
Configuration Of Labeled Trees
Under Lexicalized Constraints And Principles

Denys Duchier
Programming Systems Lab, Universität des Saarlandes, Saarbrücken,
Email: duchier@ps.uni-sb.de

ABSTRACT: Trees with labeled edges have widespread applicability, for example for the representation
of dependency syntax trees. Given a fixed number of nodes and constraints on how edges may be drawn
between them, the task of finding solution trees is known as a configuration problem. In this paper, we
formalize the configuration problem of labeled trees and argue that it can be regarded as a constraint
satisfaction problem which can be solved directly and efficiently by constraint propagation. In particular,
we derive and prove correct a formulation of dependency parsing as a constraint satisfaction problem.

Our approach, based on constraints on finite sets and a new family of ‘selection’ constraints, is especially
well-suited for the compact representation and efficient processing of ambiguity. We address various issues
of interest to the computational linguist such as lexical ambiguity, structural ambiguity, valency constraints,
grammatical principles, and linear precedence. Finally we turn to the challenge of efficient processing and
characterize the services expected of a constraint programming system: we define a formal constraint
language and specify its operational semantics with inference rules of propagation and distribution.

This framework generalizes our presentation of immediate syntactic dependence for dependency parsing
[4] and extends naturally to our corresponding treatment of linear precedence [6] based on a notion of
topological rather than syntactic dependencies.

KEYWORDS: labeled trees, configuration, constraint satisfaction, constraint propagation, set constraints,

parsing, dependency grammar

L&C. Vol. 0 – No. 0, 0000, pp. 1 to 30. c© Hermes Science Publishing LTD

2 Language and Computation, Vol. 0 – No. 0, 0000

1 Introduction
This article presents a formalization of finite trees with labeled edges: well-formedness
is characterized by a small number of equations and trees correspond precisely to the
solutions of these equations. The advantage of our approach is that all our equations
can be interpreted as constraints and can be solved directly using constraint program-
ming technology. The constraint-based approach is especially well-suited for the com-
pact representation and efficient processing of ambiguity, and constraint propagation
is very effective in pruning the search space.

We begin with a characterization of the legal trees which can be assembled from a
finite set V of nodes and a finite set L of edge labels. Arranging the nodes V into a
tree requires choosing, from the set of all possible labeled edges, a subset such that
the resulting graph is a tree. This task may be regarded as a configuration problem and
can be formulated as constraint satisfaction problem well-suited to a constraint-based
approach. We then entertain various refinements, especially relevant to linguistics,
where admissibility is further restricted either by general principles or through lexi-
calized constraints. Finally, we address the issue of efficient processing: it is achieved
by effective model elimination through constraint propagation. For this reason, we
give precise operational semantics to all our constraints in the form of inference rules.
The search for solutions of a constraint satisfaction problem (CSP) is defined formally
as the derivation of consistent saturations under these inference rules.

The objects described by modern linguistic theories such as HPSG [21, 22] or LFG
[15] are typed features structures (TFS) and the theories themselves consist primarily
in the formulation of general structural principles of well-formedness that determine
which of these objects are licensed. These theories are declarative and constraint-
based and remain uncommitted to any particular processing method. While TFS are
appealing and easily integrated in unification-based computational frameworks, they
result in grammatical formalisms which are hard to process efficiently. The process-
ing challenge is further exacerbated when attempting to account for languages, such
as German, where free word order and discontinuous constituents violate the assump-
tions of linearity and adjacency underlying many parsing techniques.

In [4], we described an alternative approach based on Dependency Grammar (DG).
An advantage of DG is that it allows syntax trees with crossing branches, and thus
does not fall prey to the difficulties we just mentioned plaguing grammatical for-
malisms that have traditionally assumed and required projective analyses. We showed
how parsing could be formulated succinctly as a constraint satisfaction problem (CSP)
solvable efficiently by constraint programming. One novelty of our approach was the
central importance given to sets and constraints on set variables.

Our purpose in the present article is twofold. Firstly, we abstract the approach of
[4] away from the details specific to dependency grammar. We tackle the more gen-
eral problem of configuring trees with labeled edges and demonstrate how it can be
formulated as a CSP. In this manner, our techniques gain wider scope, for example
extending naturally to the treatment of linear precedence described in [6]. Secondly,

Configuration Of Labeled Trees Under Lexicalized Constraints And Principles 3

we give a formal account of constraint programming sufficient to solve the aforemen-
tioned CSPs: we define an abstract constraint language, completely specify its oper-
ational semantics by means of inference rules for propagation and distribution, and
prove that solutions precisely correspond to the consistent saturations. It is our hope
that, by providing formally precise blueprints of the constraint propagation mecha-
nisms required, we may both promote an understanding and facilitate the adoption
of our constraints in other systems, not necessarily based, as ours, on the concurrent
constraint programming language Oz [19].

We begin the article, in Section 2, with an example of dependency analysis for
German taken from [4]: it provides a concrete illustration that helps understand the
abstractions which follow. Section 3 lays down the foundation in the form of a for-
malization of labeled trees. To a great extent, the conciseness of our formulation and
the effectiveness of our treatment of ambiguity rely on ‘selection constraints’: first
introduced in [4], they are presented intuitively in Section 4 and further extended to
an entire family of aggregative selection constraints.

We then consider various refinements of interest to the computational linguist: in
Section 5 we tackle the problem of lexical ambiguity; in Section 6 we further extend it
to the treatment of lexicalized valency constraints; in Section 7 we describe how fami-
lies of well-formedness principles can be expressed and integrated into our framework
to further restrict admissibility of edges, e.g. for reasons of ‘agreement’; in Section 8
we introduce ‘disjunctive attributes’ for a treatment of ambiguity that helps improve
lexical economy; then in Section 9 we propose an extension for partially ordered trees
which permits the characterization of projective analyses and the formulation of linear
precedence constraints.

Finally in Section 11 we address the issue of efficient processing and describe what
we expect from the constraint programming services. We do not commit to any partic-
ular implementation technique, rather we describe constraint programming at a very
abstract level as a formal system with deterministic inference rules of ‘propagation’
and non-deterministic rules of ‘distribution’. In this framework, the search for solu-
tions is precisely the derivation of consistent inferential saturations. We believe that
we offer the right level of abstraction to permit instantiation to a variety of constraint
programming and constraint logic programming systems, and the right level of detail
for the practical implementation of our constraints should they not already exist in the
target system.

2 Informal Introduction to Dependency Parsing
In [4] we described a constraint-based approach for constructing dependency tree an-
alyses of German sentences: it serves as the starting point for the more general and
abstract formulation developed in the remainder of the present article. In this section,
we begin with an example taken from that earlier work to provide the reader with a
concrete illustration of what we propose to generalize.

4 Language and Computation, Vol. 0 – No. 0, 0000

3

5 6

4 8

2 7

1

das Buch hat mir Peter versprochen zu lesen

de
t

subject
vpast

dat
ive

zuvinf

zuobject

2









str : "Buch"

cat : n

agr : 〈neut sing 3 acc〉
val : {det}









3









str : "hat"

cat : v fin

agr : 〈neut sing 3 nom〉
val : {subject, vpast}









FIG. 1. Example of Dependency Tree

Consider the German sentence “das Buch hat mir Peter versprochen zu lesen”.1

Figure 1 shows a corresponding dependency analysis and illustrates the fact that the
relative freeness of word order often requires analyses with crossing branches. Char-
acteristic of the dependency approach, there is exactly one node per word, displayed
here as a box labeled with the linear position of the word in the sentence, and edges
are labeled with syntactic roles such as ‘subject’ or ‘zuvinf’. Furthermore each
node is assigned a lexical entry from a lexicon: Figure 1 displays the lexical entries
assigned by the parser to ‘Buch’ and ‘hat’ identified respectively by 2 and 3 . Each
entry stipulates phonology, category, agreement and valency. In Section 6, we propose
an alternative approach to lexicalized valency constraints.

Dependency Grammar. We now briefly review the formal framework for depen-
dency grammar proposed in [4]. For simplicity, we omit the treatment of modifiers2

and of linear precedence.3 A dependency grammar is given by:

(Strs,Cats,Agrs,Roles, Lexicon,Rules)

where Strs is a finite set of strings, such as "Buch" or "hat", notating the fully in-
flected forms of words, Cats is a finite set of categories such as n for noun, d for

1Stripped of intonation and of modifiers, for the sake of simplicity, the example does not sound convincing to the German ear, but the
following sentence due to Joachim Niehren exhibits the same structure and sounds perfectly natural: “Genau diese Flasche Wein hat mir mein
Kommissionnär versprochen auf der Auktion zu ersteigern”.

2We shall see in Section 6 that modifiers do not actually require separate treatment in our approach.
3We consider it again in Section 9 and more extensively in [6].

