Unsupervised Learning of Word Order Rules

Christian Korthals

Diplomarbeit im Fach Computerlinguistik
Universitit des Saarlandes, D-66123 Saarbriicken
Betreuer: Prof. Dr. Hans Uszkoreit, Dr. Geert-Jan Kruijff

2nd October 2003

Wahrheitsgeméfie Erklirung

Ich erkldre, daff ich diese Diplomarbeit selbstdndig verfafit und keine anderen
als die angegebenen Quellen und Hilfsmittel verwendet habe.

Saarbriicken, den 02. Mai 2003

Christian Korthals

Acknowledgments

This work emerged from the NEGRA project at Saarland University, which is
part of SFB 378. I profited greatly from this research environment.

I am grateful for the extremely helpful discussions with Stephanie Becker,
Ralph Debusmann, Péter Dienes, Amit Dubey, Denys Duchier, Anette Frank,
Valia Kordoni, Marco Kuhlmann, Daniela Kurz, Sebastian Pad6, Christoph
Scheepers, Tatjana Scheffler, Silvia Hansen-Schirra, Markus Schulze, Anne Schwartz
and Zdengk Zabokrtsk'y. Joanna O’Driscoll and Bobbye Pernice, as native
speakers, helped me in cases of doubt with my English; Marco Kuhlmann was
my advisor in typesetting; and Christian Behring always knew these little com-
puter tricks.

I also profitted from conferences and workshops I was able to attend while
I was writing this thesis, particularly from the COLING conference in Taipeh
and the workshop on Linguistic Corpora and Logic Based Grammar Formalisms
in Utrecht.

Finally, I want to thank my supervisors. I always received input when I
needed it, but never in a restricting way.

Zusammenfassung in deutscher Sprache

Diese Diplomarbeit entwickelt, implementiert und evaluiert einen Ansatz zum
uniiberwachten Lernen von Wortstellungsregeln aus syntaktisch annotierten Ko-
rpora.

Die Entwicklung maschinenlesbarer Grammatiken fiir computerlinguistische
Anwendungen, wie Ubersetzungssysteme, Dialogsysteme, Grammatik-Korrektur-
systeme, usw., ist zeitaufwendig und anspruchsvoll. Anséitze zum Lernen von
Grammatiken aus Korpora existieren, sind aber linguistisch oft wenig tiefgreifend.
Auch vermischen diese Ansdtze oftmals mehrere linguistische Ebenen, etwa
Wortstellung und Subkategorisierung. Das entwickelte System zeichnet sich
durch seine klare Modularisierung nach linguistischen Gesichtspunkten aus. Die
gelernten Regeln sind theorieunabhéngig und damit in verschiedene Grammatik-
formalismen iibersetzbar. Die Regeln sind aufserdem linguistisch feinkérnig. Das
System hat den Anspruch auf Sprachen anwendbar zu sein, die sich typologisch
stark in ihrer Wortstellung unterscheiden.

Die Eingabe des Systems ist ein syntaktisch annotiertes Korpus. Ein climbing-
Modul identifiziert diskontinuierliche Knoten im Dependenzbaum, und verwen-
det einen aus der Topologischen Dependenzgrammatik (TDG) entlehnten Mech-
anismus des Kletterns, um das Ph&nomen zu behandeln. Das Lernsystem
schlieflich teilt Syntaxbdume in lokale Unterbdume, und verwendet ein Prdze-
denzpaar, ein einzelnes Vorkommen zweier Dependenten unter einem gemein-
samen Kopf, als Primitiv. Ein Graph-Algorithmus wird verwendet, um eine
Worstellungsregel zu errechnen, die einer topologischen Beschreibung entspricht.
Automatic Feature Selection ist ein Mechanisums, der iterativ einen Entscheid-
ungsbaum-Lern-Algorithmus verwendet, um diejenigen linguistischen Merkmale
auszuwéhlen, die relevant sind, um Wortstellung vorherzusagen.

Das System wurde vollstindig implementiert, und auf dem Negra-Korpus
deutscher Zeitungstexte evaluiert. Eine linguistische Beurteilung zeigt die Ver-
gleichbarkeit mit Topologischen-Felder-Analysen aus der Literatur. Auch fein-
kornige Regeln iiber Mittelfeld-Stellung werden gelernt. Die Regeln werden auch
verwendet, um ein topologisches Korpus zu erzeugen. Dabei wird 97.6% Knoten-
Recall erreicht. Ein Vergleich mit einem extern manuell erstellten Korpus zeigt
74.5% Ubereinstimmung (unlabelled bracket recall).

Contents

1 Introduction

2 Machine Learning

2.1
2.2
2.3
2.4

Classification of Machine Learning
Grammar Induction L.
Word Order Learning
Decision Tree Learning

3 Word Order

3.1
3.2
3.3

Typology of Word Order
Word Order in German
Approaches to Word Order (TDG)

4 A Word Order Learning System

4.1
4.2
4.3
4.4
4.5
4.6
4.7

4.8
4.9

Goals of thisapproach
Overview of the learning system
Corpus Conversion v v v v v v v vt e e
Climbing e
Primitive Extraction,
Field Induction e
Robustness and Feature Selection
4.7.1 Robust Edge Selection,
4.7.2 Automatic Feature Selection
4.73 Splitting
Field Cardinality and LP Tree Export
Output Data it it

5 Implementation

5.1
5.2
5.3

OVEIVIEW . . . o e e e e e e e e e e e e e e e
Technical Documentation
System Parameters L.,

6 Evaluation

6.1
6.2
6.3
6.4
6.5
6.6

Experimental Setup oL
Convergence Behaviour
Rule Recall
Application to TDG Parsing and Generation
Linguistic Judgement 0L
Discussion

CONTENTS 5

7 Conclusion 102
A Negra Annotation Scheme 105
B Mathematical definitions 108
C Data 110
C.1l Model MAN-E4 e it s e 110
C.2 Model FULL-D2 e i s 117

Bibliography 128

Chapter 1

Introduction

Formal grammars of natural languages play a central role in many applica-
tions of computational linguistics; for example in dialogue and expert systems,
in machine translation, text summarisation or grammar checking. However,
grammars of natural languages that can be universally applied to different text
types, domains and applications, with high precision and coverage, are not vis-
ible in the near future. Therefore, the development of new grammar fragments
for specific purposes, the adaption of grammars and lexicons to new domains,
and the development of grammars for new natural languages play an important
role in research and practice. There is a large number of competing grammar
formalisms, which differ in their formal expressiveness, the descriptive devices
they use, and the linguistic assumptions they make. This means that the gram-
matical knowledge implicit in a grammar of a specific formalism is confined to
this formalism and its processing devices. Inter-framework conversion of gram-
mars often results in larger target grammar size, worse legibility of the target
grammar, and sometimes a change of coverage. Generally, manual grammar
development and maintenance is a highly skilled and time consuming task.

This insight resulted in the development of machine learning techniques that
can acquire grammatical knowledge, given example sentences of the language to
learn. Training data for these algorithms is available today for many languages
in the form of corpora and treebanks of different sizes and domains. In the
best case, adaption of a learning system to a new domain or language means
retraining on different data. While some grammatical decisions can be suc-
cessfully predicted with the aid of learning systems, for example part-of-speech
disambiguation, algorithms that acquire a complete and linguistically valuable
grammar from scratch are not state of the art. Although the linguistic depth
of grammar induction systems is increasing, most contemporary approaches are
still linguistically shallow, low in the level of linguistic insight or abstraction,
and, just as with manual grammars, confined to specific formal assumptions.
Many acquired grammars are “black boxes” in the sense that their acquired be-
haviour is implicit in weights or transition probabilities hard to interpret for
humans.

This thesis develops a new approach to the acquisition of syntactic knowl-
edge which takes these thoughts into consideration. The scope of the learning
system is restricted to the acquisition of word order rules. Word order is a
theoretically interesting and practically relevant subproblem of grammar learn-

CHAPTER 1. INTRODUCTION 7

ing. A linguistically clearcut phenomenon is identified and modelled, instead of
intertwining linguistically separate phenomena into a single formal means. The
learned rules are symbolic and human-readable. These characteristics result in
easy integration of the learning system with other components of a grammar,
learned or manually written. The assumptions built into the learning system are
not confined to a specific grammar formalism, which has the advantage that the
acquired knowledge can be made use of by different frameworks. The approach
is unsupervised, which means that there is no need to feed the structures which
are to be learned into the system.

The input of the system is a syntactically annotated treebank. During train-
ing, discontinuous configurations in the trees are identified in order to account
for long-distance dependencies. Then, for each class of linguistic head found in
the data, a topological field description is learned, which models the grammat-
icalised sequence of all dependent items that can occur under the head. The
learning primitive is a pair of two elements under a common governor. With the
aid of a graph algorithm, a partial order on these elements is robustly calculated.
Since word order may depend on features from different linguistic levels, a com-
ponent for automatic feature selection is added, which automatically learns a
function from dependent word forms to the elements of the field descriptions.
Decision tree learning (Quinlan (1998)) is used as a strategy for this task.

The system is evaluated on the Negra corpus of German newspaper texts
(Skut et al. (1998)). Evaluation shows that the algorithm is able to discover an
instantiation of the generalised topological fields assumed, which resembles tra-
ditional accounts of word order in many respects. It also shows that the learned
rules can be successfully applied to convert the input treebank into a topologi-
cal treebank. They can also be exported to a concrete grammar formalism, and
used for parsing and generation. The learned rules model constraints implicit
in the word order rules of a language as well as the variability that occurs in
word order. Automatic feature selection discovers fine-grained linguistic rules.

The structure of the thesis is as follows. Chapter 2 gives an introduction
to machine learning, with a special focus on the state of the art in grammar
induction, as opposed to manual grammar development. Chapter 3 provides
the linguistic basic of the thesis, analysing word order cross-linguistically as
well as word-order phenomena in German. It also introduces TDG (Duchier
and Debusmann (2001)), a dependency grammar formalism, from which some
notions will be borrowed.

Chapter 4 develops the word order learning architecture, introducing one
component after the other. Section 4.4 shows how discontinuous configurations
are treated, Section 4.5 defines precedence pairs as a primitive for learning,
and Section 4.6 provides an algorithm that builds graphs from these primitives,
which are interpretable as field descriptions. Section 4.7 deals with making
the approach robust, and introduces automatic feature selection. Section 4.8
shows how to export and make use of the learned rules. Chapter 5 describes
an implementation of the learning architecture in Java, using C4.5 for decision
tree learning, and shell scripts for evaluation.

In Chapter 6, the system is evaluated on the Negra corpus. Section 6.2 evalu-
ates internal parameters of the system, showing that little data suffices to arrive
at good results, but also revealing convergence problems for some parameters
settings. Section 6.3 evaluates the application of the learned rules to produc-
ing a corpus of topological structures from the input treebank. 97.6% recall

CHAPTER 1. INTRODUCTION 8

on nodes during rule application is achieved. A comparison with a manually
created, different topological corpus yields 74.5% unlabelled recall on brackets.
Section 6.4 presents a preliminary experiment on applying the learned rules to
TDG generation. Section 6.5 judges the learned rules on linguistic grounds,
finding similarities to topological field analysis in the literature.

The appendices include a sample of learned word order rules, an overview
of the corpus annotation scheme, and mathematical definitions.

Chapter 2

Machine Learning

This chapter provides an introduction into machine learning, with a focus on
grammar induction. In Section 2.1, I define and classify machine learning sys-
tems, and characterise necessary steps in developing and evaluating a ML sys-
tem. In Section 2.2, I discuss approaches to the learning of syntactic structures
from corpora, and compare these approaches to manual grammar development.
I restrict the focus to systems that learn word order rules in Section 2.3. Section
2.4 provides an introduction to decision tree learning, a standard machine learn-
ing technique I will be using, which has been applied to discover linguistically
fine-grained rules in data.

2.1 Classification of Machine Learning

A machine learning system (Russel and Norvig (1995), Mitchell (1997), Hutchin-
son (1994)) is a computer program that automatically improves with experience.
It can be rendered as an “agent” in the sense of artificial intelligence, who per-
ceives its environment in the form of examples, develops hypotheses from these
examples consistent with the background (or prior) knowledge it has, and arrives
at a set of classifications. This classification enables the agent to make predic-
tions about unseen future examples. Russel and Norvig (1995) expresses this ar-
gument as a formula Background A\ Hypothesis A Examples = Classi fications.
Machine learning systems can be classified into supervised and unsupervised.
A supervised learning scenario is one where the classification is given with the
examples during learning: the training data includes positive or negative feed-
back. In an unsupervised scenario, in contrast, the classification is created by
the system without any feedback on how “good” or “bad” its actions are.
Imagine an agent who wants to learn to play the piano. The agent has sensors
(eyes, ears) which perceive the piano playing of a piano teacher, and effectors
(hands), which can achieve results. In a supervised scenario, the agent also
has an external criterion of success, provided by the teacher. An unsupervised
scenario, in contrast, is one where the teacher does not talk to the student.
This thesis follows an unsupervised learning approach for a simple reason.
There is no clear external criterion of what a “good” word order rule is. A
possible candidate for such an external criterion might be the performance of
a parser or generator that employs the learned rules on a test set. However,

CHAPTER 2. MACHINE LEARNING 10

such a strategy would rely on a concrete parsing formalism, and therefore on a
concrete theory of word order built into the grammar formalism. It is an aim
of this thesis, though, to discover word order regularities in the data without
making very specific theoretical assumptions about word order.

This does not mean that there are no assumptions at all. The task of un-
supervised learning without any prior assumptions, pure inductive learning, is
“generally very hard”, and not pursued any more nowadays (Russel and Norvig
(1995, p. 557, 626)). As is stressed by Daelemans and Hoste (2002), theoretical
research has shown that no inductive algorithm is in fact universally better than
any other. Thus, assessing the prior assumptions of a machine learner is essen-
tial. A related issue is the bias of a learning system. This term refers to how
one hypothesis is preferred over the other during search through the hypothesis
space. A principle used in many systems is known as Occam’s razor. It states
that a simple, or short explanation for a phenomenon is to be preferred over a
more complex explanation. Russel and Norvig (1995, 559) credit Mitchel (1980)
for emphasising the importance of bias in inductive learning.

Machine learning systems are evaluated by using the learned rules to classify
unseen test data. In supervised learning, this is easily done by omitting the
classifications from the training data, and comparing the predicted classification
to the original classification (the Gold Standard). Unsupervised learning can
only be indirectly evaluated, or compared to intuitions about the data, due to
the lack of an external measure of quality.

Several factors can cause errors of a learning system. A learner overfits the
data if it accounts for the examples in the training data correctly, but fails
to generalise this behaviour to unseen data. It underfits if it fails to account
for a trend that is in fact observable. Errors may also be due to wrong prior
assumptions. The piano playing agent overfits if it can play only the very pieces
it was taught. It underfits if it uses its forefinger for playing only: it will fail
miserably on fast pieces. This example also illustrates the importance of a well-
suited set of prior assumptions: an agent that starts with some knowledge about
fingering in piano playing can learn faster, and achieve better results. For the
learning system to be developed in this thesis, this means that a well-considered
choice of theory independent linguistic assumptions must be found.

One of the most important design decisions when building a machine learning
architecture is the representation of the domain of application. This includes
the formalisation of the the input examples as well as the output classifications.
Sometimes, but not always, the same language, e.g. predicate logics, is used for
these tasks.

The input examples should include all properties of the data which are pos-
sibly relevant for making predictions. The piano player for example is unlikely
to achieve an efficient fingering if it cannot see the teacher’s keyboard.

The output, as well as the internal architecture may represent data on a
symbolic or a subsymbolic level. Subsymbolic machine learning techniques are
“black boxes”, because their internal structure is represented in a non-human
readable way. An example are neural net approaches, which employ a hidden
layer of nodes, not interpretable in terms of the input and output symbols
used. A symbolic learning scenario, in contrast, produces human-readable rules;
symbolic systems are “glass boxes”.

In addition, the output classification acquired by the system may be statis-
tical or non-statistical in nature. In a non-statistical setting, an example either

CHAPTER 2. MACHINE LEARNING 11

belongs to a concept, or it does not, while in a statistical setting a probability
distribution over classes is learned. I follow a symbolic, non-statistical approach
in this thesis. This has the advantage that decisions taken by the system are
always easily traceable, and are open to linguistic assessment.

Since there is a rich variety of machine learning algorithms today, the choice
of an appropriate algorithm is another important step when developing a learn-
ing system. Hutchinson (1994) provides a helpful diagram for this task. A com-
prehensive overview of symbolic learning is given in Briscoe and Caelli (1996).
Some approaches are general paradigms, while others are tailored to a specific
learning task. I refer to a number of techniques which are relevant to this the-
sis. The term clustering is very general, and refers to unsupervised classification.
Memory based, instance based, or lazy learning employs the idea that the set of
examples is not abstracted until an unseen instance from the test data is seen.
Decision tree learning uses trees to represent decisions during classification, and
is outlined in more detail in Section 2.4.

The formal study of what classes of problems are theoretically learnable,
learnability theory, is relatively new, and will be only mentioned in passing in
the following chapter, when directly relevant to grammar learning. Natarajan
(1991) is an introduction to theoretical machine learning. The field received
much attention in the 1990s (Hutchinson (1994, 387)). Valiant (1984) provided
a general framework for learning, PAC (“probably approximately correct”) learn-
ing. Today, there seems to be a clash between theoretical results on one side,
and practical applications on the other. Hutchinson (1994) gives this advise to
the designer of a machine learning system (p. 388)

I urge you, be not dismayed. If you think you can devise a practical
learner for a specific situation, then you are probably right.

2.2 Grammar Induction

Human learning, and especially human learning of natural language, has always
served as a real-world archetype of machine learning, and the idea of modelling
human language learning on computers is not a new one. It is, however, not the
goal of this thesis to make a contribution to human learning of natural language,
but rather develop a machine learning system with practical use and relevance
to linguistic theory. It is still interesting to compare the architecture to human
learning. Gold (1967) investigated the question whether children can possibly
learn their mother language merely from the “poor” input they receive: positive
examples of grammatical sentences. Their learning seems almost unsupervised,
as they are seldom corrected. Gold’s controversial hypothesis was that there
needs to be some prior knowledge about the structure of language in order to
enable children to learn a language. Chomsky (1981) integrated this insight
into his Universal Grammar, and stipulated innate universals of grammar in
addition to learnable “parameters”. Niyogi and Berwick (1996) theoretically
investigate learnability in the limit in the sense of Gold in a very simple 3-
parameter model. They conclude that local maxima are problematic for search,
and state that “how the sample complexity scales with the number of parameters
is an important question that needs to be addressed” (p. 189). The comparison
with human language acquisition suggests, however, that — at least given some
prior knowledge — learning rules about language should be possible.

CHAPTER 2. MACHINE LEARNING 12

Not only is automatic learning of grammar rules possible, it is also desirable.
The goal of finding the “true” grammars of languages is unsolved, and natural
language applications need computational grammars specifically tailored to the
application, domain, natural language, and grammar formalism. There is a large
number of formally different grammar formalism. Inter-framework conversions
have been proposed, but are not unproblematic. For example, grammar size
may increase considerable with conversion (Yoshinaga and Miyao (2002)).

Grammar development is a time consuming task. The development of a
large-scale English XTAG grammar (Group (2001)), e.g., has been going on
for almost a decade now, with 8 grammar developers and 6 system developers
working at this task. In many grammar frameworks, the task of modularizing
grammar development, and distributing the work among grammar writers is
problematic.

Evaluation figures of grammars depend heavily on the test corpus, or test
suite used. Group (2001) report to have been able to parse only 20% of the
sentences of a corpus of weather reports, and a manual adaption of the grammar
was necessary to increase this figure to 89.6%, which is a state of the art figure
(p- 305). Another evaluation of the same grammar shows 84.2% dependency
accuracy on NP chunks from the Penn Treebank Marcus et al. (1995), restricted
to sentences of length 15. An example of a hand-crafted high-coverage grammars
of German is Miiller (1999).

Kinyon and Prolo (2002) classify grammar development strategies into four
categories, with the aid of two features: hand-crafted vs. automatically gener-
ated, and high level of syntactic abstraction vs. low level of syntactic abstrac-
tion. They state:

Although linguistically motivated, developing and maintaining a to-
tally handcrafted grammar is a challenging (perhaps unrealistic?)
task ... Small and even medium-size grammars are not useful for
practical applications because of their limited coverage, but larger
grammars give way to maintenance issues.

Due to the problems of manual grammar development, systems that can learn
syntactic structure from POS-tagged input texts have been developed. An early
example is Berwick (1985), who assumes, following Gold, a context-free gram-
mar as a grammar-framework, and learns production rules with the aid of an
incremental shift-reduce parser, which starts with an empty grammar, and adds
production rules to the grammar as soon as parsing fails. The algorithm pro-
posed by Wolf (Hutchinson (1994, 168)) follows the same strategy.

Both algorithms are instances of what Klein and Manning (no year) call
“structure learning”, i.e. discovering syntactic production rules from a sequence
of part-of-speech tags. They employ a matrix of word span indices, and learn
constituents (distituents, rather, as they call it) with a version of the EM al-
gorithm, a clustering algorithm. The search space is restricted to “binary, tree-
equivalent bracketings”. The algorithm is run on the POS tags of the corpus,
as well as on induced POS tags. They report an f-value of 71% (which is an
average of recall and precision) on non-trivial brackets.

All approaches compared so far work on POS-tagged text as input. Today,
however, large syntactic databases (treebanks) are available for many languages,
which include syntax trees in addition to POS-tags. Current treebanks often

CHAPTER 2. MACHINE LEARNING 13

annotate syntactic structures in the form of labelled phrases, following the Penn
Treebank for English (Marcus et al. (1995)), or dependency relations, follow-
ing the Prague Dependency Treebank for Czech (Haji¢ (1998)). The German
Negra and Tiger treebanks (Skut et al. (1998), Brants et al. (2002)) combine
notions from dependency grammar and phrase structure grammar. All tree-
banks also feature disambiguated part-of-speech information, and sometimes
additional morphological information. Often, syntactic functions are also anno-
tated!. I continue with a comparison of approaches to grammar induction from
treebanks.

A papers by Charniak (1996) lead to a number of approaches, known as
“treebank grammars”, which simply read off probabilistic context free gram-
mar rules (PCFG) from a given treebank, and employ these rules for parsing.
Charniak reports 80% accuracy (i.e. number of non-crossing brackets) of such
a grammar, after some manual corrections. More recent numbers are around
90%. The problem of such a treebank grammar is, however, that its restrictive
power is almost zero, i.e. it will assign an analysis to a random POS sequence,
and produce a very large number of ranked parses for a given POS sequence. A
solution of the overgeneration problem lies in lexicalisation of these grammars.
With lexicalization, however, undergeneration becomes a problem, and unreal-
istically large training corpora would be necessary. Collins (1999b,a) presents a
lexicalized, statistical parser applicable to English and Czech.

Xia (1999), Xia et al. (2001) present an approach to extracting lexicalized
TAG grammars for typologically different languages from treebanks. After ex-
tracting elementary trees (which are not distinguishable from rules in the TAG
formalism) from the input treebank, rule based post-processing steps are applied
to distinguish arguments from adjuncts, and identify coordinations. There is no
generalisation on the word order level, though.

There has been significant improvement in grammar learning in the last
years, but the opposition identified by Kinyon and Prolo (2002) has not yet been
resolved: Manual grammars are linguistically insightful and human readable,
but time consuming and hard to create and maintain. Learned grammars lack
linguistic abstractions, which makes them hard to interprete for humans, and
less valuable for natural language applications.

There has been some progress towards adding linguistic abstractions to
learned grammars. In the TAG approach, adjuncts and arguments are iden-
tified, employing the linguistic abstraction of a subcategorization frame. The
same measure is taken by Sarkar and Zeman (2000). This is not the case for
Klein and Manning (no year), but they add linguistically valuable information
by learning from induced POS tags. Lexicalization of treebank grammars also
makes the grammars more fine-grained. While these are all steps towards more
abstract learned grammars, the goal has not yet been reached.

Furthermore, none of the approaches compared apply linguistic abstractions
to word order phenomena. All approaches either rely on non-crossing phrase
structures, and consequently face problems with discontinuous realisations (see
Section 3.2), or do not involve permutation rules to account for word order vari-
ation (as in the TAG approach). In context-free production rules, the order of
elements on the surface is not conceptually separated from the obligatory ap-
pearance of subcategorized elements. This immediately translates into coverage

1For an example of a treebank sentence, the reader is referred to Figure 4.2, page 34.

CHAPTER 2. MACHINE LEARNING 14

and overgeneration problems when applied to languages with free word order.
Berwick, e.g., explicitly treats topicalized constructions like “Candy, Sally likes”
(p- 184) as noise in the data, with the desired behaviour of his system being
not to be distracted from learning the more general rule.

A system that learns word order rules from a treebank in a linguistically fine-
grained and abstract way is therefore desirable. Such a system is a step into the
direction of Kinyon and Prolo (2002)’s “learned” grammars with a “high level of
syntactic abstraction” (type D grammars).

2.3 Word Order Learning

As opposed to the many approaches toward the learning of syntactic structures
or parameters, there are only few approaches specifically devoted to the learning
of word order from corpora. This section reviews three approaches that the
author is aware of.

Villavicencio (2000) presents a system that models human acquisition of the
predominant word order of arguments with respect to their heads on a 1000
sentence corpus of English child-parent conversation. She assumes a universal
grammar in the sense of Chomsky (1981), and binary syntactic structures, along
with a lexical type hierarchy, which includes types as “noun”, “transitive verb”,
“ditransitive verb”, “transitive control verb”, along with a classification of the
arguments of these classes of heads (subject, object, direct object). Her algo-
rithm starts with the initial assumption that all arguments occur on the same
side of the head, and iteratively refines this hypothesis for specific subclasses in
the hierarchy, where subclasses inherit their parent’s feature by default. Like
in some of the approaches discussed in the previous chapter, a parser is part
of the system, which adapts the grammar on failure. The input of the parser
is a sentence, annotated with a logical form (i.e. a deep-syntactic structure).
At any time, the current direction value of a node in the hierarchy is the high-
est probability value in the data, and a threshold determines in which case a
hypothesis should be adapted.

The aim of Villavincencio’s system is to find rules about the predominant
word order of classes of arguments with respect to their head. This view is
in principle not able to make predictions about the order of arguments of the
same head among each other. Baldridge (2002, p. 199) identifies that when
introducing new arguments of a head, according to the type hierarchy, she relies
on a property of the English language, which does not extend to other languages,
especially those with a freer word order. In fact, the system has been run on
English only. Another problem is that Villavincencio seeks to find predominant
word order, a view which conceptually prohibits finding rules about variation in
word order: the position of an argument is always predicted to be either to the
left, or to the right, and it is only through the additional assumption of rules
of commutativity that word order variation is accounted for. As a last point
of criticism, there does not seems to be an account of adjuncts, as opposed to
arguments, although adjuncts occur widely in free data.

Following Charniak (1996), Becker and Frank (2002) trained a probabilistic
parser on a treebank of topological structures, which encode word order reg-
ularities of German, a language with an intermediate amount of word order
freedom. They used the Negra treebank of German as an input corpus. Tree-

CHAPTER 2. MACHINE LEARNING 15

transformation rules were manually developed with the aid of a tree-transformation
language, which creates the topological corpus from the treebank. This corpus
had to be manually corrected in order to yield a gold standard treebank for
evaluating the topological parser, reaching a labelled precision of 93.0% and a
labelled recall of 93.7% of the conversion rules.

The goal of Becker and Frank was the supervised training and evaluation of
the topological parser on the manually created gold standard. This means that
a word order treebank needs to be created with the aid of manually written
rules and manual post-correction for every language that is to be parsed, if
this approach is to be extended to other languages. The performance of the
parser is good for this supervised scenario (93.4% precision, 92.9% recall is the
best performing model), but all the relevant word order regularities the system
is expected to learn, along with a complete linguistic theory of word order is
assumed. This contrasts sharply with the goal of this thesis of unsupervised
learning.

The last approach is Gamon et al. (2002). They use decision tree learning,
a supervised machine learning technique which will be outlined in the following
section, to learn rules about word order in German. Their scope however is
extremely narrow. The learning system merely predicts whether a given clausal
complement (a relative or complementizer clause) should be locally realised, or
non-locally displaced to the right on the syntactic surface. Thus, the output of
the system is a yes/no-decision. The input is a richly annotated treebank. They
identify a wide range of linguistic features relevant to predicting the decision,
among them category and syntactic relation of both the clausal complement
node and its father and grandfather, phrase length, etc.

2.4 Decision Tree Learning

Decision Tree Learning (Briscoe and Caelli (1996, 31ff)), and more specifically
top-down decision tree induction (Quinlan (1998)) is a supervised machine learn-
ing technique. In this thesis, Quinlan’s C4.5 system is used. Typically, the out-
put parameter has few discrete values, while input parameters can have many
values, discrete or numeral. A standard example of decision tree learning is
weather forecast, where the set of possible outcomes can be assumed to be re-
stricted (e.g., sunny, cloudy, rain, snow), and input parameters are possibly
complex (e.g. temperature, wind strength, air pressure, yesterday’s weather,

Decision Tree Learning has also been applied to linguistic topics, e.g. to
automatic assignment of dependency roles (thematic roles, roughly) from syn-
tactic information (Zabokrtsky (2001)), and even to word order phenomena, as
shown in the previous section.

C4.5 employs a greedy strategy: it analyses the input data, and chooses a sin-
gle parameter whose values predict the outcome best. It then sub-classifies the
data according to these values, and reiterates. The strategy is greedy, because
there is no backtracking involved, and a decision is taken at every iteration step
which appears promising locally, but need not be globally optimal.

The rules generated by a decision tree learner can be represented in tree
format, as in Figure 2.1 (adapted from Zabokrtsky (2001, p. 57)), where node
labels are feature to be picked, edge labels are the values of the dominating

CHAPTER 2. MACHINE LEARNING 16

dep_afun
S
gOV_pos
a i
/ n ull z v
str pat 1str ov_morph
act act gov_morp
vP vr Vs vf
act act dep_case
pat
0 1 4

pat act pat

Figure 2.1: An example decision tree, from Zabokrtstky. Here, output values are
thematic roles (actor, patient, restricted), and parameters are syntactic features
of governor and dependent nodes.

node’s feature, and leaves are the predicted output value.

Decision Trees can also be converted into rules by traversing the tree and
generating a rule for each path from the root to a leaf (Quinlan (1998, p. 45ff)).
Rules have a set of conditions on the input parameters, and a prediction for the
output value, and can be augmented by a probabilistic measure of reliability.
One of the rules implicit in Figure 2.1, is e.g. dep afun=sb A\ gov_pos=a =
output=rstr.

One important characteristic of converting trees to rules is that, given a set
of input parameters and values, there need not necessarily be a unique rule in
the set of generated rules whose preconditions match (Quinlan (1998, p. 47)). It
is therefore necessary to posit an order on generated rules, in order to determine
which rule to pick in case of multiple match. This order can be established on
probabilistic grounds.

Decision Tree Learning will be used for Feature Selection (Section 4.7) in this
thesis as a submodule of the larger learning architecture. It is suitable because
the technique is fast, produces symbolic output, and the input data is complex.

Chapter 3

Word Order

This chapter lays the linguistic foundation of the thesis. In Section 3.1, I argue
that an investigation into word order is crucial if a grammar induction system
is to be universally applicable to a range of typologically different languages.
I provide a data-driven analysis of word order phenomena in German in Sec-
tion 3.2, employing standard descriptive terminology. Finally, I review formal
approaches to these word order phenomena in Section 3.3.

3.1 Typology of Word Order

Since Greenberg (1966), languages have been typologically compared with re-
spect to their word order. These studies revealed that among the many mathe-
matically possible orders, only few are in fact attested by the languages of the
world. Typological analysis is relevant to this thesis, because the choice of lin-
guistic theory should be general enough to capture the phenomena that occur
across languages. Only then will it be possible to successfully apply the word
order learning system to different languages.

The primary aim of topological studies has always been to discover language-
universal statements of the form “if a language has prepositions rather than
postpositions, and places the adjective after the noun, it will (always, or likely)
place a relative clause after the noun”. Such a statement is called an implica-
tional universal. Implicational universals may be statistical or non-statistical in
nature.

Two assumptions are normally made in the typological literature (Hawkins
(1983, p. 11ff)). First, a notion of basic word order is assumed: In English
for instance, the basic word order at the sentence level is Subject-Verb-Object.
Second, it is assumed that subjects, objects, relative clauses, etc. are identifiable
on semantic grounds across languages. Both assumptions are controversial.

I will not go into the details of establishing categories cross-linguistically.
This issue is side-stepped in this thesis by relying on the annotation of the
corpus. It is important to note, though, that a corpus is normally created on
the basis of a tagset which describes the specific target language rather than
cross-linguistically valid categories. Running the system on a corpus with typo-
logically motivated categories would certainly yield different, and typologically

17

CHAPTER 3. WORD ORDER 18

interesting results.’

I now turn to the notion of basic word order. According to Hawkins (1983),
“the biggest problem for a notion of basic word order is to be found in the
ordering of the arguments of the verb at the sentence level”. He continues with
a definition (p. 13).

I am going to use the term ’doubling’ to describe the situation in
which one and the same modifier category ... can occur both before
and after its head in a given language

In the face of doubling, he provides (slightly simplifying) two criteria with which
to establish the basic doublet. The first one is simple, and could be easily
discovered with the aid of a machine learning system: where two order variants
exist, the more frequent one is the basic one. The second criterion relies on the
notion of linguistic markedness. A construction is marked if it serves a special
purpose in the language system. Kruijff (2001) makes this notion more precise
by modelling interactions with information structure, particularly prosody and
contextual boundness, case-marking, etc.

The view taken in this thesis is that markedness can — in theory — be reduced
to frequency, if the corpus is annotated with all relevant features from different
linguistic levels. An approach is therefore desirable that is independent of the
concrete corpus annotation scheme. Due to the problem of doubling, I will not
assume that a “basic” word order can always be found. Rather, I opt for an
approach where all relevant linguistic features are included into the rules the
system learns.

Hawkins gives examples where his strategy fails: For English genitives, he
does not commit to either GenN or NGen. For German sentence level order,
he neither commits to SVO nor to OVS (p.14). In these cases, there are no
predictions in Hawkin’s theory, because none of the implicational universals
apply. This leads to abandoning Greenberg’s SV and VO as type indicators
(p-16).

There is the implicit assumption in the definition of doubling that the head
plays an important role. The term doubling is not used, e.g., to refer to cases
where indirect and direct objects permute, because the head is not involved in
this order variation. I will come back to this issue in Section 4.7.3.

While Hawkins, after mentioning the problem of basic word order, is not
concerned with it any more, Steele (1978) was the first to investigate word order
variation in a single language more closely. She concentrates on the order of
subject, verb, and object, and establishes a classification of languages according
to which kinds of rearrangements they allow, assuming that the types VOS,
VSO, SOV, and SVO exist.

First, she observes that each logically possible variation is at least attested
by one language of a type. She then formulates constraints on the variation
that occur within a language, and classifies languages according to whether
they violate these constraints. Her constraint A is that the verb position should
not be changed. Her constraint B is that a rearrangement where O precedes

1For example, the input corpus has two different edge labels for pre-nominal and post-
nominal genitives in German (edgelabels GL, GR). Due to this distinction, the order learning
system cannot learn detailed rules about the placement of genitives in German, because the
— seemingly — best explanation is the occurence of the GL or the GR tag.

CHAPTER 3. WORD ORDER 19

S should be omitted. A “rigid” word order language is one whose occurring
rearrangements do not violate these constraints. A “free” word order language
is one that violates all constraints, and a “mixed” word order language is one
that violates some. Steele still excludes “highly marked” constructions from her
theory. Among them are non-local topicalisations like “That man I dislike”. This
means that she does not make any predictions about these rearrangements.

