.

Our notion of word order domains is described in section 5. It not only
fits into Duchier’s axiomatization of dependency parsing but also makes finer-
grained distinctions. We will demonstrate that phenomena such as partial VP
extraposition and relative clause extraposition are problematic for Reape’s but
not for our refined notion of word order domains.

2 Duchier’s dependency parser

In this section, we outline Duchier’s (1999) formulation of dependency pars-
ing. The two major contributions of my thesis are both built onto Duchier’s
dependency parser.

First, let us introduce the basic concepts behind dependency grammar.

2.1 Dependency grammar

Modern dependency grammar has been pioneered by the French linguist Lucien
Tesnière (1959). The key idea is this: In a natural language sentence, all but one
word depend on other words. The word that does not depend on any other is
called the root of the sentence. A word depends on another if it is a complement
or a modifier of the latter.

Unlike traditional phrase structure grammar, dependency grammar postu-
lates only lexical nodes but no phrasal nodes. In addition, many flavors of
dependency grammar allow non-projective analyses (i.e. allow crossing edges),
which make dependency grammar particularly well suited to account for lan-
guages with a high degree of word order variation and discontinuity such as
German.

2.2 A non-projective dependency grammar

Duchier (1999) proposes such a non-projective dependency grammar. He re-
gards dependency grammar as a 7-tuple of finite sets:

3

(1) DG = 〈Words, Cats, Agrs, Comps, Mods, Lexicon, Rules〉

Words is a set of strings of word forms. Cats is a set of lexical categories
such as v for verb and n for noun. Agrs is a set of agreement tuples such as
〈masc sing 3 nom〉 for “masculine singular third person nominative”.

Each complement or modifier in the dependency tree fills a certain role. We
distinguish roles by their role type. For instance, the subject of a finite verb fills
the role subj. The disjoint union of the sets Comps of complement role types
and Mods of modifier role types (e.g. adv for “adverb”) forms the set Roles of
all role types.

Lexicon is a set of lexical entries which are represented by attribute-value-
matrices like the one shown in (2):

(2)

string ”liebt”
cat v

agr 〈masc sing 3 nom〉
comps {subj, obj}

Here, the string-feature maps to a string from the set Words of words. cat

maps to a category from the set Cats of categories and agr to an agreement
tuple from the set Agrs of agreement tuples. comps maps to subsets of the set
Comps of complement role types.

Rules (also called role constraints) is a family of binary predicates Γρ for
all ρ ∈ Roles. Role constraints express grammatical conditions that must hold
between two words connected by a dependency edge in the dependency tree.

2.3 The dependency tree

We will now introduce the formal notion of a dependency tree. As in Duchier
(1999), we assume a finite set V of nodes, representing the words of the input
sentence, and identify it with the set of integers {1 . . n}. We label edges between
two nodes by role types ρ ∈ Roles. The set of edges in the dependency tree is

E ⊆ V × V × Roles and we write w
ρ
→ w′ for 〈w, w′, ρ〉 ∈ E . Now 〈V , E〉 is a

directed graph with labeled edges, and a dependency tree T can be defined as:

T = 〈(V , E), entry〉

where entry is a function that maps each node in V to a lexical entry in Lexicon:

entry : Nodes 7→ Lexicon

Dependency trees are subject to the following treeness constraints:

1. A node has at most one mother.

2. There is precisely one node which has no mother. This node is called root.

3. There are no cycles.

The following conditions for well-formedness of dependency trees must be
satisfied. First, any complement required by a node’s valency must be realized
precisely once:

4

(3) ∀w ∈ V , ∀ρ ∈ comps(entry(w)) ∃!w′ ∈ V , w
ρ
→ w′ ∈ E

Second, if there is an edge emanating from w, then it must be labeled either
by a complement type in w’s valency or by a modifier type:

(4) ∀w
ρ
→ w′ ∈ E ρ ∈ comps(entry(w)) ∪ Mods

Third, whenever there is an edge w
ρ
→ w′, then the role constraint (gram-

matical condition) Γρ(w, w′) for Γρ ∈ Rules must be satisfied in T :

(5) ∀w
ρ
→ w′ ∈ E T |= Γρ(w, w′)

2.4 Role constraints

A role constraint is a grammatical condition which licenses an edge w
ρ
→ w′

in the dependency tree. We write Γρ(w, w′) for a role constraints licensing an

edge w
ρ
→ w′. Role constraints are largely used to control agreement and assign

grammatical functions to dependents.

For instance, the dependency edge w
subj
→ w′ is licensed by the role constraint

Γsubj(w, w′) iff w′ is a noun (n) or a pronoun (pro), agrees with w and has
nominative case:

Γsubj(w, w′) ≡ cat(w′) ∈ {n, pro} ∧
agr(w) = agr(w′) ∧
agr(w′) ∈ NOM

where NOM represents the set of all agreement tuples Gender × Number ×
Person × {nom}.

Another example. Here, the role constraint Γadj ensures that an adjective
adj may modify nouns only and agrees with the noun:

Γadj(w, w′) ≡ cat(w) = n ∧
cat(w′) = adj ∧
agr(w) = agr(w′)

2.5 Lexical economy

Duchier (1999) improves lexical economy by doing two things: First, he collapses
together entries that differ only in the values of their agreement-tuples. For this
reason, he replaces the attribute agr by agrs. The values of agrs are sets of
agreement tuples. In a similar manner, Duchier replaces the cat-attribute by
cats, the values of cats being sets of categories.

Another source for redundancy in the lexicon are optional complements.
Therefore, as a second measure, Duchier proposes to model the valency of en-
tries e with two sets compsReq(e) and compsOpt(e) for required and optional
complements respectively instead of using just one set comps(e).

Duchier calls the resulting representation a lexicon entry to distinguish it
from a lexical entry as the one in (2). Lexicon entries generate lexical entries.
The lexical entries generated by (6) are of the form of (7).

5

(6)

string S
cats C
agrs A
compsReq Req
compsOpt Opt

(7)

string S
cat c
agr a
comps Comps

c ∈ C ∧ a ∈ A ∧
Req ⊆ Comps ⊆ Req ∪ Opt

2.6 An example analysis

As an example, look at the dependency tree of sentence (8) in Figure 1. The
upper part shows nodes represented as boxes, connected by directed edges. The
integers appearing in the boxes reflect the position of the corresponding word
in the input sentence.

(8) (dass)
(that)

ein
a

Buch
book

Maria
Maria

zu lesen
to read

verspricht.
promises.

“(that) Maria promises to read a book.”

5

3 4

2

1

ein Buch Maria zu lesen verspricht

vp zu

subj

obj

det

Figure 1: Example dependency tree

Figure 2 depicts the lexical entry assigned to each node of the dependency
tree by the entry-function. We write the underscore “ ” in the lexical entry
corresponding to “zu lesen” to indicate that all assignments of values (e.g. all
agreement tuples) are licensed by the grammar.