Configuration Of Labeled Trees Under Lexicalized Constraints And Principles 5

determiner, or v fin for finite verb. Assuming the following sets for gender, number,
person and case:

Gender = {masc, fem, neut} Number = {sing, plur}

Person = {1, 2, 3} Case = {nom, acc, dat, gen}

we pose Agrs = Gender×Number×Person×Case for the set of agreement tuples such
as 〈masc sing 3 nom〉. Roles is a finite set of grammatical functions such as subject
or zuvinf for an infinitive with ‘zu’ which serve as edge labels in the dependency
tree. A lexical entry is an attribute value matrix with signature:









str : Strs
cat : Cats
agr : Agrs
val : 2Roles









and specifies phonology, category, agreement and valency. The Lexicon is a finite set
of lexical entries. We use functional notation and write cat(w) for the category of the
lexical entry assigned to node w. Finally, Rules is a family (Γρ) of binary predicates,
indexed by grammatical functions ρ ∈ Roles, expressing local grammatical principles:
for an edge labeled ρ from mother w1 to daughter w2 to be admissible, the condition
Γρ(w1, w2) must be satisfied; for example, for w2 to serve as the determiner of noun
w1 it must (1) be a determiner, (2) agree with the noun, i.e.:

Γdet(w1, w2) ≡ cat(w2) = d ∧ agr(w1) = agr(w2)

Dependency Trees. We assume an infinite set Nodes of nodes and define a labeled
directed edge as an element of Nodes×Nodes×Roles. A dependency tree (V,E, entry)
consists of a finite set V ⊆ Nodes of nodes, a finite set E ⊆ V × V × Roles of
labeled edges between these nodes, and a function entry : V → Lexicon assigning a
lexical entry to each node. A dependency tree is admissible iff (1) it forms a tree in
the classical graph theoretical sense, (2) every node has precisely the outgoing edges
required by its valency, (3) for every edge (w1, w2, ρ) ∈ E, the condition Γρ(w1, w2)
is satisfied.

Of course, the lexicon typically contains several lexical entries for each word which
results in considerable lexical ambiguity. Our approach is very effective in handling
both lexical and structural ambiguity and achieves this largely through the use of ‘se-
lection constraints’ (Section 4). Figure 2 illustrates the processing achieved for our
example by the parser of [4]. On the left is displayed the preferred reading, while on
the right we see the complete search tree where a circle represents a choice point, a
diamond leaf a solution, and a square leaf a failure. What is interesting is that there are
no failures: constraint propagation is very effective; we need exactly 1 choice in order
to enumerate the two possible analyses. Why are there 2 analyses? Simply because
both ‘Buch’ and ‘Peter’ can indifferently be assigned either nominative or accusative

6 Language and Computation, Vol. 0 – No. 0, 0000

case, therefore either one can be subject while the other is object. Constraint propa-
gation is sufficient to resolve all other ambiguities, both lexical (what lexical entry to
choose for each word), and structural (what edges to draw between nodes).

FIG. 2. Parser Demo

3 Formalization of Valid Labeled Trees
We begin with a precise characterization of all well-formed trees which can be assem-
bled from a fixed finite set of nodes V and edges with labels drawn from a finite set L.
These trees correspond precisely to the solutions of the constraint satisfaction problem
on set variables articulated below.

Finite Labeled Graphs. We assume given an infinite set V of nodes and a finite set
L of labels. A directed labeled edge is an element of V × V × L. We write G(V ,L)
for the set of finite graphs G = (V,E) formed from a finite set of nodes V ⊆ V and a
finite set of labeled edges E ⊆ V × V ×L. Note that, since we assume E to be a set,
we only consider graphs without duplicate edges. We write G(V,L) for the graphs in
G(V ,L) whose node set is V .

Finite Labeled Trees. A finite graph is a tree if and only if it satisfies the following
“treeness conditions”:

(a) Each node has at most one incoming edge
(b) There is precisely one node with no incoming edge (one root)
(c) There are no cycles

We write T(V,L) for the subset of G(V,L) satisfying conditions (a), (b) and (c). In
the following, we are going to formulate a constraint ΦID(V,L) which a finite graph
G = (V,E) ∈ G(V,L) must satisfy in order to be in T(V,L).

We write w−−→` w′ for a labeled edge (w,w′, `) and w−−→` Gw
′ for w−−→` w′ ∈ E.

We define the successor relation →G= ∪{−−→` G|` ∈ L} and write →+
G and →∗

G for

Configuration Of Labeled Trees Under Lexicalized Constraints And Principles 7

its transitive and reflexive transitive closures. Given a relation R ⊆ V × V , we define
R : V → 2V and the overloading R : 2V → 2V as follows:

R(x) = {y | (x, y) ∈ R} R(S) = ∪{R(x) | x ∈ S}

In this manner, the edges of a graph G induce the following functions:

`G = −−→` G downG = →+
G rootsG = V \→G(V)

daughtersG = →G eqdownG = →∗
G

Given these definitions, we can reformulate the treeness conditions more formally.
Condition (a) states that each node has at most one incoming edge, i.e. that for any
node w′′, there exists at most one ` ∈ L and one w ∈ V , such that w′′ ∈ `G(w); or,
equivalently, that:

∀`, `′ ∈ L ∀w,w′ ∈ V (` 6= `′ ∨ w 6= w′) ⇒ `G(w) ‖ `′G(w′) (3.1)

where ‖ represents disjointness. Condition (b) requires that there be one unique root:

|rootsG| = 1 (3.2)

Finally, condition (c) forbids cycles, i.e. it must never be the case that w →+
G w:

∀w ∈ V w 6∈ downG(w) (3.3)

Our formalization so far assumes that the edges are given. As such, it is appropriate
for deciding whether a graph is a tree. On the other hand, it is poorly suited for parsing
where the edges are unknown and the task is precisely to find possible edges licensed
by the grammar. To overcome this difficulty, instead of using the edges as a starting
point, we are going to use the functions defined above which they induce.

In a tree, these functions satisfy additional properties which we state below. `G(w)
are the `-daughters of w. By definition of →G and condition (a) restated as (3.1), the
daughters of w satisfy the equation:

daughtersG(w) =]{`G(w) | ` ∈ L} (3.4)

where] denotes disjoint union. By definition of rootsG and condition (a), a node is
either a root or is the daughter of precisely one node:

V = rootsG]]{daughtersG(w) | w ∈ V } (3.5)

By definition of transitive closure: →+
G = →G ◦ →∗

G. In other words, the nodes
strictly below w are those equal to or strictly below its daughters:

downG(w) = ∪{eqdownG(w′) | w′ ∈ daughtersG(w)} (3.6)

8 Language and Computation, Vol. 0 – No. 0, 0000

ΦID(V,L) ≡
V = roots]]{daughters(w) | w ∈ V }

∧ |roots| = 1
∧ ∀w ∈ V

eqdown(w) = {w}] down(w)
∧ down(w) = ∪{eqdown(w′) | w′ ∈ daughters(w)}
∧ daughters(w) =]{`(w) | ` ∈ L}

FIG. 3. well-formedness condition of labeled trees

By definition of reflexive transitive closure: →∗
G(w) = {w} ∪→+

G(w). Additionally
the acyclicity condition (c) requires that w does not occur in →+

G(w). Therefore:

eqdownG(w) = {w}] downG(w) (3.7)

These properties lead us to formulate a constraint ΦID(V,L) (see Figure 3) in terms
of variable roots of type 2V and functional variables daughters, down, eqdown and `
(for all ` ∈ L) of type V → 2V . A solution of ΦID(V,L) is an assignment to these
variables such that ΦID(V,L) is satisfied; in other words, posing L = {`1, . . . , `n}
and writing F for the type V → 2V , a solution of ΦID(V,L) is a tuple:

(roots, daughters, down, eqdown, `1, . . . , `n) : 2V × F × F × F × F × · · · × F

that satisfies ΦID(V,L). We write Sols(ΦID(V,L)) for the set of solutions of ΦID(V,L).
Every solution σ of ΦID(V,L) defines a graph [[σ]]ID = (V,E) where:

E = {w−−→` w′ | w ∈ V, ` ∈ L, w′ ∈ `(w)}

Overloading the notation, for each G ∈ G(V,L) we also define:

[[G]]ID = (rootsG, daughtersG, downG, eqdownG, `1G, . . . , `nG)

THEOREM 3.1
T(V,L) is in bijection with the solutions of ΦID(V,L). More precisely a graph G is a
tree iff [[G]]ID satisfies ΦID(V,L):

∀G ∈ G(V,L) G ∈ T(V,L) ≡ [[G]]ID ∈ Sols(ΦID(V,L))

and every solution σ of ΦID(V,L) defines a tree:

∀σ ∈ Sols(ΦID(V,L)) [[σ]]ID ∈ T(V,L)

The first claim follows from properties (3.4–3.7), while for the second one it is straight-
forward to establish σ = [[[[σ]]ID]]ID. ΦID(V,L) can be interpreted as a constraint satis-
faction problem (CSP) and Theorem 3.1 establishes the correspondence between the
solutions of this CSP and the formal objects of interest, namely the trees T(V,L).
Throughout this article, we state similar theorems to validate the constraint-based ap-
proach.