Kruijff (2001, p. 202) extends Steele’s classification by applying it not only
to matrix clauses, but also to dependent clauses. He also extends her language
sample, and classifies German as a mixed word order SVO language which
obeyes Steele’s constraint A.

Korthals and Kruijff (2003) show that languages do not only differ in the
amount of head-local rearrangements (which they call “scrambling”), but also
in the amount of non head-local rearrangements (“discontinuity”). Head-local
rearrangements correspond loosely to Hawkin’s “doubling” and can be described
by Steele’s constraints on variation, while discontinuity is excluded from Steele’s
theory. Korthals and Kruijff (2003) report that 11.05% of the phrases of the
German Negra treebank are discontinuous, opposed to 1.03% in English. They
measure the amount of scrambling by dividing the number of ordered depen-
dency trees by the number of unordered dependency mobiles, and achieve a
“scrambling factor” of 1.02 for German, but only 0.33 for English S nodes. The
next section will investigate local and non-local word order variation in German
more closely.

3.2 Word Order in German

While the topological perspective is important in order to find a linguistic the-
ory that is general enough to be applicable cross-linguistically, it is often not
fine-grained enough to account for the word order phenomena actually found in
a particular language, either because certain phenomena are explicitly excluded
from the theory, or because of a clash between what is considered a theoreti-
cally interesting exception and what is actually a frequently occurring exception.
This section therefore takes a closer look at German word order phenomena in
a data-driven way. First, I investigate constraints on word order in German,
which cannot be violated, and compare them to variation in word order and
softer constraints. Then, I investigate discontinuity in German. Finally, I re-
view descriptive approaches that are traditionally applied to account for the
phenomena listed, and are widely accepted.

Example 1 below is the first sentence of the Tiger corpus (Brants et al.
(2002)). Counting the proper name as a single unit, there are 5! = 120 math-
ematically possible permutations of its word forms. Only about 6 of them can
be clearly judged grammatical without doubts, some more are at the border
of acceptability, or have a different truth-conditional meaning. Below are some
example permutations of the sentence.

(1) Ross Perot wire vielleicht ein prachtiger Diktator
(2) *Ross Perot ein wire vielleicht préachtiger Diktator
(3) *Ross Perot wire vielleicht préichtiger Diktator ein.
(4)

4) *Vielleicht Ross Perot wire ein prichtiger Diktator.

CHAPTER 3. WORD ORDER 20

(5) Wére Ross Perot vielleicht ein prachtiger Diktator?
(6) ... Ross Perot vielleicht ein prachtiger Diktator ware.

(7) Vielleicht wire Ross Perot ein préchtiger Diktator.

Examples (2) and (3) show that there are many permutations of the sentence
which obviously violate a clear and hard constraint of German syntax. A deter-
miner can neither be dislocated from the noun it specifies, nor can it occur after
it. Examples (4) and (5) demonstrate the violation of another hard constraint
of German syntax, which refers to the position of the verb. In sentence (4), the
verb takes the third of four positions, which results in ungrammaticality. If the
verb is in first position, though, the sentence is again grammatical, but can only
be interpreted as a question, rather than a declarative sentence. If the verb is
at the end, as in example (6), the sentence is acceptable as a subordinate clause
only. Example (7), finally, demonstrates that, in spite of these constraints, Ger-
man does allow for some word order variability, which is not directly explicable
by sentence type or syntactic factors. Examples (1) and (6) do not differ in
meaning, but they do differ in the way they behave in discourse, without going
into a theoretical analysis at this point.

There is some more variability in German syntax, as the following set of
examples, permutations of Tiger sentence 17, illustrates. In these examples, a
judgement of grammaticality is less easily achieved than in the previous set of
examples, and the classification into acceptable and unacceptable reflects the
intuitions of the author only.

(8) ... daR sich ein Dogmatiker in Washington schwer tun wiirde
(9) ... dak ein Dogmatiker sich in Washington schwer tun wiirde

10) ... daf sich ein Dogmatiker in Washington wiirde schwer tun

*? ... dah in Washington sich ein Dogmatiker schwer tun wiirde

*

13

)
)
)

11) ? ... daR sich in Washington ein Dogmatiker schwer tun wiirde
)
) * ... daf in Washington ein Dogmatiker sich schwer tun wiirde
)

(
(
(12
(
(

*

14) * ... dal ein Dogmatiker in Washington sich schwer tun wiirde

There seems to be no syntactic, semantic or pragmatic difference between
sentences (8) and (9) whatsoever, nor a difference in acceptability. Sentence
(10) seems to differ from the previous sentences in register. Sentence 4 differs in
information structure, but appears to be considerably worse than sentences (8)
or (9) to the author. Sentences (11) to (13) are probably unacceptable, but (13)
is arguably acceptable with a slightly different semantics, where “Washington”
is a dependent of “Dogmatiker”.

The previous sentences showed that there are hard constraints as well as
variability in German data, causing differences on various linguistic levels, and
different grades of acceptability. In the following I will concentrate on a sub-
class of word order variation in German, non-local, or discontinuous word order
phenomena. While the notion of non-locality differs among syntactic frame-
works, a non-local realisation of a dependent under a governor can be defined

CHAPTER 3. WORD ORDER 21

fi,

VROOT

!

Dafiir gibt as Griinde
PROAV WVFIN PPER NN 5.

Figure 3.1: Tiger Sentence 86, with a non-local realisation of “dafiir”

as one where foreign material occurs between the two items. The annotation
scheme of the corpus, which will be described in Section 4.3, allows to identify
these cases easily, as it represents non-local realisations with crossing edges, as
shown in Figure 3.1.

100 sentences from the Tiger corpus were searched for non-local phenomena.
Some examples of sentences exhibiting discontinuity are now given, and will be
classified in the following. In each of the examples, the two or more bracketed
word forms constitute a discontinuous phrase.

nd ein anderer Manager vermutet, dals |sich| ein Dogmatiker wie Perot
15) Und ei d M daf [sich] ein D iki ie P
[in Washington schwer tun| wiirde. (17)

(16) [Nun| werden sie [umworben]. (64)
(17) |Da] sind [sich] alle [einig]. (47)

(18) [Dafiir] gibt es [Griinde]. (86)
(19)

19) [Daf Perot ein Unternehmen erfolgreich fiihren kann, davon| sind selbst
seine Kritiker [iiberzeugt]. (6)

(20) [Es] ist wirklich schwer zu sagen, [welche Position er einnimmt]. (36)

(21) Allerdings glaubt fast die Halfte der Chief-Executives, daR Perot durchaus
[Chancen| habe, [die Wahl im November zu gewinnen]|, wenn er kandidiert.

(11)

(22) Die Getreideproduktion wird [voraussichtlich 10 Mio Tonnen geringer]| aus-
fallen [als geplant], wihrend gleichzeitig die Bevilkerung um 18 Millionen
Menschen steigt. (96)

(23) [Geschéftemachen] ist seine Welt [und nicht die Politik]|. (45)

(24) [die Frage ist nur|, meint ein Finanzexperte [ob er ins Weifie Haus einziehen
kann|, ohne uns vorger zu sagen, was er eigentlich machen will. (48)

CHAPTER 3. WORD ORDER 22

Examples (15) and (16) are the most frequently occurring class. Here, the
corpus annotates a discontinuous VP.2 By convention, the subject is annotated
as a dependent of the main auxiliary verb, and non-subject arguments as de-
pendents of the embedded non-finite verb. Dependents from the embedded
predicator however can be realised discontinuously in the domain of the aux-
iliary verb. The auxiliary verb may be a modal or auxiliary to build complex
time forms, or constitute the passive-construction as in example (16). Exam-
ples (17) and (18) (presented before) illustrate that also material dependent on
embedded adjectives or nouns can be non-locally fronted to the left-hand side.
Example (19) will be analysed as an instance of what Hohle (1986) calls K-field
and what is also known as the Wackernagel position. Here, the fronted modifier
of “liberzeugt” occurs twice and compactly, once as a full NP and once pronomi-
nalised. Just as in example (20), the corpus annotates these cases as instances of
“place-holder-phrases”, with a placeholder element (es, davon), and a phrase it
substitutes. Example (21) is a representative of a large class of right-extraposed
clausal material. It illustrates right-extraposition of a complement clause of a
nominal. Another important and equally behaving class are relative clauses.
Example (22) illustrates a discontinuous comparative phrase, which is also fre-
quently occurring, and example (23) is an instance of asymmetric coordination,
where the second conjoint is extraposed to the right hand side. Example (24)
enters the area of discourse structure. Here, the corpus annotation is somewhat
inconsistent. Sometimes these cases are analysed as parentheses, sometimes as
placeholder phrases, and sometimes as “discourse level constituents”.

The constraints on, as well as the variation in continuous and discontinuous
realisations of German have traditionally been analysed with the aid of topolog-
ical field models (Drach (1963)). A more recent outline is Hohle (1986). The
important descriptive grammars of German, e.g. Eisenberg (1999), employ this
model as well.

A topological field analysis starts at the sentence level, with the finite verb
of the main clause as a central element. Furthermore, topological field analyses
normally start with simple sentences, excluding complex cases of coordination
and ellipsis. The first distinction a topological analysis makes is to classify
main clauses into verb initial (V1), verb second (V2) and verb final (VF) clauses
(Eisenberg (1999)). The main functions of each of the sentence types are declar-
ative sentences for verb second clauses, and imperatives and yes/no-questions
for verb initial clauses. Verb final clauses occur mainly as subclauses. Hohle
(1986), however, gives a range of invented, but quite realistic examples, which
demonstrate that this association of sentence type and syntactic or pragmatic
function is merely loose: there are exceptions in all cases, and in either direction.

Table 3.1 provides a topological field analysis of sentences from an initial
portion of the Tiger corpus, some of which were presented earlier. The basic
differentiation of V1, V2 and VF clauses is reflected in the tables. It is remark-
able, though, that V1 clauses occur infrequently in the corpus data, due to the
rather restricted use of this clause type to imperatives, yes/no-questions, and

2 Although this may be a controversial linguistic decision, it is an aim of this thesis not to
change the input corpus annotation.

3Eisenberg (1999) speaks of Verberst-, Verbzweit- and Verbletztsatz. The Duden grammar
Drodowski and Eisenberg (1995) speaks of Stirnsatz, Kernsatz, Spannsatz respectively. Hohle
(1986) speaks of F1-Satz, F2-Satz, E-Satz respectively. I use verb initial, verb second and verb
final in this text.

verb initial clause (V1)

[coord | wackernagel [finite | mittelfeld [verbal complex [nachfeld [[Tiger # |
[Oder] [brauchen | wir eine 8ffentliche Auseinandersetzung mit ihnen? | [[117]
[Aber | | schauen | Sie, ... | | I 124 |
verb second clause (V2)

[coord] wackernagel [vorfeld | finit

Daf Perot ein Unternehmen erfolgreich fithren kann davon sind

Es ist

. viele Unternehmen, die meinen, Perot sei

‘Was bewirkt

mittelfeld [verbal complex | nachfeld [[Tiger # |

selbst seine Kritiker iberzeugt 6

wirklich schwer Zu sagen welche Position er einnimmt 36

einer von ihnen, ... 19

ihrer Ansicht nach ein solches Verhalten? 103

verb final clause (VF)
[coord [“c”] mittelfeld [verbal complex/finite | nachfeld [[Tiger # |

daf Perot ein Unternehmen erfolgreich leiten kann, ... 6
... der heute in fiinf Konzernen im Aufsichtsrat sitzt 18
... daR Perot durchaus Chancen habe, die Wahl im Novermber zu gewinnen, ... 11

Table 3.1: Topological field analysis

HHAYHO d4OM & HALdVHD

€C

CHAPTER 3. WORD ORDER 24

[ART | ADJ | SBST | NGr | PrGr | S |

| ein ‘ neues | Buch | dieses Autors | mit vielen Bildern, | das uns erstaunt |

Table 3.2: Noun phrase topology (from Eisenberg)

certain optative constructions in spoken language. The tables are taken from
Hohle (1986), but some of his abbreviated field labels were replaced by more
widely used terms.

I will refer to an analysis according to the topological field approach as a
(topological) field description. 1 conceive of a field description as an assignment
of linguistic elements (phrases) to fields, and assume the sequence of fields of a
field description as totally ordered. A field can constrain the number of elements
which can be realised in it. I will refer to this property of fields as field cardinal-
ity. There are also restrictions on the linguistic form and function of elements
which can occur in a field. In the descriptive literature, these restrictions refer
to a rather shallow syntactic analysis of the elements. In the following, the
fields that occur in Table 3.1 will be described in terms of the elements they
can hold and their cardinality (unless otherwise stated, a field can hold zero or
more elements).

Most fields are common to all clause types: coord is assumed to hold a
single optional coordinator. finite is a field which holds the unique finite full
or auxiliary verb of the sentence. In V1 and V2 sentences, the fields finite and
verbal complex constitute what is often called the sentence bracket: The verbal
complex contains a sequence of non-finite verbal material, used to assemble
complex modality or tenses. In VF sentences, the finite verb and the verbal
complex occur compactly towards the end of the field description. The elements
that occur between finite and verbal complex, or before both in VF clauses, are
called the mittelfeld. This field can hold an unrestricted number of arguments.
All field descriptions also have a nachfeld, to the very end of the field description,
which can hold extraposed, i.e. discontinuously realised material.

Other fields do not occur with all clause types. The wvorfeld occurs in V2
clauses only and can contain arguments of the verb as well as topicalized dis-
continuous material. ¢ is a field label used by Hoéhle (1986) in VF clauses to
distinguish coordinators and subordinators. According to him, nominal mate-
rial can also occur in this field. The field Wackernagel was mentioned before.
It participates in a special topicalization construction, in which the topicalized
phrase appears twice, as a full phrase, and pronominalised.

There is less research on the topology of the noun phrase, possibly because
it is considered simpler. Eisenberg devotes a section to it, and postulates the
fields in Table 3.2 (p. 400). He continues with investigating rules on adjective
order, referring to semantic classes of adjectives.

An early, but very comprehensive account on German word order which is
compatible with the topological field model is Bech (no year). More recent
research will be classified according to the fields of the topological field model,
which are under concern.

Reape (1994) gives a theoretical account of the interrelation between the
verbal complex and mittelfeld order. He covers many phenomena which are
known to be hard to model in phrase-structure accounts, as scrambling, cross-

CHAPTER 3. WORD ORDER 25

serial dependencies and VP intraposition (p. 316, 331, 353).

Hinrichs and Nakazawa (1993) investigate the linearisation of elements in
the verbal complex. They show that factors such as the type of the modal, the
question whether a predicator is a raising verb, etc. influence the possible per-
mutations of elements in the verbal complex. An example of such a permutation
was given in 3 above.

Uszkoreit et al. investigate extraposition of clausal material to the nachfeld
from the perspective of performance, concentrating on relative clauses. They
show that length and extraposition distance are important factors when deciding
whether to realise a relative clause in the mittelfeld, or to extrapose it to the
nachfeld. Gamon et al. (2002) build on their work.

Kurz (2000) presents an empirical corpus investigation on word order in the
mittelfeld. Some of her findings may be generalisable to the vorfeld. She reviews
a range of accounts which have been applied to this topic. Examples (8) to (14)
above suggested that there may be fine-grained rules governing preferences on
mittelfeld order. Obviously, placing the reflexive accusative pronoun towards
the end leads to a severe decrease in acceptability. Explanations from different
linguistic levels have been provided in the literature:

Engel (1970) refers to linguistic form and syntactic function in order to
predict mittelfeld order, and proposes this sequence of elements (adapted from
Hoberg (1981, p. 42)).

NPron AReflPron APron DPron Ndef Nndef Ddef ADef Dndef Andef G

Here, N stands for nominative, A for accusative, D for dative, and G for genitive.
Pron stands for pronominalised, and def and ndef refers to definite and non-
definite NPs. Hoberg (1981) tests Engel’s theory, actually finding the sequence
above attested by the corpus. She identifies a problem concerning the order
of datives and accusatives, though, and suggests animaticity as an alternative
explanation.

Besides syntactic function, thematic roles have been suggested for predicting
mittelfeld order. Scheepers (2000) shows in a psycholinguistic acceptability test
and an eye tracking experiment that thematic roles do have an influence on
acceptability and reading times, but only a mediating one, and that syntactic
function is in fact the superior criterion.

Kurz showed that also the semantic class of the verb has influence on un-
marked order in the mittelfeld. While there may be interactions with thematic
role accounts, this is an indication that at least some word order rules may be
best modelled by lexicalization.

In particular work from the Prague School of Linguistics (Sgall et al. (1986))
has used topic-focus structure, or contextual boundness as an explanation of
word order. Kruijff (2001) also stresses the importance of topic-focus articula-
tion to word order. A reflection of topic-focus-articulation is in fact implicit in
Engels criterion of definiteness.

Finally, phrase length was suggested, and concentrated on by Hawkins (1984),
who predicts that shorter elements precede longer ones, and that long elements
tend to be extraposed over short distances.

While the topological field model is generally accepted as a descriptive device
of German word order, it has several problems. Up to now, no formal framework
has been presented which explicates the constraints on which elements can occur

CHAPTER 3. WORD ORDER 26

in which field, neither has a formal characterisation of field cardinality been
given. Furthermore, the topological field model has hardly been applied to
more complex sentences, e.g. to cases of coordination and ellipsis.

A number of investigations on more fine-grained rules governing word order
in each of the fields of the topological model have been reviewed. While many
alternative explanations from different linguistic levels have been suggested,
none of the explanations have proven to be uniquely superior.

3.3 Approaches to Word Order (TDG)

This section reviews some formal grammar approaches to word order, which are
in principle able to account for the data of the previous section. The list of
frameworks could be easily extended.

In phrase structure (PS) approaches, the linguistic notions of word order
and valency (or subcategorisation) and adjunction are combined into the no-
tion of a phrase. This makes a separate analysis of these phenomena difficult.
Furthermore, a treatment of discontinuous phrases is impossible due to the non-
tangling condition of PS analyses. These problems lead to corrections early. The
Generalised phrase structure grammar (GPSG) of Uszkoreit (1987) postulates
two different levels of description, an ID (immediate dominance) level, and an
LP (linear precedence) level, separating the two notions clearly. Rules about
linear precedence are formulated in a constraint-based fashion. A constraint
violation does not immediately result in ungrammaticality, but rather the num-
ber of violated constraints results in a higher or lower degree of markedness or
grammaticality. Uszkoreit suggests the following five word order preferences,
and shows how they can be integrated into his grammar framework.

+NOM<+DAT, +NOM<+AKK,+ DAT<+AKK, -FOKUS<+FOKUS,
+PRONOMEN<-PRONOMEN

A similar adaption has been added to the closely related HPSG framework.
With the inclusion of the DEPS, additional to the SUBCAT list, a better sep-
aration between word order issues and valency issues has been reached. Reape
(1994) deals with word order by operations of domain union and shuffling. A
related approach is Kathol (2000). While unmodified categorial grammar (CG)
was proven to be equivalent to CFG, shuffling operations have also been defined
for categorial grammar, which account for word order freedom. Kruijff (2001)
also employs a version of categorial grammar. Also in LFG, an account of word
order have been presented Broeker (1998), which is compatible with topological
field models, and can account for discontinuous realisations.

Dependency grammar Tesniére (1965), Meluk (1988), Sgall et al. (1986)
has never been concerned with word order. In this thesis, however, a recently
proposed version of dependency grammar will be assumed, which remedies this
problem in an elegant way. Debusmann (2001), Duchier and Debusmann (2001)
present a multi-dimensional dependency formalism, called Topological Depen-
dency Grammar (TDG). TDG offers an account of word order, which assumes
a generalised version of the topological fields theory. Since concepts from TDG
will be taken over for the purpose of this thesis, a short review of this formalism
will be provided. TDG uses two tree structures to describe a sentence, an ID
tree of syntactic functor-argument structure, and an LP tree describing word

CHAPTER 3. WORD ORDER 27

Gegend g eilel rechtsradi 2 Minderheiten3 wird4 nurd deré Slaatsanwall? helfend keGnnend
Against violent tight-wing minatities will only the public prosecutor help

Gegen gewalthereite rechtsradikale Minderheiten wird nur der Staatsanwalt helfen kihnen

Figure 3.2: (above) TDG ID tree for Tiger sentence 133. (below) Corresponding
LP tree.

order. Both define a one-to-one mapping between word forms of the input sen-
tence and nodes in the trees, which gives the trees the appearance of dependency
trees.*

TDG’s ID trees are unordered, which means that only the parent-relation is
defined on nodes, as usual for trees (Debusmann (2001, p. 24)), but no left-to-
right order on nodes. ID trees will be depicted in a left-to-right fashion anyway,
but it is important to note that this is just a way to depict these trees. ID tree
edges are labelled with syntactic roles.

The nodes of LP trees are ordered, and the order on the nodes corresponds
to the order of the words on the surface (Debusmann (2001, p. 54ff)). In
order for an LP tree to be well-formed, it needs to be projective, i.e. for every
node in the tree, its yield must cover a contiguous substring of the words of the
sentence. The yield of a node is defined as the set of nodes under it, including
itself. When depicting ID and LP trees, edges violating projectivity appear
as crossing edges.® Edges of LP trees are labelled with topological field labels.
There is a further well-formedness constraint on LP trees: For every node in the
tree, the labels of its outgoing edges must conform to a globally defined total
order on field labels.

Figure 3.2 shows and ID tree, and a corresponding LP tree for a sentence
converted from the Tiger corpus.® Up to now, TDG has not come up with a
linguistically motivated set of syntactic functions or field labels, but leaves the
choice of edge labels to the grammar writer. In the figure, the Negra syntactic
functions were taken as ID edge labels, and a set of field labels for the LP tree
was loosely adapted from Debusmann (2001) for the purpose of illustration.
By convention, ID analyses of German have assumed two dependents for finite
auxiliary or modal verbs: the subject, and the non-finite full verb form, with
further arguments and adjuncts attached as dependents of the non-finite verb.

4In contrast to the reference quoted, I will not use the term “dependency tree” for LP
trees, but for ID trees only, and distinguish “dependency trees” from “word order trees” or
“topological trees”. Especially in the implementational chapters, I will also use the terms
“ID-tree” and “LP-tree”, without implying that the kind of tree structures I use internally are
identical to TDG’s ID and LP trees in all respects. For definitions of some of the mathematical
terms used in the following, confer to Appendix B.

5A formal definition of a crossing edge will be given in Section 4.4.

6Section 4.3 gives details on converting corpus sentences to ID trees.

CHAPTER 3. WORD ORDER 28

defuses { id Ip }
deforder {
po pp art pr nnh vf vafinh mf vc rb

defword t nn {
edgelD { sb mo }
edgeLP { vf mf }
nodeLP { nnh }
valencyID { ac mo* }
valencyLP { po? pp? art? pr* }
blocks { ac mo }

defword t_vafin {
edgelD { }
edgeLP { }
nodeLP { vvfinh }
valencyID { sb mo* }
valencyLP { vf mf* vc }
blocks { }
}
defword "Minderheiten’ t_nn { }
defword 'wird’ t _vafin { }

Figure 3.3: TDG declarative grammar formalism fragment

This analysis results in a non-projective ID edge from helfen to Minderheiten
in the example sentence.

ID and LP trees are related by a set of ID/LP principles (Debusmann (2001,
p- 63)). The most important principle for our purposes is the climbing principle,
which states that if node w is the direct governor of v on the ID level, and
wy, ..., W, are its indirect governors, the direct governor of v on the LP level
must be one of w,ws, ..., w,.

In Figure 3.2, the edge between Minderheiten and helfen cannot be a valid
LP edge, since it violates projectivity. Consequently, there will be an edge
between Minderheiten and wird, but not between Minderheiten and helfen in
the corresponding LP tree, conforming to the principles of projectivity and
climbing.

I complete the review of TDG with TDG’s lexicalized principles. An ID/LP
analysis is well-formed only if each lexical entry offers the edge labels of its
children, and accepts the edge label its governor offers. This needs to be true of
the ID and LP level. In the example, the word Minderheiten can only receive the
LP-label vf (Vorfeld) because its governor’s lexicon entry wird offers such a label,
and the lexical entry of Minderheiten accepts it. On the ID level, Minderheiten
can only be a child of helfen, because helfen offers a mo (modifier) label.

Figure 3.3 sums up the discussion of TDG with a grammar fragment in
the TDG declarative grammar formalism tailored to explain selected aspects of
the example sentence in Figure 3.2. The deforder statement defines the total
order on field labels. wvafinh and nnh are internal field labels, which specify
the position of the head among its dependents, while the others are external

CHAPTER 3. WORD ORDER 29

field labels, which specify the position of sisters among each other. ¢ nn and
t_wvafin are lezical types, from which the lexical entries (Minderheiten, wird,
etc.) inherit. The type for nouns specifies that nouns can occur as subject or
modifiers of their governor, and be realised in vorfeld or middlefield position. It
also specifies valency on the ID and LP level, with the aid of optionality flags.
The blocks feature of nouns prohibits ac and mo dependents to “climb through”.
valency and edge features implement offering and accepting of edges.

TDG-like tree structures were chosen as a basis for the learning architecture
to be developed for several reasons. The formalism clearly separates between a
level of valency and adjunction on the one hand, and word order on the other
hand. This leads to an expressive, but yet simple view on learning word order
rules: This task can be rendered as learning rules that map from ID trees to
LP trees. TDG’s climbing principle offers a possibility to deal with discontinu-
ity, which is not available in this simplicity in other formalisms. Furthermore,
TDG is not committed to a specific set of topological field labels, or syntactic
functions, but is flexible enough to be applied to corpus data, as it is annotated.
Since TDG has not yet been applied to corpus data, it is a theoretically inter-
esting question whether the formalism is expressive enough to elegantly express
the phenomena found in the data. While TDG is a lexicalized formalism, a
mechanism of lexical inheritance provides the possibility to express rules at an
arbitrary level of generality.

Clearly, TDG cannot handle statistical preferences, which seem to be part
of the nature of some word order phenomena described earlier. With the ex-
ception of Uszkoreit (1987), none of the particular approaches discussed above
has provided a model of statistical preferences or graded grammaticality. While
such approaches are being developed, they are out of scope for the purpose of
this thesis.

Chapter 4

A Word Order Learning
System

This chapter presents the main contribution of the thesis. Here, I develop an
approach to word order learning that fits in well to a wider grammar learning
scenario. I state the goals in Section 4.1. In Section 4.2, I sub-classify the prob-
lem into corpus conversion, climbing, primitive extraction and field induction,
robustness and feature selection, and export, and develop an architecture that
follows this classification. In the following sections, I develop solutions for each
of the subproblems in this order. The result is a machine learning architecture
whose implementation will be described in the following chapter.

4.1 Goals of this approach

The goal of this thesis is to develop, implement and evaluate a new machine
learning architecture to learning of word order rules from treebanks. The ap-
proach can be characterised as

1. unsupervised: Although the input is a richly annotated syntactic tree,
which encodes word order, the rules that are to be learned differ from
the input structures: The learning algorithm can be framed as clustering
nodes of the syntax trees into field indices, which are not encoded in the
input data. This contrasts to Becker and Frank (2002), who assume a
hand-made training corpus annotated with the structures to be learned.

2. symbolic: The learned rules are linguistically interpretable descriptions,
rather than probability distributions over a given class of linguistic tags.

3. robust: The approach should be able to deal with noise in the input data,
which statistical tendencies, and with different types of training data with
regard to annotation scheme and size.

Going into more detail, desired characteristics of the learning system are the
following.

1. clearly modularised: The approach fits into a larger grammar learning sce-
nario of which word-order learning is a sub-module. An entire learning

30

CHAPTER 4. A WORD ORDER LEARNING SYSTEM 31

architecture would comprise of, beside learning of word order, learning of
subcategorization frames for lexicon entries, learning of subcategorization
alternation and adjunction rules, and learning of agreement. Only through
modularisation is it possibly to explicitly exclude the aforementioned phe-
nomena from the focus of attention, and design a system devoted exclu-
sively to word order. However, the architecture should not only be clearly
modularised externally, but also internally, i.e. it should have clearly iden-
tifiable subcomponents. Immediate advantages of this clear modularisa-
tion are good human-readability of the produced rules, easy maintenance,
and good integratability with other work that focuses on other aspects
of syntactic learning, e.g. subcategorization frame extraction Sarkar and
Zeman (2000). This contrasts e.g. with PCFG approaches, which do not
distinguish between word order, subcategorization and adjunction rules
Charniak (1996), and is a step towards “linguistically abstract” grammars
in the sense of Kinyon and Prolo (2002).

2. formalism independent: Due to the problems of inter-framework conver-
sion (Section 2.2), the produced rules should be general enough to be
exportable to an arbitrary grammar formalism. As an example of this
strategy, an experiment will be presented in Section 6.4, where the pro-
duced rules were exported to the TDG formalism, and used for pars-
ing. Formalism-independence is a characteristic that distinguishes this
approach from Xia et al. (2001), just to name one.

3. few linguistic assumptions: While the term topological field descriptions
will be used in the following, only a generalised, and very abstract notion
of topological fields will be assumed (see e.g. Kruijff (2001)). The result
is a learning system that can actually discover the regularities implicit
in the data, and can even be used to evaluate the predictions of descrip-
tive linguistic theories. A particular phenomenon discussed in Section 3.2,
which should be modelled, is discontinuity. The consequence is applicabil-
ity to a wide range of typologically different languages. The learned rules
will be compared to linguistic theories in Section 6.5. This contrasts e.g.
with Villavicencio (2000), who assume a Principles and Parameters the-
ory, along with X-bar assumptions and a given hierarchy of phrase classes,
and learn parameter values only.

4. linguistically fine-grained: The number of linguistic features annotated in
treebanks is steadily increasing (Abeille et al. (2003)), and word order
regularities can potentially depend on many linguistic features, as became
evident in Chapter 3. The architecture should therefore be flexible enough
to capture regularities dependent on any linguistic feature the corpus is
annotated for. This also means that the architecture should be indepen-
dent of the specific annotation scheme of the corpus used.

4.2 Overview of the learning system

This section develops a machine learning architecture following the desiderata
from the previous section, and gives an overview of this architecture, before each

CHAPTER 4. A WORD ORDER LEARNING SYSTEM 32

LP corpus

_, | Climbing | __ | Primitive |__| Field _, | Feature _, | Cardinality el

Conversion Extraction Induction Selection & Export “a
p) word order

rules

treebank— Corpus

Figure 4.1: System Architecture

of the components is described in more detail in the following sections. Figure
4.1 is an overview of the learning architecture, indicating input and output.

For reasons outlined in Section 3.3, dependency structures were chosen as an
internal representation of syntactic structure. In order to be independent of the
concrete corpus used for training, there is a COrRPUS CONVERSION module which
converts the corpus to dependency structures. It will be described together with
a description of the input corpus format in Section 4.3.

The choice of input representation was characterised as essential for a ma-
chine learning architecture in Section 2.1. The system component that perceives
of the input data as a set of primitives to learn from is called PRIMITIVE EX-
TRACTION and will be outlined in Section 4.5. While an entire syntactic tree is
certainly too large a primitive to learn from, an example set consisting of single
words is obviously too little information to learn rules about word order. It will
be argued that a pair of two words occurring under a common head in a syn-
tactic tree, where each of the words, and the head is represented by a linguistic
feature structure, is a suitable primitive. Such a triple of feature structures will
be called a precedence pair.

Discontinuity was argued to be a potentially widely occurring phenomenon
of the input data in Section 3.1. In Section 4.4, a CLIMBING module will be
described that deals with discontinuous configurations. It will be argued that
discontinuous realisations can be identified in the input trees, and resolved by
making discontinuously realised nodes climb to their parent nodes. As can be
seen in Figure 4.1, the climbing module is prior to the primitive extraction
module, with the primitive extraction module working on the modified trees
(climb trees).

The FIELD INDUCTION component, outlined in Section 4.6, calculates word
order rules from the precedence pairs extracted during primitive extraction. I
am following a generalised topological fields theory which meets the desideratum
of few linguistic assumptions of the previous section. During field induction,
a graph is constructed from the precedence pairs in the data, whose nodes are
descriptions of dependent elements, and whose edges are the indirectly-precedes-
relation. Such a graph is learned for each class of head item found in the corpus.
The section will illustrate that it is possible to construct such a set of graphs from
the data, and that these graphs can be interpreted as generalised topological
field descriptions.

FEATURE SELECTION (Section 2.4) aims at making the approach robust.
Two devices are identified for this task: a parametrisation of the edge selec-
tion function, which determines which precedence pairs to judge as reliable
to be included in the graph, and the feature selection function mapping from
words to linguistic feature structures when constructing precedence pairs. It
depends heavily on feature selection whether the goal of learning linguistically

CHAPTER 4. A WORD ORDER LEARNING SYSTEM 33

fine-grained rules can be achieved: If feature selection is too coarse grained, only
very general word order regularities will be discovered. If feature selection is too
fine grained, the data will be overfit. Two strategies of feature selection will be
proposed, manual feature selection, where the feature selection function is given,
and automatic feature selection, where decision tree learning is used to adapt
the feature selection function iteratively, and converge towards a near-optimal
function.

FIELD CARDNIALITY AND EXPORT (Section 4.8) deals with (a) augmenting
the learned word order rules with information on field cardinality and (b) ex-
porting the learned rules to different formats. This module produces a corpus
of topological trees conforming to the learned rules, using a test corpus, which
is disjoint from the training corpus. It exports the learned field descriptions to
a human readable form, and to a concrete grammar formalism. As an example,
export to the TDG declarative formalism is demonstrated in Section 4.8. The
output of the EXPORT module will be the basis for evaluation of the system in
Chapter 6.

4.3 Corpus Conversion

With the goal in mind of being able to handle discontinuity, it was decided to
work internally on dependency trees solely, which may have crossing edges. This
section describes the interface to the input corpus, which cannot be expected to
be available in this form. In the implementation, care was taken to make the
corpus conversion easily exchangeable.

Two corpora of German, the Negra corpus and the Tiger corpus, were avail-
able in Negra annotation format (Skut et al. (1998), Brants et al. (2002))'.
Other corpora were also available in this format. This annotation scheme has
the advantage of allowing for crossing edges, and features syntactic function an-
notation. It therefore resembles TDG’s ID structures closely. Figure 4.2 shows
an examplary sentence in Negra annotation format.

Word forms are labelled with POS-tags according to the Stuttgart-Tiibingen
tagset (Schiller et al.). There is also a small set of phrase labels, and a larger
set of functional labels, indicated at the edges. Appendix A contains tables of
all tags in the Negra/Tiger corpora.

In order not to feed too much linguistic knowledge into the learning archi-
tecture, it was decided to leave all structural decisions made in the input corpus
unchanged, as well as the corpus tagset. A mapping from Negra mobiles to de-
pendency can then be defined as an algorithm that recursively lifts the terminal
head of each non-terminal node in the Negra mobile, and adds non-head nodes
as dependents. This algorithm is outlined in Algorithm 1.2

I define the projection line in step 2 as all nodes in the Negra syntax tree,
which are on a path downwards in the tree, following head labels only. By
definition, a node is a member of its own projection line. The lexical head of a
node is the last element of the projection line of a node, and is always a terminal
node. Since the linguistic core of the algorithm is the determination of what
constitutes a head label, I discuss this question, before I illustrate the algorithm
by means of example.

1The Tiger annotation scheme is an extension of the Negra scheme
2Punctuation is removed from the trees during conversion.

CHAPTER 4. A WORD ORDER LEARNING SYSTEM 34

‘ VROOT.

T . t 2

PP NP
Gegen gewaltbereite rechtsradikale Minderheiten wird nur der Staatsanwalt helfen konnen
APPR ADJA ADJA NN VAFIN ADV ART NN WVINF VMINF 5.