2.7 Constraint-based axiomatization and parsing

(Duchier 1999) describes a constraint model for the formal model outlined above,
which we do not flesh out here. The constraint model uses finite domain and
finite set variables to encode the quantities and mappings defined, and for-
mulates constraints on them that precisely capture the conditions the formal
model stipulates. By having this reduction at hand, Duchier’s axiomatization
of dependency parsing naturally yields executable dependency parsers.

6

1

string ”ein”
cat det

agr 〈neut sing 3 acc〉
comps ∅

2

string ”Buch”
cat n

agr 〈neut sing 3 acc〉
comps {det}

3

string ”Maria”
cat n

agr 〈fem sing 3 nom〉
comps ∅

4

string ”zu lesen”
cat vzu

agr

comps {obj}

5

string ”verspricht”
cat vfin

agr 〈fem sing 3 nom〉
comps {subj, vp zu}

Figure 2: Entries corresponding to the nodes in Figure 1

2.8 Evaluation

Duchier developed several prototype parsers for both German and English using
the techniques described in (Duchier 1999). The prototype parsers support PPs
(in the case of ambiguous attachment possibilities, all of them are enumerated),
infinitive clauses, separable verb prefixes (in German), and relative clauses. The
treatment of relative clauses seems a little ad-hoc though and indicates that the
linguistic theory behind Duchier’s dependency parser needs some enhancement.

Additionally, Duchier’s dependency parsers cover the following phenomena:
topicalization, fronting (including partial fronting), extraposition and scram-
bling. However, many important notions such as coordination and nested ex-
traposition fields are missing.

3 Towards a declarative grammar formalism

The first major contribution of my thesis is a declarative grammar formalism
for Duchier’s axiomatization dependency parsing. Duchier’s axiomatization and
the grammar formalism make up what we call the ID framework. The grammar
formalism is made up of two languages: one for specifying the lexicon and
one for stating grammatical conditions (role constraints). In this proposal, we
present just an outline of the abstract syntax of the grammar formalism that we
envisage. The development of a concrete syntax for it is a further goal of the
thesis but not attempted herein.

3.1 The lexicon

The first building block of our grammar formalism is an expression language
for specifying the lexicon. Expressions of this language are inductively defined

7

below:

E ::= don’t care symbol
| c finite domain constant
| cb base type constant (integer, string)
| f(E) feature access
| 〈E1 . . . En〉 tuple
| {E1 . . . En} set
| E1 ∩ E2 set intersection
| E1 ∪ E2 set union
| E set complementation
| [f1 : E1 . . . fn : En] avm
| ⇑E set generator
| E1 ∧ E2 set generator intersection
| E1 ∨ E2 set generator union
| ¬E set generator complementation

The set generator allows us to write for instance ⇑〈masc∨neut, sing, 3, 〉 to
denote the set of all agreement tuples where gender is “masculine” or “neuter”,
number “singular” and person 3rd, and where case is not restricted, as indicated
by the don’t care symbol “ ”.

The expression language we envisage is statically typed. However, we do not
flesh out the type system in this proposal.

3.2 An example lexicon specification

We now specify a lexicon using the expression language outlined above. We
start with specifying finite domain constants for gender, number, person and
case.

Gender = {masc, fem, neut}
Number = {sg, pl}
Person = {1, 2, 3}
Case = {nom, gen, dat, acc}

We define agreement tuples Agr as being made up of the four domains spec-
ified above:

Agr = 〈Gender, Number, Person, Case〉

Next we define finite domain constants for categories Cat:

Cat = {adj, adv, det, n, vfin, vzu}

Similarly, we define the finite domains of complements Comp and modifiers
Mods:

Comp = {dative, det, obj, subj, vp zu}
Mod = {adj, adv}

From the domains defined above we can now build sets of finite domain
constants:

Agrs = {Agr}
Cats = {Cat}
Comps = {Comp}
Mods = {Mod}

8

And here is an example lexicon entry, abiding the specifications above:

string ”verspricht”
cats {vfin}
agrs ⇑〈 , sing, 3, nom〉
compsReq {subj, vp zu}
compsOpt {dative}

where ⇑〈 , sing, 3, nom〉 denotes all agreement tuples in:

Gender × {sing} × {3} × {nom}

3.3 Role constraints

Role constraints are the second building block in our grammar formalism. They
are used to express grammatical conditions on pairs of words to be connected
by a dependency edge. We propose to develop an abstract constraint language
on top of the expression language defined above for specifying the lexicon:

C ::= E1 = E2 equal
| E1 6= E2 inequal
| E1 ∈ E2 element
| E1 /∈ E2 not element
| E1 ⊆ E2 subset
| E1 ‖ E2 disjoint
| C1 ∧ C2 conjunction

We now present an example of a role constraint, expressed in terms of the
abstract syntax defined above.

Γadv(w, w′) ≡ cat(w) ∈ {vfin, vzu} ∧
cat(w′) = adv

Here is another example role constraint:

Γsubj(w, w′) ≡ cat(w′) ∈ {n} ∧
agr(w) = agr(w′) ∧
agr(w′) ∈ ⇑〈 , , , nom〉

where ⇑〈 , , , nom〉 denotes the set of agreement tuples in:

Gender × Number × Person × {nom}

4 An introduction to Reape’s word order do-

mains

The grammar formalism for Duchier’s axiomatization of dependency parsing
is not equipped with a means to state constraints on word order. The second
contribution of my thesis is the development of a theory of word order which fits
into Duchier’s formulation of dependency parsing and is called LP framework.
Our theory of word order is an adaptation of Reape’s notion of word order
domains for dependency parsing.

This section serves to motivate the intuitions behind Reape’s word order
domains, in order to make it easier to see the commonalities and differences to
our adaptation for dependency grammar (section 5).

9

4.1 Motivation

As Reape’s word order domains have proven highly successful as an ingredient
of theories of German grammar (e.g. Müller 1999, Kathol 1995), we concentrate
on describing German word order phenomena too in this proposal.

In German, the order among nominal complements of verbs (this sequence
of words is often called Mittelfeld) is almost arbitrary. As an example, consider
the sentences below4:

(9) (dass)
(that)

Maria
Maria

ein
a

Buch
book

liest.
reads.

“(that) Maria reads a book.”

(10) (dass)
(that)

ein
a

Buch
book

Maria
Maria

liest.
reads.

“(that) Maria reads a book.”

In sentence (9), the nominal arguments “Maria” and “ein Buch” are in
canonical order, i.e. the subject (“Maria”) of the governing verb “liest” pre-
cedes the object (“ein Buch”). In (10), the object precedes the subject of “liest”,
resulting in a non-canonical ordering, which is called scrambling.