Configuration Of Labeled Trees Under Lexicalized Constraints And Principles 9

4 Set Constraints And Selection Constraints
Equation (3.6) while mathematically elegant poses a processing challenge: when solv-
ing the CSP, (1) we don’t know the elements of daughters(w), (2) we don’t know what
set values eqdown takes at these elements, and yet we must compute their combined
union. In this section, we introduce the constraint-based concepts that will allow us to
achieve it simply and efficiently.

4.1 Set Constraints

Finite domain (FD) constraints have become a reasonably standard tool of the trade
and are routinely used in computational linguistics applications. Set constraints, on
the other hand, have remained largely unexploited even though they are available and
well supported by modern constraint technology [12, 20, 18].

In our work, constraints on finite sets (FS) of integers have emerged as an especially
elegant and computationally effective tool for such linguistics applications as parsing
with a dependency grammar [4, 6] or solving dominance constraints [5, 8], for the
treatment of discourse [7], parsing with tree descriptions [9], and underspecified rep-
resentations of semantics [10].

We will elaborate on constraint programming at greater length in Section 11. For
the moment, we shall simply say that the partial information about a FD variable I
can be represented in the form I ∈ D where D is a set of integers, and the partial
information about a FS variable S can be expressed by a lower bound D1 and an
upper bound D2 in the form D1 ⊆ S ⊆ D2. The role of constraint propagation is
to improve this partial information. When I ∈ {k} we say that I is ‘determined’ and
write I = k. When D ⊆ S ⊆ D, we say that S is ‘determined’ and write S = D.

4.2 Selection Constraints

An essential contribution of [4] was the ‘selection constraint’ which permits the com-
pact representation and effective processing of many forms of selectional ambiguity
such as lexical ambiguity (i.e. the selection of a lexical entry from those available for a
particular word in the lexicon). Consider a variableX which may be equated with one
of n variables (Vi). We can explicitly represent this choice using an integer variable I ,
also called a finite domain (FD) variable, taking values in {1 . . . n} and the selection
constraint below:

X = 〈V1, . . . , Vn〉[I]

where 〈V1, . . . , Vn〉 represents the sequence of variables V1 through Vn and the nota-
tion 〈V1, . . . , Vn〉[I] was chosen for its similarity to the subscripting notation of ‘array
lookup’ in many programming languages, and indicates selection of the Ith element
out of the sequence. Thus the declarative semantics of the above constraint is simply
X = VI .

10 Language and Computation, Vol. 0 – No. 0, 0000

The origins of this powerful idea are to be found in CHIP’s ‘element’ constraint
[2] which related two finite domain variables I and K and a sequence 〈j1, . . . , jn〉 of
integer values:

I = 〈j1, . . . , jn〉[K]

In [4], we extended it in two directions: first we allowed the sequence to consist of
variables rather than constants; second, we supported both selection out of sequences
of finite domain variables:

I = 〈J1, . . . , Jn〉[K]

as well as out of sequences of finite set (FS) variables:

S = 〈S1, . . . , Sn〉[K]

where S, Si are FS variables denoting finite sets of integers.

4.3 Propagation And Constructive Disjunction

One advantage of the selection constraint is that it is able to implement simply and
efficiently a form of constructive disjunction (lifting of information common to all
alternatives not yet ruled out). Here is an example that illustrates the propagation
which may be expected from the selection constraint:

S = 〈S1, S2, S3〉[K] {1, 3} ⊆ S1 ⊆ {1, 2, 3} S2 = {2, 4} {1} ⊆ S3 ⊆ {1, 4}

From the above, constraint propagation infers:

K ∈ {1, 2, 3} S ⊆ {1, 2, 3, 4}

If we further assert 4 6∈ S, then S2 becomes incompatible since it contains 4:

K ∈ {1, 3} {1} ⊆ S ⊆ {1, 2, 3}

Note that 1 was inferred to be a necessary element of S since it is a known element
of both alternatives S1 and S3, one of which must eventually be chosen. If we now
assert 2 ∈ S, then S3 becomes incompatible since it cannot contain 2:

K = 1 S = S1 = {1, 2, 3}

4.4 Dependent Disjunction

The fact that the selection constraints makes the choice explicit through a selector
variable K permits dependent selections. Consider for example:

I = 〈J1, . . . , Jn〉[K] (4.1)
I ′ = 〈J ′

1, . . . , J
′
n〉[K] (4.2)

Configuration Of Labeled Trees Under Lexicalized Constraints And Principles 11

the choice of which Ji to equate with I and which J ′
i to equate with I ′ are mutually

dependent since they must be effected by the same selector K. (4.1) and (4.2) can be
viewed as contexted constraints sharing the same context variable K, or equivalently
as realizing the following dependent (or named) disjunctions both labeled with name I
[17, 3, 11, 13]:

(I = J1 ∨ . . . ∨ I = Jn)I

(I ′ = J ′
1 ∨ . . . ∨ I ′ = J ′

n)I

Notational variations on dependent disjunctions have been used to concisely express
covariant assignment of values to different features in feature structures. The selec-
tion constraint provides the same notational convenience and declarative semantics,
but additionally enjoys a computational reading with all the benefits that accrue from
state-of-the-art constraint technology.

4.5 Selection Union Constraint

A novel contribution of the present article is the ‘selection union’ constraint:

S = ∪〈S1, . . . , Sn〉[S
′]

where the selector S ′ is now a set. Its declarative semantics are given by the following
equation:

S = ∪{Sk | k ∈ S′}

Thus we empower an essential mathematical instrument with a computational reading
based on very effective constraint propagation. Posing V = {w1, . . . , wn} and iden-
tifying wi with the integer i representing its position in the input sentence,4 equation
(3.6) can now be rewritten:

down(w) = ∪〈eqdown(w1), . . . , eqdown(wn)〉[daughters(w)]

A family of aggregative selection constraints. The selection union constraint selects
a subset specified by S ′ of the elements of sequence 〈S1, . . . , Sn〉 and combines them
using union. Clearly, other modes of combination are possible which opens up a whole
family of aggregative selection constraints. For example:

S = ∩〈S1, . . . , Sn〉[S
′]

S =]〈S1, . . . , Sn〉[S
′]

I = +〈J1, . . . , Jn〉[S
′]

In Section 11 we take the ‘selection union’ and ‘selection intersection’ constraints as
primitives and fully specify their operational semantics by inference rules of propa-
gation. The simpler selection constraints of Section 4.2 are defined in terms of the
selection union constraint.

4This identification of a node with the linear position of the corresponding word in the input sentence will remain in effect for the remainder
of the article.

12 Language and Computation, Vol. 0 – No. 0, 0000

5 Lexical Ambiguity
For the application to dependency parsing, each node is assigned a lexical entry from
a lexicon. A lexical entry supplies a number of attributes in terms of which additional
constraints may be formulated. In this section, we formalize these notions and demon-
strate how the selection constraint elegantly addresses the issue of lexical ambiguity.

A lexicon (E ,A) consists of a finite set E of objects called ‘lexical entries’ and a
finite set A of functions called ‘attributes’, where each α ∈ A is of type α : E → N

or α : E → 2N. For each e ∈ E and α ∈ A, α(e) is the value of attribute α in lexical
entry e. An attribute might specify such things as category, agreement, or valency.

Given a lexicon (E ,A), a graph (V,E) ∈ G(V,L), and an assignment ε : V → E of
lexical entries to nodes, we call (V,E, ε) an attributed graph. We write G(V,L, E ,A)
for the set of attributed graphs and T(V,L, E ,A) for the subset which are trees. For
each α ∈ A with type α : E → T , where T is N or 2N, we introduce the overloaded
function α : V → T called a node attribute and defined by α(w) = α(ε(w)) for all
w ∈ V .

For parsing, the choice of ε is not free: in particular, only a subset of E is applicable
to each word. This we model by means of a restriction function lex : V → 2E . For
example, if w corresponds to the word ‘versprochen’, then lex(w) should be the set of
lexical entries for ‘versprochen’. We say that (V,E, ε) is lex-attributed if:

∀w ∈ V ε(w) ∈ lex(w) (5.1)

and write T(V,L, E ,A, lex) for the set of lex attributed trees (V,E, ε) over (E ,A).
During parsing, ε is not given but must be chosen. The degree of freedom in this
choice (see 5.1) is called lexical ambiguity. In order to support efficient parsing, it
should be possible to constrain a node attribute α(w) while leaving the choice ε(w)
of lexical entry underspecified.