Figure 4.2: Corpus sentence in Negra annotation scheme (Tiger sentence 133)

e

e
L G ee——"
— e — " 1

Gegend g eitel rechtsradil 2 Minderheiten3 wirdd nurs dert Staatsanwall? helfend kthnend
Against vialent tight-wing minarities wll only the public prosecutor help

Figure 4.3: Dependency tree corresponding to Figure 4.2

Algorithm 1 DependencyTree convert(NegraTree n)

1. construct a dependency node n’ from the lezical head of n

2. for all nodes m on the projection line of n

(a) for all nodes k which are not on the projection line of m
i. k' = convert(k)

ii. add k' as a direct dependent of n’

3. return n’

CHAPTER 4. A WORD ORDER LEARNING SYSTEM 35

In the case of S and VP nodes, a designated functional label HD indicates the
head. Other types of phrases do not have an HD label, but a similar designated
element. These are discourse level constituents, and placeholder phrases. Noun
phrases, however, are flatly annotated in Negra, with all central elements bearing
the label NK (noun kernel). The right-most NK element may be taken as a
head in this type of constructions. The same is true of multi-component proper
names, multi-component numerical values and adverbial phrases (“und zwar,
immer wieder, ...”). This strategy may lead to arbitrary decisions in some cases.
However, the very reason why these phrases were chosen to be flatly annotated
in Negra is that the decision of what is the head is controversial in these cases.
If no head is found according to the outlined strategy, the left-most element is
returned as the head by default.

In coordinated structures, the coordination (edge label CD, POS tag KON)
is taken as the head, if the conjoints are phrasal (CJ). If there is no coordinating
element, or only terminal coordinated elements, the default strategy of picking
the left-most dependent phrase applies. The result is a picture where the right
conjoint is a dependent of the left conjoint, similar to the analysis of Mel¢uk
(1988). This happens mostly in simple coordinated noun phrases. Also in case
of ellipsis, the default strategy applies and selects the left-most element as the
head.

The conversion from Negra tree structures to dependency structures can be
illustrated with the aid of Figures 4.2 and 4.3. The lexical head of the top
level S node is “wird”, since it is labelled with the HD edge label. This node is
converted into a dependency node. There is only one node on the projection
line of the S node, which is the S node itself. There are two subnodes which
are not on the projection line, the NP and the upper VP. On both of them, the
algorithm is recursively called in step 2(a)i of Algorithm 1. Thus “Staatsanwalt”
and “kdnnen” are inserted as direct dependents of “wird” in the dependency tree
(step 2(a)ii), and further recursive calls are made.

Since dependency trees of the kind of Figure 4.3 are the input of the learning
architecture, it is worth considering the information such a tree encodes. A tree
consists of

1. nodes: each node is associated with a word form, and linguistic features of
this word form, specifically with its part-of-speech tag. The edge label of
the incoming (upward-pointing) edge of each node can also be considered
a feature of the node.

2. edges: an edge is a relation between two nodes, a governor and a dependent

3. order: the tree also encodes an order on words (nodes) on the surface

4.4 Climbing

This section makes a central independence assumption on the nodes of depen-
dency trees, on the basis of which the primitives for the learning system will
be formulated in the following section. The assumption leads to a further de-
pendency tree conversion algorithm, which is executed prior to the extraction
of primitives.

CHAPTER 4. A WORD ORDER LEARNING SYSTEM 36

It was stated in Section 2.1 that an essential step in designing a machine
learning system is the representation of the input data. Considering entire
trees as input data, though, is inadequate for symbolic learning®. Therefore,
an independence assumption on nodes in the trees with regard to word order is
needed, which allows to decompose trees into smaller subtrees. These subtrees
will be regarded as primitive, and independent of each other, and will form the
basis of the definition of a primitive example for the learning architecture in the
next section. Consider the following definitions.

Word Order Domain Let W be the set of node tokens in the corpus. The
word order domain (or domain) of a node, D(w), is a sequence* of nodes,
which at least includes the node itself. D(w) C W; w € W; w € D(w).
Call w the head of the domain D(w).

Independence Assumption If word forms a¢ and b occur in a common do-
main, 3h € W : a € D(h), b € D(h), their order depends on features of a,
b and the head of their common domain, & only. If ¢ and b do not occur
in a common domain, there is no rule about their respective order.

The formalisation of word order domains builds on the insights of Kathol (2000)
and Duchier and Debusmann (2001), although the linguistic concept is not new.
A trivial definition of a word order domain could be based on ID trees. Assume
the word order domain of a node w as the set containing w’s dependents in
the ID tree, and w itself. In the example of Figure 4.3, this would mean that
the order domain of “Minderheiten” is the sequence <“gegen”, “gewaltbereite”,
“rechtsradikale”, “Minderheiten”>. By the independence assumption from above,
this amounts to saying that there are grammaticalised order rules on the order
of “gegen” and “gewaltbereite”, or “gegen” and “Minderheiten”, but that a rule
on the respective order of “gegen” and “der” is linguistically unmotivated.

With defining a word order domain on the basis of ID trees, it is not pos-
sible to account for discontinuous phenomena. In the example, no rule could
be formulated that predicts that the subtree “Minderheiten” and the subtree
“Staatsanwalt” can commute. The rest of this section will follow TDG in defin-
ing word order domains not on ID trees, but on converted tree structures, which
I will call climb trees. Climb trees are mathematically equivalent to TDG’s LP
trees except for their edge labels. The reader is referred to Debusmann (2001)
for a more detailed survey.

Climb Tree The climb tree Tc =< N, Vg, r > of anID tree Trp =< N, Vip,r >
(r € N, V C N x N) has the same nodes, and the same root as its ID tree.
For every node n, the parent of n in the climb tree is one of n’s transitive
parents in the ID tree. Every edge in a climb tree must be projective.

Crossing Edge An edge from a governor m to a dependent n is a crossing, or
non-projective edge if there is at least one word form w, appearing on the
surface between m an n, which is not an indirect dependent of m.

3 Assuming entire trees as examples is in fact a possible assumption, and would lead to a
memory based learning scenario (see Section 2.1).

4A sequence can be defined as an ordered set. A sequence will be notated in angle brackets
if the order on the set matters, or in braces if only the underlying set is of importance.

CHAPTER 4. A WORD ORDER LEARNING SYSTEM 37

Algorithm 2 Convert an ID tree T7p to a climb tree T¢

1. for every node n in T7p in top-down order
(a) let C be the list of transitive parents of n, from parent;p(n) to the
root
(b) iterate c € C

i. if the edge between ¢ and n is projective, establish parentc(n) =
¢, and break

] VAEIN |

! 0 ; m VULE
PPE an7a an7a _ MDYV BRT VLT

Gegend g eitel rechisradil 2 Minderheitend wirdd nurd dert T kA [l

Figure 4.4: Climb Tree for the example sentence

Algorithm 2 is the easiest algorithm which can be designed to calculate a
climb tree from an ID tree. The algorithm considers all transitive parents of a
node in the ID tree, and establishes the nearest of these transitive parents as the
parent of the node in the output climb tree, for which the edge is non-crossing.
Correctness and termination of this algorithm can be proven by showing that
a node can at least climb to the domain of the root, and that it necessarily
stops climbing there, because an edge between the root and an arbitrary node
is projective by definition.

If word order domains are defined on the basis of climb trees instead of de-
pendency trees, a representation of the data has been found that can handle
discontinuity. In Figure 4.3, the word order domain of “Staatsanwalt” is un-
changed, but the word order domain of “wird” is now <“Minderheiten”, “wird”,
“Staatsanwalt”, “kbnnen”>, because the edge between “Minderheiten” and “wird”
has to climb over a distance of 2 nodes in order to be non-crossing. Figure 4.4
shows a climb tree computed from the earlier example sentence.

In the following sections, primitives for learning will be defined on the basis
of climb trees. Nodes that have climbed during conversion from ID trees to
climb trees will be called non-local elements, and will be distinguished from local
elements. During induction of field descriptions, non-local and local elements
will be treated the same.

Nothing was said about the edge labels of climb trees yet. The edges of
input dependency trees reflect a relation between two nodes. When changing
edges on the way from dependency trees to climb trees, the edge label should
be adapted. In depicting climb trees, I will mark the climbed edge with a = sign
to indicate that the edge label reflects the relation to the original governor. It
is more accurate, however, to include the exact nature of the climbed edge into
the representation of the tree. This is accomplished by the following definition
of a climbing path. I will not go into further details of how to notate a climbing
path. The concept resembles the notion of a path in LFG Bresnan (2001), and
notation is available there.

CHAPTER 4. A WORD ORDER LEARNING SYSTEM 38

Climbing Path and Climbing Distance The climbing path of a node is the
sequence of nodes c iterated during execution of Algorithm 2. The climbing
distance is the number of nodes c iterated.

I conclude with a judgement of the linguistic validity of the independence as-
sumption made. Certainly, the assumption follows linguistic practice, see e.g.
Collins (1999a). There are, however, some cases where it is not clear whether
the assumption is correct. One case in point are the conditions that trigger
verb-secondness vs. verb-final-placement in German subordinate clauses. Here,
the occurrence of a subordinating conjunction triggers the position of the verb.®
Algorithm 2 only assumes edges to climb in the face of discontinuity. In
other words, it is biased towards assuming non-climbed edges, where they are
possible. Consider, however, the following, modified example sentence.

1. Nur der Staatsanwalt wird gegen gewaltbereite rechtsradikale Minder-
heiten helfen kdnnen.

Example 1 is a continuous realisation of the previous example. Consequently,
the climb tree according to Algorithm 2 will not differ from the ID tree. It may
be desirable in some situations not to choose the nearest possible parent in step
1b(i). TDG, in any case, assumes that climbing also takes place in sentences like
1 above, speaking of “forced climbing”. The development of such an algorithm,
however, is left for future research.

5A technique that is employed in many syntactic frameworks to account for these cases
(e.g. GPSG and HPSG) is to include special features, inherited from below (foot features)
into the descriptions of nodes.

CHAPTER 4. A WORD ORDER LEARNING SYSTEM 39

4.5 Primitive Extraction

This section deals with the question of how to represent the input climb trees
as a set of primitive examples, from which word order rules can be learned.

Section 4.3 described the input data as trees, consisting of nodes with asso-
ciated features, edges as relations between nodes, and an order on nodes. The
previous section made an independence assumption on nodes, which allowed a
reduction in the number of relations in the trees and the consideration of local
subtrees only. This leaves two open questions:

1. Which linguistic features should be included into the example descrip-
tions?

2. How should the notion of order be formalized?

The first question will be postponed until Section 4.7. It will be mathemati-
cally captured, though, in this section by the definition of a feature selection
function. This question is relevant, because the set of possibly word order rel-
evant linguistic features is large, and possibly drawn from different linguistic
levels (see Section 3.2). For this reason, I decide to represent word forms as
linguistic feature structures (attribute-value-matrices, AVMs, see Appendix B).
An AVM is a function from features to values, e.g. POS-tag, syntactic relation,
base form, etc. A possible feature structure for the word “gegen” is [rel:x, pos:y,
base:gegen|. The approach parametrizes the features to pick, and even offers
the possibility to learn a set of order relevant features.

There are two possible answers to the second question from a mathematical
point of view. Order is formalized mathematically as a binary relation on a set.
In the previous section, it was assumed that a rule about the order of two word
forms can only be formulated if they are in the same domain. This leaves room
for either expressing order in terms of transitive precedence, or immediate prece-
dence on the syntactic surface. In the example sentence from above, “gegen”
immediately precedes “gewaltbereite”, and transitively precedes any other word
in the sentence. It neither precedes nor succeeds itself. I opt for transitive prece-
dence, making another linguistic assumption which was motivated in Sections
2.2 and 3.2.

Assumption Word order can be described independently of valency.

If this assumption is correct, it will be advantageous to pick transitive precedence
as a formalization of word order, because dependents of a certain type might
or might not occur in the data, due to valency and adjunction phenomena.
Immediate precedence will fail in the face of this characteristic of the data,
while transitive precedence will behave robustly. The reader is asked to verify
this claim.

I now formalize the ideas from above, starting with the definition of a feature
selection function, and continuing with the definition of a primitive for learning.

Head Feature Selection Function Let W be the set of node tokens of the
corpus. Let E be a set of (dependent) elements, and H be a set of head
elements (or head classes); all three sets are disjoint. Let f:W—H
be a function from word form nodes to the set of head classes, the head
feature selection function.

CHAPTER 4. A WORD ORDER LEARNING SYSTEM 40

Dependent Feature Selection Function Let f : W — FE be a function
from word form nodes to the set of elements, the dependent feature selec-
tion function.

With the definition of the feature selection functions, the problem of which
linguistic features to pick as word order relevant has been mathematically ex-
pressed. Following the discussion above, I assume W to be a set of feature
structures, and write feature(w), w € W to refer to a feature of a feature
structure. In this section, F and H are assumed to be arbitrary, descriptive
symbols, although they will eventually be sets of feature structures too. f is
assumed as given throughout this thesis, although there will be some remarks
on learning it. As long as also f is assumed as known a priori, I will speak of
manual feature selection. If f is to be learned, I will speak of automatic feature
selection.
Below is a possible head feature selection function:

f = pos(w)
The dependent feature selection function should at least be able to distin-

guish between a non-head and a head element. A dependent feature selection
function with this characteristic is the following.

fh(w){HD ifh=w

rel(w) otherwise

In the running example, the node “Staatsanwalt” is reduced to NN by the
head feature selection function. As regards the dependent feature selection
function, it depends on the “point of view” from where the node is reduced:

"Staatsanwalt” (| Staatsanwalt") = HD, but fuyiqr("Staatsanwalt") = SB. A
more sophisticated dependent feature selection function tailored to the annota-
tion format of the input corpus is the following. No further comments will be
made at this point on an appropriate choice of a function though.

HD i~f h=w
fo(w) = ¢ pos(w) if f(h) = NN
rel(w) otherwise

I now define the primitive example of the learning architecture, making use of
the feature selection function, the definition of order and the assumption about
how much local tree context should be taken into account. Such a primitive
example will be called a precedence pair, and defined as an occurrence of two
dependent elements under a common head element, either indirectly preceding
or succeeding each other.

Precedence Pair Instance A precedence pair instance is a triple (w1, wa, wy,)
of word forms from the domain of wy, the head (w1, w2, wy, € D(wp,)), such
that wi < we. < is the transitively-precedes-relation.

Precedence Pair A precedence pair is a triple (e, es, h), e1,e0 € E; h € H
such that there is a precedence pair instance (wy,ws, wy) with fj,(wy) =
e1; fn(we) = e2; f(wy) = h. Let the set of precedence pairs be called P.

CHAPTER 4. A WORD ORDER LEARNING SYSTEM 41

wird (MO,HD,VAFIN), (MO, SB,VAFIN), (MO,OC, VAFIN),
(HD,SB,VAFIN), (HD,OC,VAFIN), (SB,O0C,VAFIN),
Minderheiten (AC, NK, NN) ,(AC, NK, NN) (AC, HD, NN},
(NK,NK,NN) (NK,HD,NN) (NK,HD, NN},
Staatsanwalt (MO, NK, NN),(MO,HD,NN) (NK,HD,NN),
konnen (OC,HD,VMINF)

Figure 4.5: Precedence Pair Instances constructed top-down from the example
sentence, with the first dependent feature selection function

The third member of the tuple will sometimes be skipped, if it is clear from the
context. Examples of precedence pair instances in Figure 4.4 are (“Staatsanwalt”,
“konnen”, “wird”) and (“wird”, “Staatsanwalt”, “wird”). The corresponding prece-
dence pairs, constructed with the underlying feature selection functions from
above, are (SB,OC,VAFIN) and (HD, SB, VAFIN). Note that the second of the
precedence pair instances contains the same node twice, and that the corre-
sponding precedence pair describes the position of the head within its own do-
main. If the head is clear from the context, we may abbreviate the precedence
pairs to (SB, OC) and (HD, SB).

Algorithm 3 presents an algorithm how to construct the set P for a given
input sentence. Figure 4.5 lists all precedence pairs constructed according to
this algorithm from the example sentence.

Algorithm 3 constructing precedence pairs P from an input sentence S
1. INPUT P: set of precedence pairs

2. for all nodes n in the tree S

(a) let D be the domain of n
(b) for all m x m’ € D where m indirectly precedes m’

i. add a precedence pair (f(m), f(m'),n) to P

I conclude this section with an example of precedence pairs calculated from
real data. Figure 4.6 shows the precedence pairs of the head class [pos:NN], with
a feature selection function that relies on syntactic relation only, calculated from
the initial 1000 sentences of the Tiger corpus. The precedence pairs are arranged
in a precedence table, a convenient way to represent a large number of precedence
pairs. The head element is indicated in the left upper corner of the table, and
column and row captions indicate dependent elements. The value before the
slash indicates how often the precedence pair <row,column> was seen in the
data, and the value after the slash indicates how often <column,row> was seen.
To capture this notion mathematically, I define the frequency of a precedence
pair at this point.

Frequency of a Precedence Pair the frequency, or count, of a precedence
pair ¢(p); p € P is the number of precedence pair instances of a precedence
pair.

CHAPTER 4. A WORD ORDER LEARNING SYSTEM 42

[pas: MK {lrel:bK] [head:ves] ([rel AC] \[rel:MKE] [rel: GR] rel:C)] [rel:MO] [rel:CO] [rel:RC] [rel:P3]
e Rl aretbied AR O | 5.0 N | U330 HE
[heades] |1/256% !

[relAC] [B36/14 [1094j12 (15/15

[relMNR] |3/337 57363 (1119 113/13

relGR] |0/290 17329 117140 26/1 7

[rel:C]] 7145 10/131 (463 11170 10/0 [54/54

frelMo] (13171 |132/10 [6L/% 2270 1zz/0 G 474

[retCD] [0/20 [0j94 0/51 ET 570 197,28 E 272

[relR] [0/108 l0ja7 0734 111 1178 074 ICIE] o2 !

TrelFG] 0736 [GTEE:] 026 310 ¥ 073 Toj2 [0s2 Zjn i
[rel.&PF] [0/47 037 GYE] 1174 0/10 /s 073 0/2 1) i
Ireloc] (0743 [0j4z loj11 o1 l0/z 0/1 o2 lo/1 ! o1
[relcM] 230 [2o/0 650 170 [470° 11/0 11/0 |10 1/0 i
[rel:cl] 510 |1a/0 074 450 [1 [i i i
TrelNG] [B/0 7i0 270 [Z70 7 ¥ T4/0] I i
relcC] [0/ 0/8 /1 ! 0/1 i i1 i i 0/1
S o e b o i i i i ; -
[refPNE] 072 [o/T [[[/ [£ [P [Lo /
[rel:QA] ! 0/1 1071 ! af1 i f i ¢ i

Figure 4.6: Precedence Table for Normal Nouns

4.6 Field Induction

This section presents an approach to constructing a set of field descriptions from
the the set of precedence pairs observed in the corpus. A field description should
be interpretable as a rule that predicts the order of elements, when given an
unordered domain of a node.

In the previous section, I made the assumption that the order of two word
forms with respect to each other depends only on their features, and on features
of their common head. If this assumption is correct, it should be possible to
construct a field description for each class of head elements, i.e. for each h € H.
The data upon which to construct the field description is a subset of the set
of precedence pairs, viz. exactly those precedence pairs that occurred under
instances of the head class h, formally P), = {(e1,e2,h’y € P | h =h'}. P, will
be called the precedence pairs of h. The set of elements in the precedence pairs of
h,E, ={e€ E|3(e1,e2,h) € Py, e =e1 Ve=ey}, will be called the elements
of h.

I assume now that a generalized topological fields model is an appropriate
form to describe the grammaticalised order of the elements of h. A topological
field model does not have a means, though, to express preferences in the data,
as opposed to hard constraints. The model should fulfill two criteria:

1. it should be robust in the face of annotation errors, or highly infrequent
exceptions

2. while symbolic in nature, it should be augmentable such that it is able to
express tendencies in the data

As pointed out in Section 3.3, page 24, a topological field description is a se-
quence of fields, each of which can contain a defined set of elements. Equiva-
lently, a field description can be defined as follows:

Field Description The field description of head h is an assignment of elements
to a set of consecutive, non-negative integers, the field indices. F; refers
to the set of elements assigned to field index %, and is called a field.

CHAPTER 4. A WORD ORDER LEARNING SYSTEM 43

The question is the whether it is possible to learn such a field description from
precedence pairs. Such a learning algorithm can be viewed as an instance of
clustering (see Section 2.1), which clusters elements into field indices.

Assume a field description with three fields as linguistically desired:

Fl :{a7b7c}; FQZ{a7d7e}; F3:{fagac}

The formalization has the disadvantage of allowing for multiple occurrences
of the same element in different fields. For example, ¢ occurs in the first and
the third field, a in the first and second. In the field descriptions of Section
3.3, this was a characteristic often assumed, e.g. subjects could occur in the
vorfeld or mittelfeld. This characteristic, however, poses a problem towards
learning field descriptions from precedence pairs: Assume the field description
above was to be learned from precedence pairs. The algorithm might have seen
the pairs (a, e) and (e, a). It could conclude from this fact that there is no order
constraint for ¢ and e, and include them into the same field. However, it might
also have seen the pairs (a,c) and (c,a). How should it know that a and c are
not to be included in the same field? Furthermore, it might have seen pairs
(a,d) and (d,a), just as (b,d) and (d, b). How should it know that a can occur
in field 1, while b cannot?

In the formalization that follows, I assume that there cannot be multiple
occurrences of the same element in different fields. This assumption makes a
field description of head h interpretable as a partial order on the elements of
h. See Davey and Priestley (1994) for the connection between a partial order
and assignment to integers.® I will show how it is still possible to come closer
to representations like the one above towards the end of this section.

Field Element Order The field element order of head h is a partial order
on the elements of h, O, = (E},<). < is an irreflexive, anti-symmetric,
transitive relation on Fj,.

It remains to be shown that the field element order can be calculated from a set
of precedence pairs. A graph algorithm (see Appendix B) will be developed to
accomplish this task. Assume a graph whose nodes correspond to the elements
of h as follows.

Order Graph The order graph of h is a directed graph G, = (N,T), T C
(N x N) with an isomorphism i between N and FE}.

Edge Selection Function Assume a function sp, : Fj x E, — {0, 1}, the edge
selection function. Let there be an edge (n, m) in G}, iff s5,(i(n), i(m)) = 1.

Obviously, the shape of the order graph depends heavily on the edge selection
function, whose purpose it is to predict which edges to include into the order
graph, on the basis of the available precedence pairs. The most straightforward
edge selection function is given below, and will be referred to as simple edge
selection.

6An assignment of elements to integers is not equivalent to a partial order, but induces
such a partial order on the elements. It will become clear below that Algorithm 3 computes
the partial order, while Algorithm 5 computes an assignment from elements to integers which
conforms to this partial order. Since there is more than one assignment that conforms to the
partial order, the algorithm includes a further assumption which will be commented on below.

CHAPTER 4. A WORD ORDER LEARNING SYSTEM 44

mo — pd

YA

da —» sb—» hd— o0a

Figure 4.7: Example of an order graph

m04>p7d

da — = sb=hd=oa

Figure 4.8: Order graph with equivalent nodes collapsed to single nodes

sp(er,eq) := 1iff I(eq,eq,h) € Py

Simple edge selection is sufficient for the rest of this section. It will be
refined in Section 4.7. Simple edge selection predicts an edge in the order graph
whenever there is evidence in the precedence pairs for one element preceding
the other. Figure 4.7 shows a simple example of an order graph that might be
constructed with simple edge selection.

An order graph may contain cycles. Linguistically, a cycle in the order graph
reflects the fact that there is no clear-cut constraint to the respective order of
the elements on the cycle. While an acyclic graph defines a partial order on its
nodes, a cycle that contains cycles does not. Nevertheless, the order graph can
serve as a basis for the computation of the desired partial order on elements Dy,.
This idea is formalized in the following definition and two theorems, adapted
from Mehlhorn (1999, Chapter 4, p. 25ff) (also see Davey and Priestley (1994)).

Theorem A directed acyclic graph induces a partial order on its nodes.

Strongly Connected Components A strongly connected component of a di-
rected graph G = (N,T) is a maximal subgraph G’ = (N',T") of G in
which every node is reachable from any other node (n —* m —* n for
n,m € N'). Any two nodes that are in the same strongly connected
components are called equivalent.

Theorem The strongly connected components of a directed graph can be com-
puted in linear time.

Figure 4.8 shows a graph that differs from the graph in Figure 4.7 in this respect:
all equivalent nodes in the previous graph are collapsed to a single node. All
edges between non-equivalent nodes are maintained. Mehlhorn (1999) presents
a linear-time algorithm for this task, However it is fairly complex.

Mehlhorn (1999) assumes a graph as given, and explicitly outputs a graph
like the one in 4.8. I developed a simpler algorithm, presented in Algorithm 4,

CHAPTER 4. A WORD ORDER LEARNING SYSTEM 45

which (a) does not explicitly construct a graph like the one in Figure 4.8, since
this is not necessary for our purposes, and (b) combines the construction of the
graph from precedence pairs and pre-calculations into a single step.

A node is constructed for each element found in the set of precedence pairs
(line 4). The graph is stored in adjacency list representation as a map from type
Element to type Node. Data structure Node defines a set of elements, a field
index, and lists of incoming and outgoing edges (line 2). Furthermore, a list
initial (line 3) is maintained during construction which holds the set of nodes
with indegree 0 (i.e. the set of nodes which are not preceded by any other node,
line 4a to 4c).

I claim that after termination of algorithm 4, nodes holds a directed acyclic
graph, and #nitial holds a set of nodes with indegree zero. A proof of these claims
proceeds by showing the invariant of the algorithm that after each complete
execution of the loop that begins in line 4, the graph is acyclic. To see this,
note that an empty graph is acyclic. After each insertion of an edge, the graph
is checked whether the new edge results in a cycle in line 4(d), and if so the
cycle is removed on the fly in lines 4(d)i to 4(d)iii. This prooves termination of
the algorithm, and acyclicity of the resulting graph.

It remains to be shown that lines 4(d)i to 4(d)iii in fact remove the result-
ing cycle. In step 4(d), the graph is systematically expored with the aid of
Node.mark, and all paths from nodes{e2} to nodes{el} are calculated Mehlhorn
(1984, p.17). Since there is an edge from nodes{el} to nodes{e2} all nodes in
equivalent are on a strongly connected component. Lines 4(d)iii A-D adapt the
data structures such that all nodes in equivalent are merged into a single node.
A proof is skipped.

In line 6, Algorithm 5 is invoked on the graph defined by nodes. This algo-
rithm computes a mapping from nodes to integers that conforms to the partial
order defined by the graph in nodes. This is achieved by recursively ensuring
that wherever there is an edge from node n to node m, the field index of m is
at least n + 1 (line 6). Termination is guaranteed by the use of the mark flag.
Correctness follows from the discussion. After termination of Algorithm 5, the
integer field of data type Node holds the desired assignment to integers.

Since the computation of these integers is started from the set of nodes in
initial, the assignment to integers is left-aligned. With noting this bias of the
algorithm, I refer to footnote 6. An alternative bias, which is slightly more
complex would be starting the search at the position of the head in the field
description.”

For illustration, Figure 4.9 presents a field description induced from the data
presented earlier in Figure 4.6. On this data, 8 fields for nouns were found. The
picture shows the order graph, with its nodes aligned according to their field
index in the horizontal dimension. Thus, columns of nodes can be directly read
as fields. The picture also indicates the learned field description in text format.

4.7 Robustness and Feature Selection

There is a single property of the order graph which has a crucial influence on the
eventual shape of the induced field descriptions: the cycles it contains. Imagine,

"In practice, the alignment bias only plays a role in the face of disjoint chains of different
length in the partial order, which is relatively seldom.

CHAPTER 4. A WORD ORDER LEARNING SYSTEM 46

Algorithm 4 induce(P)
1. INPUT P: a SET of type PrecedencePair={el:Element; e2: Element}

2. let nodes be a MAP from type Element to type Node={elements: SET of

type Element; field:int; mark:boolean; outedges,inedges:LIST of type
Node};

3. let initial be a LIST of type Node;

4. for each (el, e2) in P for which the edge selection function is true:

(a) if e not in nodes, map it to a new Node({el},0,false,nil) and add
nodes{el} to initial;
(b) if €2 not in nodes, map it to a new Node({e2},0,false,nil);
(c) remove nodes{e2} from initial;
(d) if nodes{e1} is reachable from nodes{e2}
i. let equivalent be the set of nodes on paths from nodes{e2} to
nodes{el}
ii. create a new node merge
iii. for all nodes n in equivalent
A. remove n from nodes and from initial

B. add all edges, which leave n towards a node that is not in
equivalent, to merge.outedges

C. add all edges, which lead towards n from a node that is not
in equivalent, to merge.inedges

D. insert merge into nodes under all keys which are in
n.elements

5. for each n in ingtial: solve(n,0)

6. OUTPUT: nodes as a map from type Element to an integer Node.field
for all elements in P

Algorithm 5 solve(n,i)
1. INPUT n:Node, i:integer;

. if n.mark, return;
set n.mark to true;

if n.field<i, set n.field to i;

ook w N

for all nodes m directly reachable from n:

(a) solve(m,i+1)

CHAPTER 4. A WORD ORDER LEARNING SYSTEM 47

K r Fields <2- —E R
[pos:NN]: G{{rel:CI[rel: CM[rel NC]} L{{relACIvelMO]} 24[relGLI} 3{{relNK]}
4ilhead:yeslirel: PNCY} S{lrel:CCllrel:CDY} 6ilrel:CRIIrel:PG]} 7{(rel.APF][rel MNR]rel: OC)rel:RCT)

freLrK]

77 IA""{\\&\\\
r] PANS

{rerca

[rél PNC)

InteractiveEdgeSelector threshold=2, factor=93

Figure 4.9: Order Graph and Field Description of Normal Nouns

e.g. a stage in the execution of Algorithm 4 would build a field description
Fy = {a}; F» = {b}; F5 = {c}; F, = {d}, and is about to add a precedence
pair (d,a). With the insertion of a single edge, the whole description would be
conflated to a single node. In the following, I will classify the data that can lead
to cycles in the graph, and propose strategies to deal with each of the classes.

There are two formal devices defined in earlier sections how the construction
of the order graph can be influenced:

e the edge selection function

e the dependent feature selection function

The aim in employing these devices is to robustly construct field descriptions.
This means that low-frequency phenomena or errors in the data should not lead
to drastically different results. It also means that the system should be able to
automatically adapt the feature selection function as it is required to express
the characteristics of the data.

As an illustration for the classification of cycles that follows, consider Figure
4.10, a precedence table calculated from 1000 sentences of Tiger, showing the
precedence pairs of finite auxiliary verbs. A cycle in the order graph may result
from

1. free variance of the two elements. In this case, the cycle is justified, the
two elements should be included into a common field, and no adaption of
the model is necessary.

CHAPTER 4. A WORD ORDER LEARNING SYSTEM 48

2. noise, i.e. annotation errors in the data, or highly infrequent exceptions.
An example is the precedence pair <[head:yes], [rel:SVP]> in Figure 4.10:
Separable verb prefixes occurred after the head 63 times, but only twice
before the head.® A strategy to deal with these type of cycle is to ignore
the infrequent precedence pair during edge selection, and not include it in
the order graph. This results in a field representation which will reject the
exceptional training sentence as ungrammatical. Section 4.7.1 presents a
refined definition of the edge selection function, which uses thresholds to
exclude low-frequency pairs.

3. a wrong feature selection function. While a rule governing the occur-
rence of the two elements is not obvious under this feature selection func-
tion, it might be the case that there is a rule governing a subclass or
superclass of any of the two elements. Thus, an adaption of the fea-
ture selection function that classifies elements orthogonal to the previous
classification might reveal the rule. An example is the precedence pair
<rel:SB,rel:DA>. While the respective order of datives and subjects is
unclear under a feature selection function that considers syntactic relation,
a function that considers POS-tag, in particular pronominalisation, might
yield more clearcut results. Section 4.7.2 presents a decision tree learning
approach towards automatic feature selection that iteratively adapts the
feature selection function used.

4. elements that can either occur before or after the head. This will be con-
sidered a special case on the basis of a linguistic argument. Consider the
pairs <[rel:SB],[head:yes]> and <[rel:OA],[head:yes|> as examples. The
data indicates that subjects, just as with accusatives, can either precede or
follow the head, which will result in heads, subjects and accusatives being
conflated to the same field. Confer Figure 4.11 for an example of a field
description calculated from the data in Figure 4.10. While this is correct
behaviour within the theory as it is defined until now, the linguistic anal-
yses discussed in Section 3.3 prefer a representation where the head has
a field on its own, and the dependent elements can either precede or suc-
ceed it. However, this was rendered impossible by the definition of a field
description in Section 4.6. Section 4.7.3 presents a splitting rule which
modifies the feature selection function by including special head-position
features in order to distinguish pre-head items from post-head items.

Before Robust Edge Selection, Automatic Feature Selection and Splitting will
be outlined in detail, further attention is devoted to the connection between
precedence pair counts and cycles in the graph. In the general case, when
discovering a cycle in the graph, the decision must be made to either maintain
the cycle and reduce all nodes to a single field, or exclude one of the edges
on the cycles from the graph, or adapt the feature selection function of one of

8In fact these two instances are both instances of the verb “hinzukommen”, so that an
exceptional rule that refers to the base-form of the verb might be conceivable. In the view of
the author, this would still overfit the data, in this specific case. The two corpus sentences are
“Hinzu kommen einige flichige Glasfassaden und — wo Metall verwendet wird — Kupferblech.”
(Tiger 309) and “Hinzu kommt, dafl in der letzten Zeit eine Reihe staatlicher Subventionen
fiir die Grundnahrungsmittel abgeschafft worden sind, dank derer sich die arme Bevélkerung
iiber Wasser halten konnte.” (Tiger 377)

CHAPTER 4. A WORD ORDER LEARNING SYSTEM 49

the elements on the graph. This would involve a complex calculation based on
the frequencies of all the precedence pairs involved in the cycle. It is possible,
though, to approximate the general case by a simpler heuristics. To this end,
recall that the definition of a precedence pair is based on the indirectly-precedes-
relation. From this fact follows the following

Heuristic Assumption 1 A cycle of length larger than 2 in an order graph is
likely to contain a sub-cycle of length 2.

Consider Figure 4.12 for illustration. The first row shows a cycle of length 1,
and the order domain and order pair from which it might have been constructed.
The second row shows cycles of length 2, with their respective data, and the
third row shows cycles of length 3. The left column shows cycles that contain
sub-cycles, while the cycles on the right hand side do not. Details aside, figure
(vi) shows that a very specific case of complementary distribution of the elements
involved is necessary for a cycle of length larger than 2 to emerge, which does
not contain a sub-cycle.

Heuristic Assumption 2 A metric based on a comparison of ¢({e1, e3)) and
c((e2,e1)) is a good approximation of the likelihood whether this prece-
dence pair will be involved in a cycle.

With these pre-considerations, I can now define a probabilistic measure of qual-
ity of a precedence pair.

Inverse Precedence Pair Call the precedence pair p~! = (eq, e1) the inverse
precedence pair of a precedence pair p = (e, e3)

Precedence Likelihood The precedence likelihood of a precedence pair p is

defined as P(p) = %

Conflict Ratio The conflict ratio of two elements is a function ¢ : £ x E —
[0,1], and can serve as a basis for edge selection and automatic feature
selection. Define g(e1,e2) =1 — (2 |p({e1,e2) — 0.5])

The conflict ratio function assigns the highest value, 1, if the count for the
precedence pair (ej, e3) is the same as the count of the inverse precedence pair.
It assigns the lowest value, 0, if one of the counts is zero. A precedence pair
with a relatively high conflict ratio will be called a conflicting precedence pair.
Using the examples from above, the precedence pair <[head:yes],[rel:SVP]> has
a low conflict ratio, but <[rel:SB],[rel:DA|> and <[rel:SB|,[head:yes]> have high
conflict ratios.