4.1.1 A traditional phrase structure analysis

How would traditional phrase structure syntax analyses of the two example
sentences look like? For (9), one could immediately come up with the analysis
shown in Figure 3:

S

NP

Maria

VP

NP

Det

ein

N

Buch

V

liest

Figure 3: Phrase structure tree for sentence (9)

But what about (10)? Note that traditionally, phrase structure trees are
ordered trees, i.e. the surface order of the analysed string must be equal to the
concatenation of the leaves of the parse tree from left to right. Holding on to the
same analysis as in Figure 3 then, we would end up in postulating an analysis
as in Figure 4.

Figure 4 contains a crossing edge. We call analyses with crossing edges
non-projective, and analyses without crossing edges projective. Non-projective
analyses are traditionally avoided in most phrase structure-based theories of
grammar. Two leading arguments against them are:

4Note that we only consider subordinate (verb-last) sentences in all of this proposal for the
sake of keeping things as simple as possible.

10

S

NP VP

NP Maria V

Det N liest

ein Buch

Figure 4: Phrase structure tree for sentence (10)

• Crossing edges result in a combinatory explosion during parsing if linear
precedence is not properly controlled.

• Crossing edges go against the intuition of constituents, namely that they
should be continuous or convex sequences of words.

4.1.2 A revised phrase structure analysis

Revised phrase structure analyses of sentences (9) and (10) that do not fall foul
to requiring non-projective analyses are depicted in Figures 5 and 6:

S

NP

Maria

NP

Det

ein

N

Buch

V

liest

Figure 5: Revised phrase structure tree for sentence (9)

S

NP

Det

ein

N

Buch

NP

Maria

V

liest

Figure 6: Revised phrase structure tree for sentence (10)

This kind of flatter analysis seems perfectly suited to account for the al-
most arbitrary order among nominal complements in German. In addition, by
separating immediate dominance (ID) and linear precedence (LP), the number

11

of schemata required to account for all possible permutations of e.g. nominal
complements can be reduced to a minimum: The idea is to leave the order of
daughters of each node unrestricted a priori and then employ LP-statements
to exclude unacceptable daughter sequences. For instance, the LP-statement
NP ≺ V would constrain NPs to precede Vs at each node, correctly excluding
sentences such as the ones given below:

(11) * (dass) Maria liest ein Buch.

(12) * (dass) ein Buch liest Maria.

(13) * (dass) liest Maria ein Buch.

(14) * (dass) liest ein Buch Maria.

Still, with the kind of analysis exemplified above we do not get very far.
Consider sentences with embedded non-finite verbs, forming with their finite
verbal heads so-called verb clusters or verb complexes. For instance, the finite
verb “verspricht” and its non-finite complement “zu lesen” below form such a
verb cluster :

(15) (dass)
(that)

Maria
Maria

ein
a

Buch
book

zu lesen
to read

verpricht.
promises.

“(that) Maria promises to read a book.”

(16) (dass)
(that)

ein
a

Buch
book

Maria
Maria

zu lesen
to read

verspricht.
promises.

“(that) Maria promises to read a book.”

Phrase structure analyses in the spirit of the revised analyses shown in Figure
5 and 6 would lead to analyses presented in Figure 7 and 8:

S

NP

Maria

VP

NP

Det

ein

N

Buch

V

zu lesen

V

verspricht

Figure 7: Phrase structure tree for sentence (15)

Again, we have to postulate analyses with crossing edges in the non-canonical
case (Figure 8), something we thought we could avoid by adopting a revised,
flatter phrase structure analysis.

What choices do we have left then? One approach that has been evaluated
by (Netter 1991) is known under the name of clause union, and is understood
as a merging of the subcategorization frames of verbs in a verb cluster. The
result is a complex predicate with a composite subcategorization frame.

12

S

NP VP V

NP Maria V verspricht

Det N zu lesen

ein Buch

Figure 8: Phrase structure tree for sentence (16)

Another choice posits even flatter phrase structure analyses, as proposed by
e.g. Uszkoreit (1987) in the GPSG ID/LP-framework (Gazdar, Klein, Pullum
& Sag 1985). Figure 9 illustrates such an analysis for sentence (16):

S

NP

Det

ein

N

Buch

NP

Maria

V

zu lesen

V

verspricht

Figure 9: Flat phrase structure tree for sentence (16)

But while such an analysis enables us to account for scrambled sentences with
embedded verbs without having to permit crossing edges, it does not reflect
much more than the linear order of the words in the sentence. Analyses as
in Figure 9 lack much of the information about dominance that trees such as
Figure 7 incorporate. For instance, in Figure 7, the V “zu lesen” c-commands
only its complement NP “ein Buch”, whereas in Figure 9, it c-commands all
other constituents. Hence, adopting flat analyses, c-command can not be used
as an indicator about head-complement relations anymore.

4.2 Introducing word order domains

As argued above, traditional phrase structure analyses run into difficulties when
confronted with discontinuous constituents (for instance, scrambled nominal
complements). We presented two possible solutions:

• Postulating non-projective analyses. Problems: run against the intuition
of what a constituent is and lead to combinatory explosion.

• Postulating flat phrase structure analyses such as in Figure 9. Problem:
lack of dominance information.

13

Reape’s (e.g. Reape 1994) solution is to assume two analyses instead of one:
his ID tree5 (ID for “Immediate Dominance”) is a phrase structure analysis
that breaks with tradition in that it is unordered. His LP tree (LP for “Linear
Precedence”) is a flattened version of the corresponding ID tree and is ordered.
Reape uses a binary operation termed sequence union to obtain a set of ordered
LP trees from an unordered ID tree. These correspond to the licensed surface
orders.

4.3 Sequence union

We define sequence union as the deterministic function “•”:

• : Nodes∗ × Nodes∗ 7→ 2Nodes
∗

where Nodes∗ is a sequence of ID tree nodes.
For two sequences of ID tree nodes d1 and d2, d1 • d2 returns the set D of

sequences satisfying the following constraints:

1. d contains all elements in d1 and d2.

2. The respective order of elements in d1 and d2 is preserved in d ∈ D.

3. Other than that, the order of the elements in d ∈ D is unconstrained.

As an example, let d1 = [a, b] and d2 = [c, d]:

[a, b] • [c, d] = { [a, b, c, d]
[a, c, b, d]
[a, c, d, b]
[c, a, b, d]
[c, a, d, b]
[c, d, a, b] }

Additionally, we overload the function symbol “•” with a function that takes
sets of sequences as arguments:

• : 2Nodes
∗

× 2Nodes
∗

7→ 2Nodes
∗

Here is its definition:

S1 • S2 ≡ ∪{d1 • d2 | d1 ∈ S1, d2 ∈ S2}

4.4 Obtaining LP trees

How does Reape obtain word order domains or LP trees from ID trees?
First, every phrasal (non-lexical) ID tree node has an attribute dom, whose

value is an ordered sequence of nodes called the domain of that node:

dom : Nodes 7→ Nodes∗

Additionally, every node bears a boolean attribute unioned. We write:

5Reape calls ID trees syntax trees in his papers.