Thus we are confronted with the problem of computing a function at a point which
is only partially known. Supposing lex(w) = {e1, . . . , en}, the idea is to introduce an
FD variable entry(w) ∈ {1, . . . , n} to represent the index of the selected entry and to
obtain α(w) with the following selection constraint:

α(w) = 〈α(e1), . . . , α(en)〉[entry(w)] (5.2)

In this equation, the sequence consists of elements homogeneously of type N or 2N

and thus is in the domain of applicability of the selection constraint. For w ∈ V , we
have one equation (5.2) for each α ∈ A, but they all share the same selector entry(w).
In this fashion, as explained in Section 4.4, all attribute selections for the same node
are forced to be covariant. This is an additional source of effective propagation: if any
constraint affects one selection, it affects them all.

It is this intuition which we now proceed to formalize. Without loss of generality,
we revise the type of lex : V → E∗ to map each node to a sequence rather than a set

Configuration Of Labeled Trees Under Lexicalized Constraints And Principles 13

of lexical entries, and assume that each sequence contains no duplicates. We define:

e = 〈e1, . . . , en〉[k] ≡ 1 ≤ k ≤ n ∧ e = ek

We write e ∈ lex(w) when e occurs in sequence lex(w) and denote by e@lex(w) its
position in this sequence, or more generally the smallest i such that e = lex(w)[i]. An
assignment ε : V → E is lex-restricted iff:

∀w ∈ V ε(w) ∈ lex(w) (5.3)

ε induces functions entryε : V → N and αiε : V → Ti for each αi : E → Ti ∈ A:

entryε(w) = ε(w)@lex(w)

αiε(w) = αi(ε(w))

Given a sequence 〈e1 . . . en〉 ∈ E∗, we define:

〈α | 〈e1 . . . en〉〉 = 〈α(e1) . . . α(en)〉

The functions induced by ε satisfy the following property:

∀w ∈ V, ∀αi ∈ A αiε = 〈αi | lex(w)〉[entryε(w)] (5.4)

Posing A = {α1 : E → T1, . . . , αn : E → Tn} (where Ti is N or 2N), we now
formulate a constraint ΦLEX(V, E ,A, lex) (Figure 4) in terms of functional variables
entry : V → N and αi : V → Ti for αi : E → Ti ∈ A. ΦLEX(V, E ,A, lex)
characterizes all lex-restricted assignments ε : V → E over (E ,A).

ΦLEX(V, E ,A, lex) ≡
∀w ∈ V

∧

α∈A

α(w) = 〈α | lex(w)〉[entry(w)]

FIG. 4. Well-formedness condition for lex-restricted assignments

A solution of ΦLEX(V, E ,A, lex) is a tuple:

(entry, α1, . . . , αn) : (V → N) × (V → T1) × · · · × (V → Tn)

that satisfies ΦLEX(V, E ,A, lex). Every solution σ of ΦLEX(V, E ,A, lex) defines a lex-
restricted assignment [[σ]]LEX:

[[σ]]LEX(w) = lex(w)[entry(w)]

Furthermore, for each lex-restricted assignment ε, we also define:

[[ε]]LEX = (entryε, α1ε, . . . , αnε)

Writing A(V, E ,A, lex) for the set of lex-restricted assignments ε : V → E over
(E ,A), we have:

14 Language and Computation, Vol. 0 – No. 0, 0000

THEOREM 5.1
A(V, E ,A, lex) is in bijection with Sols(ΦLEX(V, E ,A, lex)).

∀σ ∈ Sols(ΦLEX(V, E ,A, lex)) [[σ]]LEX ∈ A(V, E ,A, lex)

∀ε ∈ A(V, E ,A, lex) [[ε]]LEX ∈ Sols(ΦLEX(V, E ,A, lex))

6 Structural Ambiguity and Valency Constraints
In the constraint formulation ΦID(V,L) of Figure 3, for each w ∈ V and ` ∈ L,
`(w) is a set variable. During parsing, this variable is typically partially known. For
example it might be constrained by the following bounds:

{w1, w2} ⊆ `(w) ⊆ {w1, w2, w3}

indicating thatw’s only possible outgoing edges labeled with ` arew−−→` w1,w−−→` w2

and w−−→` w3, that the first two have been accepted, but that the case of the last one
hasn’t been decided yet. Thus, with set variables, we are able to represent an am-
biguous tree structure. All possible edges are simultaneously represented, initially
∅ ⊆ `(w) ⊆ V , and parsing is a process of disambiguation: candidate edges are either
accepted or rejected. When every `(w) is determined, the tree is fully disambiguated.

Disambiguation is to a large extent driven by grammatical constraints for subcate-
gorization embodied in lexicalized valency constraints.

Lexicalized Valency Constraints. When parsing with a dependency grammar [4], we
are not free to draw arbitrary edges between nodes. The outgoing edges of a node
represent the complements and modifiers of the corresponding word. The nature and
number of these edges are restricted by grammatical valencies specified in the lexicon.
We formalize this as follows:

For every ` ∈ L, there is a corresponding attribute |·|` ∈ A with type |·|` : E → 2N.
Thus each lexical entry e stipulates a set |e|` of licensed cardinalities for the `-daughter
set: the number of outgoing edges of w labeled with ` must be one in |w|`:

|`(w)| ∈ |w|` (6.1)

|w|` depends on the choice of lexical entry and, following equation (5.2), is given by
the selection constraint:

|w|` = 〈| · |` | lex(w)〉[entry(w)] (6.2)

In order to specify a required `-argument, a lexical entry e need only fix |e|` = {1}.
For an optional argument: |e|` = {0, 1}. For a modifier which may appear 0 or any
number of times: |e|` = {0, 1, . . . , µ} where µ is some arbitrarily large integer—for
any particular sentence of length n, it is sufficient to choose µ = n − 1 since for
any one word, there are at most n − 1 arguments to be had. For an illegal argument:
|e|` = {0}.

Configuration Of Labeled Trees Under Lexicalized Constraints And Principles 15

We say that an attributed graph G = (V,E, ε) fulfills its valencies iff:

∀| · |` ∈ A, ∀w ∈ V |`G(w)| ∈ |ε(w)|` (6.3)

and formulate a corresponding constraint ΦVAL(V,L, E ,A) in Figure 5.

ΦVAL(V,L, E ,A) ≡ ∀w ∈ V
∧

`∈L

|`(w)| ∈ |w|`

FIG. 5. Well-formedness constraint of valency-fulfilling graphs

Writing TVAL(V,L, E ,A, lex) for the set of lex-attributed trees that fulfill their valen-
cies, we have:

THEOREM 6.1
TVAL(V,L, E ,A, lex) is in bijection with the solutions of:

ΦID(V,L) ∧ ΦLEX(V, E ,A, lex) ∧ ΦVAL(V,L, E ,A)

Partial Functions. In passing, it may be useful to mention a related and generally
useful transformation for the constraint-based treatment of partial functions. A partial
function f : A → B is especially vexing for a constraint-based approach because a
constraint about f is not meaningful everywhere, but only at points where f is defined.
Frequently, the problem can be solved by replacing the partial function f by the total
function f ′ : A → 2B such that f ′(x) = {f(x)} if f is defined at x, and f ′(x) = ∅
otherwise. For example, we might in this fashion conveniently model the notion of
‘mother’: every node has a unique mother except the root which has none.

7 Grammatical Principles Licensing Edges
While valency constraints restrict the number of edges for each grammatical function
` ∈ L, grammatical principles express additional local conditions for the admissibility
of edges. For example, an object complement is required to be an accusative NP. In
[4] (see Section 2) we proposed that a dependency grammar stipulate a family (Γ`)
of binary predicates indexed by edge labels and such that Γ`(w,w

′) characterizes the
grammatical admissibility of an edge w−−→` w′. In this section, we develop the frame-
work for expressing these predicates and formalize the corresponding restrictions.

For our purposes, it suffices to consider the language whose abstract syntax is given
in Figure 6 where x, y are variables ranging over nodes, i denotes an arbitrary integer,
D an arbitrary finite set of integers, α(x) an attribute of node x, and E ‖ E ′ expresses
the disjointness of the sets denoted by E and E ′.