Note that precedence pairs are also constructed for pairs of elements (e,).
An abstract example of such a precedence pair is given in Figure 4.12(i), a
concrete example is the pair <[rel:MO],[rel:MO]> from Figure 4.10. The conflict
ratio of such a precedence pair is 1 by definition, since it was seen in both orders
in the data. A precedence pair of the form (e, e) will be called a self-conflicting
precedence pair. Self conflicting precedence pairs can occur in the data only
due to multiple occurrence of the underlying element within the same domain.
Multiple occurrence can either be compact as the occurrence of a in Figure
4.12(i), or distributed as in Figure 4.12(ii).

CHAPTER 4. A WORD ORDER LEARNING SYSTEM 50

L v

[pos:VYFINrekroot]

; ! relMO] |254/254
[pes:KON] headyes] (312/144 |/
[nn<:NF] rel:5m] I06/160 160,189 |/
[pos:VMFINrel:-roat]|[rel:Oa] 79/1CE 15/147 26/136 !

1 rel:SYP] (4,75 2,63 3,62 1,20 !

. rel:oc] |11/2% 23743 23/4% 04 18 i
[bes:KOUS] relDal (1413 (3,23 ;17 62 50 50 i
[PESVYINF rel:JU 2670 1470 1470 50 2,0 1,0 1,9 li
[ADV] rel CJ 6.5 7R 7R 4,7 1.1 / / / 207
[pOS:VYPP] rel-P0] 0,6 1,8 1,8 0,4 / / 1,0 01 10

AER » rel NG 2,4 05 0,5 0,1 1,0 0,1 ! Ul !
(posVYFINek-rool] ey g 21 21 1o ; i i i [
[pes:VMFINrelrootl |frei:CF] [3,0 1,0 1,0 10 / ! ! i /
[posVIZU| rel:RC] 9,2 a1 o1 01 / i I / !
[nn<:VAFINrek:mnt]
[pos:ADID]
[pos:ADJA]

Display

Figure 4.10: Precedence Table of finite verbs

ST

Ulhead:yves][rel:MO][rel:0A][rel:5B]}

0{[rel: CP][rel: DA][rel: U]}

[pos VVFIN, rel:raot]

o

2{[rel:NG][rel:OC][rel:PD][rel: RC][rel:5vP]}

=) oy
z = &

2, Tactor=935

InteractiveEdgeSelector threshold

Figure 4.11: Order Graph and Field Description of finite verbs

CHAPTER 4. A WORD ORDER LEARNING SYSTEM

D ..aa.. (a,a)
®
Dl aboan @b) @) ba) | V| anb. (@b) (ba)
..b..a..
m VR
A 4 ¥
iv) M a.b.. (ab)
.a..b..c. (a,b) (ac) (b,c) b.ocC.. (b,c)
b.c..a. (b,c) (b,a) (c,a) Co.a.. (c,a)
7N 7N
® ® ©
e A

Figure 4.12: Types of cycles

CHAPTER 4. A WORD ORDER LEARNING SYSTEM 52

4.7.1 Robust Edge Selection

The way is now paved for elaborating on the definition of the edge selection
function defined in Section 4.6, following the strategy outlined in point 2 of Sec-
tion 4.7 above. Recall that Algorithm 4 iterates the precedence pairs for which
the edge selection function returns true in line 5, and builds the order graph
from these precedence pairs. In Section 4.6, a simple edge selection function
was defined as

Sh(€1,€2> = 1iff 4 <61,€2,h> c b,

which selects every pair, i.e. returns true for every pair. This includes
conflicting (and self-conflicting) precedence pairs.

The edge selection function will now be changed to not include conflicting
precedence pairs into the order graph. First, note that self-conflicting precedence
pairs, which result in cycles of length 1, do not add any information to the order
graph, so they can be safely ignored. Precedence pairs with a high conflict ratio
lead to a cycle in the graph of length 2 by definition, therefore both elements
will be conflated to a single node. Thus conflicting precedence pairs should be
ignored too. Precedence pairs with conflict ratio 0 or close to 0, in contrast,
should be selected robustly: Here, the more probable sequence should be chosen,
ignoring the data into the opposite direction. This avoids a cycle of length 2.
By the inverse of Heuristic Assumption 1, it will also avoid a cycle of greater
length.

Besides the exclusion of conflicting precedence pairs, the edge selection func-
tion should also exclude precedence pairs that are not justified on much train-
ing data. A threshold will be introduced that ignores low-frequency precedence
pairs.

The discussion is summed up in the following robust edge selection function:

sp(e1,e) == 1iff c({eq,e2)) + c({e2,€1)) > T and p({e1,e2)) > T,

The function relies on threshold values T, the count threshold, and 7}, the
ratio threshold. The term conflicting precedence pair can now be refined as
referring to a precedence pair whose conflict ratio is above the ratio threshold,
and which is therefore ignored during edge selection.

The edge selection function is a means to robustly exclude low-frequency
precedence pairs from being included into the order graph. More sophisticated
edge selection is conceivable, which employs true statistical testing rather than
a threshold technique.

4.7.2 Automatic Feature Selection

This section comes back to point 3 of Section 4.7 above, which argued that
a conflicting precedence pair may be due to an inadequate feature selection
function. Recall from section 4.5 that the head feature selection function is a
function from words to head elements, f : W — E and the dependent feature
selection function is from words to dependent elements, f : W — E. Imagine
a conflicting precedence pair (ej,eq, h). This precedence pair was constructed
from a set of precedence pair instances, according to the definitions in Section

CHAPTER 4. A WORD ORDER LEARNING SYSTEM 53

4.5, viz. the precedence pair instances with f(w1) = eq, f(w2) = ea, fu(wn) =
h. The inverse images of e1, e2, and h, f; '(e1), f; '(e2) and f~1(h) are the
sets of first element nodes, second element nodes, and head element nodes.

The instances of the conflicting precedence pair can now be analysed in
order to change the feature selection function. The following cases can be dis-
tinguished:

1. a subclass of f~!(e;) is non-conflicting with f~!(ez), or vice versa
2. a subclass of f~!(e;) is non-conflicting with a subclass of f~!(e3)

3. a subclass of f~!(e;) is non-conflicting with a superclass of f~1(es), or
vice versa

4. f~'(e1) and f~!(ez) are non-conflicting under a subclass of f~1(h)

In the general case, there is no restriction on the cardinality adaptations of the
sets F and H, and the search space for finding the best head and dependent
feature selection functions is the set of functions from W to F, and from W to H.
Clearly, the search space needs to be restricted to be computationally feasible.
A first restriction I will make is to disallow adaptations of the feature selection
function of type 3, where a superclass of an already established element ¢ € F
is considered. This will lead to an algorithm that monotonically and greedily
increases the cardinality of F. Secondly, I will exclude automatic adaptation
of the head feature selection function (type 4), although the approach will turn
out to be, in principle, augmentable into this direction. Points 1 and 2 above
will be uniformly treated.

Section 4.5 chose non-recursive, linguistic feature structures as a represen-
tation for word forms, i.e. as members of set W. Nothing was said about the
nature of sets £ and H for manual feature selection. For automatic feature
selection, though, I will now assume that also £ and H are sets of non-recursive
feature structures, and present a general model of a feature selection function.

Feature structures can be arranged in a lattice according to the subsumption
relation. Assume the feature structures depicted in Figure 4.13 (See Appendix
B for a definition of subsumption). The least upper bound of a feature structure
is the unique most specific feature structure that subsumes it, if it exists. In the
example, the least upper bound of [a:y,b:z] is [b:z] (in symbols, [b:z] C [a:y,b:z]),
while [a:x,b:y] does not have a least upper bound. However if a subsumption
hierarchy is to be employed in the definition of the feature selection function for
automatic feature selection, a unique assignment of words to feature structures
is needed. Therefore, I define the operation of first least upper bound on feature
structures.

First Least Upper Bound Let A be a set of feature structures. Let = be a
feature structure. Let R be a total order on A. The first least upper bound
of x in A according to R is the smallest a € A according to R such that
aCz,—~da’€A:aCd Nd C z.

If we assume the order R to be reflected by the left-to-right arrangements of the
feature structures in Figure 4.13, the first least upper bound of [a:x,b:y] is [a:x].

The general form of a feature selection function for automatic feature selec-
tion can now be framed as follows:

CHAPTER 4. A WORD ORDER LEARNING SYSTEM 54

[]
I
[a:x] (b:y] [b:z]

NS
]]
AN

Figure 4.13: Subsumption hierarchy of feature structures

Feature Selection Function for Automatic Feature Selection f: W —
FE is a feature selection function. W and E are sets of non-recursive feature
structures. R is a total order on E. Then, for automatic feature selection,
let f(w) be the first least upper bound of w in E according to R.

Another assumption needs to be made more precise. Feature selection functions
for manual feature selection were sometimes parameterised with a subscript in
Section 4.5. It was assumed in Section 4.4 that the order of two elements eq, e
depends on features of e1, €5, and their common climb tree head. For automatic
feature adaption, I explicitly stipulate that there is an own dependent feature
selection function for each head element h € H:

Dependent Feature Selection Function Depends On Head Class The de-
pendent feature selection function for automatic feature adaption, f, is
parametrised with the head class. f: H - (WxW — E). fhuw: W —=FE
(w € W, h = f(w)) indicates the dependent feature selection function for
a head node w, which is of head class h.

Assuming a different dependent feature selection function for each class of head
extends the assumption of Section 4.4, attributing a special role to the head.
There is a close correspondence to the type hierarchy of Villavicencio (2000). As
an example, consider the head classes of matrix clause verbs and verbs occur-
ring in subordinate clauses. The dependent feature selection function of verbs
in subordinate clauses may contain a class for relative pronouns in its set of el-
ements, F, while this element is not necessary to describe the order of elements
under verbs at matrix clause level.

The considerations above lead to an algorithm that iteratively judges the
conflict ratio of all precedence pairs of a given head class, picks one, and consid-
ers all instances of these precedence pairs. It then determines additional features
that prove relevant to the order of the precedence pair, and monotonically ex-
tends the feature selection function by adding new classes to the range of the
dependent feature selection function. The algorithm is sketched in Algorithm
6, and will be commented on in the rest of this section.

Step 1 defines the starting point for search. The starting point of a search
algorithm may have significant influence on the outcome. A possible candidate
for step 1 is the feature selection function that distinguishes head and dependent

CHAPTER 4. A WORD ORDER LEARNING SYSTEM 55

Algorithm 6 Automatic Feature Selection Function Adaption

1. Start with a trivial feature selection function
2. Pick a suitable precedence pair from the precedence table

3. Find feature-value pairs that predict the order of the elements of the
chosen precedence pair in the data, and add these features to the range
of the feature selection function

4. While not converged, go to step 2

items only. There is a choice, though, of how to treat climbed elements. They
can either be included into a third class of “climbed dependents”, or included
among the dependent items. In the following, the feature structure [head:yes]
is used to refer to the head element, and the feature structure [| is used to refer
to any other element.

As a heuristic in step 2, I propose to pick the precedence pair with highest
conflict ratio. This means that the most serious sources of conflicts in the data
are tackled first. This heuristic may also have influence on the eventual feature
selection function.

As indicated before, the method of choice in step 3 is decision tree learning.
This means the system will inherit all the characteristics of this technique that
were outlined in Section 2.4. What is unusual about the algorithm, however, is
that decision tree learning is embedded into a larger iterative algorithm, which
chooses a subsection of the data the decision tree learner receives as input in
step 2.

The task of the decision tree learner is to add appropriate feature structures
to the lattice of feature structures F, as subclasses of e; and e;. These features
should be those which predict the surface order of e¢; and e, best. This means,
the output parameter is to be the surface order of e; and e (either e; precedes
eo or vice versa). What is needed in order to represent the data in this format
is some external criterion on which to distinguish e; and e;. For this purpose,
recall that a precedence pair is defined as a tuple (e1,eq,h), e1,e2 € E; h € H.
An equivalent view on a precedence pair is the following.

Precedence Pair (Equivalent Formalisation) A precedence pair (e1, e, h)
can equivalently be defined as a quadruple (esmair, €1arge, 1, 7), 7 € {<,>}.
Let e, be the smaller of e; and ey, and e, the larger, according to an
arbitrary order on elements, L, e.g. the lexicographic order on feature
structures. Let » = < if e; = ¢, and r = > otherwise.

For example, the precedence pair ([rel:OC], [rel:SB], [pos:VVFIN]) can equiva-
lently be written as ([rel:OC], [rel:SB], [pos:VVFIN], <), and ([rel:SB, [rel:OC],
[pos:VVFIN]) is equivalent to ([rel:OC], [rel:SB], [pos:VVFIN], »).

Figure 4.14 shows example data calculated on a small test corpus. The data
lists the precedence pair instances of a conflicting precedence pair ([], [head:yes],
[pos:VVFIN,rel:-root]). This is the first precedence pair chosen during adaption
of feature selection function of finite verbs. The features posh and relh are
the POS-tag and syntactic relation of the head, posa, rela, posz, relz are the
same features for e, and e, respectively. Figure 4.15 shows all rules actually

CHAPTER 4. A WORD ORDER LEARNING SYSTEM 56

posh,relh,posa,rela,posz,relz,out

VVFIN, CJ, VVIZU, OC, VVFIN, CJ, >.
VVFIN, CJ, VVINF, SB, VVFIN, CJ, <.
VVFIN, CJ, PPER, DA, VVFIN, CJ, >.
VVFIN, CJ, PTKNEG, NG, VVFIN, CJ, >.
VVFIN, CJ, PPER, SB, VVFIN, CJ, <.
VVFIN, CJ, NN, 0A, VVFIN, CJ, >.
VVFIN, CJ, ADV, MO, VVFIN, CJ, <.
VVFIN, CJ, VAFIN, MO, VVFIN, CJ, <.
VVFIN, CJ, PPER, SB, VVFIN, CJ, >.
VVFIN, CJ, PRF, 0OA, VVFIN, CJ, >.
VVFIN, CJ, NN, MO, VVFIN, CJ, >.
VVFIN, CJ, NN, MO, VVFIN, CJ, >.
VVFIN, SB, KOUS, CP, VVFIN, SB, <.
VVFIN, SB, CARD, MO, VVFIN, SB, <.
VVFIN, SB, NN, SB, VVFIN, SB, <.
VVFIN, SB, VVINF, 0C, VVFIN, SB, >.
VVFIN, RC, PRELS, SB, VVFIN, RC, <.
VVFIN, RC, NN, 0A, VVFIN, RC, <.

Figure 4.14: Input data representation for decision tree learner. Precedence
Pair instances of precedence pair <[],[head:yes],[pos:VVFIN,rel:-root]>

discovered by the decision tree learner, in the output format of the C4.5 decision
tree learner (Quinlan (1998)). The output variables <,> occur as <, > in the
figure. The second rule found (Rule 09), e.g., predicts that if the POS of the
smaller element is a relative pronoun, it is likely to occur to the left of the head.
Rule 11 predicts that if the relation of the smaller element is “negation”, it is
likely to occur to the right of the head. Rule 04 found two relevant features.
It predicts that dative pronouns will occur to the right hand side of the head,
with a low level of reliability. Note that the decision tree learner also finds rules
that refer to features of the head (relh, posh). I will comment on such rules at
the end of the section.

One point remains unanswered: The lexicographic order is not uniquely
defined in case of a self-conflicting precedence pair (see page 4.7), since neither
e<e nor eb>e. The solution to this problem is simple. For a self-conflicting
precedence pair, each of its precedence pair instances is fed to the decision tree
learner twice, once in either direction. As a consequence, rules are discovered
twice.

Another detail shall not remain unmentioned: It was noted in Section 2.4
that rule antecedents need not be disjoint. This means that if classes established
by rule antecedents are integrated into the feature structure lattice, feature
structures need not be disjoint, possibly resulting in a situation as in Figure
4.13 above, where there is no unique upper bound. The order implicit in the
implementation conforms to the point of time when an element was added to
the range of the feature selection function.

Before I present the final algorithm, with all of the above discussion inte-
grated, I propose a simple convergence strategy for step 4, which signals conver-
gence as soon as no new classes where found. Chapter 5 will go a little deeper

CHAPTER 4. A WORD ORDER LEARNING SYSTEM 57

Final rules from tree O:

Rule 20: relh = RC -> class < [95.3%]

Rule 09: posa = PRELS -> class < [93.9%]

Rule 03: rela = CP -> class < [93.0%]

Rule 14: rela = SB -> class < [83.8%]

Rule 16: relh = MO -> class < [82.7%]

Rule 19: relh = 0C -> class < [77.1%]

Rule 05: posa = ADJD -> class < [75.6%]

Rule 06: posa = ADV -> class < [73.8%]

Rule 10: posa = VVFIN -> class > [84.1%]

Rule 11: rela = NG -> class > [70.7%]

Rule 15: rela = SVP -> class > [70.7%]

Rule 13: rela = RC -> class > [63.0%]

Rule 12: relh = CJ, rela = 0A -> class > [57.4%]
Rule 07: relh = CJ, rela = MO -> class > [55.6%]
Rule 04: posa = PPER, rela = DA -> class > [50.0%]
Rule 01: relh = APP -> class > [45.3%]

Rule 18: posa = VAFIN -> class > [45.3%]

Default class: <

Figure 4.15: Learned decision tree rules for the data in Figure 4.14. A rule
consists of a rule number, an antecedent, a prediction, and a reliability estimate.

head:yes] 735 | [rel:MO] 76
pos:NN,rel:MO,split:pre-hd] 258 | [split:pre-hd] 74
rel:SB,split:pre-hd] 245 | [rel:SVP] 68
pos:ADV rel:MO,split:pre-hd] 202 | [pos:ADV,rel:MO,split:post-hd] 67
pos:PRELS] 195 | [pos:ADJD,rel:MO,split:pre-hd] 64

pos:NN,rel:OA,split:pre-hd] 153 | [rel:OC,split:post-hd] 52
pos:PPER,rel:SB,split:pre-hd] 141 | [pos:ADJD,rel:MO,split:post-hd] 33
pos:NN,rel:MO,split:post-hd] 131 | [pos:PRF,rel:OA,split:post-hd] 32
pos:NN,rel:OA split:post-hd] 95 rel:OC,split:pre-hd] 31

[[
[[
[[
| |
[rel:CP] 185 | [rel:SB,split:post-hd] 60
[po [
[[
{ {
[pos:PRF rel:OA split:pre-hd] 85 | [pos:ADJA,rel:MO,split:pre-hd] 30

Table 4.1: Learned classes

into this issue.

Algorithm 7 sums up the discussion above in a more detailed instantiation
of Algorithm 6 from above. Step 3(c) provides details of how to integrate the
new feature values found into the lattice of feature structures, relying on the
operation of feature structure unification (see Appendix B for a definition). As
an example, consider the rules from Figure 4.15. Here, the precedence pair cho-
sen in step 2 is <[|,[head:yes]>. One of the rules discovered by the decision tree
learner refers to “posa=PRELS”. The smaller of the elements [| and [head:yes]
according to the lexicographic order is [|, thus the rule refers to []. In conse-
quence, [] U [pos:PRELS] = [pos:PRELS] is added to the domain of the feature
selection function.

Table 4.1 lists the most frequent elements discovered by a complete run of
Algorithm 7 for finite verbs. The split features will be commented on in the
next section.

CHAPTER 4. A WORD ORDER LEARNING SYSTEM 58

Algorithm 7 Automatic Feature Selection Function Adaption

1. Let f be a dependent feature selection function with
E={|head:yes],[head:no,dist:0],[dist: >0] }

2. let <el,e2,h> be the next precedence pair of h with highest conflict ratio

3. Find feature value-pairs that significantly predict the order of the chosen
precedence pair in the data

(a) let {<wl,w2,h>} be the instances of <el,e2,h> in the corpus

(b) run a decision tree learner with all features of wl,w2,h as input
variables, and output variable R={<,>}

(c) for all decision tree rules found which are above a significance
threshold

i. for all features [f1:v1,f2:v2,...] in the rule that refer to wl, add
elll [f1:v1,£2:v2,..] to E

ii. for all features [f1:v1,f2:v2,...] in the rule that refer to w2, add
e2l [f1:v1,£2:v2,...] to E

4. While new classes were found, go to step 2

Automatic feature adaption can be summed up as follows. I assume that
there is a set of dependent feature selection functions (similar to Villavicencio
(2000)), one for each class of heads. An iterative algorithm adapts each feature
selection function, starting from an initial trivial feature selection function. In
each iteration, one conflicting precedence pair is heuristically chosen for each
precedence table at a time. The precedence pair instances of the precedence
pair are retrieved, and fed into a decision tree learner, which returns rules that
suggest possible subclasses that show less conflict. These rules are used to
monotonically extend the range of the feature selection function.

I assume the head feature selection function as static throughout this thesis.
Note, however that the decision tree learner produces rules that refer to features
of the head also.® Algorithm 7 ignores such rules in steps 3(c)i and 3(c)ii. It
is possible to include these rules into the algorithm, and use them to adapt the
head feature selection function. Experiments need to show whether automatic
head class adaption is well-behaved.

4.7.3 Splitting

Point 4 of Section 4.7 above stated that the position of the head within a field
description is a linguistically central characteristic. It was illustrated in Figure
4.11 that without an adaption of the model, the system does not attribute
this special role to the head element. This section demonstrates that another
adaption to the feature selection function leads to the desired behaviour. It
is argued that this adaption reflects the linguistic knowledge of the prominent

9These rules come in two disguises: Either, there is an explicit reference to a feature ending
in “h”, or there is an implicit reference to a feature ending in “a” or “z”, but one of the elements
of the precedence pair is the head element.

CHAPTER 4. A WORD ORDER LEARNING SYSTEM 59

role of the head in a topological description, and that it is valid to put this
knowledge into the system.

It was a characteristic of the definition of a field description as defined in
Section 4.6 that elements cannot occur in more than one field. This restriction
is now loosened, and will make field descriptions possible where one and the
same item occurs in a field before, and after the head. Such an element is called
a split element:

Split Element a split element is an element that can occur in two fields in a
field description. A stable element is an element for which this is not the
case. The two instances of a split element are distinguished by a feature
split in the element’s feature structure, whose value is either pre-z or
post-z, where z is a stable element in the same field description.

To justify this measure on linguistic grounds, compare the concept of a split
element to Hawkin’s concept of doubling Hawkins (1983, p. 11ff). Hawkins
speaks of doubling when the same element can occur before or after the head.
In the formalisation of splitting, I avoid direct reference to the head element,
and speak of the stable element instead. Splitting is general enough to be also
applied to two non-head elements. However, it is unclear which of the two
should be the stable element in this case. I therefore assume the head always
to be the stable element. Algorithmically, care should be taken to only split
those elements for which this is necessary, and the default should be not to
split elements. Two splitting strategies were actually implemented, and shall be
briefly discussed here.

Splitting On Failure Split an element iff automatic feature adaption fails on
a chosen precedence pair, and one of the elements is the head element

Head Splitting Split every element that conflicts with the head

Splitting On Failure uses splitting as a fall back strategy if the decision tree
learner is not able to find a linguistic feature that predicts the order of the con-
flicting pair. Thus, this strategy is inserted into Algorithm 7 as step 3(d). The
disadvantage are long running times. Head Splitting is run after convergence of
Algorithm 7, at the advantage of shorter running times, but at the disadvantage
of worse integration of Splitting and Decision Tree Learning.

Technically, splitting means that a split-feature must be included into the
feature structures of word forms, which is ignored until splitting is enabled on
this class. The details of the implementation, and the possible parameters are
explained in Sections 5.2 and 5.3.

Figure 4.16 shows a field description calculated from the same data as Figure
4.11, but with splitting enabled. Note that the description contains more nodes,
because elements that were only involved in conflicting precedence pairs were
not used in the previous field description.

The mathematical consequence of splitting for the definition of a field de-
scription is that the constraint that each element can occur in one field only
is effectively loosened, although mathematically the two instances of a split
element are different objects.

CHAPTER 4. A WORD ORDER LEARNING SYSTEM 60

X Fields = o x|
[posVYFIN, rel:root]:
Offrel:Cl,split:pre-hd][rel:CP][rel DA, split:pre-hd][rel: JU[rel: 04 split: pre-hd][rel: OC, split:pre-hd][rel. 2P, split:pre-hd]}
L[rel:Mo, splitpre-hd][rel:5B, splivpre-hd]} 2{[head:yes]t 3{[rel:Da splivpost-hd][rel:MO, splitpost-hd)[rel5B, splitpost-hd]}
Hlrel:MNG][rel:0A split:post-hd][rel:RC]: 3{[rel:C],split post-hd][rel:PD, split:past-hd][rel: 5P, splitpost-hd]} &{[rel:OC, splitpost-hd]}

8 NGl

frelro)

(el v F, split: pre-hd]

InteractiveEdgeSelector threshold=2, factor=95

Figure 4.16: Field Description calculated from the same data as Figure 4.11,
with splitting

CHAPTER 4. A WORD ORDER LEARNING SYSTEM 61

[pos:VVFIN,rel:root]

5 | |
| | |

|
|
|
|
|
|
Das machte sich vor allem in den ersten Runden bemerkbar

Figure 4.17: Exported Topological Tree

4.8 Field Cardinality and LP Tree Export

This section describes how the learned field descriptions can be used to convert
a test treebank of ID structures into an output treebank of learned LP struc-
tures. The creation of an LP corpus from a given ID corpus is one of many
possible applications of the learned rules. Besides the learned field descriptions
themselves, the produced LP corpus plays an important role during evaluation
of the system. The section also shows how this conversion process may be used
to collect information about field cardinality of the learned fields, and add this
information to the learned field descriptions. The calculation of field cardinality
constraints was not implemented due to time restrictions.

LP Corpus Export

One way to make use of and evaluate the learned word order rules is to convert a
test treebank to a treebank of topological tree structures with aid of the learned
word order rules. The input of this module are trees of the same kind as the
input of the learning architecture. A corpus of ID structures disjoint from the
corpus from which the field descriptions were learned is necessary if export is
used for evaluation. The output are TDG LP trees formally. If the learning
system is successful, they are also linguistically valuable. Figure 4.17 shows
an example of an exported tree.!® Node labels specify the head class of the
node. The downwardspointing edges specify the field index the head element
itself is situated in. Edge labels specify the field index at which the dependent
node is situated within the field description of its governor. In the example,
“machte” is realized in the 6th field of the field description for finite root node
verbs, and has four dependents, which are realized in fields 1, 8, 9, and 12 of
this field description. “Runden”, realized in the field [pos:VVFIN,rel:root]9, in
turn offers the field description [pos:NNJ, and is realized in the 8th field of this
field description. It offers fields 0, 2, 4, and 6 for its dependents. For reasons of
legability, some node labels were excluded from the figure.

Algorithm 8 presents how an ID tree can be converted to an LP tree with
aid of a set of learned field descriptions. The task can be rendered as deciding

10The picture was manually created, since the screenshot was not legible. The external tree
displayer used often produces illegible output for more complex trees.

CHAPTER 4. A WORD ORDER LEARNING SYSTEM 62

% "gibt" in "Bei einer Tombola gibt es etwas zu gewinnen "

% [pos:VVFIN,rel:root]: O{[rel:SB,split:pre-hd] [rel:M0,split:pre-hd]}
1{[head:yes]} 2{[rel:SB,split :post-hd][rel:0A1}
3{[rel:M0,split:post-hd] [rel:SVP]1} 4{[rel:CJ1}

1 [dist:1,rel:M0] [pos:VVFIN,rel:root]0 false 3 2 10037

2 [head:yes] [pos:VVFIN,rel:root]1 true 3 3 10037

3 [rel:SB,split:post-hd] [pos:VVFIN,rel:root]2 true 3 4 10037

4 [rel:0C][pos:VVFIN,rel:root]2 false 3 7 10037

Figure 4.18: Example output for an unsuccessful rule application, in model
MAN-E4, trained on 50 sentences

for each node (a) whether and how far it should climb, and (b) which field label
it should be assigned. I will speak of a realisation of a word form in a field of
a field description. Question (a) is answered by applying the ID tree to climb
tree conversion strategy from Section 4.4 to the input ID tree. The solution
to question (b) is implemented in line 2(b) of Algorithm 8. Here, the actual
sequence of words on the surface, each reduced by the appropriate dependent
feature selection function, f(n), is matched against the learned field description,
F(n). More particularly, a current index in the field description is iteratively
set to the next field that can realise the next word form.

Note that step 2(b) may fail, since the test corpus can contain word order
phenomena which were not seen in the training data, or failed to be seen above
thresholds. In this case, the node is marked as unsuccessful, and the algorithm
is continued at the current field index.

Algorithm 8 LPTree export(IDTree t)
1. let ¢ be a climb tree, calculated from t

2. for all nodes n in ¢, in top-down order

(a) let F(n) be the field description of n
(b) for all children m of n, in left-to-right order
i. let f be the next field in F(n) where f(m) can be realised
ii. label the edge between n and m with f in the output LP tree

3. return the output LP tree

Figure 4.18 shows an example application of the algorithm on the test sen-
tence “Bei einer Tombola gibt es etwas zu gewinnen.” (Negra 10037). “Bei einer
Tombola” is classified as a non-local modifier [dist:1, re:MO]. The learned field
description for the head “gibt”, though, does not offer a field for this element.
In consequence, word number 2, under word number 3, in sentence 10037 is
marked as unsuccessful in line 4 of the example output.

CHAPTER 4. A WORD ORDER LEARNING SYSTEM

63

field | 1 elements | 2 elements | 3 elements | 4 elements | 5 elements |
|pos:NN|4 374 110 14 1 0
pos:VAFIN,rel:root|0 5 0 0 0 0
pos:VAFIN,rel:root]4 27 0 0 0 0
pos:VVFIN,rel:root]|4 41 24 4 2 1

Table 4.2: Field Cardinalities of selected fields

Field Cardinality

Constraints on the number of elements which can occur in a single topological
field are part of the topological fields analyses presented in Section 3.2. For
example, the verbal vorfeld is generally assumed to offer space for one con-
stituent only. Rules of this kind are not generated by the system as outlined
until now, but it is easily possible to infer field cardinalities from the exported
LP corpus, whose creation was mentioned in the previous paragraph. This is
achieved by counting the number of realisations in each field of each field de-
scription in the exported data. Table 4.2 shows some example data for fields
that occur in Figure 4.17. The data shows very clearly that the cardinality of
the pre-modification field of nouns is unrestricted, while the verbal vorfeld of
finite auxiliaries is restricted to 1. Surprisingly, the data also indicates a restric-
tion of the middlefield of finite auxiliaries to 1 ([pos:VAFIN,rel:root|4), but not
for finite full verbs ([pos:VVFIN,rel:root|4).

Following Hohle (1986) and Duchier and Debusmann (2001), I assume that
a field can either have a fixed cardinality of 1, or an unrestricted cardinality.
The calculation of field cardinality constraints from data of the kind in Table 4.2
was excluded from the implementation of the system due to time restrictions.

4.9 Output Data

Before the implementation of the system will be described and finally evaluated
in the next chapters, this section reflects upon the form of output data produced,
providing a basis for possible applications and evaluation.

Three kinds of output data are interesting for different kinds of evaluation
and application.

e the topological corpus
e the field descriptions

e the precedence tables

The topological corpus contains trees like the one in Figure 4.17. Since these
trees are projective by definition, they can be converted to widely used bracket
structures, as e.g. employed by the Penn Treebank. The topological tree struc-
tures of the system do not have non-terminal or pre-terminal nodes. Rather,
they encode occurrence in the same field by identical consecutive field labels.
The conversion to a bracket structure therefore involves conflating consecutive
nodes with the same field label to a single field, and attaching them under a
common non-terminal field label node. Figure 4.19 shows the same sentence in
bracket representation. Nodes where the application of the learned rules failed

CHAPTER 4. A WORD ORDER LEARNING SYSTEM 64

(" [pos:VVFIN,rel:root]6" ("[pos:VVFIN,rel:root]1" ("POS" ("Das 0")))

(" [pos:VVFIN,rel:root]6" ("POS" ("machte 1"))) ("[pos:VVFIN,rel:root]8" ("POS"
("sich 2"))) ("[pos:VVFIN,rel:root]9" ("[pos:NN]O" (" [pos:other]0" ("POS"

("vor 3"))) ("[pos:other]5" ("POS" ("allem 4")))) ("[pos:NN]2" ("POS" ("in 5")))
(" [pos:NN]4" ("POS" ("den 6"))) ("[pos:NN]6" ("POS" ("ersten 7"))) ("[pos:NN]7"
("POS" ("Runden 8")))) ("[pos:VVFIN,rel:root]12" ("POS" ("bemerkbar 9"))))

Figure 4.19: Exported LP tree in bracket representation

are identifiable through the logging data provided by Algorithm 8, and displayed
in Figure 4.18.

The field descriptions consist of a sequence of fields for each head, each field
specifying a cardinality, and the elements in these fields. Also the implicit order
on elements for feature selection needs to be specified. An XML format was
designed to encode this data. Appendix C shows field index and elements only,
for each head.

The field descriptions can also be converted to a concrete grammar formal-
ism. Another XML format was specified as an interface to the TDG grammar
formalism. An example is given in Figure 4.20. The tag offerrules defines for
each class of head items which field labels this class offers, and encodes the
cardinality of the field (unrestricted, exactly one, one or zero). The tag accep-
trules specifies for each class of dependent elements which field labels it accepts.
There is a designated class of elements, [head:yes], which specifies what TDG
calls the “internal fields”. For example, “[pos:NN]5” is the internal head field
for nouns. The dependent class [rel:DA] specifies that it can be realised, among
other fields, in the vorfeld of auxiliary verbs.

Finally, I comment on the information encoded by precedence tables. For
each field description, its corresponding precedence table contains frequency
counts of the underlying precedence pairs. In the implementation, precedence
tables can be browsed, and corpus data can be displayed for each precedence
pair. This makes decisions taken by the system transparent. The frequency in-
formation inherent in precedence table may also serve as a basis for probabilistic
language models, but this issue is out of scope of this thesis.

CHAPTER 4. A WORD ORDER LEARNING SYSTEM

<?xml version="1.0" encoding="1S0O-8859-1"7>
<!DOCTYPE tdggrammar SYSTEM "tdggrammar.dtd">
<tdg>
<grammar>
<offerrules>
<headclass headlabel="[pos:NN]|">
<offers fieldlabel="[pos:NN]0" card="*"/>

<offers fieldlabel="[pos:NN|9" card="*"/>
< /headclass>
<headclass headlabel="[pos:VAFIN,rel:-root|">
<offers fieldlabel="[pos:VAFIN,rel:-root]0" card="*"/>

<offers fieldlabel="[pos:VAFINrel:-root|9" card="*"/>
< /headclass>

< /offerrules>
<acceptrules>
<depclass id="|head:yes|" >
<accepts fieldlabel="[pos:NN]5" />
<accepts fieldlabel="[pos:VAFIN,rel:-root|5" />

< /depclass>

<depclass id="[rel:DA]">
<accepts fieldlabel="[pos:VAFIN,rel:-root]2" />
<accepts fieldlabel="[pos:VVINF|1" />
<accepts fieldlabel="[pos:VVPP|1" />

< /depclass>
<depclass id="[rel: GL|" >
<accepts fieldlabel="[pos:NN]2" />
<accepts fieldlabel="[pos:NE|2" />
< /depclass>

< /acceptrules>
< /grammar>

</tdg>

Figure 4.20: Subsection of the exported TDG grammar in XML format

65

Chapter 5

Implementation

This chapter describes the implementation of the word order learning architec-
ture outlined in Chapter 4. Section 5.1 describes design principles and main
features of the software, and explains how to access and use the software. Sec-
tion 5.2 outlines the module structure of the implementation in more detail, and
mentions the most important implementational decisions. Section 5.3 explains
the effects of the system parameters.