14

(17) w[∪−] for unioned(w) = −

(18) w[∪+] for unioned(w) = +

The domain dom(w) of a node w is obtained from the contributions ↑w′ of
the daughters w′ ∈ dtrs(w). If w′[∪−], the contribution is [w′], and if w′[∪+],
the contribution is dom(w′):

(19) dom(w) ∈ •{↑w′ | w′ ∈ dtrs(w)}

(20) ↑w′ =

{

[w′] if w′[∪−]
dom(w′) if w′[∪+]

When w′[∪−], we say that the ID tree daughter w′ is inserted into the
domain of its mother w, and that it is merged when w′[∪+]. We assume that
lexical nodes are always [∪−].

4.5 A first example

The unordered ID tree6 in (21) is a first example of how to construct LP trees
from ID trees. We draw ID tree edges dotted to indicate that ID trees are
unordered. The values of the unioned-attributes of the nodes are annotated to
the right of their node labels.

(21) VP1

NP2[∪−]

Det4[∪−]

ein

N5[∪−]

Buch

V3[∪−]

zu lesen

We assume that lexical nodes are always [∪−] in this proposal, hence Det 4,
N5 and V3 are [∪−] in (21). The same goes for (27) below. We specify NP 2 as
[∪−] in (21) and [∪+] in (27) arbitrarily in order to illustrate what LP trees are
licensed by which kind of ID trees.

Now let us try to build the LP tree at node NP2 in ID tree (21). As both
daughters of NP2 are [∪−], they must be inserted into the domain of their
mother:

(22) dom(NP2) ∈ ↑Det4 • ↑N5 = [Det4] • [N5] = {[Det4,N5], [N5,Det4]}

We can exclude the second sequence [N5,Det4] by enforcing a rule of linear
precedence that requires determiners to precede nouns (Det ≺ N) and arrive at:

(23) dom(NP2) = [Det4,N5]

When building the LP tree at VP1, we also have to insert both daughters
into their mother domain (both are [∪−]):

6We label phrasal ID tree nodes with their cat-value and subscript them with distinct
numbers.

15

(24) dom(VP1) ∈ ↑NP2 • ↑V3 = [NP2] • [V3] = {[NP2,V3], [V3,NP2]}

We exclude the second sequence [V3,NP2] by requiring that NPs must pre-
cede Vs (NP ≺ V) and arrive at:

(25) dom(VP1) = [NP2,V3]

These steps license only one ordered LP tree, which has the same structure
as the ID tree from which it was derived. Note that we draw solid LP tree edges
as opposed to dotted ID tree edges to indicate that LP trees are ordered. The
LP tree dt is obtained from the domains of ID tree nodes as shown here:

dom(w) = [w1, . . . , wn] ⇒ dt(w) = w(dt(w1), . . . , dt(wn))

And here is the LP tree corresponding to dom(VP 1) = [NP2,V3]:

(26) VP1

NP2

Det4

ein

N5

Buch

V3

zu lesen

Now consider another ID tree. Here, contrary to (21), NP 2 is [∪+] instead
of [∪−]:

(27) VP1

NP2[∪+]

Det4[∪−]

ein

N5[∪−]

Buch

V3[∪−]

zu lesen

The dom-value at NP2 is the same as above. Now, let us construct the
dom-value at VP1. As NP2 is ([∪+]), it must be merged into the domain of its
mother:

(28) dom(VP1) ∈ ↑NP2 • ↑V3 = dom(NP2) • V3 = [Det4,N5] • [V3] =
{[Det4,N5,V3], [Det4,V3,N5], [V3,Det4,N5]}

(28) licenses the following three ordered LP trees:

(29) VP1

Det4

ein

V3

zu lesen

N5

Buch

16

(30) VP1

Det4

ein

N5

Buch

V3

zu lesen

(31) VP1

V3

zu lesen

Det4

ein

N5

Buch

In a grammar for German, one would want to exclude such LP tree analyses.
In (29) for instance, the V “zu lesen” has slipped in between the Det and the
N. Reape postulates so-called language specific principles like (32) for German,
which requires NPs to be [∪−], to prohibit insertions into NP domains:

(32) NP ⇒ [∪−]

Reape also introduces a more compact notation for LP trees which he calls
labeled bracketed string notation. For instance the LP tree corresponding to
dom(VP1) = [Det4,N5,V3] as shown in (30) is shown in (33) in Reape’s labeled
bracketed string notation:

(33) [[ein]Det [Buch]N [zu lesen]V]VP

4.6 Language specific principles

As already mentioned, the value of unioned is specified by what Reape calls
language specific principles. For German, Reape assumes that only verbal pro-
jections (VPs and Ss) can be [∪+], whereas the non-verbal projections (e.g.
NPs) must always be [∪−]:

(34) w[∪+] = + ⇒ cat(w) ∈ {VP, S}

(34) presumes that only verbal projections can be discontinuous in German.
This premise poses a problem for his analysis of relative clause extraposition
(see section 4.10.2).

A second language specific principle requires nodes which represent extra-
posed constituents7 to be [∪−]:

(35) extraposed(w) = + ⇒ w[∪−]

We show that (35) becomes problematic when confronted with partial VP
extraction (see section 4.10.1).

7We assume a boolean function extraposed that assigns + to nodes representing extraposed
constituents and − to nodes representing non-extraposed constituents here.

17

4.7 Linear precedence

As Reape’s ID trees are unordered, rules of linear precedence (LP) must be
expressed in the ordered LP tree. A LP-rule has the form c1 ≺ c2, for two
categories c1 and c2. A domain D satisfies c1 ≺ c2 iff:

∀w1, w2 ∈ D cat(w1) = c1 ∧ cat(w2) = c2 ⇒ index(w1) < index(w2)

where index is a function that identifies each node with its linear position in the
input sentence.

For the fragment of German that we consider, we assume the following linear
precedence constraints:

(36) NP ≺ V

(37) Det ≺ N

(38) N ≺ RelS

(36) postulates that NPs must precede verbs, (37) that determiners must
precede nouns and (38) that nouns must precede relative sentences that pre-
sumably modify them.

4.8 A thorough example

We now illustrate the intuitions behind word order domains by going through
the example of obtaining the LP tree for sentence (16), repeated below as (39):

(39) (dass)
(that)

ein
a

Buch
book

Maria
Maria

zu lesen
to read

verspricht.
promises.

“(that) Maria promises to read a book.”