For each ` ∈ L there is a binary predicate Γ` of the form λx, y · C (i.e. a P)
which must be a closed abstraction of our language. We say that an attributed graph

16 Language and Computation, Vol. 0 – No. 0, 0000

E ::= i | D | α(x)

C ::= C ∧ C ′

| E < E′ | E ≤ E′

| E = E′ | E 6= E′

| E ∈ E′ | E 6∈ E′

| E ⊆ E′

| E ‖ E′

P ::= λx, y · C

FIG. 6. Constraint Language For Principles

G = (V,E, ε) satisfies the grammatical principles (Γ`) if for allw,w′ ∈ V and ` ∈ L:

w′ ∈ `(w) ⇒ G |= Γ`(w,w
′) (7.1)

where G |= Γ`(w,w
′) means that G satisfies Γ`(w,w

′) and is defined in the usual
Tarskian way. For example, the grammatical principles validating an object comple-
ment or an adjective edge might be expressed as follows:

Γobject ≡ λx, y · cat(y) ∈ NP ∧ agr(y) ∈ ACC

Γadj ≡ λx, y · cat(y) = a ∧ agr(x) = agr(y)

where NP represents the set of noun phrase categories (e.g. {n, pro}), ACC the set of
all agreements with accusative case, and a the category of adjectives. (7.1) gives rise
to a quadratic number of implicational constraints which are expected to work in both
direction, i.e. when Γ`(w,w

′) becomes inconsistent, w′ 6∈ `(w) should be inferred.
We formulate in Figure 7 the constraint ΦP(V,L, E ,A, (Γ`)) which characterizes

the attributed graphs that satisfy the grammatical principles (Γ`).

ΦP(V,L, E ,A, (Γ`)) ≡ ∀w,w′ ∈ V, ∀` ∈ L w′ ∈ `(w) ⇒ Γ`(w,w
′)

FIG. 7. well-formedness constraint for the satisfaction of grammatical principles

8 Disjunctive Attributes
Often it is convenient to use a set valued attribute α(w) to indicate a disjunction: any
value in α(w) is licensed. We call α a disjunctive attribute. For example, distinct
agreement values are frequently not morphologically distinguishable: while we could

Configuration Of Labeled Trees Under Lexicalized Constraints And Principles 17

nonetheless create many otherwise identical lexical entries that differed only in agree-
ment, in the interest of lexical economy it is convenient to use an attribute agrs(e) to
represent the set of possible agreement values for lexical entry e.

For example, the German article “den” is either masculine singular accusative or
any gender plural dative. However, only one value from this set may be assigned to
the corresponding node. We formalize this notion as follows:

Let Ad ⊆ A be a distinguished subset of so called ‘disjunctive’ attributes. They
must be set-valued, i.e. for each α ∈ Ad, the lexical attribute has type α : E → 2N.
For each α ∈ Ad, there must exist a corresponding node attribute theα : V → N

defined as follows:

theα(w) ∈ α(w) (8.1)

For example, writing agr instead of theagrs, we have:

agr(w) ∈ agrs(w)

which ensures that node w is assigned precisely one agreement value from the set of
agreements licensed by its selected lexical entry. In practice, it is frequently legal for a
parser to leave an attribute theα underspecified. It is sound to so when it can be guar-
anteed that every partial solution that leaves theα underspecified can be consistently
extended to a complete solution that determines theα. The conditions under which
propagation is complete in this sense are outside the scope of this article.

9 Partially Ordered Projective Labeled Trees
The labeled trees considered so far are unordered and therefore cannot naturally ex-
press word order. In this section, we consider an extension to our formalization of
labeled trees which overcomes this limitation.

Unordered labeled trees are adequate for the representation of ‘syntactic’ depen-
dencies and sufficed for the treatment of immediate dependence presented in [4]. For
a corresponding treatment of linear precedence, we proposed in [6] to introduce a
second tree to represent ‘topological’ dependencies.

In the topological tree, both edges and nodes are labeled and the set of labels is
totally ordered. As we shall see, thanks to this total order, it is possible to define the
linearizations licensed by the tree. For concreteness, we present now an example:

dass
that

Maria
Maria

einen
a

Mann
man

wird
will

lieben
love

können
can

5

Figure 8 displays its unordered non-projective syntax tree, while Figure 9 presents
one possible topological tree. In the topological tree, edge labels are intended to
correspond to the notion of fields in the classical topological sentence model [1], e.g.

5that Maria will be able to love a man

18 Language and Computation, Vol. 0 – No. 0, 0000

(dass) Maria einen Mann wird lieben können

subject

de
t

obje
ct

vin
f

vinf

FIG. 8. Syntax tree

(dass) Maria einen Mann wird lieben können

n

d

n
v

v
v

mf

df

m
f

vc

xf

FIG. 9. Topological tree

mf represents the Mittelfeld and xf the extraposition field. Nodes are also labeled: in
Figure 9 these labels are displayed on the vertical dotted lines joining a node to the
word it stands for in the sentence. The total order assumed in the example is:

d ≺ df ≺ n ≺ mf ≺ vc ≺ v ≺ xf

Order on edge labels induces a partial order on the daughters of each node and, by ex-
tension, on the subtrees rooted at these daughters. For example ‘Mann’ and ‘können’
have respectively edge labels mf and xf. Since mf ≺ xf, ‘einen Mann’ precedes ‘lieben
können’. The order is partial because siblings with the same edge label are not respec-
tively ordered: this is the basis for the account of scrambling in the Mittelfeld. The
label assigned to a node allows to position it with respect to its daughters. For example
‘wird’ has node label v and, since mf ≺ v ≺ xf, it must occur between ‘einen Mann’
and ‘lieben können’. Thus the topological tree licenses 2 linearizations:

1. (dass) Maria einen Mann wird lieben können

2. (dass) einen Mann Maria wird lieben können

We will now distinguish a set LE of edge labels and a set LN of node labels, and
assume given a total order ≺ on L = LE] LN. Given (V,E) ∈ T(V,LE), an as-
signment I : V → LN of node labels to nodes, and a total order < on V , we say that

Configuration Of Labeled Trees Under Lexicalized Constraints And Principles 19

G = (V,E, I,<) is a well-ordered tree if it satisfies the following conditions:

w−−−→`1 G w1 ∧ w−−−→`2 G w2 ∧ `1 ≺ `2 ⇒ w1 < w2 (9.1)
w1 →∗

G w′
1 ∧ w2 →∗

G w′
2 ∧ w1 < w2 ⇒ w′

1 < w′
2 (9.2)

w−−−→`1 G w1 ∧ I(w) = `2 ∧ `1 ≺ `2 ⇒ w1 < w (9.3)
w−−−→`1 G w1 ∧ I(w) = `2 ∧ `2 ≺ `1 ⇒ w < w1 (9.4)

We define the additional functions proj`G : V → 2V for ` ∈ L:

proj`G = →∗
G ◦ −−→` G for ` ∈ LE

proj`G(w) =

{

{w} if I(w) = `

∅ otherwise for ` ∈ LN

proj`G(w) for ` ∈ LE is the set of nodes in the subtrees rooted at w’s `-daughters. We
overload < to obtain a partial order on 2V as follows:

S1 < S2 ≡ ∀w1 ∈ S1, ∀w2 ∈ S2 w1 < w2 ∀S1, S2 ⊆ V

It can be shown easily that the well-ordering conditions (9.1–9.4) are satisfied iff the
following property holds:

∀`1, `2 ∈ L, ∀w ∈ V `1 ≺ `2 ⇒ proj`1G (w) < proj`2G (w) (9.5)

Thus the well-ordering conditions can be simply realized by sequentiality constraints
between sets. The well-ordered labeled trees with nodes V , edge labels in LE, node
labels in LN, and respecting the total order ≺ on LE] LN are in bijection with the
solutions of ΦLP(V,LE,LN,≺) shown in Figure 10.

ΦLP(V,LE,LN,≺) ≡ ΦID(V,LE) ∧
∀w ∈ V

{w} =]{`(w) | ` ∈ LN}
∧ ∀` ∈ LN proj`(w) = `(w) ∧ |`(w)| 6= 0 ≡ ` = I(w)

∧ ∀` ∈ LE proj`(w) = ∪{eqdown(w′) | w′ ∈ `(w)}

∧∀`1, `2 ∈ LE] LN `1 ≺ `2 ⇒ proj`1(w) < proj`2(w)

FIG. 10. well-formedness condition for ordered labeled trees

It is possible, and in practice desirable, to improve propagation by formulating
stronger constraints. For example, the property that all projections must be convex
(i.e. intervals without holes) may be written:

∀` ∈ LE, ∀w ∈ V convex(proj`(w)) (9.6)

The declarative semantics of convex(S) is that for all w1, w2 ∈ S, if w1 < w2 then
for all w such that w1 < w < w2, also w ∈ S.