5.1 Overview

Main learning architecture The architecture described in Chapter 4 is fully
implemented in Java 1.4 Java (2003). The java code is platform-independent.
An external decision tree learner, the C4.5 system of Quinlan (1998) is invoked
from within the system. An external tool for displaying dependency trees (in
interactive mode) by Denys Duchier is also used. The system can also be run
without either of the external modules. The top level executable java class is
called learn.WordOrderExtractor.

Options are passed to the WordOrderExtractor by command line options, or
through an options file. Several option files are provided, each specifying one
parametrisation of the system (a model). A simple shell script, run, takes the
name of an options file as parameter, creates a subdirectory for output, and
invokes the entire system, using the specified option file. A pathname to input
training and test corpora is provided as one of the options. The system features
an optional interactive GUI, implemented in Java Swing, which allows to browse
the data (option display). It also features an option tracetrain, which creates
snapshots of the system during training. An option reconstruct reads in output
files, instead of re-calculating them. Output files are either in plain text, or in
XML format.

Evaluation shell scripts The package also includes several scripts for evalu-
ation, restricted to Unix/Linux platforms, which interpret the output files gen-
erated by a single model, or compare the output files of several models. These
scripts are implemented in bash, sed, and Perl. gnuplot is used for plotting
graphical data to Postscript. The Saxon XML/XSL parser converts XML data
to graphical plots, HTML, or latex. EVALB calculates Parseval measures.

66

CHAPTER 5. IMPLEMENTATION 67

| system option | default path | description |
rootdir - top directory
outputdir LEARN/data/ parent directory for any system output
outputprefix LEARN/data/current/ subdirectory for system output
corpusdir corpora/ location of input corpus
corpus corpus.export name of training corpus, in corpusdir
testcorpus - name of test corpus, in corpusdir
learnerBin R8/bin/ path to decision tree learner C4.5
displayer LEARN /oz/TreeDisplayer path to Oz dependency tree displayer

Table 5.1: Default directory structure, and corresponding system options

Further documentation The entire Java implementation is documented us-
ing javadoc. Javadoc documentation is integrated with the source code, and a
special documentation compiler converts interface specifications and documen-
tation to HTML.

Installation The software, including all external modules, is available through
a CVS repository. The top-level module name is DIPLOM. After checking out
from the CVS, invoke DIPLOM/MakeAll, or follow these steps

1. include DIPLOM/LEARN/bin into the Java CLASSPATH variable

2. change to DIPLOM/LEARN/java, and type make. This compiles all java
code to LEARN/bin, and creates the HTML documentation using javadoc
at LEARN/doc, with index.html being the top level file.

3. compile the decision tree learner following the instructions in
DIPLOM/R8/ReadMe, and move the binaries to DIPLOM/R8/bin. If de-
sired also compile the tree displayer at DIPLOM/LEARN/oz by invoking
ozc -x TreeDisplayer.oz

Directory structure The learning architecture is included in package
DIPLOM/LEARN. LEARN/java contains the java sources, LEARN/bin is meant
for compiled Java, and LEARN/doc for compiled Java documentation. LEARN/data
is the parent directory of system output, and LEARN/data/evaluate contains the
evaluation scripts, which write their output to LEARN/data/evaluate/results.
The external decision tree learner is included at R8. EVALB and viewtree are
provided at beckerAndFrank. corpora contains links to the input corpora, and
scripts which process these corpora. All paths relevant to the main system can
be changed with the aid of system options. Figure 5.1 summarises the most im-
portant directories, along with the name of the system options that can change
the default settings.

Invocation The main system can be manually invoked with java
learn.WordOrderExtractor —optionl=valuel —option2=value2 ... An option takes
the value from the command line, from the file WordOrderExtractor.options, or
a default value in this order. The syntax of the option file is a sequence of lines
of the form option2=value2, or lines starting in “%” for comments. A Java XML
parser needs to be specified with the -D option, if option reconstruct is to be
used.

CHAPTER 5. IMPLEMENTATION 68

[file name [description
ClimbPatterns.txt details about which elements climbed where during ClimbTree conversion
OrderPatterns.data.txt For each node in the corpus, its representation as a set of precedence pairs
FieldPatterns.xml Final XML representation of the learned word order rules
ExportLPPatterns.trees Final bracket structure representation of the exported LP corpus
ExportLPPatterns.log.txt Details about learned rule applications during LP corpus export
Adaptor.log.txt Log on automatic feature adaption
WordOrderExtractor.err Top-level-output, with echo of options, starting time, and execution trace

Table 5.2: Output files

Several option files, WordOrderExtractor.options.modelname are provided. The
shell script run [modelname] copies the appropriate option file to WordOrderEx-
tractor.options, creates a subdirectory called modelname for the output, and in-
vokes java in the background, redirecting any output to a log file WordOrderEx-
tractor.err in the output directory.

The evaluation shell scripts at DIPLOM/LEARN/data/evaluate are invoked
with a model name, and sometimes with the number of an iteration (“itera-
tion prefix”), if option tracetrain was enabled on the model. Output of these
scripts is written to ...evaluate/results/modelname in HTML, Latex, Postscript
or plain text format. EVAL-SingleModel generates details about one model,
EVAL-CorpusSize collects information about the behaviour of a model during
training, EVAL-CompareModels generates figures comparing different models.

Output Files When invoked, learn.WordOrderExtractor creates a number of
output files in the outputdir/outputprefix directory. Table 5.2 lists the output
files. Besides the output files, there are also log files (*.log) for the purpose of
detailed system observations and debugging. If tracetrain is enabled, the output
files are prefixed with the number of the corpus subsection, followed by a dot.

5.2 Technical Documentation

The Java implementation is about 12,000 lines of code, organised in 12 packages
and a total of some 80 classes. Figure 5.1 represents the most important package
dependencies as a UML-diagram (Fowler and Scott (2000)). In the following,
I briefly describe the most important public classes from each of the packages
in a bottom-up fashion, referring back to the theoretical concepts outlined in
Chapter 4, which they implement. For each of the classes, I show the signature
of its constructor, if it has a public constructor.

Package learn.basics This package provides two classes Systemlnput and
SystemQutput that serve for accessing the input corpus file, and any of the output
files that is to be created. It also provides a single instance of class Options,
which encapsulates all system options set for this run of the WordOrderExtractor.

Package learn.corpus This package provides access to the input corpus, in
its original annotation format, and in the form of dependency trees which are
internally used. Corpus(SystemlInput source) implements the Iterator interface,
returning instances of class tree.Sentence. A sentence provides two views on
a corpus sentence: as it appears in the corpus, represented by class RootMo-
bile(java.io.BufferedReader negraExportFormat), and in the form of a dependency

CHAPTER 5. IMPLEMENTATION 69

’ / N
/ 1 \
/ \ | \\
" \ | \
! A |
! !
— < I
\ et .~ y graph
z ~ .
| :
< -
N Rl

Figure 5.1: Package dependencies

TreeNode

T

IDTree LPTree

ClimbTree
Figure 5.2: Class hierarchy of different types of trees

tree, as described in the tree package. A RootMobile corresponds to the single
top node of the NEGRA annotation format, and can be constructed from a
sub-portion of a file in NEGRA Export Format. A Mobile (the super-type of
RootMobile) corresponds to an arbitrary node in a Negra mobile, and provides
methods to distinguish terminal from non-terminal nodes, enumerate the chil-
dren and parent of a node, and access edge labels, POS information and word
forms associated with nodes.

Package learn.tree This package provides a hierarchy of classes that repre-
sent different types of syntactic trees. The base class is TreeNode, which provides
basic tree operations (Fig. 5.2). Among them is test for dominance between
two nodes, locating the root node, and accessing lexical information, which is
encapsulated by class Word. Methods crossing() and crossing(TreeNode ancestor)
test whether the edge from this node to another node (the actual governor, in
the default case) is a crossing edge as defined in Section 4.4. Method childrenlt-
erator() enumerates child nodes, method childrenAndHeadlterator() enumerates
child nodes and the head itself. This is important for the construction of prece-
dence pairs.

Instances of IDTree are returned by Sentence.getlDTree(). They represent an
input sentence to the system, converted from Negra format to a syntactic de-
pendency tree. The private method |IDTree Sentence.convert(RootMobile source)
implements the conversion strategy outlined in Section 4.3, while Sentence offers

CHAPTER 5. IMPLEMENTATION 70

pos: VVINF
pos: VVINF rel: OC pos: VVINF
rel: OC head: no field: [pos:VVFIN, rel:root]4|
head: no split: post—hd

split: posthd dist: 0 intfield: [pos:VVINF]3

IDTree ClimbTree LPTree

Figure 5.3: Feature Structures, returned by the getFeatures() method of differ-
ent subclasses of TreeNode

getlDTree() and getMobile() to the outside.

ClimbTree() adds a notion of climbing to IDTree. While each node in an
IDTree has exactly one parent (or zero if it is the root), a ClimbTree node has
always two parents, one local parent, which is inherited, and a potentially dif-
ferent non-local parent, where this node has climbed to. The edges to these
non-local parents are ensured to be projective. ClimbTree instances are con-
structed by climb.ClimbingData.

An LPTree is the format used by the classes in the export module to represent
a topological tree, calculated on the basis of the induced word order rules. An
LPTree is guaranteed to be projective.

The abstract method FeatStruct TreeNode.getFeatures(boolean headFeature)
provides a feature structure view on this node. IDTree’s getFeatures method
returns a feature structure containing all information found in the corpus. See
Figure 5.3 for illustration. The feature structure includes two special features:
“head” is the value of the boolean parameter. “split” is information that will be
used only if splitting is enabled on the dependent class this feature structure falls
into. ClimbTree’s getFeatures method includes an additional feature “dist”, which
indicates the climbing distance from below of this node. LPTree’s getFeatures
method returns the field label of the field this node accepts, and the field label
of the field the node itself is situated in.

Package learn.adapt This package implements a non-recursive feature struc-
ture, together with methods for feature selection, and automatic feature adap-
tion. FeatStruct() implements a non-recursive feature structure as a hashtable
from attributes to values, and offers flat feature structure unification, test for
subsumption, and the calculation of the least upper bound in a collection of
feature structures. Feature structures can be represented in human-readable
format, or in a format appropriate for the decision tree learner. It is instances
of FeatStruct that the methods in package tree return, when asked to describe
a particular dependency node. Thus, a FeatStruct instance represents a “full”
representation of a node in a dependency tree. This representation normally
includes POS-tag, syntactic relation, and information on order with respect to
the head, which is ignored unless splitting is enabled.

Interface FeatStructReducer implements the notion of a feature selection func-
tion from Chapter 4. It defines a method reduce(FeatStruct f, ReducedFeatStruct
r) which creates a new ReducedFeatStruct r, when given a FeatStruct f. Reduced-
FeatStruct inherits from FeatStruct without significantly adding behaviour, and
represents the notion of a “reduced” feature structure, as seen under the given

CHAPTER 5. IMPLEMENTATION 71

FeatStructReducer

void reduce(FeatStruct f, ReducedFeatStruct r);

e ManualHeadReducer ra
AdaptableReducer SplittableReducer
void addClass(FeatStruct subClass, void enableSplitting(FeatStruct stableClass,
FeatStruct superClass); FeatStruct splitClass);
AutoDepReducer ManualDepReducer

Figure 5.4: Interface hierarchy of FeatStructReducers, and implementing classes

feature selection function. Figure 5.4 exemplifies the interface hierarchy and
implementing classes of FeatStructReducer. ManualHeadReducer implements the
head feature selection function from Chapter 4. ManualDepReducer implements
manual dependent feature selection, with optional splitting, AutoDepReducer
implements automatic dependent feature selection.

When method enableSplitting is invoked on an existing SplittableReducer,
its behaviour changes to such an extend that the information whether the to-
be-reduced feature structure occurs before or after another feature structure
stableClass in the order instance, is preserved during reduction. stableClass needs
to be [head:yes| in all implementations.

When method addClass is invoked on an existing AdaptableReducer, its be-
haviour changes such that a new feature structure is added to the range of
the feature selection function. From now on, all feature structures subsumed
by subClass are reduced to subClass. It was outlined in Chapter 4 that there
need not be a unique subsuming feature structure, and that an order on feature
structures is therefore necessary. This order is defined by the invocation order
of consecutive addClass invocations, and the parameter superClass.

The complete learning system needs a single head feature selection function,
each of which is associated with a dependent feature selection function. Class Re-
ducerManager manages such a bundle of FeatStructReducer instances. It provides
a static initial ReducerManager instance, built from fresh ManualHeadReducer or
AutoDepReducer instances, depending on system options adapt, split, unique-
Head, dectree. A ReducerManager provides two methods ReducedFeatStruct
reduceAsHead(TreeNode node) and reduceAsHead(TreeNode node, ReducedFeat-
Struct head), which call the node’s getFeatures method , and reduce the returned
feature structure with the appropriate FeatStructReducer. Figure 5.5 illustrates
the behaviour of a ReducerManager.

There is a single instance of Adaptor(ReducerManager reducerManager), which
is created from the initial ReducerManager instance. The task of the Adaptor
is to iteratively adapt the ReducerManager by successive calls to its FeatStruc-
tReducer’s addClass and enableSplitting methods. Adaptor defines a method
boolean adapt(ReducedFeatStruct headClass, OrderData data), which will pick a
precedence pair as outlined in Chapter 4, ask data for the order instances of
headClass, and run the decision tree learner, resp. enable splitting. It will re-
turn true if converged, or false if further calls to adapt should be made, on the
basis of the chosen convergence strategy (option converge).

CHAPTER 5. IMPLEMENTATION 72

r 7 [rel:OC]
pos: VVINF '
rel: OC
hel‘fdf no i [pos: VVINF
split: post—hd lit: hd
L - reduceAsDependent() | SPlit: post-|
pos: VVINF
rel: OC
head: yes . [head. yes]
split: na reduceAsDependent()
pos: VVINF
rel: OC —_— [pos: VVINF]
head: yes
split: na reduceAsHead()
FeatStruct FeatStructReducer ReducedFeatStruct
ReducerManager

Figure 5.5: Feature Structures, reduced by different FeatStructReducers

The communication with the decision tree learner is implemented by class
DecisionTreeLearner(String[] examples, String fileName, FeatStruct firstDep, Feat-
Struct secondDep, AdaptableReducer depReducer), which takes the chosen prece-
dence pair, together with a string representation of this precedence pair’s in-
stances as arguments. Unsurprisingly, it also takes the AdaptableReducer to
adapt, and a temporary file name for output. Internally, DecisionTreeLearner
has private classes DecisionRules and DecisionRule for parsing C4.5 output, and
adding the features referred to in these rules to depReducer. This task is imple-
mented as discussed in Chapter 4, and relies on the test of subsumption provided
by class FeatStruct.

Package learn.order This package implements precedence pairs and prece-
dence tables. It defines a class OrderData(Corpus source, ClimbingData climb-
Data, ReducerManager reducers), which offers to traverse the input corpus, con-
vert the IDTrees it contains to ClimbTrees as predicted by climbData, and cal-
culates a precedence table as defined in Chapter 4 for each head class assumed
by the feature selection function reducers. OrderData offers a method Prece-
denceTable getTable(ReducedFeatStruct head). A PrecedenceTable instance can
enumerate its precedence pair types in different orders, and calculate conflict
ratios. OrderData has also a method String|[] getInstances(ReducedFeatStruct h,
ReducedFeatStruct f1, ReducedFeatStruct f2), which retrieves the order instances
of a precedence pair type from the corpus. Database retrieval is implemented
via linear search through a temporary text file.

The package also provides classes OrderPair (a precedence pair) and OrderlIn-
stance. An OrderPair is able to return the smaller and larger of its elements
according to the lexicographic order, and the first and second of its elements, if
known.

Package learn.climb This class implements the conversion of |IDTrees into
ClimbTrees, and collects data on climbing at the same time. The interface is
flexible enough to implement also more sophisticated climbing strategies than
the one outlined in Section 4.4. The top-level class of the package is ClimbData,

CHAPTER 5. IMPLEMENTATION 73

which collects data on all nodes in the entire corpus that had to climb. This
data is collected in the form of ClimbList(ReducedFeatStruct head) instances,
which describe all elements that climbed upward from this head class. This
information may be used to predict where a node should climb in a specific
case. The central method of ClimbingData is ClimbTree convert(IDTree source),
which computes a ClimbTree from an IDTree. In the present implementation,
the strategy outlined in Section 4.4 is implemented, which does not use the
ClimbList instances that were collected.

Package learn.fields This package defines a class FieldData(OrderData data),
which calculates a field representation for each precedence table in data, rely-
ing on the head and dependent feature selection functions implicit in the order
data. For each head class, a field description, class Fields(PrecedenceTable ta-
ble, EdgeSelector edgeSelector) is computed, which hides the notion of an order
graph from Section 4.6. After computation, the Fields instances of the Field-
Data instance can be retrieved via Fields getFieldDescription(ReducedFeatStruct
headAVM).

An EdgeSelector is an interface specifying function boolean conclusive(int prec,
int succ) which selects or rejects a precedence pair depending on its precede and
succeed count. Options edgefactor and edgethresh determine the behaviour
of the implementing class.

For each precedence pair selected by the EdgeSelector, Fields creates two
FieldNode(ReducedFeatStruct item, int id) instances and draws an FieldEdge-
(FieldNode target) between them. FieldNode.setindexLeast(int i) and Fields.solve()
implement Algorithms 4 and 5 of Section 4.6. After calculation of the order
graph, the field description can be retrieved by Iterator Fields.nodelterator(),
which returns a sequence of Field instances, each specifying a field index and a
field label via Field.getIndex() and Field.getLabel().

Package learn.graphics This package implements the GUI of the system as
a Java Swing user interface. It provides classes whose names end in “GUT”, and
mostly correspond to high-level classes of the architecture. FieldsGUI graphi-
cally displays an order graph, and allows to interactively change thresholds via
InteractiveEdgeSelector. OrderDataGUI represents a set of precedence tables.
The head class can be selected from a list, and the precedence table is displayed
as a javax.swing.JTable. The user can switch to the order graph corresponding
to the table. Clicking on a cell in the table results in the concrete corpus in-
stances of the precedence pair being displayed in a new window, implemented
by InstanceDataGUI. A further click on one of the instances opens a CorpusGUI,
which shows the sentence in plain text. CorpusGUI also allows for browsing
the entire input corpus, and viewing a tree representation of the current sen-
tence. Displaying trees is implemented by tree.DisplayTree, and makes use of
an external Oz module by Denys Duchier. CorpusGUI allows to display IDTrees,
ClimbTrees and exported LPTrees.

The GUI is displayed after completed learning if the system option display
is switched on.

Package learn.graph This is a helper package for graphics, which displays
a graph on a javax.swing.JPanel.

CHAPTER 5. IMPLEMENTATION 74

Package learn.export The top-level class of this package is Exporter(FieldData,
ClimbingData climbData, ReducerManager reducers), which implements the ex-
port strategies discussed in Section 4.8. An Exporter instance has full knowledge
of a completed run of the learning system.

Method analyse(Corpus corpus, SystemOutput out) applies this knowledge
to a test corpus (disjoint from the training corpus), and exports this input
corpus to a file of of LPTrees. A bracketed representation of these trees is
chosen as output format so that standard software can be applied to this data.
This data is evaluated in Section 6.3. The conversion strategy is implemented
as outlined in Algorithm 8, with class FieldAnalysis(TreeNode node, FieldData
fieldData, ReducerManager reducers) implementing the matching of a sequence
of dependents and a field description.

Method toTDG(Corpus corpus, SystemOutput out) converts the knowledge of
the learning system to the XML interface format specified in Figure 4.20, and
adds a TDG lexicon entry and a specification of the ID structures in the corpus,
also in XML. This data is partially evaluated in Section 6.4.

Package learn This package provides a single executable class WordOrderEx-
tractor, creating a single instance of WordOrderExtractor(Systemlnput source)
and running it with the global system options provided by learn.basics.Options.-
OPTIONS. Options are read from the global option file, or parsed from the
command line. Most of the high-level system options are queried in the im-
plementation of WordOrderExtractor, especially file input/output options and
options affecting the invocation or skipping of entire submodules.

The core method is run(), reproduced in Figure 9, which implements the
control flow of Figure 4.1. System option tracetrain results in calling run() on
increasing corpus sub-portions.

Algorithm 9 Code fragment from learn. WordOrderExtractor.java

public void run() {
logger.info("Running system ...");
do {
refreshData(); // clear reducers, climbData and orderData
climb(); // call climbData.analyseCorpus(source)
order(); // call orderData.analyseCorpus(source)
} while ('adapt()); // call adaptor.adapt(headClass, orderData) on all classes
of reducers
fields(); // calculate field descriptions from orderData
writeData(true,true); // write climbingData, orderData, fieldData to XML
export(); // run Exporter on test corpus, and export XML

}

5.3 System Parameters

Submodule switches

adapt true: implied by dectree or split; causes iterated calculation of order
data.

CHAPTER 5. IMPLEMENTATION 75

climb true: Precedence pairs are calculated from climb trees. During export,
this means there are no fields offering positions for non-local elements.
false: precedence pairs are calculated from ID trees, treating non-local
realisations as if they were local.

dectree true: use decision tree learning for automatic feature adaption, start-
ing with the classes defined by AutoDepReducer.java (or any other inter-
face implementing AdaptableReducer).

split true: splitting, integrated with decision tree learning. If decision tree
learning fails to find new classes on a chosen conflicting precedence pair,
split this pair, and reiterate (very long running times).

uniqueHead true: splitting, to be executed after decision tree learning on all
precedence pairs of every precedence table above edgefactor which conflict
with the head (Head Splitting).

Thresholds

adaptthresh (integer) minimum total count of precedence pairs (c(p)+c(p~1))
in order to invoke decision tree learning on them.

edgefactor (0-100) in order to include an edge into the order graph, maximum

conflict ratio, as a percentage. In the implementation, the conflict ratio
is defined as —Z;Z((leg))

pairs.

, where c1 and ¢2 are the counts of the precedence

decthresh (positive float < 1) minimum reliability of found decision tree rules
(as provided by C4.5 output) in order to include them into the feature
selection function.

edgethresh (integer) in order to include an edge into the order graph, mini-
mum total count of the precedence pair (c(p) + c(p~1)).

Controlling and Evaluating
display true: open interactive GUI after finishing calculations.

reconstruct true: do not create any output, and do not make any calculations,
but read in an existing set of output files for displaying.

subsections (integer) 0 or 1 to disable. Otherwise the size of the first corpus
subsection in sentences. See subseclg.

subseclg (float) 0 to disable: each corpus subsection has equal size, as defined
by subsections. Otherwise, the base of the logarithm with which to grow
corpus subsections: each corpus subsection is subseclg times larger than
its predecessor.

tracetrain true: create snapshots of training after each corpus subsection,
prefixing all output filenames with the iteration number, followed by a
dot (“iteration prefix”)

Chapter 6

Evaluation

In this chapter, I evaluate the implementation of the word order learning archi-
tecture on the German Negra corpus, using different parameter settings. Section
6.1 describes the parameter settings of the different models evaluated, and de-
scribes the different training and test sub-corpora used. Section 6.2 evaluates
the system internally, by investigating its convergence behaviour. In Section
6.3, I indirectly and externally judge the learned word order rules by evaluating
the topological corpus created on the basis of the word order rules. Section 6.4
presents a preliminary experiment which applies the rules to parsing and genera-
tion. Finally, I comment on the linguistic value of the acquired field descriptions
in Section 6.5. I discuss the results in Section 6.6.

6.1 Experimental Setup

While the performance of a supervised learning system can usually be easily
evaluated by comparing the produced output to the desired output (the Gold
Standard), there is, by definition, no a priori gold standard in unsupervised
learning. It was therefore decided to evaluate the implementation of the learning
architecture in two ways:

e internally: the behaviour of the system can be evaluated in the terms of
parameters which are part of the system.

e externally: the output of the system can be applied to some external task
for which an evaluation strategy is at hand, and can be compared to the
expected behaviour.

As for internal evaluation, a desired characteristic of a learning architecture is
stability of output in the face of different data of the same kind. What is of
particular interest is the size of the input corpus which is necessary to produce
stable output. Thus, for internal evaluation, some parameters are necessary
that describe the output of the system on an abstract and numeric level. The
most important parameters of the learning architecture at hand that fulfil this
requirement are:

e the size of the precedence tables produced

76

CHAPTER 6. EVALUATION 7

| model | climb [dectree | splitting |

BASE
CLIMB X
MAN X X
DEC X ble
FULL X X X

Table 6.1: Broad classification of system parameter settings

e the number of fields of the field descriptions produced

Section 6.2 will mainly investigate these parameters.

While internal evaluation can answer the question of whether the system
produces any predictable output at all, it cannot assess the quality or usefulness
of this output. The remaining sections are therefore concerned with external
evaluation.

Section 4.8 described how the word order rules can be used to convert a test
input treebank to a treebank of topological structures. It is this treebank which
can serve as one source of external evaluation. I follow two strategies in Section
6.3.

e counting the frequency of unpredicted word order configurations during
export (recall in Rule Application Task)

e comparing the produced treebank with a different topological corpus, cre-
ated with a different method, using standard bracketing measures (bracket
recall in Corpus Comparison)

I will also present an experiment on applying the learned word order rules to
parsing and generation in Section 6.4. This is in some sense the most realistic
scenario of external evaluation, since it is not only able to demonstrate the
value of the learned rules, but also their behaviour as a sub-module in a wider
framework. The results remain however preliminary.

Finally, I will judge the quality of the produced rules by comparison to
linguistic theories, as the ones presented in Chapter 3. Section 6.5 will present
some output of the system in detail, and comment on the linguistic value of the
field descriptions.

The goal of evaluation is not only to judge the system as a whole, but also
to compare different parameter settings of the system. In fact, the behaviour of
a learning algorithm often varies stronger between different parameter settings
than between different algorithms (Daelemans and Hoste (2002)). Therefore all
of the experiments outlined above were therefore run with different parameter
settings of the model. Section 5.3 gave a detailed overview of the implemented
parameters. A set of parameter settings is called a model. The possible models
can be broadly classified according to whether each of the system’s main sub-
modules is switched on or off, as illustrated in Table 6.1.

BASE models neither use climbing, automatic feature adaption, nor split-
ting, i.e. they do not account for non-local phenomena, and keep the dependent
feature selection function unaltered. All other models use the climbing module

CHAPTER 6. EVALUATION 78

to convert the input trees, and include non-local realisations in the field de-
scriptions. MAN (manual) models differ from CLIMB models in their use of
the splitting rule, while DEC (decision tree) models do not use splitting, but
automatic feature adaption with decision tree learning. FULL models use both
splitting and decision tree learning.

MAN and especially FULL models will prove to be the best performing ones,
and will be compared in mode detail. They are also the models where a number
of additional system options are available that can influence the behaviour of
the system further. Table 6.2 is a comprehensive list of all models evaluated.
An important option is robust edge selection (Section 4.7.1), which is applicable
to all models, but will be evaluated in detail on manual models only. Six differ-
ent edge selection strategies were used, varying in the threshold value used for
including an edge into the order graph (edgethresh), and the maximum conflict
ratio of a pair that is admissible for an edge to be included (edgefactor). Differ-
ent edge selection strategies are indicated in the model name by a suffix E. For
full models, the parameter that turned out to be most important was the rule
confidence value provided by the decision tree learner (decthresh). Different
strategies of automatic feature selection are indicated by a suffix D (for decision
tree learning) at the model name.

Since the behaviour of the system on different input corpora is of interest,
the corpus was split into subsections. The creation of sub-corpora was also
necessary because some of the corpus data had to be held out for testing. All
experiments were performed on version 2 of the 20k sentence Negra corpus of
German newspaper texts. As test data, the very same set of test sentences was
used as Becker and Frank (2002) used in their experiments. Becker and Frank
used 500 sentences as a gold standard, viz. every tenth sentence in the range
10,000 to 15,000, with sentence indices ending in 7, excluding 6, presumably
ill-formed, sentences.

In order to investigate the influence of corpus size on performance, each
model was trained on the first corpus subsection, a snapshot was generated,
the whole model was reset, and then retrained on sections 1 and 2, and so
forth, for sections 1,2,3, then 1,2,3,4. Obviously, this leads to a runtime of
O(n?) with the number of corpus subsections n. With model running times
in the magnitude of hours for some parameter configurations, care should be
taken to minimise the number of corpus subsections while guaranteeing precise
convergence figures. Therefore, the corpus subsections were not chosen to be
of equal size, but logarithmically growing: Each corpus subsection is 1.5 times
larger than its predecessor. In the following, training corpus subsections will be
numbered from 0 to 13, as indicated in Figure 6.1. Corpus subsection n starts
at sentence 50 - 1.5" 7! + 1 and ends at sentence 50 - 1.5" (with the exception
of section 0, which starts at sentence number 1). It is essential to note that all
plots in the following sections distribute the corpus subsections evenly along the
x-axis. This means that I plot on a logarithmic x-scale. Thus, the logarithmic
growth of some parameters is easily visible. Training the models on sentences 1
to 9,730 proved to be a workable compromise between running times and enough
data. Figure 6.1 sums up this discussion graphically.

Besides the influence of corpus size, it is also desirable to show that the
system behaves similar on different input corpora of equal size. Dietterich (1998)
proposes to split the training corpus into sections of equal size, and use the
same test corpus, if enough training data is available. According to him, cross-

[model [X-valid [trace | climb [dectree [adaptthresh | adaptfactor | decthresh | split | uniqueHead | edgethresh [edgefactor |
[BASE [[14 [n] n [- [- [- [n] n [1 [100 |
| BASE-E4 | | 14 | n] n | - | - | - | o] n | 2 | 95 |
[CLIMB | [14 [vy] n [- [- [- [n] n [1 [100 |
| CLIMB-E4 | | 14 Ty] n | - | - | - | n] n | 2 | 95 |
[DEC [[14 T vy [v] 10 [95 [050 | n] n | 1 [100 |
[DEC-E4_| 14 [v [v | 10 | 95 [050 [n | n | 2 95]
MAN-EL 14 v n - - - n v 1 100
MAN-E2 14 y n - N - n y 2 100
MAN-E3 14 y n - - - n y 1 95
MAN-E4 y 14 y n - - - n y 2 95
MAN-E5 14 y n - - - n y 1 50
MAN-E6 14 y n - - - n y 2 50
FULL-DI 14 v y 10 95 0.50 n v 2 95
FULL D2 v 14 y y 10 95 0.70 n y 2 95
FULL-D3 14 y y 10 95 0.80 n y 3 95

Table 6.2: Parameter settings of all models evaluated. X2 models are trained on different, but equally sized corpus data for cross validation.

NOILVNIVAH "9 HHLdVHO

6.

CHAPTER 6. EVALUATION 80

TRAINING I
ofifa]3]als [e]7 [8] o [w] nl 1w 13 i
I [I I I I I I

I I I I I I I
15075 112 168 253 379 569 854 1281 1922 2883 4324 6487 9730 10007 10017 10027 ... 15047 ... 20602

Figure 6.1: Corpus Subsections

[BASE [CLIMB | DEC | MAN | FULL |
[T4min | 60min | 1d 21h | 5h 45min | 1d, 19h |

Table 6.3: Running times for different models, with training trace

validation Stone (1977) is not necessary in this case. For this experiment, the
corpus was split into 9 subsections of 2010 sentences each. The test corpus was
excluded.

Figure 6.3 shows the running times of the different models on a cluster
machine with two 1266 MHz Pentium III processors, with training trace option
set to true. Some of the models were trained in parallel. Obviously, decision
tree learning with its feed-back architecture is expensive, while the other models
can be trained within hours on 10,000 sentences.

6.2 Convergence Behaviour

Two parameters were mentioned in the previous section as possible measures of
system convergence: First, Precedence Table Size is the number of elements in
a precedence table. In the following, [pos:NN], [pos:NE], [pos:VAFIN rel:+root]
and [pos:VVFIN,rel:+root| are chosen as representative precedence tables, with
nouns exhibiting significantly less non-local dependents than verbs. Second,
Field Description Size is the number of fields in a field description. The field
descriptions constructed from the precedence tables of the same heads were
selected and will be plotted against the corpus size in this section.

The plots in Figure 6.2 show that the growth of precedence tables with
increasing corpus size dependents heavily on the model used. Reminding the
reader that the x-scale is logarithmic, it is obvious that precedence table size
converges for the model BASE after about 3,000 sentences at 30 elements for
nouns and between 20 and 25 for verbs. This is not surprising, since the feature
selection strategy of the BASE models restricts the number of possible elements
to the number of syntactic relations. Models that allow climbing though, exhibit
logarithmic growth of their precedence tables, visible in the plots by the linear
appearance of the graph. Here, unseen climbed elements can enter the field
descriptions. Precedence tables of DEC and MAN models grow faster, since
they also allow for elements to be automatically sub-classified respectively split.

The plots in Figure 6.3 show the behaviour of different manual models when
constructing field descriptions from the precedence tables underlying Figure
6.2(d). Models MAN-E1 and MAN-E5 illustrate two extreme cases of what
could be termed non-robust edge selection: MAN-E1 selects only non-conflicting
precedence pairs (edgefactor=100), while MAN-E5 selects all precedence pairs,
and infers the directionality of an edge from the majority of cases in the data
(edgefactor=50). Models on the left hand side in the figure do not employ a

CHAPTER 6. EVALUATION 81

(a) BASE* (b) CLIMB*

Precedence Table Size Precedence Table Size
o o—_— .
P R -
oS VVEIN oL To0l] - [wsvvFlee\ o et
oS VAR el roni] = SVAFINTol-ro0]
[pos:VVFIN rel:roof] pos :\VVFIN,rel:roof
50 {BosVArINeiTool] - 50 (oS VArNTelzal -
=
40 A
& g
H &
o o
o 1 2 8 4 5 6 7 8 5 10 n 12 1 0 1 2z s 4 5 & 7 8 s 10 n 12 w
Corpus Secion Corpus Secton
Precedence Table Size Precedence Tavle Size
o—_ .
m*ﬁ,
pﬂswnme\ ol S
bos Vi
[Dldﬂoa
50 IN,rekfoot] - =~
%
& £
H g ®
H H
2
10

Corpus Section Corpus Section

Figure 6.2: Growth of Precedence Table Size with Corpus Size for different
models

CHAPTER 6. EVALUATION 82

frequency threshold in including edges into the graph. Models on the right
hand side, in contrast, employ frequency threshold 2. The parameter edgefactor
decreases from 100 for models in the top row to 95 for models in the second row
to 50 for models in the third row.

The plots make clear that the introduction of a threshold is an essential
characteristic in order to make the field descriptions robust: field description
size is volatile for models on the left hand side, while it varies only slightly
for models in the right column. The figures also suggest that an edgefactor of
slightly less than 100 is a good choice for robust edge selection. This makes
MAN-E4 the best manual model.

The growth of field descriptions seems to be logarithmic too, in the plot
range, which is more surprising than for precedence tables. Field Description
Size grows much slower than Precedence Table Size, though.

Figure 6.4 plots the same data as the previous figure for the remaining
models. Only E1 and E4 models where computed for the BASE, CLIMB and
DEC strategies. Field Description Size clearly converges for the BASE models,
where also Precedence Table Size converged. For DEC strategies, the size of
field descriptions is volatile, both for robust and non-robust edge selection.

Up to now, FULL models have not yet been considered, because their be-
haviour depends on additional parameters besides robust edge selection. I as-
sume at this point that robust edge selection has proved successful, and only
evaluate models with edgethresh=2 and edgefactor=95.