We assume as the ID tree for this sentence Figure 10. We annotate the ID
tree nodes with their appropriate unioned-values: All non-verbal projections and
lexical nodes (see section 4.4) are [∪−], only verbal projections can be either
[∪−] or [∪+] (as VP3 in Figure 10).

S1

NP2[∪−]

Maria

VP3[∪±]

NP5[∪−]

Det7[∪−]

ein

N8[∪−]

Buch

V6[∪−]

zu lesen

V4[∪−]

verspricht

Figure 10: ID tree for sentence (39)

First of all, we enumerate the possible dom-values of node NP 5. It has two
lexical daughters: Det7 and N8. As these are [∪−], we arrive at:

18

(40) dom(NP5) ∈ ↑Det7 • ↑N8 = [Det7] • [N8] = {[Det7,N8], [N8,Det7]}

The second sequence [N8,Det7] is excluded by the linear precedence con-
straint Det ≺ N (37). Thus we end up with dom(NP5) = [Det7,N8]. (41) shows
the corresponding LP tree in labeled bracketed string notation:

(41) [[ein]Det [Buch]N]NP

Next, we compute the dom-value of VP3. Its daughters are NP5 and V6.
Both are [∪−], and we arrive at:

(42) dom(VP3) ∈ [NP5] • [V6] = {[NP5,V6], [V6,NP5]}

The second sequence [V6,NP5] is ruled out by the linear precedence con-
straint NP ≺ V (36), thus leaving us with [NP5,V6], which is depicted below
in labeled bracketed string and tree notation:

(43) [[[ein]Det [Buch]N]NP [zu lesen]V]VP

(44) VP3

NP5

Det7

ein

N8

Buch

V6

zu lesen

So far, the above LP subtree is isomorphic to the corresponding ID subtree
from which it has been constructed. This changes at S1, whose daughters are
NP2, VP3 and V4. NPs such as NP2 and lexical nodes as V4 must be inserted,
but VPs such as VP3 can be either inserted or merged. Hence these are the
remaining choices for computing dom(S1):

(45) dom(S1) ∈ [NP2] • [VP3] • [V4]

(46) dom(S1) ∈ [NP2] • dom(VP3) • [V4] = [NP2] • [NP5,V6] • [V4]

In order to obtain a linearization where “Maria” (NP 2) occurs between “ein
Buch” (NP5) and “zu lesen”(V6), we must merge VP3 as in (46). Thus VP3

must be [∪+], and we arrive at:

(47) dom(S1) = [NP5,NP2,V6,V4]

Intuitively, VP3 must be merged rather than inserted because it represents
a discontinuous constituent.

Finally, here is the LP tree at S1, which is isomorphic to the flat tree given
in Figure 9 (and repeated below in Figure 11):

(48) [[[ein]Det [Buch]N]NP [Maria]NP [zu lesen]V [verspricht]V]S

19

S1

NP2

Det7

ein

N8

Buch

NP2

Maria

V6

zu lesen

V4

verspricht

Figure 11: LP tree for sentence (39)

4.9 VP extraposition

In this section, we explain how Reape’s proposal accounts for VP extraposition,
as in sentence (49) below:

(49) (dass)
(that)

Maria
Maria

verspricht,
promises,

ein
a

Buch
book

zu lesen.
to read.

“(that) Maria promises to read a book.”

The ID tree (Figure 12) for (49) is the same as in the example above, except
for the unioned-value of VP 3. VP3 represents an extraposed constituent, and
by Reape’s language specific principle (35), it is therefore [∪−].

S1

NP2[∪−]

Maria

VP3[∪−]

NP5[∪−]

Det7[∪−]

ein

N8[∪−]

Buch

V6[∪−]

zu lesen

V4[∪−]

verspricht

Figure 12: ID tree for sentence (49)

The domains of the nodes NP5 and VP3 are the same as above:

(50) dom(NP5) = [Det7,N8]

(51) dom(VP3) = [NP5,V6]

And VP3 must be inserted into the domain of its mother because it is [∪−],
as are the two other daughters of S1, NP2 and V4:

(52) dom(S1) ∈ [NP2] • [VP3] • [V4]

The one sequence generated by this equation that is the linearization of (49)
is [NP2,V4,VP3]. Its corresponding LP tree is shown below in labeled bracketed
string and tree notation (Figure 13):

20

(53) [[Maria]NP [verspricht]V [[[ein]Det [Buch]N]NP [zu lesen]V]VP]S

S1

NP2

Maria

V4

verspricht

VP3

NP5

Det7

ein

N8

Buch

V6

zu lesen

Figure 13: LP tree for sentence (49)

4.10 Problems with Reape’s analysis

We show in this section that Reape’s theory of word order domains as presented
in the preceding sections cannot account for phenomena such as partial VP
extraposition and relative clause extraposition. We argue that Reape’s unioned-
distinction is too crude to capture all the subtleties of word order variation
in German, which is why we attempt to formulate a refined distinction in our
notion of word order domains (see section 5).

4.10.1 Partial VP extraposition

The first problem with Reape’s analysis concerns partial VP extraposition. The
outstanding feature of partial VP extraposition is that some arguments of the
extraposed verb are extraposed and some remain in their canonical positions.
An example is shown below:

(54) (dass)
(that)

Maria
Maria

ein
a

Buch
book

verspricht,
promises

zu lesen.
to read.

“(that) Maria promises to read a book.”

Reape’s theory cannot generate an analysis for this sentence, i.e. his analysis
predicts (54) is unacceptable. Why?

The ID tree for this sentence is again the same as in the example above
(Figure 12). The problem in analysing (54) comes up when we construct the
dom-value of S1. As extraposed VPs are [∪−] by Reape’s language specific
principle (35), here is the dom-value we get at S1:

(55) dom(S1) ∈ [NP2] • [VP3] • [V4] =
{[NP2,V4,VP3], [NP2,VP3,V4], [VP3,NP2,V4]}

But none of these sequences generates the linearization of (54). We would
need a sequence such as:

(56) [NP2,NP5,V4,V6]

21

To get (56), we would have to merge VP 3 into the domain of S1. That
is, the language specific principle (35) requiring extraposed constituents to be
[∪−] would have to be refined in order to distinguish between fully and partially
extraposed VPs.

4.10.2 Relative clause extraposition

Another problem with Reape’s language specific principles comes up when we
analyse sentences exhibiting relative clause extraposition:

(57) (dass)
(that)

Maria
Maria

einen
a

Mann
man

liebt,
loves,

der
who

schläft.
sleeps.

“Maria loves a man who sleeps.”

Figure 14 shows the ID tree that we assume for sentence (57).