20 Language and Computation, Vol. 0 – No. 0, 0000

10 Constraint-Based Dependency Parsing Revisited
In this section, we revisit the treatment of dependency parsing of [4] which we briefly
outlined in Section 2. We show how to instantiate the framework developed in the pre-
ceding sections to obtain a mathematical characterization of admissible dependency
syntax trees which also has a reading as a constraint program. Modulo issues of pro-
gramming language syntax, the result is a parser. As in Section 2, we define a depen-
dency grammar G by a 6-tuple:

G = (Strs,Cats,Agrs,Roles, Lexicon,Rules)

where Strs = {"Buch", "hat", . . .} is a finite set of strings notating the fully inflected
forms of words, Cats = {d, n, v fin, . . .} is a finite set of categories which without
loss of generality we can identify with (i.e. encode as) integers, Agrs = Gender ×
Number×Person×Case = {〈masc sing 1 nom〉, . . .} is a finite set of agreement tuples
which again we can identify with integers, Roles = {det, adj, subject, object,
dative, . . . , zuvinf} is a finite set of grammatical predicates to be used as edge
labels. A lexical entry is an attribute value matrix with the following signature:



















str : Strs
cat : Cats
agrs : 2Agrs

| · |det : 2N

...
| · |zuvinf : 2N



















which specifies phonology, category, possible agreements, and valency restrictions.
The Lexicon is a finite set of lexical entries, and we choose a function lookup : Strs →
Lexicon∗ such that ∀s ∈ Strs, lookup(s) is a sequence without duplicates formed from
the elements of {e | e ∈ Lexicon ∧ str(e) = s}, i.e. such that:

e ∈ lookup(s) ≡ str(e) = s

An example lexical entry for ‘Buch’ is:






























str : "Buch"

cat : n

agrs : {〈masc sing 3 nom〉,
〈masc sing 3 acc〉,
〈masc sing 3 dat〉}

| · |det : {1}
| · |adj : {0, . . . , µ}
| · |subject : {0}

...































Configuration Of Labeled Trees Under Lexicalized Constraints And Principles 21

It requires one determiner, permits any number of adjectives, forbids a subject, etc. . .
Attribute agrs is identified as a disjunctive attribute and we write agr for theagrs. Fi-
nally, Rules is a family (Γ`) of binary predicates indexed by roles and Γ`(w,w

′)
must be satisfied to license a syntactic dependency labeled ` from head w to argu-
ment w′. Posing NP = {n, pro} for the set of noun phrase categories and NOM =
Gender × Number × Person × {nom} for the set of agreements with case nominative,
we define these predicates using the language of Section 7. For illustration, here are
the predicates for roles det and subject:

Γdet ≡ λw,w′ · cat(w′) = d ∧ agr(w) = agr(w′)

Γsubject ≡ λw,w′ · cat(w′) ∈ NP ∧ agr(w) = agr(w′) ∧ agr(w′) ∈ NOM

Constraint Formulation. We now provide the translation scheme which transforms
an input sentence s1 . . . sn into a constraint [[s1 . . . sn]] that precisely character-
izes its valid dependency analyses according to our grammar G. The translation fol-
lows the framework developed in the preceding sections. We introduce a set V =
{w1, . . . , wn} of nodes, one for each word of the input sentence. We pose L = Roles,
E = Lexicon, A = {cat, agrs, | · |det, . . . , | · |zuvinf}, Ad = {agrs}, and lex(wi) =
lookup(si) for 1 ≤ i ≤ n. All valid analyses are given by the solutions of:

ΦID(V,L) ∧ ΦLEX(V, E ,A, lex) ∧ ΦVAL(V,L, E ,A) ∧ ΦP(V,L, E ,A, (Γ`))

thus we arrive at the translation shown in Figure 11.
In order to obtain a concrete parser, we must also stipulate a search strategy. In

practice, the following strategy has proven quite satisfactory: first, apply distribution
rules to determine all daughter sets `(w) for w ∈ V, ` ∈ L, then apply distribution
rules to determine all other attributes.

The account of dependency parsing presented here is only concerned with syntactic
dependencies and ignores word-order. We have pursued two avenues of approach for
the treatment of linear precedence:

Statistically Preferred Reading. The first approach for the treatment of word-order
is based on statistical methods and was developed jointly with Thorsten Brants. As-
suming the input sentence is a well-formed utterance, of all the analyses which our
program is able to derive, some are more likely to correspond to the actual lineariza-
tion than others. Thus, the idea is to inform the search strategy using statistics derived
from a corpus. At each choice point where we need to decide an edge, we pick first
the one which the statistical oracle ranks as most likely. This approach has proven
quite successful at deriving first the intended reading, even in the presence of repeated
extrapositions.

Topological Dependency Trees. The second approach aims at formalizing the prin-
ciples of linear precedence and is the subject of current research with Ralph Debus-
mann. Corresponding to the non-ordered tree of syntactic dependencies, we postulate

22 Language and Computation, Vol. 0 – No. 0, 0000

[[s1 . . . sn]] =

V = roots]]{daughters(w) | w ∈ V }
∧ |roots| = 1
∧ ∀w ∈ V

eqdown(w) = {w}] down(w)
∧ down(w) = ∪〈eqdown(w1), . . . , eqdown(wn)〉[daughters(w)]
∧ daughters(w) = det(w)] . . .] zuvinf(w)
∧ cat(w) = 〈cat | lex(w)〉[entry(w)]
∧ agrs(w) = 〈agrs | lex(w)〉[entry(w)]
∧ |w|det = 〈| · |det | lex(w)〉[entry(w)]
...

...
∧ |w|zuvinf = 〈|·|zuvinf| lex(w)〉[entry(w)]
∧ |det(w)| ∈ |w|det
...

...
∧ |zuvinf(w)| ∈ |w|zuvinf
∧ agr(w) ∈ agrs(w)
∧ ∀w′ ∈ V w′ ∈ det(w) ⇒ Γdet(w,w

′)
...

∧ w′ ∈ zuvinf(w) ⇒ Γzuvinf(w,w
′)

FIG. 11. Translation into constraint

a tree of topological dependencies (see Figure 9) that is partially ordered and projec-
tive. These two structures are mutually constraining. This approach instantiates the
framework developed in the present article including the extension of Section 9 for
projective partially ordered analyses. In [6], we used it to provide an elegant account
of the challenging phenomena in the German verb complex.

11 Constraint Programming
In this section, we precisely describe the constraint programming support necessary
and sufficient to express and solve the CSPs presented earlier in the article. We pro-
pose a formal system of constraints and inference rules, and define constraint propa-
gation as deterministic inferential saturation.

Let ∆ = {0, . . . , µ} be an interval of integers for some sufficiently large practical
limit µ. We assume an infinite set of FD variables written I, I ′, Ij with values in ∆ and
an infinite set of FS variables written S, S ′, Sj with values in 2∆. We write D,D′, Dj

for a ‘domain’, i.e. a fixed subset of ∆, and i, j, k, n for particular integers in ∆.

Configuration Of Labeled Trees Under Lexicalized Constraints And Principles 23

Initialization

→ I ∈ ∆
→ ∅ ⊆ S

→ S ⊆ ∆
Clash

I ∈ ∅ → false

D1 ⊆ S ∧ S ⊆ D2 ∧D1 6⊆ D2 → false

Strengthen

I ∈ D1 ∧ I ∈ D2 → I ∈ D1 ∩D2

D1 ⊆ S ∧D2 ⊆ S → D1 ∪D2 ⊆ S

S ⊆ D1 ∧ S ⊆ D2 → S ⊆ D1 ∩D2

Weaken

I ∈ D → I ∈ D′ D ⊆ D′ ⊆ ∆
D ⊆ S → D′ ⊆ S D′ ⊆ D

S ⊆ D → S ⊆ D′ D ⊆ D′ ⊆ ∆

FIG. 12. Rules for basic constraints

11.1 Basic Constraints

Information about a satisfying assignment will be refined incrementally by alternating
steps of deterministic ‘propagation’ and non-deterministic ‘distribution’. Therefore
we need means to represent partial information about an assignment and this is real-
ized by ‘basic constraints’.

A basic constraint for a FD variable I takes the form I ∈ D for a domain D. On
the other hand, the assignment to a FS variable S is approximated by lower and upper
bounds, i.e. by basic constraints D1 ⊆ S and S ⊆ D2.