Figure 6.5 plots Precedence Table Growth in FULL models, comparing the
parameter decthresh, which influences the inclusion of rules found by the decision
tree learner into the feature selection strategy. FULL-DI1 includes every rule
found by the learner (decthresh=0.5, a rule has at least a score of 50%). FULL-
D2 only includes rules with an error rate of less than 30% (decthresh=0.7).
Again, precedence tables seem to grow logarithmically, but faster for FULL-D1.

Figure 6.6 plots the growth of the corresponding field descriptions. A higher
decthresh value smooths the growth of field descriptions, but only slightly. Also
with a higher decthresh value, decision tree learning still behaves in a more
volatile manner than the corresponding manual model, and shows more growth.
The reason is that fine-grained classes discovered by the decision tree learner
may be collapsed to single fields on some data due to cycles in the order graph,
while thresholds prevent this collapsing on slightly different data.

Figure 6.7 investigates the stability of field description size closer. The mod-
els MAN-E4 and FULL-D2 were trained on 9 disjoint corpus subsections of
equal size (2010 sentences). In both models, there is considerable variance in
the field sizes. For MAN-E4, field sizes vary by +16.5% in average, for FULL-
D2 by +£19.4%. In the manual model, nominal fields vary considerably less than
verbal fields (+12.6% as opposed to +18.3%). The trend is inverted, and less
clear for the automatic model (+21.2% and +18.5%).

More parameters would be desirable to test for automatic feature adaption.
However, running many automatic feature adaption models with training trace
is quite time consuming. Therefore restrictions had to be applied to these
experiments for the course of this thesis.

CHAPTER 6. EVALUATION 83

(a) MAN-E1 (b) MAN-E2

Fields Description Size Fields Description Size
20 T T T T T T T T T 20 T T T T T T T T T T

[pOSINN] ——

x

S
pos VYN o o0
oS VAR o700l
SoeEN eiroa -
PesVAr N rotroo] -5.-

Shokk

Number of Fields
Number of Fields

Corpus Section Corpus Section

(c) MAN-E3 (d) MAN-E4

Fields Description Size Fields Description Size

[POSNN] ——— [POSINN] ——
05 NE} e~

posiiE|
[pos:VVFINfel:-roof] -
[pos:VAFINrel-oof] &
pos:VVFIN rel-root] - -8
[pos:VAFIN rel:root] -0~

Number of Fields
Number of Fields

Corpus Section Corpus Section

(e) MAN-E5 (f) MAN-E6

Fields Description Size Fields Description Size
20 ———— T 20 ——— T
[posINN] ——+— [POSNN] ——
p—— pos:NE] --x---
[p0S:VVEIN el -r001] % 0S:VVEIN,rel-roof] ¥
Jpos: VAFIN el-rool] & pos:VAFIN rel-ool] 8-
Ip0s:VVEIN reloot] --=-— pos:VVEIN relrool] --=—
05 VAFIN felool] - -0~ pos:VAFIN rel100i] - -0~
15
N T
5 5
2 H
5
o S S S o S S S S S
o 1 2 s 4 5 6 7 8 9 10 n 12 13 o 1 2 s 4 5 6 7 & 9 10 1 12 11
Gorpus Section Corpus Section

Figure 6.3: Growth of Field Description Size with Corpus Size for models MAN-
E1 to MAN-E6. Models with uneven numbers have edge selection threshold 1,

models with even numbers 2. Edge selection factor is 100% for models 1 and 2,
and 50% for models 5 and 6.

CHAPTER 6. EVALUATION

(a) BASE

Fields Description Size

20 T T T T T T T T T T T
[posNN] ——
0s:NE] -
[pS:VVFIN,rel-r00f] --%-
[pos:VAFIN rel:-root] &
[poS:VVFIN refroo]
os:VAFIN relrool] -6~
15 4

Number of Fields

Corpus Section

(c) CLIMB

Fields Description Size

20
[pos:NN] ——
sl -

[pos:VVEIN fa-roof
15 * 1
5
2
o S S S
o 1 2z 3 4 5 6 7 & 9 10 1u 1z 1
Corpus Section
Fields Descripton Size:

20 —— T
[POENN) ——
os:NE|

[pos:VVEIN fl-rooi] -
[pos-VAFIN rel-ro01] —
lpos:VVEN e oo =~
oS- VAFIN rolroot] -0 -
15 1
€
2
o S S S

Corpus Section

ids.

Number of Fi

Dependent Types

Number of Fields

(b) BASE-E4

Fields Description Size

20 T T T T T T T T T T T
[posiNN] ——
SNE]
pOS:VVFIN,rel: oo --¥
pos:VAFINrel--root]
ipos:VVFIN rel-raof] —-=-
[pos:VAFIN rel-root] -
15
10

o PR
o 1 2 s 4 5 6 7 & 9 10 1 12 11
Corpus Section
Precedence Table Size
0
[POSNN) ——
p0S:VVEIN rel-oot] <
pos:VAFIN rel-roof] Fx
pesyyenreiroot o
50 pos:VAFIN regcol] --=

0 L L L
o 1 2 3 4 5 & 7 8 9 10 11 12 18
Corpus Section
Fields Description Size

20 T T T T T T T T T T

|
p0s:VVFINrel:-root]
pos:VAFIN el -root]

s ENlion] <=
[t

[POSINN] ——

Corpus Section

84

Figure 6.4: Growth of Field Description Size with Corpus Size for different

models

CHAPTER 6. EVALUATION

100 T

Precedence Table Size

Precedence Table Size

Dependent Types

[pos NS m:;l i

Dependent Types

Figure 6.5:

FULL-D2

Corpus Section

Growth

Fields Desoription Size

Corpus Section

Fields Description Size

Number of Fields

[

Number of Fields

B
NE

Figure 6.6:

FULL-D2

Corpus Section

Corpus Section

85

of Table Size with Corpus Size for models FULL-D1 and

Growth of Field Size with Corpus Size for models FULL-D1 and

Fields Description Size

Fields Description Size

20 T T T T T " 20 T T T T T T T
oy —— o
[pos:NE] - pos:NE] -
[pOS:VVFIN.rel: root] -~ POS:VVFIN,rel-oo] -~
[pos:VAFIN.rel:-root] & pos:VAFIN rel:-root] -
[poS:VVFIN,relrool] - -m-- e
[pos: VAFIN.rel:root] -6~ pos:VAFIN rel root] -6~
15 4 15 - -

Number of Fields

Number of Fields

2 3 4 s
Corpus Section

Corpus Section

Figure 6.7: Precedence Table size of models MAN-E4-xval and FULL-D2-xval,
each trained on disjoint training sets of 2010 each

CHAPTER 6. EVALUATION 86

Error-free rule applications
0.8 T T T T T

0.7 =

0.6 —
05 —
04 b B

0.3 B

0.2 4

Percentage of sentences

0.1

T
!

o

L L L L L
< < < ~ = N ®
w w ul u Q Q Q
w1 o) ¢ z 4 4 4
7] 2 b z pr} a o
g 3 & = 2 2 2
Model
Error-free rule applications
1 T T
0.9 F 4
0.8 4
3
- 07} 4
g
< 06 4
o
e 05 4
S
é 0.4 1
§ 03[1
a
02| 1
0.1 | 4
0 L L L L L
<~ < < ~ = N «
w1 o) &) z 4 4 4
7] S @ z } 4 o
S 3 o = 2 2 2
Model

Figure 6.8: Different models’ performance on Rule Application Task

6.3 Rule Recall

This section presents two experiments which both use the Export module (Sec-
tion 4.8) to generate a corpus of topological field structures conforming to the
learned word order rules and evaluate this corpus. This means the rules are
evaluated indirectly against an external criterion of success.

In the first experiment, the number of failed rule applications during export
was counted. A rule application fails if the word order configuration observed
under a given head in the test corpus is unattested by the learned feature selec-
tion function and field description (see Section 4.8).

Two recall counts were generated from this data, the number of successful
nodes (node recall), and the number of successful sentences (sentence recall)

e a node is considered successful if the order of all of its dependents is
attested by the field description, and unsuccessful otherwise.

e a sentence is considered successful if it contains successful nodes only

There is a choice of whether to count trivial field descriptions which consist
of a head only, and no dependents as a successful rule application, or exclude
them from the calculation. Unless otherwise stated, trivial nodes are counted as
successful rule applications. As a matter of fact, the difference is only marginal.

Figure 6.8 compares the different models with regard to their performance
during the export task. It is clear from these figures that the most significant
improvement in the results is due to the splitting rule. Models with splitting
(MAN, FULL) outperform the others clearly. Model FULL-D3 achieves 71.3%

CHAPTER 6. EVALUATION 87

Recall of Rules on Test Corpus. Recall of Rules on Test Corpus.

Error-free rule applications

Error-free rule applications

Figure 6.9: Influence of Corpus Size on Rule Application Task performance for
models MAN-E4 and FULL-D2

recall on sentences and 97.6% recall on nodes, considerably outperforming MAN-
E4 with 66.5% node recall and 97.2% node recall.

Figure 6.9 demonstrates the influence of corpus size on the export task for
manual and automatic feature selection. While manual feature selection im-
proves with growing corpus size, and outperforms automatic feature selection
towards the end, the performance of automatic feature selection is nearly inde-
pendent of corpus size. This is due to the behaviour of the integrated decision
tree learning/splitting architecture of the FULL model: in the face of decision
tree learning failing, there will be only very few, but very general classes, which
will be split due to a high conflict ratio. This trivial field description performs
quite well on the export task, and is superior to manual feature selection, as
long as little data has been seen.

Figure 6.10 presents the same node recall data as in the previous figure,
but sub-classified by the head class of the node. For this calculation, trivial
nodes were excluded. Performance is consistently lower on verbal than on non-
verbal material. The automatic model outperforms the manual model clearly
for root-node finite auxiliary verbs. The score for [pos:KOUS] is 100% for the
automatic model, since it does not find any rules there, and provides a trivial
field description consisting of [split:pre-hd], [head:yes]|, [split:post-hd]. FULL is
inferior to MAN for [pos:VVFIN,rel:root] and [pos:VVINF].

The previous experiment presented results on how reliable the learned rules
are for assigning a topological field structure to a given word order configuration.
It did not show, however, how closely the rules match with linguistic intuitions.
The experiment was therefore complemented by a comparison of the produced
topological corpus with the hand-crafted topological corpus of German created
by Becker and Frank (2002).

The gold standard used in Becker and Frank (2002) for evaluation of their
parser was kindly made available to the author by Anette Frank. The corpus
was represented as Penn Treebank style bracket structures. The learned LP
corpus was available in this format, too, on the basis of the algorithm sketched
in Section 4.9. Figure 4.19 above presented an example. For the purpose of
comparison, a dummy node in Becker and Frank’s data encoding the sentence
number and punctuation was removed.

SOPOU [BIALI} JO UOISNIXS IOpUN ‘T(-TTN.J Pue

019 2mS3rq

PH-NVIN S[epou 10] ‘sse[o peay £q yse], uoryedrddy sy ur [[eosy

sse|) peaH

[pos:ADJA]
[Pos:ADJD]
[pos:ADV]
[pos:KON]
[pos:KOUS]
[pos:NE]

[pos:NN]

[pos:other]
[pos:VAFIN rel:-roof]
[Pos:VAFIN,rel:root]
[pos:VMFIN rel:-roof]
[pos:VMFIN.rel:root]
[pos:VVFIN rel:-root]
[Pos:VVFIN,relroot]
[pos:VVINF]
[pos:WVizU]

[Pos:VVPP]

90

Successful rule applications (%)

o

>

&
T

)
3
T

°

3

&
T

o
®
T

o

®

&
T

o
©
T

860

SSEIO PEeH Aq [leoey uonEoNddy einy

sse|) peaH

[pos:ADJA]
[Pos:ADJD]
[Pos:ADV]
[pos:KON]
[pos:KOUS]
[Pos:NE]

[Pos:NN]

[pos:other]
[pos:VAFIN,el:-root]
[pos:VAFIN reliroot]
[pos:VMFIN rel:-root]
[Pos:VMFIN.rel:root]
[pos:VVFIN,rel:-root]
[pos:VVFIN reliroot]
[pos:VVINF]
[pos:VVIZU]

[POS:VVPP]

Successful rule applications (%)

<890

o
<
T

hEAY

o
®
T

580

o
©
T

4 s60

sse|) peaH Aq |[eoay uoneolddy ajny

9 HAILdVHO

NOILVNTVAH

88

CHAPTER 6. EVALUATION 89

CL-Vv2
VF- IC LK-VFIN F

Pls VVLN P APPR P APPR ART ADJA IN ADJD

"Das 0" "machte 1" "sich L‘ "vor L" "allem 4" “in l" “"den L" "ersten 7" "Runden 8" "bemerkbar 9"

Figure 6.11: Comparison of (above) gold standard LP tree and (below) con-
verted learned tree, with 3 of 4 brackets matching (75%), and 0 crossing brackets
(Negra sentence 10097)

Bracket structures are normally compared with the PARSEVAL measures
(see Collins (1997)). For reasons of comparability, the same tool was used for
calculations of these figure as Becker and Frank were using, EVALB.

There are practical problems in applying these measures to the data at hand.
Obviously, the tags of the trees to be compared differ. Becker and Frank use a
linguistically motivated tag set, while the learning system produces numeric field
labels. Therefore only unlabelled bracket measures could be applied. Another
issue is whether trivial brackets should be counted. EVALB was configured to
ignore all POS-tags. It cannot be configured to ignore the sentence-spanning
root node though, neither can it be configured to ignore brackets with the same
span. Brackets with the same span are extremely seldom in the data though,
due to the very flat tree structures.

There is another and more severe problem with comparing the learned struc-
tures with Becker and Frank’s data: Becker and Frank use a very flat annotation
for noun phrase topology and middlefield configurations, while the learning ar-
chitecture was designed to discover word order regularities of finer granularity.
An example is the own field for the reflexive pronoun “sich” in Figure 6.11 (con-
fer Figures 4.17 or 4.19, page 64, for alternative representations of the same
sentence), which has to occur before other middlefield material; a fact that is
not reflected in the gold standard data. Certainly the system should not be pe-
nalised for these fine-grained analyses. The analyses of “bemerkbar” also differ.

There are two PARSEVAL measures that can be employed in the light of
the above considerations: unlabelled bracket recall, and non-crossing bracket
measures. Figure 6.12 plots these measures for the different models tested.
FULL-D2 achieves 74.5% bracket recall, and MAN-E4 73.8%. When we compare
these figures to the 97.6% and 97.2% recall on nodes in the Rule Application
Task, it is obvious that the Corpus Comparison figures are much lower.

There are two main reasons for the lower results. The Corpus Comparison

CHAPTER 6. EVALUATION 90

Bracket Match Figures of Different Models Bracket Match Figures of Diferent Models Bracket Match Figures of Different Models Bracket Match Figures of Different Models
3 100

Average crossing brackels
Unlabelied bracket recall (%)

Unlabelled bracket recall (%)

i

FULL-D2/14,
FULL-D3/14.

!

MAN-E5/14.
MAN-E6/14.

BASE-E4/14.
CLIMB-E4/14.
DEC-E4/14.
MAN-E4/14.
FULL-D1/14.
BASE-E4/14.
CLIMB-E4/14.
DEC-E4/14.
FULL-D1/14
FULL-D2/14.
FULL-D3/14.
MAN-E1/14.
MAN-E2/14.
MAN-E3/14.
MAN-E4/14.
MAN-E1/14.
MAN-E2/14.
MAN-E3/14.
MAN-E4/14.
MAN-E5/14.
MAN-E6/14.

Model Model Model Model

Figure 6.12: Different models’ performance on comparison with Becker and
Frank

Exported LP Corpus Evaluation Exported LP Corpus Evaluation

I e A T . T

U R

Bracket Measure (%)

Corpus Section Corpus Section

Figure 6.13: Influence of Corpus Size on performance on comparison with Becker
and Frank for models MAN-E4 and FULL-D2

task penalises for different climbing decisions; sometimes it also penalises for
assuming a more fine grained analysis than in the Gold Standard. Manual com-
parison of the exported corpus with the Gold Standard revealed that in fact
many of the differences are due to differing, but both valid linguistic analyses.
The learning system consistently prefers local attachment of extraposable ma-
terial over non-local configurations in cases where the two are indistinguishable,
while Becker and Frank opt for the alternative analysis. This applies to relative
and complement clauses. It also applies to arguments of embedded verbal ma-
terial, which is only predicted to be a topological dependent of the main verb
in the face of scrambling by the system, but consistently “climbs” in Becker and
Frank’s data. There is also an own field for verb infinitive “zu” markers in the
learning system, but not in Becker and Frank’s data.!

Figure 6.13 shows the influence of the training corpus size on the bracket
measures. Here, a similar picture as in Figure 6.9 is revealed, though less clearly:
corpus size seems to matter in MAN models, but not in FULL models.

IEVALB does not offer the possibility to calculate recall figures for different types of
constituents. Therefore a quantitative sub-classification was not possible.

CHAPTER 6. EVALUATION 91

6.4 Application to TDG Parsing and Generation

All experiments of Sections 6.2 and 6.3 tested only whether the learned rules
are able to account for the word order wvariation found in a test corpus. In
other words, they interpreted the learned rules as parsing rules, and evaluated
whether the rules undergenerate in terms of recall. The experiments did not test
whether the rules capture the constraints on word order variability found in the
data well. This section presents a preliminary experiment that tries to answer
the question whether the learned rules overgenerate when used for generation.
At the same time, the experiment demonstrates how the rules can be used in
a more realistic application than the export of an LP corpus. This eventual
scenario is the embedding of the word order learning system into an existing
grammar framework, and work towards learning submodules of this grammar
framework.

Section 4.8, Figure 4.20 presented an example of the XML format into which
the learned rules are exported. In fact this format shows significant resemblance
with some sections of the TDG grammar formalism presented earlier in Section
3.3, Figure 3.3, and was converted into a TDG grammar. For each depclass
in the XML file, a corresponding lexical type was created that specified an
valencyLP slot for each offers element. The same was done for headclass
and the edgeID statement. The field labels offered by the tag <depclass
id="[head:yes]"> was converted into the set of internal field labels, and it
was specified that each head class accepts its internal field label solely as an
internal field.

The integrated TDG parser/generator had to be configured such that it
accepted not only a sequence of word forms as input, but a sequence of word
forms together with a given ID analysis. For this purpose, the ID structures of
every sentence in the corpus were also converted into an XML representation
and fed into the parser with the aid of an additional TDG principle (preparsed
principle), which simply assumed the ID analysis as given. During parsing, a
lexical entry was then assembled for each word form in the sentence by combining
the preparsed ID features with LP features constructed by lexical inheritance.
Each word form inherited from two LP lexical types, its head class and a set of
possible dependent classes.

There is a set of possible dependent classes for each lexical item, because
the same set of feature structures can be reduced to different “reduced feature
structures” (lexical types) by different heads, and the eventual LP head of an
item is not known in advance. This caused lexical ambiguity on the LP level.
For simplification, each lexical entry was reduced by all reducers of transitive
ID heads. Figure 6.14 shows an example of an automatically assembled lexical
entry.

There are two possible TDG features which were not inferred from the learn-
ing system. Field cardinality constraints were not available at the time the
experiment was run. For the course of the experiment, “*” (0, 1, or more occur-
rences) was assumed for all LP fields, the least constraining strategy possible.
The second feature which was not learned is the blocks feature. Here, two strate-
gies were followed and compared: First, blocks was always set to the empty set,
which allows unrestricted climbing through all heads. Second, a feature was
manually added to the lexical types for nouns, which blocked all dependents.

The experiment was run before the completion of implementation, with an

CHAPTER 6. EVALUATION 92

X ¥ 0= Inspects = G
Inspector Selection Options &

Figure 6.14: Learned LP level of a lexicon entry for “Mitteln”, offering 5 nominal
fields, where field number 3 identifies the position of the head in its own field,
and accepting adjectives, proper names and finite auxiliary and main verbs as
LP governors

niTekel
nglabzl

HNehen den Mitteln des Theaters benutzte Moran die Toncollage

N |

L

root] 0] [pos 0ot]2

[pos:VVFIN.rel root]1h
g her
{pos 1]
[pos:other]Zh [pos:other|2h [pos :ofher] h [pos 1] 3h
Hehen den des Mittein Theaters Moran henutzte Toncellage die

[pos:}IY] 3h [pos:other]2h

Figure 6.15: Wrong linearisation of a sentence, caused by non-prevented climb-
ing of an article through an NP barrier, and the existence of an “other”-class at
the verbal landing site

earlier version of the learning architecture, and with automatic feature adaption,
trained on 1000 sentences only. The partially learned grammar was successfully
interpreted by the parser/generator, and applied to selected sentences. Parsing
and generation times were too high for a complete run over a test corpus, but
some of the shorter sentences could be parsed within seconds. In parsing mode,
all admissible LP analyses of a given, ordered ID analysis were computed. In
generation mode, all admissible word permutations were computed, and their
LP analyses were investigated.

Without the restriction on the blocks feature, many ungrammatical lineari-
sations, as the one in Figure 6.15, were generated. In the example two articles,
“des” and “die”, climbed through their ID heads, and landed in fields of transitive
heads. This was admitted by the grammar, because field descriptions include a
class “other”, created by the decision tree learner, which allows nearly all kinds
of dependents. With the manually added blocks feature for nouns, though, the
admissible linearisations of the same sentences generated by the grammar re-
duced to 4, out of a theoretically possible 9! = 362,880 permutations of the
input sentence. The generated linearisations are shown in Figure 6.16. The
figure still includes two ungrammatical linearisations (number 1 and 2). These
two instances are due to the missing cardinality constraints, which were not
available at the time of the running of the experiment.

CHAPTER 6. EVALUATION 93

o{lin=:4

linsToSols:of '"Moran Neben den Mitbeln des Theabters benubste die Toncollage': [2]
'‘Neben den Mitteln des Theaters Moran benukzte die Toncollage': [1]
'lNeben den Mitkbeln des Theaters bhenutzbe Moran die Toncollage':[3]

'Iieben den Mitkbeln des Theakters benutzte die Toncollage Moran': [4])

Figure 6.16: All possible linearisations generated for the given ID structure of
the sentence “Neben den Mitteln des Theaters benutzte Moran die Toncollage”,
with manually added NP-blocking. The two ungrammatical linearisations are
due to missing cardinality constraints.

The early experiments with generation showed that not only parsing, but
also generation with the learned grammar is in fact possible. Preliminary results
suggest that not only variability found in word order, but also constraints are
captured well by the learning system. Adaptations to the parser are necessary,
though, to increase efficiency, before a quantitative evaluation experiment can
be run.

It became clear in the experiment that the inclusion of field cardinality
constraints and blocking constraints is a necessary step in order to avoid gross
overgeneration. The computation of field cardinality constraints was outlined
in Section 4.8, and seems to pose little problems. Automatic learning of block
features would require more research into the climbing module. Some thoughts
in this direction were indicated in Section 4.4, but learning constraints similar to
TDG’s blocks feature from the climbing configurations in the corpus on climbing
paths is not an easy issue. A more promising short-term solution might be to
exclude the other classes produced by the decision tree learner. This will not
remove all cases of ungrammatical climbing, but probably significantly reduce
the amount.

6.5 Linguistic Judgement

This section judges the field descriptions learned by the system on a linguistic
basic. The appendices C.1 and C.2 present the complete field descriptions for all
head classes, acquired by the models MAN-E4 and FULL-D2. For MAN-E4 the
results from corpus section 14 were taken, run on sentences 1-9730; for FULL-D2
the results from corpus section 13 were taken, run on sentences 1-6487, because
section 14 caused instability.? The appendices do not include precedence tables.
For an explanation of corpus tags used, cf. Appendix A.

Some general remarks are necessary on reading the field descriptions. All
models were run with a static head feature selection function which distinguished
the most frequently occurring POS-tags of items that take dependents at all.
Less frequent POS-tags were conflated into a class [pos:other]. A distinction
between verbs at the root node of the tree, and verbs in subordinate structures
was established, hoping to find differences with regard to verbal head position.

2At least this was the case at the point of time where the evaluation took place.

CHAPTER 6. EVALUATION 94

This is only a very coarse classification, though, and not suitable to describe
the basic division of V1, V2, and VF clauses.

While element feature structures of manual models are guaranteed to be
disjoint, the elements created with decision tree learning may subsume each
other. It is only through the order on feature structures, theoretically introduced
in Sections 2.4 and 4.7.2 that these field descriptions can be interpreted. The
reader is reminded at this point that a more specific feature structure is always
preferred to a less specific one, an element subsumed by, e.g. [pos:PRELS,rel:SB|
and [rel:SB] will be reduced to the first feature structure. If there is also an
element [pos:PRELS] in the field description, it will normally be reduced to
[rel:SB|, because the decision tree learner normally identifies syntactic relation
as the most significant feature, which leads to preferring rel over pos in the global
order on feature structures. In automatically adapted field descriptions, empty
feature structures or empty split feature structures can be discovered. These
are “dustbin”-categories, applicable only if no other feature structure subsumes
an element.

In the following, the field descriptions of nouns [pos:NN], finite root-node
auxiliary verbs [pos:VAFIN, rel:root|, and finite non-root node main verbs [pos:-
VVFIN, rel:-root| will be described in some detail, and differences between the
models will be outlined. After that, the descriptions are linguistically evaluated.
Model FULL-D2 consistently produces slightly larger field descriptions, with
considerably more elements, and a higher percentage of split elements.

Normal nouns [pos:NN] have 12 fields, and contain 39 elements, 20% of
which bear the split feature for model MAN-E4 (see page 110). For model
FULL-D1 (see page 117), there are 14 fields and 59 elements, 30% of which are
split. The head element occurs in field 5 for MAN-E4, and in field 7 for FULL-
D2. Both models discovered that prepositions [pos:AC| are consistently at the
beginning, and relative and complement clauses [rel:RC]|, [rel:OC] at the end.
Genitives [pro:GL] are predicted to occur either before adjectival pre-modifiers,
or closely after the head [pos:GRJ|. Since manual feature selection considered
syntactic relation only, and determiners, adjectives and other pre-modifiers of
nouns all bear the label NK (noun kernel) in Negra, MAN-E4 could not dis-
cover order rules with respect to determiners and adjectives. Automatic feature
adaption however, picked [rel:NK] as an order relevant feature. This class oc-
curred as a self-conflicting precedence pair in a later iteration, and was further
split up into determiners, [pos:ART, rel:NK], which consistently occur before
demonstrative pronouns [pos:PIDAT, rel:NK]|, adjectives [pos:ADJA, rel:NK]
and other kinds of noun-kernel elements. MAN-E4 found some non-local ele-
ments, e.g. climbed appositions [dist:1, re:MNR] and modifiers [dist:2, rel:MO],
while in the field description of automatic feature adaption the feature “dist”
does not occur. This does not mean that there are no rules for non-local ele-
ments, it merely means that there are no classes of elements discernible by their
“dist” feature only, which behave differently. This is probably due to the fact
that search started with the classes [| and [head:yes]. In both models, conjoints
conjoined with the head noun are predicted to occur directly after the head,
a characteristic which follows from the treatment of coordination during input
tree conversion. Table 6.4 provides an alignment of the automatically acquired
fields with the analysis of noun phrase topology proposed by Eisenberg (1999).

CHAPTER 6. EVALUATION 95

| Eisenberg | - | ART | | ADJ
MAN-E4 0 1 2 3-4
example [rel:NG| | [rel:MO] | [rel:AC] [rel:NK]
FULL-D2 0 1 2 4 5 6
example | {rel:NG] | [rel:MO] | [rel:AC| | [pos:ART]| | [pos:PIDAT] | [pos:ADJA]

SBST [Gen [PrGr | S |
5 6-7 8-10 11-12
|head:yes] | [rel:GR] |rel:RC]
7 8 9-11 12-13
|head:yes] | [rel:GR] |rel:RC]

Table 6.4: Comparison of traditional NP topological analyses with learned field
descriptions

Eisenberg lists details about order within the adjectival fields, mainly deter-
mined by semantic factors the corpus is not annotated for. It seems possible
that automatic feature adaption could discover these regularities, would it be
provided with data that encodes adjective classes. Vice versa, both automatic
models discovered regularities of pre-modification of PPs in fields 0 to 2, which
Eisenberg does not mention.

Finite, root-node auxiliary verbs [pos:VAFIN, rel:root] have 12 fields with
53 elements, 64% of which are split for MAN-E4 (page 115), and 14 fields with
77 elements, 72% of which are split for FULL-D2 (page 125). 36 respectively
10 elements explicitly refer to non-local elements. Finite auxiliary verbs at
the root of the sentence occur in V2 position in most cases, since newspaper
sentences are mostly declarative. The learned field description can therefore be
compared to traditional topological analyses of V2 clauses: The left sentence
bracket corresponds to the field where the head occurs. This is field 3 for model
MAN-E4 and field 4 for FULL-D2. The right sentence bracket corresponds to
a field where non-finite verbal complements can occur. Such a field was also
identified in both models. It is field number 6 for MAN-E4, where [rel:OC]
occurs, and field number 7 for FULL-D2 ([dist:0,rel:OC]).3

Both models also identified junctors [rel:JU] as occurring at the very begin-
ning of a verbal field description only. Table 6.5 summarises these similarities,
comparing to the analyses of H6hle and Eisenberg.

With aid of the interactive GUI, it is easily possible to extract example sen-
tences for each of the elements in the field descriptions. Below, corpus examples
of selected elements from the model FULL-D2 are provided, together with the
field in which they can occur and a reference to the sentence number in the
Negra corpus.

3When identifying [dist:0,rel:OC] as the right sentence bracket, the definition of the domain
of the feature selection function as a lattice of feature structures, with an additional order
(Section 4.7.2) plays a crucial role: FULL-D2 contains an element [pos:VVPP,split:post-hd|
in field 10. Normally, elements subsumed by [rel:OC] are also subsumed by [pos:VVPP].
Due to the order on the feature structures in the lattice, however, elements are reduced
to [pos:VVPP,split:post-hd] only if they are not subsumed by [rel:OC|. An example of
|[pos:VVPP,split:post-hd] is given shortly in the course of the discussion. A similar situation
arises in MAN-E4.

CHAPTER 6. EVALUATION 96

[Eisenberg | Konj [Vorfeld [Fin
| Hohle ‘ KOORD ‘ [¢] | Kr | K | FINIT
MAN-E4 0 0-2 3
example |pos:JU} [rel:SB] |head:yes]|
FULL-D2 0 0-3 4
example |pos:JU]| |pos:PPER,split:pre-hd] |head:yes|
[dist:1,pos:NN,rel: OA ;split:pre-hd]

Mittelfeld | Infiniter VK | Nachfeld |

X T VK| v |

4-5 | 6 [7-11 |

[rel:MO] | [rel:OC] | [rel:RC]| |

5-6 [7 \ 813 |
[pos:PPER,split:post-hd] | [rel:OC] [[dist:1,pos:NN,rel:OA,split:post-hd] |
| | |

[rel:RE,split:post-hd]

Table 6.5: Comparison of traditional topological analyses with learned field
descriptions

1. [pos:PPER,split:post-hd] (field 5, frequency 247): Von dort aus wurde [es]
zum Schornstein hochverlegt und von da an die Kabel drangehingt, die
ich gliicklicherweise schon im Haus hatte. (873)

2. [pos:PPER,split:pre-hd| (field 0, frequency 154): [Er| hat bereits ganze
drei neue Opern fertiggestellt. (47)

3. [dist:1,pos:NN,rel:OA split:pre-hd] (field 0): [Den Traum von der kleinen
Gaststétte] hat er noch nicht aufgegeben (551)

4. |dist:1,pos:NN,rel:OA split:post-hd] (field 8): Angekiindigt hatte das Un-
ternehmen bereits [den Abbau von 3000 Stellen in diesem Jahr| (853).

5. [pos:VVPP,split:post-hd] (field 10): Nach ihm ist das Hochheimer Heimat-
museum [benannt|. (222)

6. [rel:RE,split:post-hd] (field 12): Nach Angaben des US-Rechnungshofes
wiirde es allein 300 bis 400 Milliarden Dollar kosten, [die militdrischen
Atomanlagen in den USA unschédlich zu machen]. (742)

Sentences 1 and 2 give examples of subject pronouns, which are directly at-
tached to the auxiliary in the corpus. They are predicted to occur in the vorfeld
or in the mittelfeld. The precedence table reveals that subject pronouns occur
more often in the mittelfeld than in the vorfeld, while the trend is the oppo-
site for full NPs. This is counter-intuitive at first sight, because pronouns are
contextually bound, while full NPs are not. Thus, the data is evidence for type
of syntactic construction where the vorfeld creates additional focus. Drodowski
and Eisenberg (1995) calls this function Ausdruckstellung (p. 719).%

Sentences 3 and 4 provide examples of accusative NPs. Since non-subject
material is not annotated under the auxiliary, but under the non-finite embedded
predicator in the corpus, all accusative NPs in the field description of auxiliary
verbs are non-local. Compactly realised accusatives, in contrast, are dealt with
in the field description of non-finite embedded predicators. This is the reason

40ther examples include “Noch nie habe ich so viel gew#hlt” (902) and “Auf lange Sicht
wird sie sich bezahlt machen” (566).

CHAPTER 6. EVALUATION 97

for accusatives not occurring in the “mittelfeld” positions 5 and 6 of FULL-D2.
The field description offers field 0 (a “vorfeld” position), or field 8 (a “nachfeld”
position). Non-local accusatives in the extraposition field are instances of partial
fronting Kuthy and Meurers (1999).

Sentences 5 and 6 provide more examples of “nachfeld” material. Example
5 refers back to footnote 3, page 95. Example 6 is an instance of a placeholder
construction: “es” takes a mittelfeld position, while the longer infinitive clause
is extraposed to the nachfeld.

The border between the field for conjunctions and the vorfeld is fuzzy. Ob-
viously, there was not enough evidence for junctors consistently preceding, for
instance, question pronouns [pos:PWAV] in model FULL-D2, so they were in-
cluded into the same field. The reader is reminded at this point that the strategy
of ordering fields in the absence of clear data is left-alignment, as defined in Al-
gorithm 5 in Section 4.6.

Main verbs occurring in subordinate clauses [pos:VVFIN,rel:-root| are
the third class described in detail. There are 13 fields with 45 elements, 44% of
which are split for MAN-EA4 (see page C.1), and 19 fields with 88 elements, 63%
of which are split for FULL-D2 (page C.2).

Since subordinate clauses can exhibit V2 or VF verbal position, the identifi-
cation of a sentence bracket is less straightforward. I will focus on the fields to
the left of the head in this discussion, and assume that the head occurs in final
position. In MAN-E4, the head occurs in field 7, in FULL-D2, it occurs in field
11. This means that the middlefield positions are 3 to 6 in MAN-E4, and 2 to
10 in FULL-D2.

Automatic feature adaption created much more fine-grained middlefield rules.
Table 6.6 shows that the rules discovered for the order of these middlefield ele-
ments correspond in fact largely to middlefield order rules known in the descrip-
tive literature. The sequence of subject pronouns, reflexive accusative pronouns,
full accusative NPs, dative pronouns, subject NPs and dative NPs is found ex-
actly as predicted by Engel (1970) in the learned field description (see Section
3.2). Note that [rel:SB] refers to full NP subjects mainly, due to the existence
of the more specific feature structure [pos:PPER,rel:SB|, and [rel:DA] refers to
dative pronouns mainly, due to the existence of [pos:NN,rel:DA]. There are only
two slight differences: Engel’s definiteness effects could not be found, since the
corpus is not explicitly annotated for definiteness. Actually, Hoberg (1981, p.42)
identifies a problem with Engel’s rule with regard to definiteness, and proposes
animaticity instead of definiteness. There is a reference to [pos:NE,rel:OA] in
field 4, and to [pos:CARD,rel:OA] in field 8, which backs Hoberg’s finding:
Proper names are mainly animate, while numeral values are certainly not. The
second difference is that dative pronouns and full subject NPs occur in the same
field in the learned field description.