S1

NP2[∪−]

Maria

VP3[∪±]

NP4[∪−]

Det6[∪−]

einen

N7[∪−]

Mann

RelS 8[∪±]

NP9[∪−]

der

VP10[∪−]

schläft

V5[∪−]

liebt

Figure 14: ID tree for sentence (57)

(58) and (59) show the respective dom-values for NP 4, depending on whether
we insert or merge RelS 8 into the domain of NP4.

(58) dom(NP4) ∈ [Det6] • [N7] • [RelS 8] = [Det6,N7,RelS 8]

(59) dom(NP4) ∈ [Det6] • [N7] • dom(RelS 8) = [Det6] • [N7] • [NP9,VP10] =
{[Det6,N7,NP9,VP10], [Det6,NP9,N7,VP10]}

Reape’s approach predicts that (57) is unacceptable because regardless of
whether we choose (58) or (59), the language specific principles require that
NP4 must be inserted :

(60) dom(VP3) ∈ [NP4] • [V5] = [NP4,V5]

But this sequence does not produce the linearization of (57). What we
would want Reape’s theory to generate is a sequence where “liebt” (V5) lands
in between “einen Mann” (NP4) and “der schläft” (RelS 8).

22

5 A new formulation of word order domains

As already mentioned in section 2, there is as yet no theory of linear precedence
worked into Duchier’s (1999) axiomatization of dependency parsing. We think
that Reape’s (e.g. Reape 1994) notion of word order domains can be incorpo-
rated into Duchier’s axiomatization to yield such a theory of linear precedence.

However, as Reape’s approach presumes an underlying phrase structure
grammar framework, we must adapt Reape’s notion of word order domains
for dependency grammar. In doing so, we refine Reape’s approach to account
for phenomena like partial VP extraposition and relative clause extraposition,
both of which Reape’s theory does not treat properly (see section 4.10). This
section gives a first sketch of our theory of linear precedence, which we call the
LP framework.

5.1 ID and LP trees

Like Reape, we consider two analysis trees:

• An unordered tree for describing the immediate dominance part of the
grammar. We call it ID tree.

• A partially ordered tree for describing the linear precedence part of the
grammar. We call it LP tree.

ID trees are dependency trees as described in section 2. The edges of these
trees are labeled by role types.

LP trees are also labeled trees, but contrary to ID trees, the set of labels
of LP trees is totally ordered. LP trees are partially ordered, since equally
labeled siblings are not ordered with respect to each other. This partial ordering
characterizes the licensed linearizations of a sentence.

We distinguish two kinds of nodes in LP trees, viz. leaf nodes and non-leaf
nodes. We call the former ID nodes and the latter LP nodes and consider a
bijection from ID nodes to LP nodes. The set of ID nodes in the LP tree is
precisely the set of nodes of the ID tree.

5.2 The intuition

Here is a first example of our notions of ID trees and LP trees. Consider the
subordinate sentences (61) and (62) below:

(61) (dass)
(that)

Hans
Hans

Maria
Maria

liebt.
loves.

“(that) Hans loves Maria.”

(62) (dass)
(that)

Maria
Maria

Hans
Hans

liebt.
loves.

“(that) Hans loves Maria.”

Which ID and LP trees analyses does our theory produce for these sentences?
First of all, since ID trees are unordered, our theory postulates only one ID tree
for both sentences, which is depicted in Figure 15. We draw ID tree edges dotted
to indicate that they are unordered trees.

23

liebt

Hans Maria

subj obj

Figure 15: ID tree for (61) and (62)

We also get only one LP tree for both (61) and (62), depicted in Figure 16.
Note that we draw LP tree edges squiggly, indicating that they are partially
ordered trees.

liebt

Hans Maria

vhf
mf

nhf

mf

nhf

Figure 16: LP tree for (61) and (62)

For the example, we consider a set F = {mhf, mf, vhf} of labels for LP trees.
We assume the following total order on F :

mhf ≺ mf ≺ vhf

Since two edges emanate from the root node in Figure, both labeled with mf,
the relative order of “Hans” and “Maria” remains unspecified and the tree is
hence not totally but partially ordered. Figure 16 licenses two linearizations,
one where “Hans” precedes “Maria” and one where “Maria” precedes “Hans”.
Both must appear left of “liebt” however, since mf precedes vhf in the total
order on F .

Notice how LP nodes are in bijective correspondence with the ID nodes. We
introduce a new notation for LP trees to make this correspondence clearer. In
the new notation, the subscripts lp and id indicate whether a node is an ID
node or an LP node. Figure 16 in the new notation is depicted in Figure 17.

liebtlp

Hanslp Marialp liebtid

Hansid Mariaid

vhf
mf

nhf

mf

nhf

Figure 17: LP tree for (61) and (62), new notation

24

5.3 Tree structures

We now turn to making the above intuitions more precise. We begin with
formalizing ID and LP tree structures. An ID tree Tid is defined as:

Tid = 〈(Vid, Eid), entry〉

as in section 2, where Vid is the set of ID nodes. We write w to denote ID nodes.
The set of edges of the ID tree, labeled with role types ρ ∈ Roles, is defined as:

Eid ⊆ Vid × Vid × Roles

We write w
ρ
→ w′ for 〈w, w′, ρ〉 ∈ Eid. entry is a function assigning a lexical

entry to each node.
For the LP tree, we assume a set of nodes Vlp, called LP nodes, disjoint from

Vid, and write µ to denote LP nodes. A bijection lp : Vid 7→ Vlp maps ID nodes
to LP nodes. The inverse function lp−1 is id : Vlp 7→ Vid.

We pose Vid/lp = Vid ∪ Vlp and define the LP-tree as

Tlp = (Vid/lp, Elp)

where LP edges ∈ Elp are labeled by field types from the set of field types F .
F is the disjoint union H] D of the set H of head field types and the set D of
daughter field types.

The set Elp of LP edges is defined as:

Elp ⊆ (Vlp × Vid ×H) ∪ (Vlp × Vlp ×D)

We write µ
h
 w for an edge from the set Vlp ×Vid ×H and µ

d
 µ′ for an edge

from Vlp ×Vlp ×D. The set of all edges emanating from an LP node forms the
node’s field structure.

We call a mother in the ID tree ID mother and a mother in the LP tree LP
mother. To ensure that lp(w) is the LP mother of w, we stipulate the following
well-formedness constraint:

∀w ∈ Vid µ
h
 w ∈ Elp ⇒ lp(w) = µ

5.4 Licensing conditions

What LP trees should be licensed by our theory? Since ID nodes are in bijection
with LP nodes, the major question is how to connect the LP nodes together. We
address this question by axiomatizing what we call licensing conditions. They
consist of two parts:

1. which nodes to connect

2. with what label to connect them

In order to axiomatize which nodes can be connected, we employ the notions
of transitive heads and barriers, which we explicate in section 5.5.