Basic constraints are given by the following abstract syntax:

B ::= false | I ∈ D | D ⊆ S | S ⊆ D | B1 ∧B2

and they are subject to the inference rules of Figure 12. Saturation under these rules
guarantees that a constraintB is either inconsistent (i.e. contains false) or that for each
FD variable I in B, there is a most specific basic constraint I ∈ D, and that for each
FS variable S in B, there are most specific lower- and upperbound basic constraints
D1 ⊆ S and S ⊆ D2. Posing:

bIe = ∩{D | (I ∈ D) ∈ B}

bSc = ∪{D | (D ⊆ S) ∈ B}

dSe = ∩{D | (S ⊆ D) ∈ B}

when B is saturated, all of I ∈ bIe, resp. bSc ⊆ S and S ⊆ dSe are in B and are the
most specific bounds on variables I , resp. S. Indeed, we should use B as a subscript

24 Language and Computation, Vol. 0 – No. 0, 0000

i ∈ S ≡ {i} ⊆ S S = D ≡ D ⊆ S ∧ S ⊆ D

i 6∈ S ≡ S ⊆ ∆ \ {i} I ≤ n ≡ I ∈ {n, . . . , µ}

I = i ≡ I ∈ {i} n ≤ I ≡ I ∈ {0, . . . , n}

I 6= i ≡ I ∈ ∆ \ {i}

FIG. 13. Abbreviations

and write bIeB , bScB and dSeB , but, since this is never ambiguous, we will omit it
to avoid notational clutter. All inference rules given in the following are motonously
increasing in their premises: more specific premises yield more specific conclusions.
For this reason, it is sufficient and simpler to express them in terms of bIe, bSc and
dSe.

11.2 Non-Basic Constraints

We now extend our constraint language with ‘non-basic’ constraints, also known as
‘propagators’, and express their semantics in the form of inference rules.

C ::= B | C1 ∧ C2 | I ∈ S | I 6∈ S | S = {I} | |S| = I |
I1 ≤ I2 | S1 ⊆ S2 | S1 ≺ S2 | convex(S) |
S = ∪〈S1, . . . , Sn〉[S

′] | S = ∩〈S1, . . . , Sn〉[S
′]

To increase legibility, we adopt the abbreviations of Figure 13. For example the se-
mantics of the membership constraint I ∈ S is given by the following inference rules:

→ I ∈ dSe
I = i → i ∈ S

Figure 14 lists all primitive binary constraints and Figure 15 our two primitive selec-
tion constraints. We can further extend our constraint language with the following
derived constraints defined in Figure 16:

C ::= . . . | I1 = I2 | S1 = S2 | S1 ‖ S2 |
S = S1 ∪ · · · ∪ Sn | S = S1 ∩ · · · ∩ Sn | S1 ≺ · · · ≺ Sn |
S = 〈S1, . . . , Sn〉[I

′] | I = 〈I1, . . . , In〉[I
′]

The curious reader will find in [18] a detailed account of set constraints in Oz [19].

11.3 Disjunctive Propagators

Finally, we extend our constraint language with ‘disjunctive’ propagators:

C ::= . . . | C1 or C2

Configuration Of Labeled Trees Under Lexicalized Constraints And Principles 25

I ∈ S ≡
→ I ∈ dSe

I = i → i ∈ S

I 6∈ S ≡
I = i → i 6∈ S

→ I ∈ ∆ \ bSc

I1 ≤ I2 ≡
→ I2 ∈ {min(bI1e), . . . , µ}
→ I1 ∈ {0, . . . ,max(bI2e)}

S1 ⊆ S2 ≡
→ bS1c ⊆ S2

→ S1 ⊆ dS2e

|S| = I ≡
→ |bSc| ≤ I

→ I ≤ |dSe|
n ≤ I ∧ |dSe| = n → dSe ⊆ S

I ≤ n ∧ |bSc| = n → S ⊆ bSc

S1 ≺ S2 ≡
bS1c 6= ∅ → S2 ⊆ {min(µ,max(bS1c) + 1), . . . , µ}
bS2c 6= ∅ → S1 ⊆ {0, . . . ,max(0,min(bS2c) − 1)}

convex(S) ≡
bSc 6= ∅ → {min(bSc), . . . ,max(bSc)} ⊆ S

S = {I} ≡
I ∈ S ∧ |S| = I ′ ∧ I ′ = 1

→ S ⊆ bIe

FIG. 14. Constraints as sets of inference rules

The declarative semantics ofC1 or C2 is simply that of disjunction. In Logic Program-
ming, the only method for processing complex disjunctions is non-determinism. Thus
in Prolog, writing C1 ; C2 operationally results in first trying C1, and, if that fails,
backtracking and trying C2 instead. This has several drawbacks: (1) it is not sound
(failure to prove C1 is not the same as proving ¬C1), (2) it forces the computation to
commit immediately to exploring either one alternative or the other.

Early commitment is a poor strategy. It is often preferable to delay a choice until
sufficient information is available to reject one of the alternatives. That is the intuition
underlying the disjunctive propagator: C1 or C2 is a propagator not a choice point. It
blocks until either C1 or C2 becomes inconsistent with respect to the current store of
basic constraints: at that point, the propagator commits, i.e. reduces to, the remaining
alternative. In this way, a disjunctive propagator has the declarative semantics of sound

26 Language and Computation, Vol. 0 – No. 0, 0000

S = ∪〈S1, . . . , Sn〉[S
′] ≡

→ S′ ⊆ {1, . . . , n}
→ S ⊆ ∪{dSje | j ∈ dS′e}
→ ∪{bSjc | j ∈ bS′c} ⊆ S

bSjc 6⊆ dSe → j 6∈ S′

bSc \ ∪{dSje | j ∈ dS′e \ {k}} 6= ∅ →
k ∈ S′ ∧ bSc \ ∪{dSje | j ∈ dS′e \ {k}} ⊆ Sk

S = ∩〈S1, . . . , Sn〉[S
′] ≡

→ S′ ⊆ {1, . . . , n}
→ ∩{bSjc | j ∈ dS′e} ⊆ S

bS′c 6= ∅ → S ⊆ ∩{dSje | j ∈ bS′c}
bSc 6⊆ dSje → j 6∈ S′

∩{bSjc | j ∈ bS′c \ {k}} \ dSe 6= ∅ →
k ∈ S′ ∧ Sk ⊆ ∆ \ (∩{bSjc | j ∈ bS′c \ {k}} \ dSe)

FIG. 15. Selection constraints rules

I1 = I2 ≡ I1 ≤ I2 ∧ I2 ≤ I1
S1 = S2 ≡ S1 ⊆ S2 ∧ S2 ⊆ S1

S = S1 ∪ · · · ∪ Sn ≡ S = ∪〈S1, . . . , Sn〉[S
′] ∧ S′ = {1, . . . , n}

S = S1 ∩ · · · ∩ Sn ≡ S = ∩〈S1, . . . , Sn〉[S
′] ∧ S′ = {1, . . . , n}

S1 ≺ · · · ≺ Sn ≡
∧

{Si ≺ Sj | 1 ≤ i < j ≤ n}
S1 ‖ S2 ≡ S = S1 ∩ S2 ∧ S = ∅

S = 〈S1, . . . , Sn〉[I
′] ≡ S = ∪〈S1, . . . , Sn〉[S

′] ∧ S′ = {I ′}
I = 〈I1, . . . , In〉[I

′] ≡
S = ∪〈S1, . . . , Sn〉[I

′] ∧ S = {I} ∧
∧

{Sj = {Ij} | 1 ≤ j ≤ n}

FIG. 16. Derived constraints

logical disjunction, unlike Prolog’s ‘;’ operator which implements merely negation-
as-failure. The operational semantics are given by the rules below:

B ∧ C1 →∗ false

B ∧ (C1 or C2) → C2

B ∧ C2 →∗ false

B ∧ (C1 or C2) → C1

where we write C →∗ false to mean that false is in the deterministic saturation of C
under all propagation rules. In practice, disjunctive propagators are frequently useful
for expressing implicational constraints such as (7.1):

w′ ∈ `(w) ⇒ Γ`(w,w
′) ≡ w′ ∈ `(w) ∧ Γ`(w,w

′) or w′ 6∈ `(w)

A precursor of disjunctive propagators was the idea of a ‘deep guard’, investigated for

Configuration Of Labeled Trees Under Lexicalized Constraints And Principles 27

example in the Logic Programming language AKL [14]. Deep guards have since been
generalized and subsumed by first class notions of encapsulated speculative compu-
tations, supported in the constraint programming language Oz [19] via ‘computation
spaces’ [23].

While disjunctive propagators are extremely powerful, many implicational con-
straints do not require their full power and may be adequately expressed by reified
constraints [16, 18] which are more widely supported.