Summary The analysis of some of the field revealed clear correspondences be-
tween a traditional topological field analysis, augmented by rules on middlefield
order. There are however some important differences.

First, traditional topological field analyses start with the basic assumption of
basic clause types of German (V1, V2, VF), where pragmatic as well as syntactic
factors determine the choice of major clause type. Since automatic acquisition

CHAPTER 6. EVALUATION 98

Engel (simplified) NPron AReflPron APron
FULL-D2 |pos:PPER,rel:SB] |pos:PRF,rel: OA] |pos:PPER,rel:OA]|
2 3 5
DPron N A D
|rel:DA] | [rel:SB] | [pos:NN,rel:OA] | [pos:NN,rel:DA]
6 6 7 10

Table 6.6: Comparison of automatically acquired middle field order rules with
descriptive analyses

class total rule count % ignored head rules
pos:VVFIN,rel:-root 210 0.63
pos:VAFIN,rel:-root 177 0.61
pos:other 318 0.54
pos:ADV 46 0.41
pos:VMFIN,rel:-root 87 0.40
pos:NN 97 0.34
pos:KON 39 0.33
pos:ADJD 31 0.22
pos:NE 38 0.21
pos:VVPP 40 0.20
pos:ADJA 44 0.15
os:VVINF 38 0.13
pos:VVIZU 12 0
pos:VVFIN rel:root 78 0
pos:VMFIN,rel:root 32 0
pos:VAFIN rel:root 59 0
pos:KOUS 1 0

Table 6.7: Quality of head feature selection function expressed as ignored head
rules during decision tree learning, calculated from model FULL-D2

of the head feature selection function was excluded from the objectives of this
thesis, only a coarse approximation of the major clause types was possible, by
introducing the distinction of [pos:VXFIN,rel:root] and [pos:VXFIN,rel:-root]. It
is possible, though, to extend the architecture towards automatic head feature
selection function adaption. In fact, the decision tree learner produces even rules
that refer to head features during feature adaption, but the algorithm ignores
them, because the head feature selection function is static (see Section 4.7.2).
Table 6.7 shows the number of ignored rules that referred to head classes. This
count can serve as a measure of quality of the head feature selection function.
The table shows that there is in fact a strong force to adapt the head feature
selection function of verbs occurring in subordinate clauses. It may be conjec-
tured that this is due to declarative main clauses being the dominant clause
type in newspaper texts, while subordinate clauses with verb second position
are also a peculiarity of newspaper style.

Second, there is a conceptual difference in traditional topological field anal-
yses between rules establishing the overall field structure, and more fine-grained
rules governing placement of elements within these fields. This conceptual dif-

CHAPTER 6. EVALUATION 99

ference is non-existent in the learned field description: a rule predicting that
reflexive pronouns occur before full NPs is not conceptually different from a
rule predicting that mittelfeld material occur before the right sentence bracket.

Third, there is a difference between the learned field descriptions and tra-
ditional analyses with regard to non-local material and the “verbal complex”.
Topological field analyses assume all non-finite verbal material to constitute a
single field, and analyse arguments of any of these verbs in the same way. The
“verbal complex” of the learned field description reduces to the occurrence of a
single element [rel:OC], and further embedded verbal material is treated within
the field descriptions of the embedded head, as long as it is realised continuously.

An issue which was only mentioned in passing in the discussion above is
the treatment of coordinated structures. Standard topological analyses exclude
conjunction from their scope. In the field descriptions learned, coordinated
structures occur as [rel:CJ] directly to the right of the head. This is an epiphe-
nomenon of the input corpus conversion procedure outlined in Section 4.3. There
is also a separate field description for subordinating and coordinating conjunc-
tions ([pos:KON], [pos:KOUS]).

6.6 Discussion

In the preceding sections, different parameterisations of the implemented word
order learning architecture were evaluated in terms of their convergence be-
haviour, using precedence table size and field description size as a quantitative,
internal measure. Furthermore, the rules were applied to two external tasks:
converting a test corpus of ID structures into a topological treebank (rule ap-
plication task, corpus comparison), and using the rules for TDG generation.
The learned field descriptions were also linguistically judged, and compared to
descriptive analyses in the literature.

The evaluation of the convergence behaviour showed that Precedence Ta-
ble Size and Field Description Size converges only for BASE models (without
splitting and automatic feature adaption) within 500 sentences. The reason is
that there is a priori maximum on the number of elements for these models.
All other models show logarithmic growth of Precedence Table Size and Field
Description Size with increasing Corpus Size. However, field descriptions grow
slowly, even if precedence tables may grow fast. The basic topological structures
known from the literature are picked up first, and in the magnitude of some
hundred sentences. Chapter 4 gave examples of field descriptions learned from
small corpora. More fine-grained rules are added later. Logarithmic growth
has been observed on similar learning tasks in the literature, e.g. by Krotov
et al. (1998), who propose a method of compacting the phrase structure rules
they acquire from the Penn Treebank. Modified thresholding techniques could
achieve a similar result in the word order learning system.

Without robust edge selection, the system gets into loops of over- and under-
fitting. Robust edge selection (edgethresh=2, edgefactor=95) was discovered as
the relevant parameter which remedies this problem for manual (MAN) models.
The effect was less clear for automatic (FULL) models. Here, the parameters
adaptfactor and decthresh had an influence on Field Description Size, but the
behaviour of the system remained more volatile. Since Field Description Size
shows more variation than Precedence Table Size in FULL model, this seems to

CHAPTER 6. EVALUATION 100

be due to nodes being established as separate fields, or collapsed into equivalent
classes if the edge selection threshold is not reached. This explanation is con-
clusive, because decision tree rules seldom achieve a confidence value as high as
the edge selection threshold. There is a number of possible steps which could
make automatic feature adaption more robust. I mention two. The inclusion
of more linguistic features into the input data could result in the discovery of
more reliable decision tree rules. The use of Splitting on Failure rather than
Head Splitting (Section 4.7) might be more stable. This strategy was not tested
due to long running times.

External evaluation showed that models with splitting and climbing clearly
outperform models without splitting and climbing. In the Rule Application
Task, sentence recall was 1.5 to 3 times higher for models MAN and FULL than
for BASE, CLIMB and DEC. The best-performing model in the Rule Appli-
cation Task was FULL-D3, which achieved 97.6% recall on nodes, and 71.3%
recall on sentences, slightly outperforming the other FULL models (FULL-D2
97.4% node recall) and MAN-E4 (97.3% node recall). These figure mean that
the learned word order rules cannot account for 2.3% of the word order config-
urations observed under a given head in the training corpus. In 28.7% of the
sentences of the training corpus, there is at least one such node. Becker and
Frank (2002) report 92.9% recall on brackets (which corresponds to nodes) in
their supervised learning scenario. The two figures are not directly comparable:
On the one hand, their task is harder, since they learn from POS tags rather
than tree structures; on the other hand, their task is easier since they have a
supervised learning scenario. Also the results of Klein and Manning (no year)
are not directly comparable. They report an F1 figure of 71%. Recall seems to
be around 80%. However, their task is considerably harder, since the system is
unsupervised and has POS tags only as input. Furthermore, their aim is the
acquisition of phrase structure rules rather than word order rules.

In the Rule Application Task, also a more detailed evaluation by head class
was provided. The most remarkable trend is that the system performs better
on non-verbal material than on verbal material, which is not surprising due to
the higher amount of word order freedom and non-local elements under verbs.

The comparison of the produced LP corpus with Becker and Frank’s Gold
Standard provided another possibility of comparison. Here, FULL-D2 achieved
74.5% unlabelled bracket recall, with MAN-E4 performing slightly worse. It was
argued that the main reason for this figure being significantly lower than FULL-
D2’s 97.4% node recall in the Rule Application Task is a different linguistic
analysis in the Gold Standard. This is a common problem in unsupervised
learning, also noted by Klein and Manning (no year). A substantial difference
is the treatment of mittelfeld material depending on the embedded non-finite
predicator. Such material “climbs” in the Gold Standard, but is treated within
the field description of the embedded predicator in the word order learning
system. This behaviour could be changed through an adaptation of the Climbing
Module: constituents would have to be assumed to climb even if there is no
discontinuity observable in the concrete sentence, a notion which corresponds
to TDG’s “forced climbing” (compare Section 4.4).

Only a preliminary experiment could be presented on using the learned rules
for generation. This experiment showed that the inclusion of field cardinality
constraints is a necessary step left for further research, when the rules are to be
used for generation. Field cardinality constraints can, of course, still be added

CHAPTER 6. EVALUATION 101

manually, which is far easier a task than manually specifying a complete set of
field descriptions. Also TDG’s blocks statement is a preliminary to using the
rules for generation. Learning of blocks relates to the possible adaptation to
the climbing module mentioned in the last paragraph, and is considered a hard
learning problem.

The linguistic judgement of the rules showed considerable similarities be-
tween the topological field models proposed in the descriptive literature and the
learned instantiations of a general topological field model. In the field descrip-
tions of finite auxiliary verbs, the left and right sentence bracket could be clearly
identified. Examples of extraposed and topicalised material were given and re-
lated to the work discussed in Section 3.2. The graphical user interface offers
the possibility to extract corpus evidence for each of the elements in the field
description, and for each precedence pair in the precedence table. This makes
the implementation a valuable linguistic research tool. Automatic feature selec-
tion was able to discover fine-grained linguistic rules on mittelfeld order, as the
ones proposed by Engel (1970) and Hoberg (1981).

Differences between topological field analyses in the literature and the learned
ones were the treatment of the verbal cluster and the verbal vorfeld. In the
present stage of the system, the V2 constraint of the German data is only very
implicitly present in the data. It is likely, though, that the system can be scaled
up to include automatic head class selection, which could enable the discovery
of the basic devision of V1, V2 and VF sentences of German. As an alternative,
this information could be fed into the system, and separate field descriptions
for V1, V2, VF could be learned.

Chapter 7

Conclusion

In this thesis, a new machine learning approach was developed, which induces
symbolic word order rules from a syntactically annotated corpus. The rules
take the form of a set of topological field descriptions, following a generalized
version of the well-known topological fields approach. In order to arrive at these
descriptions, a graph algorithm was developed which computes a partial order on
elements occurring under the same class of head item. A conversion procedure on
the input trees (climbing) ensures that non-local configurations can be accounted
for. In manual feature selection, the linguistic elements are manually reduced to
a set of descriptive primitives; in automatic feature selection, classes of elements
are automatically learned, selecting word order relevant features. Decision tree
learning is used as a part of the learning system in a feedback loop with the other
modules. A prototype of the system was implemented in Java, and evaluated
on the German Negra corpus. For evaluation, the input treebank was converted
into a topological treebank, yielding 97.6% recall on nodes, and compared to an
independently and manually created topological treebank, yielding 74.5% recall
on brackets. The system produces reliable results on around 1000 sentences
already, but shows volatile behaviour for some parameter configurations, which
may improve with the inclusion of richer data. The system was able to discover
basic topological facts of German, e.g. the sentence bracket at the sentence level,
as well as fine-grained tendencies, e.g. on the order in the mittelfeld. Besides the
topological treebank, the output of the system is a set of formalism-independent,
human-readable field descriptions, which were shown to be applicable to parsing
and generation in a preliminary experiment.

In contrast to Villavicencio (2000), the aim of the system is not to model
human learning, but to be useful for natural language engineering applications.
Hence, the goal was not the derivation of “basic” word order only, but to account
for both constraints and variability occurring in a language.

The system is clearly modularized externally and internally by linguistic cri-
teria, which means it has a relatively high amount of linguistic abstraction in
the sense of Kinyon and Prolo (2002). It is therefore a contribution to the de-
velopment of linguistically abstract, yet partially learned grammars for natural
language applications. This type of grammars is necessary due to maintenance
and coverage problems of manually developed grammars, and poor linguistic
value of earlier induced grammars.

The system makes also a theoretical contribution. It was shown that a

102

CHAPTER 7. CONCLUSION 103

generalized version of the topological fields approach, as assumed by Kruijff
(2001), Duchier and Debusmann (2001), is applicable to “real” linguistic data,
and can even be automatically acquired. It was argued that the approach is
also cross-linguistically valid, because it makes less assumptions about linguistic
structure than, e.g. in a principles-and-parameters approach like Villavicencio
(2000). Linguistically, the produced word order rules and the data from which
they were constructed can serve as a testbed for descriptive claims. An example
is the rules on mittelfeld order by Engel (1970).

In the machine learning architecture developed, decision tree learning is used
embedded as a heuristic submodule during search for an appropriate feature se-
lection function. Such an embedded architecture is uncommon, and of theoreti-
cal interest to the development of machine learning architectures. It seems that
the approach slightly resembles the “wrapper approach” suggested by Kohavi
and John (1997), who filter irrelevant features from the example descriptions
before actually running a learning algorithm, and integrate these steps closely.

In half a years time, not all features of the approach could be fully imple-
mented. A step that is immediately possible is the calculation of field cardinality
constraints, by applying the rules to a test treebank, and counting the number
of elements in each exported realization. Further experiments with linguisti-
cally different feature selection strategies are also desirable. It was not tested,
e.g., how automatic feature adaption behaves with a different starting point for
search, e.g. one where non-local elements are distinguished from local ones. A
related issue, whose solution is in sight, is the learning of the head feature selec-
tion function, which was assumed as static for the course of this thesis. It was
pointed out, though, that the decision tree learner produces in fact suggestions
for adapting the head feature selection function, which were ignored in the im-
plementation. If the interaction between head feature selection and dependent
feature selection proves to be well-behaved this might result in increased con-
vergence stability of the system, and even in the automatic discovery of features
which determine the V1, V2, or VF verbal position of German, together with a
clearer rendering of the V2 constraint.

Applying the architecture to different types of corpus data is another possible
future advancement. Treebanks of other languages are available in the required
format, and could yield interesting topological insights. It is also desirable
to apply the system to more richly annotated corpora. This could allow the
discovery of definiteness, thematic role, animaticity, semantic verb class, or
topic-focus effects on word order, and increase stability and granularity further.

Other issues require more research to be integrated into the approach. It
would be desirable to extend the algorithm employed by the climbing module to
calculate climb trees from ID trees. A more sophisticated strategy could learn
constraints on climbing in certain local tree contexts, and use this knowledge to
infer the appropriate climbing distance. This amounts to learning TDG’s blocks
feature, which had to be manually added in the experiments of Section 6.4.
This is considered a hard learning task though, and data sparseness problems
are more severe than for the calculation of order graphs.

Another issue left for future research is to make use of the probabilistic in-
formation inherent in the precedence tables created by the system. The learned
word order rules are not a probabilistic language model. While it is easily
possible to include probabilistic information into the field descriptions, the in-
terpretation of these probabilities depends on the concrete application at hand.

CHAPTER 7. CONCLUSION 104

There is no statistical parser for TDG, nor has a computational framework for
ranking TDG parses been developed. Research into this direction might, how-
ever, make use of the learned word order rules, and integrate probabilities into
the framework. The exact nature of these probabilities requires further research.

The main insight that follows from this thesis is that grammar development
can profit from machine learning techniques, applied to linguistically annotated
data. With the implemented word order learning system, a linguistic ressource
has been created which can serve for testing the predictions of linguistic theories
and formal grammar formalisms against empirical data. The application of
theories to such resources is the only way in which consistency and practical use
of a theory can be shown, in the light of a vast number of competing theories
around.

Many contemporary approaches to grammar learning are linguistically shal-
low. Through clear modularization, however, it is possible to identify sub-tasks
and create a grammar development scenario where manually written and ac-
quired modules coexist. Symbolic, human-interpretable rules are a prerequisite
to such a scenario. For example, the approach could be integrated with a system
for subcategorisation-frame acquisition, as the one by Sarkar and Zeman (2000).

Word order is a clearly identifiable sub-phenomenon of grammatical knowl-
edge, which has not deserved enough attention in the literature yet. Many ap-
proaches that work for languages with fixed word order fail for languages with
freer word order. The learned rules are most likely to prove useful in generation
and parsing scenarios, particularly for languages which exhibit interesting word
order regularities.

Thus, this thesis is a contribution to the development of linguistically in-
sightful, better maintainable, robust, partially learned wide-coverage grammars
for natural language applications.

Appendix A

Negra Annotation Scheme

Tag Negra phrase tag

-- not bound

AA superlative phrase with "am"

AP adjective phrase

AVP adverbial phrase

CAC coordinated adposition

CAP coordinated adjektive phrase
CAVP | coordinated adverbial phrase
CCP coordinated complementiser

CH chunk

CNP coordinated noun phrase

Cco coordination

CPP coordinated adpositional phrase
CS coordinated sentence

CVP coordinated verb phrase (non-finite)
Ccvz coordinated zu-marked infinitive
DL discourse level constituent

ISU idiosyncratis unit

MTA multi-token adjective

NM multi-token number

NP noun phrase

PN proper noun

PP adpositional phrase

QL quasi-languag

S sentence

VP verb phrase (non-finite)

VZ zu-marked infinitive

Table A.1: Negra phrase labels

105

APPENDIX A. NEGRA ANNOTATION SCHEME

Tag

Negra edgelabel

AC
ADC
AG
AMS
APP
AvVC
cC
CD
cJ
CM
CP
Ccve
DA
DH
DM
EP
GL
GR
HD
JU
MC
MI
ML
MNR
MO
MR
MW
NG
NK
NMC
DA
0A2
oc
0G
0P
PAR
PD
PG
PH
PM
PNC
RC

RS
SB
SBP
SP
SVP
uc
V0

adpositional case marker
adjective component
genitive attribute
measure argument of adj
apposition

adverbial phrase component
comparative complement
coordinating conjunction
conjunct

comparative concjunction
complementizer
collocational verb construction (Funktionsverbgefiige)
dative

discourse-level head
discourse marker
expletive es

prenominal genitive
postnominal genitive
head

junctor

comitative

instrumental

locative

postnominal modifier
modifier

rhetorical modifier

way (directional modifier)
negation

noun kernel modifier
numerical component
accusative object

second accusative object
clausal object

genitive object
prepositional object
parenthesis

predicate
pseudo-genitive
placeholder
morphological particle
proper noun component
relative clause

repeated element
reported speech

subject

passivised subject (PP)
subject or predicate
separable verb prefix
unit component

vocative

Table A.2: Negra edge labels (syntactic function)

106

APPENDIX A. NEGRA ANNOTATION SCHEME

Tag

Negra P0S-Tag

$(

$’

$.
ADJA
ADJD
ADV
APPOD
APPR
APPRART
APZR
ART
CARD
FM

ITJ
KOKOM
KON
KOUI
KOUS
NE

NN
NNE
PDAT
PDS
PIAT
PIS
PPER
PPOSAT
PPOSS
PRELAT
PRELS
PRF
PROAV
PTKA
PTKANT
PTKNEG
PTKVZ
PTKZU
PWAT
PWAV
PWS
TRUNC
UNKNOWN
VAFIN
VAIMP
VAINF
VAPP
VMFIN
VMINF
VMPP
VVFIN
VVIMP
VVINF
VVIZU
VVPP
Xy

Sonstige Satzzeichen; satzintern
Komma

Satzbeendende Interpunktion
Attributives Adjektiv

Adverbiales oder prddikatives Adjektiv
Adverb

Postposition

Préposition; Zirkumposition links
Préposition mit Artikel
Zirkumposition rechts

Bestimmter oder unbestimmter Artikel
Kardinalzahl

Fremdsprachliches Material
Interjektion

Vergleichspartikel, ohne Satz
Nebenordnende Konjunktion
Unterordnende Konjunktion mit zu und Infinitiv
Unterordnende Konjunktion mit Satz
Eigennamen

Normales Nomen

Kombination aus Nomen und Eigenname
Attribuierendes Demonstrativpronomen
Substituierendes Demonstrativpronomen
Attribuierendes Indefinitpronomen
Substituierendes Indefinitpronomen
Ersetzbares Personalpronomen
Attribuierendes Possessivpronomen
Substituierendes Possessivpronomen
Attribuierendes Relativpronomen
Substituierendes Relativpronomen
Reflexives Personalpronomen
Pronominaladverb

Partikel bei Adjektiv oder Adverb
Antwortpartikel

Negationspartikel

Abgetrennter Verbzusatz

zu vor Infinitiv

Attribuierendes Interrogativpronomen
Adverbiales Interrogativ- oder Relativpronomen
Substituierendes Interrogativpronomen
Kompositions-Erstglied

Unbekanntes Tag aus Einlesen aus Korpusdatei
Finites Verb, aux

Imperativ, aux

Infinitiv, aux

Partizip Perfekt, aux

Finites Verb, modal

Infinitiv, modal

Partizip Perfekt, modal

Finites Verb, voll

Imperativ, voll

Infinitiv, voll

Infinitiv mit zu, voll

Partizip Perfekt, voll

Nichtwort, Sonderzeichen

Table A.3: Negra POS tags

107

Appendix B

Mathematical definitions

A directed graph G =< V, FE > is a tuple of a set of nodes, and a set of edges
V C N x N. A path is a sequence of nodes n1,ns,...n; such that < ny,ny >
, < Mg,ng >, ... < nj_1,n; >€ V. A cycle is a path from n to n. The length
of a path is the number of edges on the path. n’ is reachable from n if there is
a path from n to n/. The indegree and outdegree of a node are the number of
ingoing and outgoing edges. A strongly connected component G’ of a graph G
is a maximal subgraph in which any node can be reached from any node. The
adjacency list representation of a graph is a data structure, which holds a set of
nodes, each of which holds a set of outgoing and incoming edges.

A tree T =< N,V,r > is a triple of a set of nodes N, a set of directed
edges V C N x N, and a designated node » € N, the root. For every node
n € N except for the root, there is exactly one edge < n’,n >€ V, which
leads towards n. There is no edge that leads towards r. n’ is called the parent,
or (linguistically) the governor of n. n is called a child, or (linguistically) a
dependent of n’. A node n’ on a path towards the root from n is a transitive
parent (governor) of n. A transitive parent which is not a direct parent is called
an indirect parent (governor).

A non-recursive feature structure F', or attribute-value matrix, AVM, is a
function from a set of features to a set of values. Both features and values are
atomic. feat(F') designates the value of feature feat. An AVM can be depicted
as [f1:v1,f2:v2,...]. A feature structure contains a feature, if the function is
defined for this feature. A feature structure I} subsumes a feature structure 5
(in symbols, Fy C F) if F» contains all the features of Fj, and has the same
values as F) for these features. The unification of two feature structures F}
and F3 is the feature structure which contains all features from F; and from
F5. If there is a feature f which both F; and F, contain, but f(Fy) # f(F>),
unification is not defined (fails).

PARSEVAL measures: Recall is the number of correctly identified brackets
divided by the number of gold standard brackets. Precision is the number of
correctly identified brackets divided by the number of identified brackets. f-
value is the average of precision and recall. Recall, precision and f-value are
unlabelled if the non-terminals of brackets in test corpus and gold standard are
ignored, or labelled if they need to match. A bracket whose span crosses any
bracket’s span in the gold-standard is a crossing bracket.

Given a function f : D — R, the inverse image of f(v), f~!(v) is the subset

108

APPENDIX B. MATHEMATICAL DEFINITIONS 109

of d € D for which f(d) =v.

A partial order is a reflexive, antisymmetric, transitive binary relation on a
set. A total order is a reflexive, antisymmetric, transitive, total binary relation
on a set.

Appendix C

Data

This appendix includes the full set of field descriptions learned by models MAN-
E4 and FULL-D2, trained on 9730 resp. 4387 sentences of the Negra corpus. A
field description consists of a head class, and a table indicating the field index
together with the elements that can be realized in this field. The head selec-
tion function distinguished head classes by POS tag, with a further distinction
between verbal heads at the root node of the sentence, and verbal heads in
subclauses. The position of the head within the field description is represented
by the feature structure [head:yes]. Elements referred to in the main text of
Section 6.5 are in bold face.

C.1 Model MAN-E4

[pos:NN]

0 [rel:NG] [rel:JU] [rel:CM] [dist:1,rel: APP] [rel:SB,split:pre-hd] [rel:PD,split:pre-
hd]

[rel:MO,split:pre-hd|

[rel:AC]

[rel:NMC,split:pre-hd] [rel:GL]

[rel:NK]

[head:yes] [dist:2,rel:OC]|

[rel:CD] [rel:DA,split:post-hd] [dist:1,rel:RE] [rel:PNC] [dist:1,rel: CC] [rel:PH]
[rel:UC] [rel:SVP]| [dist:2,rel:MO] [rel:RS]

[rel:CJ] [rel:GR] [rel:PG]

[dist:1,rel:CJ] [rel:OA] [rel:CC]| [rel:MNR] [rel:PD,split:post-hd]

[rel:OC] [rel:SB,split:post-hd] [dist:1,rel:RC]

[rel:MO,split:post-hd]

[rel: APP] [rel:RC] [dist:1,re:MNR]

SO W N

—
= O © 00

110

APPENDIX C. DATA 111

[pos:VAFIN,rel:-root]

0 [rel:JU] [rel:CM] [dist:2,rel:MNR] [dist:1,rel:NK] [rel:DA] [rel:CJ,split:pre-
hd] [rel:DM] [dist:1,rel:OC,split:pre-hd] [dist:1,rel:PD] [rel:AC] [dist:2,rel:PD]
[dist:1,rel:CJ,split:pre-hd]

1 [rel:CP] [rel:MO,split:pre-hd] [rel:NK]

2 [rel:OA,split:pre-hd] [rel:GR] [dist:1,rel:DA,split:pre-hd] [rel:NG,split:pre-hd]
[dist:1,rel: OA,split:pre-hd] [rel:SVP,split:pre-hd] [dist:2,rel:OA] [rel:SP]

3 [rel:MNR|] [dist:1,rel:MO,split:pre-hd]

4 [dist:2,rel:MO,split:pre-hd] [rel:SB,split:pre-hd]

5 [dist:2,rel:DA]| [dist:1,rel:PG] [rel:PD,split:pre-hd]

6 [rel:OC,split:pre-hd] [rel:MO,split:post-hd| [dist:1,rel:MNR] [head:yes]
[rel:OA,split:post-hd] [rel:NG,split:post-hd] [rel:SVP,split:post-hd]
[rel:SB,split:post-hd] [dist:1,rel:DA split:post-hd] [dist:2,rel:MO,split:post-
hd]

7 [dist:2,reRE] [dist:2,rel: CC] [dist:1,rel:CJ,split:post-hd] [dist:1,rel:RE]
[dist:3,rel:MNR] [dist:1,rel:OC,split:post-hd] [dist:3,rel:CC|
[dist:1,rel:OA,split:post-hd] [dist:1,rel: APP] [dist:1,rel:CC,split:post-hd]
[dist:2,rel:RC]

8 [dist:1,rel:MO,split:post-hd|

9 [rel:OC,split:post-hd] [rel:PD,split:post-hd|

10 [dist:1,rel:RC] [rel:CJ,split:post-hd]

[pos:KON]
0 [rel:CM] [dist:1,rel:MO,split:pre-hd] [rel:NG] [dist:1,rel:CP] [rel:MO,split:pre-

OO W N

7

hd]

[dist:1,rel:SB| [rel:AC]

[rel:NK,split:pre-hd] [dist:1,rel:OA]

[rel:GR,split:pre-hd] [rel:CJ,split:pre-hd]

[head:yes]

[rel:AVC] [rel:OA,split:post-hd] [rel:CD] [rel:CJ,split:post-hd] [rel:SB]

[rel:RC] [rel:NK,split:post-hd] [dist:1,rel:OC] [rel:MO,split:post-hd]
[dist:1,rel:MO,split:post-hd] [rel: APP] [rel:OC]| [rel:GR,split:post-hd] [rel:DH]
[dist:2,rel: APP]

[rel:MNR]

[pos:NE]

N Utk W RO

© oo

[rel:CM] [rel:NG] [rel:SB,split:pre-hd]

[rel:MO,split:pre-hd]

[rel:AC]

[rel:GL]

[rel:NK]

[head:yes] [dist:3,rel:OA]

[rel:CD] [rel:OA] [rel: ADC] [rel:PNC] [rel:UC] [rel:SB,split:post-hd]
[rel:RS] [rel:CJ] [rel:PD,split:post-hd] [rel:MNR] [rel:GR| [dist:1,rel:RE]
[rel:PG] [rel:MO,split:post-hd] [rel:OC]

[rel:APP]

[rel:RC]

APPENDIX C. DATA 112

[pos:VMFIN,rel:-root]

0 [rel:CP] [rel:CJ,split:pre-hd] [dist:2,re:MNR]| [rel:CM] [dist:1,rel:PD]
[dist:1,rel:NK] [rel:JU] [dist:1,rel:OC,split:pre-hd] [dist:2,rel:OA,split:pre-
hd] [rel:MO,split:pre-hd]

1 [dist:1,rel:OA,split:pre-hd] [rel:SB,split:pre-hd] [dist:2,rel:MO,split:pre-hd]
[rel:OA,split:pre-hd] [dist:1,rel:DA]

2 [dist:1,rel:MO,split:pre-hd]

3 [rel:NG,split:pre-hd]

4 [rel:OC,split:pre-hd]

5 [head:yes]

6 [dist:1,rel:OA,split:post-hd] [dist:2,rel:MO,split:post-hd] [dist:2,rel:OC]
[dist:1,rel:RE] [dist:2,rel:OA,split:post-hd] [dist:1,rel:MO,split:post-hd]
[dist:1,rel:OC,split:post-hd] [dist:2,rel:RC]| [dist:3,rel:RC] [rel:OA,split:post-hd]
[dist:2,rel:RE] [dist:2,rel:CC]

7 [rel:SB,split:post-hd| [rel:MO,split:post-hd|

8 [rel:NG,split:post-hd] [rel:SVP] [dist:1,re:MNR]

9 [rel:OC,split:post-hd]

10 [rel:CJ,split:post-hd] [dist:1,rel:RC]
[pos:other]
0 [dist:2,rel:MO,split:pre-hd] [rel: MNR,split:pre-hd] [rel:OA ,split:pre-hd]

[rel:CM] [rel:DA,split:pre-hd] [rel:JU] [dist:1,rel:OA] [rel:CP] [rel:RE,split:pre-
hd]

1 [rel:AC] [rel:MO,split:pre-hd] [rel:NG,split:pre-hd] [dist:1,rel:MO,split:pre-hd|

2 [rel:SB,split:pre-hd] [rel: APP,split:pre-hd]| [rel:PD,split:pre-hd] [rel:GL]

3 [rel:NK,split:pre-hd]

4 [rel:NK,split:post-hd] [rel:PNC] [rel:CJ] [rel:OC]| [head:yes| [rel:CD] [rel:NMC]
[rel:PM] [rel:SB,split:post-hd] [rel:OA,split:post-hd] [rel:UC] [rel:ADC]

5 [rel:MNR,split:post-hd] [dist:1,rel: CC] [relkPG] [rel:MO,split:post-hd]
[dist:2,rel:RE] [rel:DA,split:post-hd] [rel:GR] [rel:CC]| [dist:2,rel:CC| [rel:RC]
[dist:1,rel:CD] [rel:AVC]| [rel:NG,split:post-hd] [dist:1,rel:CJ| [dist:1,rel: APP]
[dist:1,rel:MO,split:post-hd] [dist:1,rel:OC] [dist:2,rel:OC] [dist:1,rel:RE]
[dist:2,rel:RC] [dist:1,re:RC]

6 [rel:SVP] [rel:APP,split:post-hd| [rel:PH] [rel:PD,split:post-hd]

7 [rel:RE,split:post-hd]

[pos:KOUS]

0 [rel:CJ,split:pre-hd]

1 [head:yes]

2 [rel:CD] [rel:CJ,split:post-hd] [rel:SB] [rel:MO] [rel:NG]

3 [rel:OC] [rel:PD]

APPENDIX C. DATA 113

[pos:VVINF]

0 [rel:CP] [rel:SBP] [rel:SVP] [rel:CM] [rel:NK]

1 [rel:DA] [rel:GR] [rel:CJ,split:pre-hd] [re:NG]

2 [rel:MO,split:pre-hd] [rel: OA]

3 [dist:1,rel:MNR,split:pre-hd] [rel:OC,split:pre-hd] [dist:1,rel:CJ] [rel:PD]

4 [rel:PM]

5 [head:yes|

6 [rel:RC] [rel:MO,split:post-hd] [dist:1,rel: CC] [dist:2,rel: APP]
[rel:OC,split:post-hd] [dist:1,rel: APP] [dist:2,rel:RC] [dist:1,rel:RC]
[dist:2,rel:CC] [dist:1,rel:OC] [rel:APP] [dist:2,rel:RE] [dist:1,rel:RE] [rel:CD]
[dist:1,rel:MNR,split:post-hd]

7 [rel:CJ,split:post-hd]

[pos:ADV]

0 [rel:RE,split:pre-hd| [dist:2,rel:MO,split:pre-hd| [rel:MO,split:pre-hd]
[dist:1,rel:JU] [rel:CM] [rel:PD,split:pre-hd] [rel:AMS] [rel:SB,split:pre-
hd] [dist:1,rel:MNR,split:pre-hd| [dist:1,rel:SB,split:pre-hd] [rel:JU]
[rel:NG,split:pre-hd]

1 [rel:CJ,split:pre-hd] [rel:AC] [dist:1,rel:MO]

2 [rel:NK,split:pre-hd]

3 [head:yes|

4 [rel:CD] [rel:OC] [dist:2,rel:MO,split:post-hd] [rel:PH] [rel:AV(]
[rel:NK ,split:post-hd] [rel:NG,split:post-hd] [rel:DA split:post-hd]

[rel:PD,split:post-hd] [rel:CC] [rel:SB,split:post-hd] [rel:DM] [dist:1,rel:CC|
[rel:OA,split:post-hd]

5 [rel:MNR| [rel:GR| [rel:RE,split:post-hd] [rel:MO,split:post-hd] [rel: APP]
[rel:CJ,split:post-hd]

[pos:VVPP]

0 [rel:SB,split:pre-hd] [rel:NG] [rel:OA] [dist:1,rel:CJ] [rel:CM] [rel:AC]

[rel:CJ,split:pre-hd] [rel:SBP,split:pre-hd] [rel:DA]

[rel:MO,split:pre-hd] [rel:PD]

[rel:OG] [dist:1,rel: MNR]

[head:yes]

4 [dist:2,rel:RC| [dist:2,rel:CC] [rel:OC]| [dist:1,rel: APP] [rel:CD]
[rel:SBP,split:post-hd] [dist:1,rel:RE] [dist:1,rel:OC] [dist:1,rel:RC]
[rel:CJ,split:post-hd] [dist:1,rel:CC]

5 [rel:MO,split:post-hd]

W N =

APPENDIX C. DATA 114

[pos:VVFIN,rel:-root]

1
1
1

0

W N =

[BN @ RNGL TN

9
0
1
2

[rel:OA2] [rel:AC| [rel:CM] [rel:JU] [rel:CJ,split:pre-hd] [dist:2,rel:MO]
[rel:NK]

[rel:CP]

[rel:DA split:pre-hd] [dist:1,rel:DA] [dist:1,re:MNR] [rel:OA,split:pre-hd]
[dist:1,rel:MO,split:pre-hd] [dist:1,rel:OA,split:pre-hd] [rel:SB,split:pre-hd]
[rel:PD,split:pre-hd] [rel:NG,split:pre-hd] [rel:MO,split:pre-hd]
[rel:OC,split:pre-hd] [dist:1,rel:CJ,split:pre-hd] [dist:1,rel: AC]

[dist:1,rel:NK]

[head:yes]

[dist:1,rel:MO,split:post-hd] [dist:2,rel:RC] [rel:MNR] [dist:1,rel:OA,split:post-
hd] [dist:2,rel:RE| [dist:2,reMNR| [rel:SB,split:post-hd] [dist:1,rel:CC]
[rel:OA,split:post-hd] [rel:DA split:post-hd]