We use the concepts of landing fields and field valency to axiomatize with
what labels we connect nodes in the LP tree. Landing fields and field valency
are developed in section 5.6.

25

5.5 Transitive heads and barriers

We introduce a notion of landing which applies to ID nodes. When µ is the LP
mother of µ′, we say that id(µ′) lands on id(µ). We call id(µ) the landing site
of id(µ′).

We require the landing site id(µ) of id(µ′) to be a transitive head of id(µ′):

id(µ)
ρ1

→ w1

ρ2

→ . . .
ρn

→ wn
ρ
→ id(µ′)

When a node does not land on its ID mother, we say that it is extracted.
Extraction of nodes corresponds to the merge-case in Reape’s theory, and non-
extraction to insert.

We control extraction of nodes by introducing the notion of barrier nodes
or barriers. If a transitive head id(µ) of id(µ′) is a barrier, id(µ′) cannot
be extracted beyond id(µ). Specifying barriers is a similar notion to Reape’s
language specific principles, which specify nodes of certain categories to be [∪−].
In our theory however, which nodes act as barriers depends on the role ρ filled
by the ID node id(µ′) considered for extraction, not on the ID node’s category.
By employing this notion of barriers, we can distinguish what dependents can
be extracted or not on a per role basis. This also allows us to handle cases that
were problematic for Reape, e.g. relative clause extraposition (see section 5.11
below).

When we take the concepts of transitive heads and barriers together, an ID
node id(µ′) must land on a transitive head id(µ):

id(µ)
ρ1

→ w1

ρ2

→ . . .
ρn

→ wn
ρ
→ id(µ′)

and none of wi (1 ≤ i ≤ n) are barriers for role ρ. We can express this as a
constraint, but refrain from presenting it in the proposal to keep things shorter.

As an illustration of this notion of barriers consider the following. We want
to ensure that determiners are not extracted but land in the field structure of
their ID mother (which presumably is a noun). Therefore, we posit that nouns
are barriers for words filling the det-role. Nouns are barriers for adjectives (adj),
too, but they are not barriers for relative clauses (rels) since the latter can
optionally be extraposed.

5.6 Landing fields and field valency

In addition to the notions of transitive head and barriers, we introduce the
concepts of landing fields and field valency. Roughly, landing fields specify which
fields are permitted for an ID node to land into, and field valency specifies which
fields are available to land into.

Landing fields depend on the role ρ filled by the landing ID node. We capture
this notion by introducing the function landingfields:

landingfields : Roles 7→ 2D

Here is its definition:

w
ρ
→ w′ ∈ Eid ⇒ ∀µ

d
 lp(w′) ∈ Elp ⇒ d ∈ landingfields(ρ)

In addition, we use the concept of field valency to specify what fields are
available to land into. Field valency depends on the category of the LP mother

26

µ of another LP node µ′. We consider the function fieldvalency to capture this
notion:

fieldvalency : Vlp 7→ 2F

An LP edge µ
f
 µ′ is licensed if f is in the field valency of µ:

µ
f
 µ′ ∈ Elp ⇒ f ∈ fieldvalency(µ)

We introduce an auxiliary function licensedfields as a mapping Cats 7→ 2F from
categories to sets of fields, and use this function in the definition of fieldvalency

below:
fieldvalency(µ) = licensedfields(cat(id(µ)))

5.7 An example grammar

In this section, we specify an concrete instance of our theory of word order for a
fragment of German. First, we specify the set H = {mhf, nhf, vhf} of head field
types. Table 1 illustrates what the names of the head field types mean:

head field type meaning

mhf miscellaneous head field
nhf noun head field
vhf verb head field

Table 1: Head field types

Second, we specify the set D = {vf, detf, adjf, mf, relf, vcf, nf} of daughter
field types. Table 2 illustrates what the names of the daughter field types mean.

daughter field type meaning

vf Vorfeld
detf determiner field
adjf adjective field
mf Mittelfeld
relf relative clause field
vcf verb cluster field
nf Nachfeld

Table 2: Daughter field types

The set F of field types F = H]D is totally ordered:

vf ≺ chf ≺ detf ≺ adjf ≺ mhf ≺ nhf ≺ mf ≺ relf ≺ vcf ≺ vhf ≺ nf

Figure 3 defines the landingfields-function and Figure 4 the licensedfields-
function.

In addition, we stipulate that if an infinite verb (category vzu) is in canonical
position, i.e. lands in a vcf-field, then its field valency contains only headfields:

(63) µ
vcf
 µ′ ⇒ fieldvalency(µ′) ⊆ H

27

ρ ∈ Roles landingfields(ρ)

det {detf}
adj {adjf}
subj, obj, dative {vf, mf}
vp zu {vf, vcf, nf}
rels {relf, nf}

Table 3: landingfields definition

c ∈ Cats licensedfields(c)

det {mhf}
adj {mhf}
n {detf, adjf, nhf, relf}
vzu {mf, vcf, vhf, nf}
vfin {vf, chf, mf, vcf, vhf, nf}

Table 4: licensedfields definition

We call constraint (63) vcf-constraint. It ensures that our theory does not
generate LP trees like those shown in Figure 18. Figure 18 would license the
unacceptable linearization “(dass) Maria zu versprechen ein Buch zu lesen ver-
sucht.”. Please notice that constraints like the vcf-constraint will be worked out
more thoroughly in the diploma thesis itself.

versuchtlp

Marialp zu versprechenlp versuchtid

Mariaid zu versprechenid zu lesenlp

Buchlp zu lesenid

einlp Buchid

einid

vhf
mf

nhf

vcf

vhf
nf

vhf
mf

nhf
detf

mhf

Figure 18: LP tree excluded by the vcf-constraint (63)

28

5.8 Scrambling

Now we turn to testing our theory on several phenomena of the German lan-
guage, starting with scrambling :

(64) (dass)
(that)

Maria
Maria

ein
a

Buch
book

zu lesen
to read

verspricht.
promises.

“(that) Maria promises to read a book.”

(65) (dass)
(that)

ein
a

Buch
book

Maria
Maria

zu lesen
to read

verspricht.
promises.

“(that) Maria promises to read a book.”

Figure 19 depicts the ID tree we assume for both (64) and (65).

verspricht

Maria zu lesen

Buch

ein

subj vp zu

obj

ein

Figure 19: ID tree for (64) and (65)

Now to the corresponding LP tree analysis, given in Figure 20. As both
nouns “Maria” and “Buch” land in the Mittelfeld mf, Figure 20 licenses both
linearizations (64) and (65). Notice that Figure 20 is not the only LP tree that
is licensed for the ID tree in Figure 19. In sections 5.9 and 5.10 we elaborate on
the other two.

versprichtlp

Marialp Buchlp zu lesenlp versprichtid

Mariaid einlp Buchid zu lesenid

einid

vhf

nhf

mf
mf

nhf
detf

mhf

vcf

vhf

Figure 20: LP tree for (64) and (65)

5.9 VP extraposition

Now we turn to VP extraposition. The sentence of concern is (66):

29

(66) (dass)
(that)

Maria
Maria

verspricht,
promises,

ein
a

Buch
book

zu lesen.
to read.