11.4 Search By Propagation And Distribution

The operational semantics of a constraint C is given by a system of inference rules as
described above. Propagation is defined as inferential saturation under this system of
inference rules and we write C∗ for the saturation of C. A FD variable I is said to be
‘determined’ in C∗ when bIeC∗ is a singleton. A FS variable S is determined when
bScC∗ = dSeC∗ . When C∗ does not contain false and all variables are determined,
we have found a satisfying assignment β defined as follows for all variables I, S in C:

{β(I)} = bIeC∗ β(S) = bScC∗ (11.1)

Constraint propagation alone may not be sufficient to determine all variables. In such
an eventuality, it is necessary to perform a non-deterministic choice: this is what we
call a ‘distribution’ step. We formalize this notion using distribution rules. A distri-
bution rule has the form φ → ψ1 ∨ ψ2 and non-deterministically infers either ψ1

or ψ2 when precondition φ is satisfied. We extend the system of inference rules for
constraint C with distribution rules as shown below for all variables I, S in C:

i ∈ bIe → i = I ∨ i 6= I

i ∈ dSe \ bSc → i ∈ S ∨ i 6∈ S

A saturation of C under both propagation and distribution rules either contains false

or determines all variables.

THEOREM 11.1
C is satisfiable iff it has a consistent saturation.

All rules given are valid implications, therefore C is equivalent to the disjunction of
its saturations. Consequently, if C is satisfiable, at least one of its saturations does not
contain false (Soundness). Conversely, every consistent saturation defines an assign-
ment β of values to variables as shown in (11.1). This assignment defines a model of
C. We show this for the ‘selection union’ constraint whose declarative semantics is
given by:

S = ∪{S1, . . . , Sn}[S
′] ≡ S = ∪{Sj | 1 ≤ j ≤ n, j ∈ S′}

28 Language and Computation, Vol. 0 – No. 0, 0000

The first three propagations rules stipulating its operational semantics are:

→ S′ ⊆ {1, . . . , n}

→ S ⊆ ∪{dSje | j ∈ dS′e}

→ ∪{bSjc | j ∈ bS′c} ⊆ S

Therefore in a consistent saturation we have:

β(S′) ⊆ {1, . . . , n} β(S) = ∪{β(Sj) | j ∈ β(S′)}

which proves that β |= S = ∪{Sj | 1 ≤ j ≤ n, j ∈ S′}. We can proceed similarly
for every constraint in our language and thus establish by induction that, if C has a
consistent saturation, it is satisfiable (Completeness).

Search Strategies. The formal framework remains uncommitted as to when to apply
a non-deterministic distribution rule and which one to choose. It is clear that in order
to minimize search, distribution rules should be postponed as long as possible. Only
when propagation has reached a fixed point should we consider applying a distribution
rule.

Which distribution rule to choose is the province of a search strategy. A well-known
traditional search strategy is ‘first-fail’: it chooses a non-determined variable with the
smallest number of remaining possible values and enumerates its assignments. The
intent is to try to keep the branching factor low in the search tree.

12 Conclusion
In this article, we developed a concise mathematical formalization of finite trees with
labeled edges. We have argued that this formulation can be regarded as the specifica-
tion of a constraint satisfaction problem and that the latter can be solved directly and
efficiently with constraint programming, provided we empower our mathematical in-
struments with a computational reading which grants them the operational semantics
of constraint propagators.

We entertained various refinements of our framework of interest to the computa-
tional linguist: lexical attributes and the treatment of lexical ambiguity, lexicalized
valency constraints, disjunctive attributes and the improvement of lexical economy,
the formulation of grammatical principles, and a framework for a class of partially
ordered projective trees.

A novelty of our approach is the central importance given to finite sets and con-
straints expressed in terms of variables denoting finite sets. Selection constraints,
which we first proposed in [4], allow to give concise mathematical expressions a di-
rect computational reading and are the foundation for an effective treatment of ambi-
guity that takes full advantage of constraint propagation and constructive disjunction.
An important contribution of this article is the identification of a family of aggrega-
tive selection constraints. In particular, the ‘selection union’ constraint is revealed as
particularly expressive and versatile.

Configuration Of Labeled Trees Under Lexicalized Constraints And Principles 29

Finally we addressed the issue of efficient processing and characterized the services
expected of a constraint programming system through a formal system of constraints
and inference rules of propagation and distribution. We showed that the search for
solutions of a constraint satisfaction problem could be defined as the derivation of
consistent saturations. It is our hope that having provided precise formal blueprints
of the constraint propagation mechanisms required will facilitate their adoption and
integration in other systems.

The general framework presented here can be variously instantiated. It underlies
both our treatment of immediate dependence [4] and of linear precedence [6] for pars-
ing with a dependency grammar.

References
[1] Gunnar Bech. Studien über das deutsche Verbum infinitum. Munksgaard, Kopenhagen, 1955.
[2] Mehmet Dincbas, Pascal Van Hentenryck, Helmut Simonis, Abderrahamane Aggoun, Thomas Graf,

and F. Berthier. The constraint logic programming language CHIP. In Proceedings of the Interna-
tional Conference on Fifth Generation Computer Systems FGCS-88, pages 693–702, Tokyo, Japan,
December 1988.

[3] Jochen Dörre and Andreas Eisele. Feature logic with disjunctive unification. In COLING-90, volume 2,
pages 100–105, 1990.

[4] Denys Duchier. Axiomatizing dependency parsing using set constraints. In Sixth Meeting on Mathe-
matics of Language, pages 115–126, Orlando, Florida, July 1999.

[5] Denys Duchier. Set constraints in computational linguistics – solving tree descriptions. In Workshop
on Declarative Programming with Sets (DPS’99), pages 91–98, September 1999.

[6] Denys Duchier and Ralph Debusmann. Topological dependency trees: A constraint-based account of
linear precedence. In 39th Annual Meeting of the Association for Computational Linguistics (ACL
2001), Toulouse, France, 9–11 July 2001.

[7] Denys Duchier and Claire Gardent. A constraint-based treatment of descriptions. In H.C. Bunt and
E.G.C. Thijsse, editors, Third International Workshop on Computational Semantics (IWCS-3), pages
71–85, Tilburg, NL, January 1999.

[8] Denys Duchier and Joachim Niehren. Dominance constraints with set operators. In Proceedings of
the First International Conference on Computational Logic (CL2000), LNCS. Springer, July 2000.

[9] Denys Duchier and Stefan Thater. Parsing with tree descriptions: a constraint-based approach. In Sixth
International Workshop on Natural Language Understanding and Logic Programming (NLULP’99),
pages 17–32, Las Cruces, New Mexico, December 1999.

[10] Markus Egg, Joachim Niehren, Peter Ruhrberg, and Feiyu Xu. Constraints over lambda-structures in
semantic underspecification. In Joint Conf. COLING/ACL, pages 353–359, 1998.

[11] Dale Gerdemann. Parsing and Generation of Unification Grammars. PhD thesis, University of Illinois,
1991.

[12] Carmen Gervet. Interval propagation to reason about sets: Definition and implementation of a practical
language. Constraints, 1(3):191–244, 1997.

[13] John Griffith. Modularizing contexted constraints. In COLING-96, 1996.
[14] Sverker Janson. AKL - A Multiparadigm Programming Language. PhD thesis, SICS Swedish Institute

of Computer Science, SICS Box 1263, S-164 28 Kista, Sweden, 1994. SICS Dissertation Series 14.
[15] Ronald M. Kaplan and Joan Bresnan. Lexical-functional grammar: A formal system for grammatical

representation. In Joan Bresnan, editor, The Mental Representation of Grammatical Relations, pages
173–281. MIT Press, 1982.

30 Language and Computation, Vol. 0 – No. 0, 0000

[16] Kim Marriott and Peter J. Stuckey. Programming with Constraints. An Introduction. The MIT Press,
Cambridge, MA, USA, 1998.

[17] John T. Maxwell and Ronald M. Kaplan. An overview of disjunctive constraint satisfaction. In Pro-
ceedings of the International Workshop on Parsing Technologies, pages 18–27, 1989.

[18] Tobias Müller. Constraint Propagation in Mozart. Doctoral dissertation, Universität des Saarlandes,
Naturwissenschaftlich-Technische Fakultät I, Fachrichtung Informatik, Saarbrücken, Germany, 2001.
In preparation.

[19] Mozart Consortium. The Mozart programming system, 1999. http://www.mozart-oz.org/.
[20] Tobias Müller and Martin Müller. Finite set constraints in Oz. In François Bry, Burkhard Freitag,

and Dietmar Seipel, editors, 13. Workshop Logische Programmierung, pages 104–115, Technische
Universität München, 1997.

[21] Carl Pollard and Ivan A. Sag. Information-Based Syntax and Semantics, volume 1 of CSLI Lecture
Notes. CSLI, 1987.

[22] Carl Pollard and Ivan A. Sag. Head-driven Phrase Structure Grammar. Studies in Contemporary
Linguistics. The University of Chicago Press, 1994.

[23] Christian Schulte. Programming Constraint Services. Doctoral dissertation, Universität des Saarlan-
des, Naturwissenschaftlich-Technische Fakultät I, Fachrichtung Informatik, Saarbrücken, Germany,
2000. To appear in Lecture Notes in Artificial Intelligence, Springer-Verlag.

Received 20 May 2001