“(that) Maria promises to read a book.”

Figure 21 is another LP tree that is licensed for the same ID tree as in Figure
19 above. Figure 21 correctly produces (66) as the only licensed linearization.

versprichtlp

Marialp versprichtid zu lesenlp

Mariaid Buchlp zu lesenid

einlp Buchid

einid

vhf
mf

nhf

nf

vhf
mf

nhf
detf

mhf

Figure 21: LP tree for (66)

5.10 Partial VP extraposition

Contrary to Reape’s, our theory can also produce an analysis that yields the
linearization (67):

(67) (dass)
(that)

Maria
Maria

ein
a

Buch
book

verspricht,
promises,

zu lesen.
to read.

“(that) Maria promises to read a book.”

Figure 22 is an LP tree that produces this linearization8. It is licensed for
the ID tree given in Figure 19.

versprichtlp

Marialp Buchlp versprichtid zu lesenlp

Mariaid einlp Buchid zu lesenid

einid

vhf
mf

nhf

mf

nhf
detf

mhf

nf

vhf

Figure 22: LP tree for (67)

8Observe that Figure 22 also licenses another (acceptable) linearization, viz. “(dass) ein
Buch Maria verspricht zu lesen.”.

30

5.11 Relative clause extraposition

Relative clause extraposition is one of the phenomena for which Reape’s ap-
proach does not correctly account. Reape doesn’t allow NPs to be discontinu-
ous (i.e. [∪−]) by one of his language specific principles. But that requirement
prevents anything from slipping in between the noun and its modifying rela-
tive clause in an NP. In (68) for instance, the verb “liebt” slips in between
“einen Mann” and “der schläft” in the NP “einen Mann, der schläft” to yield
an acceptable German sentence. The non-extraposed version of (68) is given in
(69).

(68) (dass)
(that)

Maria
Maria

einen
a

Mann
man

liebt,
loves,

der
who

schläft.
sleeps.

“Maria loves a man who sleeps.”

(69) (dass)
(that)

Maria
Maria

einen
a

Mann,
man,

der
who

schläft,
sleeps,

liebt.
loves.

“Maria loves a man who sleeps.”

Contrary to Reape’s theory, our theory can not only produce the lineariza-
tion (69) but also the one in (68). Figure 23 depicts the ID tree analysis for
(68) and (69).

liebt

Maria Mann

einen schlaeft

der

subj obj

det rels

subj

Figure 23: ID tree for (68) and (69)

Relative clauses can either be extraposed or not. In other words, a relative
clause can either land in the Nachfeld of a verb (field type nf) or in the relative
clause field of a noun (field type relf) (see Table 3 above). Field valency ensures
that relf-field types can only appear on nouns, and nf-field types on verbs (Table
4). Additionally, nouns are a barrier for determiners (det-role) but not for
relative clauses (rels-role). We further prevent the extraction of dependents of
relative clause’s finite verb by stipulating that finite verbs are barriers.

We arrive at two legal LP trees9 for the extraposed and non-extraposed case,
depicted in Figure 24 and Figure 25 respectively.

9Notice that these trees actually license two linearizations each, one where “Maria” precedes
“Mann” and one where “Mann” precedes “Maria”.

31

liebtlp

Marialp Mannlp liebtid schläftlp

Mariaid einenlp Mannid derlp schlaeftid

einenid derid

vhf
mf

nhf

mf

nhf
detf

mhf

nf

vhf
mf

mhf

Figure 24: LP tree for (68)

liebtlp

Marialp Mannlp liebtid

Mariaid einenlp Mannid schläftlp

einenid derlp schlaeftid

derid

vhf
mf

nhf

mf

nhf
detf

mhf

relf

vhf
mf

mhf

Figure 25: LP tree for (69)

A Goals

1. Development of a grammar formalism for Duchier’s (1999) dependency
parser, without constraining word order. Duchier’s dependency parser
and the grammar formalism form what we call the ID framework. We
believe that this part is the easier one, since we know already how to do
it.

• Language-independent part

(a) Specification of a typed lexicon (see sections 3.1 and 3.2).

(b) Specification of a language for expressing role constraints (see
section 3.3).

(c) Implementation of a parser generator for grammars written in
the grammar formalism using the Gump parser generator.

• Language-dependent part

(a) Example grammar for German. Unconstrained word order makes
for a good coverage but also for overgeneration.

32

(b) Development of a language to add language-dependent cons-
traints as modules to our dependency grammars.

2. Extension of Duchier’s (1999) proposal with a theory of word order do-
mains and fields, called the LP framework, to constrain linear precedence.

and will probably take longer to work out.

• Language-independent part

(a) Constraint-based axiomatization of our notion of word order do-
mains and fields (for a first sketch, see section 5).

(b) Implementation of our notion of word order domains and fields
within Duchier’s dependency parser.

• Language-dependent part

(a) Example grammar for German (see also section 5). Coverage to
include several non-trivial phenomena such as

i. scrambling

ii. partial verb phrase topicalisation and extraposition

iii. relative clause extraposition

3. Options

(a) Integration of CLLS semantics into the dependency parser.

(b) Implementation of a graphical user interface for the ID framework.

(c) Development of a notation for declaratively formulating constraints
on word order.

References

Duchier, D. (1999), Axiomatizing dependency parsing using set constraints, in
‘Sixth Meeting on Mathematics of Language’, Orlando/FL.

Gazdar, G., Klein, E., Pullum, G. & Sag, I. (1985), Generalized Phrase Structure
Grammar, B. Blackwell, Oxford/UK.

Kathol, A. (1995), Linearization-Based German Syntax, PhD thesis, Ohio State
University.

Müller, S. (1999), Deutsche Syntax deklarativ. Head-Driven Phrase Structure
Grammar für das Deutsche, number 394 in ‘Linguistische Arbeiten’, Max
Niemeyer Verlag, Tübingen.

Netter, K. (1991), Clause union phenomena and complex predicates in German,
Technical Report R1.1.B (Part 1), DYANA.

Reape, M. (1994), Domain union and word order variation in german, in J. Ner-
bonne, K. Netter & C. Pollard, eds, ‘German in Head-Driven Phrase Struc-
ture Grammar’, CSLI, Stanford, CA, pp. 151–197.

Tesnière, L. (1959), Eléments de Syntaxe Structurale, Klincksiek, Paris/FRA.

Uszkoreit, H. (1987), Word Order and Constituent Structure in German, CSLI,
Stanford/CA.

33