[rel:MO,split:post-hd] [rel:NG,split:post-hd] [rel:OG]

[rel:RC] [rel:PD,split:post-hd] [rel:SVP] [rel:CJ,split:post-hd]

[dist:1,rel:RE| [dist:1,rel:RC] [dist:1,rel:OC]

[rel:OC,split:post-hd] [dist:1,rel: APP]

[pos:VMFIN,rel:root]

0

—_

w N

EN =N, QN

[rel:CJ,split:pre-hd] [rel:OA,split:pre-hd| [dist:2,rel:OA,split:pre-hd] [rel:JU]
[rel:DM] [dist:2,rel: MNR] [dist:1,rel:DA,split:pre-hd| [dist:1,rel:PD]
[dist:1,rel:OC,split:pre-hd| [rel:CP] [dist:1,rel:MNR,split:pre-hd|
[dist:2,rel:MO,split:pre-hd] [dist:1,rel:RE,split:pre-hd|
[dist:1,rel:MO,split:pre-hd] [rel:SB,split:pre-hd] [dist:1,rel:OA split:pre-hd]
[rel:MO,split:pre-hd]

[head:yes]

[dist:2,rel:OA,split:post-hd] [dist:1,rel:OA,split:post-hd]
[dist:1,rel: DA, split:post-hd] [rel:SVP] [dist:2,rel:MO,split:post-hd]
[rel:OA,split:post-hd] [dist:2,rel:DA ,split:post-hd]

[rel:SB,split:post-hd] [dist:1,rel:MO,split:post-hd] [rel:MO,split:post-hd]
[dist:1,rel: MNR,split:post-hd] [rel:NG]|

[rel:OC] [dist:1,rel:RE,split:post-hd]

[dist:1,rel:APP]| [rel:CJ,split:post-hd] [dist:1,rel:RC]

[pos:VVIZU]

o

=W N =

[rel:NG] [rel:CP]

[rel:DA] [rel:OA] [rel:MO,split:pre-hd]

[dist:2,rel:RC] [head:yes]

[rel:OC] [dist:1,rel:RC] [dist:1,rel:RE] [rel:CD] [rel:RC] [rel:MO,split:post-hd]
[rel:CT]

APPENDIX C. DATA 115

[pos:VAFIN,rel:root]

0 [dist:1,rel: MNR,split:pre-hd] [rel:CJ,split:pre-hd] [rel:OA,split:pre-hd]
[rel:JU] [dist:1,rel:CJ,split:pre-hd] [rel:SP| [rel:DA,split:pre-hd] [rel:VO]
[dist:1,rel:SBP] [rel:CP| [dist:1,rel:RE,split:pre-hd] [dist:2,rel:MO,split:pre-
hd] [dist:2,rel:DA] [dist:2,rel:MNR,split:pre-hd] [dist:2,rel:OA,split:pre-hd|
[dist:1,rel:NK,split:pre-hd] [dist:1,rel:PD] [re:DM]

1 [dist:1,rel:MO,split:pre-hd] [dist:1,rel:DA split:pre-hd]| [dist:1,rel:OC,split:pre-
hd] [rel:SB,split:pre-hd] [dist:1,rel:OA,split:pre-hd]

2 [rel:MO,split:pre-hd] [rel:PD,split:pre-hd]

3 [head:yes]

4 [dist:2,re:MNR,split:post-hd] [rel:DA,split:post-hd] [dist:1,rel: MNR,split:post-
hd] [dist:1,rel: DA, split:post-hd] [dist:1,rel:NK,split:post-hd] [rel:MO,split:post-
hd] [dist:1,rel:OA,split:post-hd] [dist:2,rel:MO,split:post-hd]
[dist:2,rel:OA,split:post-hd]

5 [rel:NG] [dist:1,rel:MO,split:post-hd]

6 [dist:1,rel:NG] [rel:OC] [dist:1,rel:CJ,split:post-hd]

7 [rel:SB,split:post-hd] [dist:2,rel:CC]

8 [rel:DH] [dist:1,re:RC] [dist:2,re:RC] [rel:OA,split:post-hd| [re:RC]

9 [rel:PD,split:post-hd] [rel:SVP]

10 [dist:1,rel: APP,split:post-hd| [dist:1,rel:RE,split:post-hd|
[dist:1,rel:OC,split:post-hd]
11 [rel:CJ,split:post-hd]
[pos:ADJD]
0 [rel:CJ,split:pre-hd] [rel:CM] [rel:AC] [rel:PM] [rel:OA,split:pre-hd]

Tl W N =

~N o

[rel:DA ,split:pre-hd] [rel:JU] [rel:OC,split:pre-hd]

[rel:MNR] [rel:SB,split:pre-hd| [rel:NG] [rel:GL]

[rel:NK,split:pre-hd]

[rel:MO,split:pre-hd] [rel:GR] [rel: AMS]

[dist:2,rel:CC] [head:yes]

[rel:PG] [rel:PD]| [dist:1,rel:CC] [dist:1,rel:RE]| [rel:OC,split:post-hd] [rel:CD]
[rel:OA,split:post-hd] [rel:DA,split:post-hd] [dist:1,re:MNR] [rel:PH]
[dist:1,rel: APP] [rel: APP] [rel:CJ,split:post-hd]

[rel:MO,split:post-hd] [re:RE]

[rel:CC] [rel:SB,split:post-hd]

[rel:NK ,split:post-hd]

APPENDIX C. DATA 116

[pos:VVFIN,rel:root]

0 [rel:VO] [rel:RS,split:pre-hd] [dist:1,rel:OC,split:pre-hd] [dist:1,rel:CJ,split:pre-
hd] [dist:2,rel:MO,split:pre-hd| [rel:JU] [dist:2,rel:OA] [dist:1,rel:CC,split:pre-
hd] [dist:3,rel:MO] [rel:DM] [dist:1,rel:GL] [rel:CJ,split:pre-hd]
[dist:1,rel:NK,split:pre-hd] [dist:1,rel:PG]| [rel:OG,split:pre-hd|

1 [rel:MO,split:pre-hd] [dist:1,rel:OA split:pre-hd] [rel:CP,split:pre-hd]
[rel:DA split:pre-hd] [dist:1,rel:MNR,split:pre-hd]

2 [rel:OC,split:pre-hd] [rel:OA split:pre-hd| [rel:SB,split:pre-hd]

3 [dist:1,rel:SB] [rel:PD,split:pre-hd]

4 [dist:1,rel:MO] [head:yes]

5 [rel:DA,split:post-hd] [dist:1,rel:NK,split:post-hd] [dist:1,rel:DA]
[dist:1,rel: OA,split:post-hd] [rel:CD] [rel:SB,split:post-hd]

6 [dist:2,rel:RE,split:post-hd] [dist:1,rel:MNR,split:post-hd] [rel:MO,split:post-
hd] [dist:2,rel:MO,split:post-hd] [rel:NG] [rel:OA,split:post-hd]

7 [rel:RC] [rel:RS,split:post-hd] [rel:PD,split:post-hd] [rel:OG,split:post-hd]
[dist:1,rel: APP]

8 [rel:SVP]

9 [dist:2,rel:RC] [rel:OC,split:post-hd] [dist:2,rel: CC]| [dist:1,rel:OC,split:post-hd]
[dist:1,rel:RE]| [dist:1,rel:RC] [rel:DH] [dist:2,rel:OC] [dist:1,rel:CC,split:post-
hd] [dist:1,rel:CJ,split:post-hd]

10 [rel:CJ,split:post-hd]
[pos:ADJA]

0 [rel:GL] [rel:JU] [rel:NG] [dist:1,rel:MO] [rel:CM]

1 [rel:AC]

2 [rel:NK,split:pre-hd]

3 [rel:AMS] [rel:OG] [rel:CC] [rel:CP] [rel:OA] [rel:SBP] [rel:DA,split:pre-hd]

4 [rel:PM] [rel:MO]

5 [rel:PD] [head:yes]

6 [rel:CJ] [rel:NMC] [rel:PNC] [rel:CD]

7 [rel:NK,split:post-hd]

8 [rel:SB,split:post-hd] [rel:GR] [dist:1,rel:CC]| [rel:PG] [rel:OC]

9 [rel:MNR]

10 [rel:APP] [rel:RC]

APPENDIX C. DATA 117

C.2 Model FULL-D2

[pos:NN]

0

W N =

0 O O

11
12
13

[rel:MO,split:pre-hd] [pos:PROAV rel:MO| [rel:NG] [pos:VAFIN,split:pre-hd]
[pos:KON,split:pre-hd| [pos:PIS,rel:MO,split:pre-hd| [pos:VVFIN,split:pre-hd]
[pos:NN,rel:MO,split:pre-hd] [pos:CARD,rel:CJ,split:pre-hd] [pos:NE,split:pre-
hd] [rel:CM] [pos:PIAT]

[pos:ADV,rel:MO,split:pre-hd|

[pos:ADJD,rel:MO] [rel:AC]

[pos:PPOSAT,rel:NK] [pos:NE,rel:GL] [pos:PDAT rel:NK]
[pos:PIAT rel:NK]

[pos:ART,rel:NK]

[rel:NK] [pos:PIDAT,rel:NK]

[pos:CARD,rel:NK] [pos:ADJA,rel:NK]

[pos: KON, rel:CD] [pos:NN,rel:NK] [] [head:yes]

[pos:VMFIN] [pos:VVINEF] [rel:MO,split:post-hd]
[rel:CC] [pos:CARD,rel:CJ,split:post-hd] [pos:NE,rel:PNC]|
[pos:ADV rel:MO,split:post-hd] [pos:NE,split:post-hd] [pos:NN| [rel:OA]
[pos:KON,rel:GR] [pos:NE,rel:PG| [pos:KON,rel:PG] [pos:KON,split:post-hd]
[pos:PIS,rel:MO,split:post-hd]

[rel:PD] [rel:CJ]

[pos:PIS,rel:CJ] [pos:NE,rel: MNR] [pos:VAFIN,split:post-hd]
[pos:NE,rel:GR] [pos:KON,rel:MNR] [pos:NN,rel:MO,split:post-hd]
[rel:MNR] [pos:VVFIN,split:post-hd| [rel: APP]

[pos:VAFIN,rel:SB| [rel:RC] [pos:VVFIN,rel:MO] [rel:OC]
[pos:KON,rel:APP]

APPENDIX C. DATA 118

[pos:VAFIN,rel:-root]

0

EN|

10

11

12
13

14

[pos:KOUS| [dist:0,pos:PWS,rel:SB| |pos:PRF,split:pre-hd] [pos:PPER|]
[dist:0,rel:AC] [dist:0,pos: VVINF rel:SB] [pos:PDS] [dist:0,rel:JU]
[rel:CJ,split:pre-hd] [pos:VAFIN,split:pre-hd] [pos:PWAV] [pos:PRELS]
[pos:PRELS,rel: OA| [dist:0,rel:CM]

[] [rel:CP] [dist:0,rel:NK]

[dist:0,pos:PDS,rel:SB,split:pre-hd] [dist:0,pos:CARD,rel:SB,split:pre-
hd] [dist:0,pos:PPER,rel:SB,split:pre-hd] [pos:NN,split:pre-hd] [dist:0]
[dist:1,rel:OA,split:pre-hd] [dist:0,pos:ADJA rel:SB| [dist:2,rel:OA]
[dist:1,pos:NE,rel:MO]

[dist:2,rel:MO,split:pre-hd] [dist:0,rel:MO,split:pre-hd]
[dist:1,pos:ADV,rel:MO,split:pre-hd] [dist:0,pos:ADJD,split:pre-hd|
[dist:0,pos: ADV,rel:MO,split:pre-hd] [dist:1,pos:NN,rel:MO,split:pre-hd]
[dist:0,pos:NE,rel:SB,split:pre-hd| [dist:1,rel:MO,split:pre-hd|
[dist:0,rel:SB,split:pre-hd] [dist:0,pos:CARD] [dist:0,pos:PIS,rel:SB,split:pre-
hd]

[rel:NG,split:pre-hd] [dist:0,pos:NN,rel:OA,split:pre-hd|

[dist:0,pos:NN,rel:SB,split:pre-hd] [dist:0,pos:NN,split:pre-hd]
[pos:NN,rel:PD,split:pre-hd] [pos:VVPP,rel:PD,split:pre-hd] [rel:PD,split:pre-
hd] [dist:0,rel:OA] [dist:0,rel: OC,split:pre-hd]

[head:yes]

[dist:0,pos:NE,rel:SB,split:post-hd] [dist:0,pos:PDS,rel:SB,split:post-hd]
[dist:1,rel:MO,split:post-hd] [pos:NN,split:post-hd] [dist:0,rel:SB,split:post-
hd] [rel:RC] [pos:VVINF rel:MO] [dist:0,pos:PIS,rel:SB,split:post-
hd] [rel:APP] [pos:PRF split:post-hd] [dist:0,pos:PPER,split:post-
hd] [dist:0,pos:CARD,rel:SB,split:post-hd] [dist:2,rel:MO,split:post-hd]
[dist:0,pos:PPER,rel:SB,split:post-hd]

[dist:1,rel:OA,split:post-hd] [dist:0,pos:ADV,rel:MO,split:post-hd]
[rel:NG,split:post-hd]

[dist:0,pos:NN,rel:OA split:post-hd| [dist:1,pos:ADV,rel:MO,split:post-hd|
[dist:1,pos:NN,rel:MO,split:post-hd| [dist:0,pos:NN,rel:SB,split:post-hd]
[dist:0,pos: ADJD,split:post-hd]

[rel:SVP] [dist:0,rel:MO,split:post-hd] [pos:VMINF] [dist:0,rel:OC,split:post-

hd]
[dist:0,pos:NN,split:post-hd] [rel:CC,split:post-hd] [rel:PD,split:post-hd]
[pos:VVPP,rel:PD,split:post-hd] [pos:VAFIN,split:post-hd]

[pos:NN,rel:PD,split:post-hd] [rel:RE]
[rel:CJ,split:post-hd]

APPENDIX C. DATA 119

[pos:KON]

0 [pos:FM,split:pre-hd] [split:pre-hd] [rel:CM] [pos:VAFIN,split:pre-
hd] [pos:PRELS] [pos:VVPP,split:pre-hd] [pos:VMFIN,split:pre-hd]
[rel:MO,split:pre-hd] [dist:0,rel:MO,split:pre-hd]| [pos:VVFIN,rel:CJ,split:pre-
hd]

1 [dist:1,split:pre-hd] [rel:AC]

2 [pos:TRUNG,split:pre-hd] [pos:ART,rel:NK]

3 [rel:NK,split:pre-hd] [pos:ADJA rel:NK] [pos:CARD,rel:NK]

4 [pos:NE,split:pre-hd] [rel:CJ,split:pre-hd]

5 [pos:ADV,rel:CJ] [head:yes]

6 [pos:VMFIN,split:post-hd] [pos:VVFIN,rel:CJ,split:post-hd] [dist:0,rel:SB|
[pos:TRUNC,split:post-hd] [pos:PROAV]| [dist:1,split:post-hd] [rel:AVC]
[dist:0,rel:MO,split:post-hd] [pos:NE,split:post-hd] [pos:FM,split:post-hd]
[pos:VVPP,split:post-hd]

7 [pos:VAFIN,split:post-hd] [rel:CJ,split:post-hd] [rel:CD] [rel:MO,split:post-hd]

8 [rel:NK,split:post-hd] [pos:NE,rel:NK] [rel:MNR,split:post-hd] [rel: OC] [rel: GR]
[rel:APP] [split:post-hd]

[pos:NE]

0 [split:pre-hd] [pos:ADJD,rel:MO,split:pre-hd] [pos:NN,rel:CJ,split:pre-hd]
[rel:NG] [rel:CM] [rel:MO,split:pre-hd]

1 [pos:ADV,rel:MO,split:pre-hd|

2 [rel:AC]

3 [rel:GL]

4 [rel:NK]

5 [head:yes]

6 [rel:PNC] [pos:NN,rel:CJ,split:post-hd] [rel: GR] [rel:CD] [split:post-hd] [rel: OA]
[rel:ADC] [rel:RE]

7 [rel:PG] [rel:CJ] [rel:MNR] [rel:PD] [pos:VVFIN] [pos:ADV,rel:MO,split:post-
hd] [rel:RS]

8 [pos:KON] [rel:APP]

9 [rel:RC] [rel:MO,split:post-hd]

APPENDIX C. DATA 120

[pos:VMFIN,rel:-root]

0

w

N O U

10
11
12

[dist:0,pos:KON] [pos:NN,split:pre-hd] [pos:PWAV] [pos:PWS]
[dist:0,pos:PRELS,rel:SB| [dist:0,split:pre-hd] [pos:PRELS] [dist:0,pos:PWAV]
[pos:KOUS] [dist:0,pos:PWS,rel:SB]

[dist:0,pos:ADJA rel:SB,split:pre-hd] [rel:MO,split:pre-hd]
[dist:0,pos:PPER,split:pre-hd] [dist:0,pos:NE,rel:SB,split:pre-hd]

[rel:DA] [split:pre-hd] [dist:0,pos:ADV split:pre-hd|
[pos:NN,rel:MO,split:pre-hd] [dist:0,rel:SB,split:pre-hd]
[dist:0,pos:PIS,split:pre-hd]

[rel:NG,split:pre-hd] [dist:0,rel:MO,split:pre-hd]

[rel:OC,split:pre-hd] [pos:VVINF,rel:OC,split:pre-hd]

[head:yes]

[pos:NN,rel:MO,split:post-hd] [rel:RE] [dist:0,pos:NE,rel:SB,split:post-hd]
[dist:0,pos:PIS,split:post-hd] [pos:NN,split:post-hd] [dist:0,rel:MO,split:post-
hd] [dist:0,pos:PPER,split:post-hd| [dist:1,rel:OC,split:post-hd]
[rel:MO,split:post-hd]

[split:post-hd] [dist:0,rel:SB,split:post-hd|

[dist:0,pos:ADV split:post-hd| [rel:RC]

[dist:0,pos: ADJA rel:SB,split:post-hd] [rel:NG,split:post-hd]
[rel:OC,split:post-hd] [pos:VVINF,rel:OC,split:post-hd|

[dist:0,split:post-hd]

APPENDIX C. DATA 121

[pos:other]

0

[dist:0,rel:CM] [dist:0,re:MNR,split:pre-hd] [dist:1] [dist:0,pos:PIAT]
[dist:0,rel:OA,split:pre-hd] [dist:0,pos:APPR,rel:AC| [dist:0,pos:KON,split:pre-
hd] [pos:NN,split:pre-hd] [pos:ADV,rel:MO] [dist:0,rel:RE,split:pre-hd|
[rel:MO,split:pre-hd| [dist:0,pos:NN,rel:MO,split:pre-hd] [dist:0,pos:NE]
[dist:0,rel:CP] [dist:0,rel:DA] [dist:0,pos:CARD,rel:NK] [dist:0,rel:CJ,split:pre-
hd] [dist:0,rel:AC,split:pre-hd]

1 [dist:0,rel:NK,split:pre-hd] [pos:ART,rel:NK| [dist:0,rel: APP,split:pre-hd]
[dist:0,rel:GL] [dist:0,rel:NG,split:pre-hd] [dist:0,pos:ADV,rel:MO,split:pre-
hd] [dist:0,pos:PIDAT,rel:MO] [dist:0,rel:MO,split:pre-hd|
[dist:0,pos:PDAT,rel:NK] [dist:0,rel:SB,split:pre-hd]

2 [dist:0,pos:APPRART,rel:AC] [dist:0,rel:PD,split:pre-hd]
[dist:0,pos:NN,split:pre-hd] [dist:0,pos:PIDAT,rel:NK]

3 [dist:0,rel:OC] [dist:0,pos: ADJA rel:NK split:pre-hd]
[dist:0,pos:NN,rel:NK split:pre-hd]

4 [dist:0,pos:NE,rel:NK,split:pre-hd] [dist:0,rel:PM]

5 [head:yes]

6 [rel:RC] [dist:0,pos:VAFIN,rel:MO] [pos:VVINF,rel:MO] [dist:0,pos:PROAV]
[dist:0,rel:CD] [dist:0,rel:NG,split:post-hd| [dist:1,rel:OC] [pos:NN,split:post-
hd] [dist:0,pos: VAFIN] [dist:0,rel:UC] [dist:0,pos:APZR,rel:AC]
[rel:CC] [dist:2] [dist:0,rel:SB,split:post-hd] [dist:0,pos:NN,rel: CC]
[dist:0,rel:NMC] [dist:0,rel: AVC] [pos: VAFIN,rel:MO] [dist:0,pos:NN,rel:NMC]|
[dist:0,rel: AC,split:post-hd] [dist:0,rel:PD,split:post-hd] [dist:0,rel: PNC]
[rel:MO,split:post-hd] [dist:0,pos:CARD,rel:NMC] [dist:0,pos: TRUNC] [rel:RE]
[dist:0,rel:OA,split:post-hd] [pos:NE,rel:MO] [dist:0,rel: CC,split:post-hd]

7 [dist:0] [dist:0,rel:NK,split:post-hd] [dist:0,pos:NN,rel:CJ]
[dist:0,rel: PG| [dist:0,pos:APPR,rel:CJ] [dist:0,pos:KON,split:post-
hd] [dist:0,pos:ADV,rel:MO,split:post-hd] [dist:0,rel:CJ,split:post-hd]
[dist:0,pos:ADJA rel:CJ] [dist:0,pos:NE,;rel: APP] [dist:0,rel:RE,split:post-
hd]

8 [dist:0,pos:CARD,rel:CJ]

9 [dist:0,pos:ADJA rel:NK,split:post-hd]

10 [dist:0,pos:NN,rel:NK,split:post-hd]

11 [dist:0,pos:NN,split:post-hd] [dist:0,rel: APP,split:post-hd|
[dist:0,rel:MNR,split:post-hd] [dist:0,rel: GR| [dist:0,pos:NN,rel:PG,split:post-
hd]

12 [dist:0,rel:RC] [dist:0,pos:NN,rel:MO,split:post-hd] [dist:0,pos:NN,rel:MNR]
[dist:0,pos:NE,rel:NK,split:post-hd]

13 [dist:0,pos:VVFIN] [dist:0,rel:MO,split:post-hd|

[pos:KOUS]

0 [split:pre-hd]

1
2

[head:yes]
[split:post-hd] [re:MO]

APPENDIX C. DATA 122

[pos:VVINF]

0 [dist:0,pos:ADJA] [dist:0,pos:PPER] |[split:pre-hd] [rel:CP| [pos:KOUI]
[dist:1,split:pre-hd]

1 [pos:PRF,rel:OA]| [pos:PPER,rel:OA]

2 [rel:DA] [pos:ADV] [dist:0,pos:NN] [rel:MO,split:pre-hd] [pos:PRF]

3 [pos:PIS] [dist:0,pos:ADJD]

4 [rel:OA] [pos:PROAYV] [dist:0,pos:CARD]

5 [rel:OC,split:pre-hd] [pos:NE,rel:MO]

6 [pos:PTKNEG]|

7 [pos:PTKZU]

8 [head:yes]

9 [rel:MO,split:post-hd] [split:post-hd] [pos:VAFIN] [dist:1,rel:RC| [rel:APP]
[dist:2] [pos:VVIZU,rel:MO] [rel:OC,split:post-hd] [pos:VMFIN,split:post-hd]
[pos:VVINF,rel:MO] [dist:1,split:post-hd] [pos:VVFIN]

[pos:ADV]

0 [rel:NK,split:pre-hd] [dist:0,pos:NN,split:pre-hd] [split:pre-hd]
[rel: AMS] [pos:CARD,split:pre-hd] [rel:CM] [pos:VAFIN,rel:CJ|
[dist:0,pos:NN,rel:MO,split:pre-hd] [dist:1,split:pre-hd] [rel:RE,split:pre-hd]
[rel:MO,split:pre-hd] [dist:0,pos:NN,rel:PD,split:pre-hd] [rel:NG,split:pre-hd]
[dist:0,pos:NN,rel: AMS] [rel:CJ,split:pre-hd]

1 [pos:ADV,rel:MO,split:pre-hd] [rel: AC|

2 |head:yes|

3 [pos:VVFIN,rel:MO] [rel:MO,split:post-hd] [rel:NK,split:post-hd] [rel:PH]

[dist:0,pos:NN,rel:MO,split:post-hd] [rel:AVC] [rel:CD] [split:post-hd]
[pos:ADV rel:MO,split:post-hd] [rel:NG,split:post-hd] [dist:1,split:post-hd]
[rel:CC] [dist:0,pos:NN,rel:PD,split:post-hd]

4 [rel:RE,split:post-hd] [dist:0,pos:NN,split:post-hd] [rel:CJ,split:post-hd]
[dist:0,pos:NN,rel: MNR]

5 [pos:CARD,split:post-hd]
[pos:VVPP]

0 [dist:1,split:pre-hd| [pos:VAFIN,split:pre-hd] [pos:PPER,rel:OA]
[pos:PRF,rel:OA] [pos:PRF] [rel:SBP,split:pre-hd]

1 [rel:NG] [rel:DA] [dist:0,rel:MO,split:pre-hd| [pos:ADV]
[dist:0,pos:NN,rel:MO,split:pre-hd|

2 [dist:0,pos:PROAV,rel:MO,split:pre-hd]

3 [rel:OA] [dist:0,pos:NE,rel:MO,split:pre-hd| [pos:ADJD]

4 [dist:0,split:pre-hd|

5 [head:yes|

6 [rel:OC] [dist:2] [dist:0,pos:PROAV,rel:MO,split:post-hd] [pos:VVINF]
[pos:VVIZU] [pos:VVFIN] [dist:0,split:post-hd] [pos:VMFIN,split:post-
hd] [dist:0,rel:MO,split:post-hd] [rel:CD] [dist:1,split:post-hd]
[dist:0,pos:NE,rel:MO,split:post-hd| [dist:0,pos:NN,rel:MO,split:post-hd]
[pos:VAFIN,split:post-hd] [rel:SBP,split:post-hd]

7 [dist:0,rel:CJ]

APPENDIX C. DATA 123

[pos:VVFIN,rel:-root]

0

10
11

12

13

14

15

16
17
18

[pos:PWS,rel: OA] [rel:CM] [pos:PRELS] [pos:VAFIN,split:pre-hd]
[pos:VVFIN,split:pre-hd| [pos:KON,rel:JU]| [rel:AC| [pos:PWAV] [pos:PWS]
[rel:CP] [rel:NK]

[pos:CARD,rel:SB] [pos:NN,rel:NK] [pos:PIAT,rel:SB]
[pos:PPER,rel:SB,split:pre-hd] [pos:PDS,rel:SB,split:pre-hd]
[pos:PIS,rel:MO] [pos:PRF,rel:OA,split:pre-hd]
[pos:NN,rel:SB,split:pre-hd] [pos:CARD,rel:MO,split:pre-hd]
[pos:NE,rel:OA,split:pre-hd] [pos:NE,rel:MO,split:pre-hd|
[pos:PIS,rel:SB,split:pre-hd] [pos:TRUNC,rel:MO] [pos:PRF,rel:MO,split:pre-
hd]

[pos:PPER,rel:OA ,split:pre-hd] [pos:ADJA rel:MO,split:pre-hd|
[rel:SB,split:pre-hd] [pos:PROAV,rel:MO,split:pre-hd] [rel:DA ,split:pre-
hd]

[pos:NN,rel:OA,split:pre-hd] [rel:MO,split:pre-hd]
[pos:NN,rel:MO,split:pre-hd| [rel:NG,split:pre-hd|

[split:pre-hd] [pos:CARD,rel:OA ,split:pre-hd] [pos:NN,split:pre-hd]
[pos:ADJD,rel:MO,split:pre-hd]

[pos:NN,rel:DA,split:pre-hd]

[pos:PRF,rel:OA split:post-hd] [pos:ADJA rel:OA,split:pre-hd]
[pos:PPER,rel:OA split:post-hd] [pos:PPER,rel:SB,split:post-hd]
[head:yes] [pos:VVINF,rel:OC,split:pre-hd] [pos:NN,rel:SB,split:post-hd]
[rel:OC,split:pre-hd] [pos:ADV,rel:MO,split:pre-hd]| [pos:KON,rel:OA]

[rel: APP] [pos:KON] [pos:VMFIN] [pos:PIS,rel:SB,split:post-hd]
[pos:VAFIN,split:post-hd] [rel:SB,split:post-hd] [pos:VVINF,rel:MO]

[dist:1,rel:OC| [rel: DA, split:post-hd] [pos:NE,rel:OA,split:post-
hd] [pos:PDS,rel:SB,split:post-hd] [rel:CC,split:post-hd]
[pos:ADJA rel:MO,split:post-hd]

[pos:ADV,rel:MO,split:post-hd] [pos:NE,rel:MO,split:post-hd]
[pos:CARD,rel:MO,split:post-hd| [pos:PROAYV rel:MO,split:post-hd]

[rel:NG,split:post-hd]

[pos:NN,rel:OA,split:post-hd] [pos:NN,rel:DA split:post-hd] [rel:MO,split:post-
hd] [pos:NN,rel:MO,split:post-hd] [pos:ADJA rel:OA,split:post-hd]
[pos:NN,rel:RE]

[pos:CARD,rel:OA split:post-hd] [rel:OA] [pos:NN,split:post-hd] [rel:SVP]
[pos:VVFIN,split:post-hd] [split:post-hd]

[pos:NN,rel:CC] [pos:ADJD,rel:MO,split:post-hd]

[pos:PTKVZ]

[pos:VVIZU,rel:MO] [rel:OC,split:post-hd] [rel:RE] [rel:RC]
[pos:VVINF,rel:OC,split:post-hd] [pos:NN,rel:APP]

APPENDIX C. DATA 124

[pos:VMFIN,rel:root]

0

> w

O © 00 g O Ut

[pos:PROAV split:pre-hd] [dist:1,rel:MO,split:pre-hd] [pos:CARD,rel:OA]

[pos:VMFIN,rel:SB] [pos:PIS,rel:SB,split:pre-hd] [dist:2,split:pre-
hd] [pos:ADJD,split:pre-hd] [rel:JU] [rel:CJ,split:pre-hd]
[pos:KON, rel:SB,split:pre-hd]

[split:pre-hd] [pos:NN,rel:MO,split:pre-hd] [rel:SB,split:pre-hd]
[pos:NN,split:pre-hd] [pos:ADV,split:pre-hd] [pos:NN,rel:SB,split:pre-hd]
[pos:PWAV]

[rel:CP] [pos:PDS]

[head:yes]

[rel:SB,split:post-hd] [pos:PREF] [pos:ADJD,split:post-hd]

[pos:PIS,rel:SB,split:post-hd] [dist:0,pos:NN,rel:OA] [pos:PROAV,split:post-
hd] [dist:1,rel:MO,split:post-hd] [dist:2,split:post-hd] [pos:TRUNC,rel:SB]
[pos:NN,rel:SB,split:post-hd| [pos:ADV split:post-hd|

[pos:NN,split:post-hd]

[split:post-hd] [pos:NN,rel:MO,split:post-hd] [rel:NG]

[rel:RE] [rel:OC] [pos:KON,rel:SB,split:post-hd]

[pos:VVINF,rel:OC]

[rel:CJ,split:post-hd] [rel:RC,split:post-hd]

[pos: VVIZU]

U W N

[rel:CP] [pos:PRF,rel: OA]

[split:pre-hd] [pos:NN,rel:MO] [pos:ADV] [rel:DA] [pos:ADJD] [rel:OA]
[pos:NN]

[head:yes]

[pos:VVFIN] [rel:RC] [split:post-hd]

[pos:VVINEF]

APPENDIX C. DATA 125

[pos:VAFIN,rel:root]

0

U W N

11

12
13

[pos:PIS,split:pre-hd] [pos:VMFIN,split:pre-hd] [pos:KON,rel:SB,split:pre-
hd] [pos:PPER,split:pre-hd] [pos:VVIZU split:pre-hd|
[split:pre-hd] [pos:VAINF split:pre-hd] [pos:VVPP,split:pre-
hd] [pos:PROAYV rel:MO,split:pre-hd] [dist:2,rel: MNR]
[dist:0,pos:PWAV rel:PD]| [pos:VAFIN,rel:OC| [dist:2,rel:MO,split:pre-hd]
[dist:0,pos:PPER rel:PD,split:pre-hd| [dist:1,pos:NN,rel:OA split:pre-hd|
[rel:JU] [pos:ADJA] [dist:1,pos:ADJD,rel:MO,split:pre-hd] [pos:NN,split:pre-
hd] [dist:1,pos:NN,split:pre-hd] [dist:0,pos:ADJD,rel:PD,split:pre-hd]
[pos:KOUS] [rel:CJ,split:pre-hd] [rel:RE,split:pre-hd|
[dist:0,rel:PD,split:pre-hd] [dist:0,rel:OA split:pre-hd] [pos:NN,rel:SB,split:pre-
hd] [dist:0,pos: ADJD,split:pre-hd] [dist:1,pos:NN,rel:MO,split:pre-hd|
[rel:SB,split:pre-hd] [pos:PPER,rel:SB,split:pre-hd] [pos:PDS,split:pre-hd]
[rel:MO,split:pre-hd] [pos:NE,rel:SB,split:pre-hd] [dist:1,rel:MO,split:pre-hd]
[pos:PRF,split:pre-hd]

[head:yes]

[pos:PROAV rel:MO,split:post-hd] [dist:2,rel:MO,split:post-hd]
[dist:0,pos:PPER,rel:PD,split:post-hd] [split:post-hd] [pos:PPER,split:post-
hd] [pos:NN,split:post-hd] [dist:1,pos:ADJD,rel:MO,split:post-
hd] [pos:PDS,split:post-hd] [pos:PPER,rel:SB,split:post-hd]
[dist:0,pos:PROAV rel:PD] [pos:PIS,split:post-hd]

[rel:NG] [rel:MO,split:post-hd] [dist:0,pos:ADJD,split:post-hd|

[dist:0,rel:OC] [dist:0,pos:CARD,rel:PD] [dist:1,pos:NN,split:post-hd]

[rel:CC] [dist:1,pos:NN,rel:MO,split:post-hd] [pos:NN,rel:SB,split:post-hd]
[pos:PRF,split:post-hd] [dist:0,rel:OA,split:post-hd] [rel:SB,split:post-hd]
[pos:NE,rel:SB,split:post-hd] [dist:1,pos:NN,rel:OA,split:post-hd|
[dist:0,pos:KON,rel:PD] [dist:1,rel:MO,split:post-hd] [rel:SVP]

[pos:VVIZU ,split:post-hd| [dist:0,pos:ADJD,rel:PD,split:post-hd]
[pos:VVPP,split:post-hd]

[pos:VMFIN,split:post-hd] [dist:0,rel:PD,split:post-hd] [rel:CJ,split:post-hd]
[pos:KON,rel:SB,split:post-hd]

[pos:VAINF ,split:post-hd] [rel: APP| [rel:RE,split:post-hd] [rel:DH]

[rel:RC]

[pos:ADJD]

0

Ui W N

[=>]

[rel:PM] [rel: AMS] [rel:AC]| [rel:DA,split:pre-hd] [pos:PROAV,rel:MO,split:pre-
hd] [rel:CJ,split:pre-hd] [rel: OA] [rel:MO,split:pre-hd] [rel:CM]

[split:pre-hd] [rel:NG] [rel:NK]

[pos:NN,split:pre-hd| [pos:ADV,rel:MO]|

[pos:PTKA,rel:MO] [pos:ADJD,rel:MO]

[head:yes]

[rel:CD] [rel:PD] [pos:VVINF| [pos:VAFIN,split:post-hd] [rel:APP]
[split:post-hd] [pos:VMFIN] [rel:CJ,split:post-hd] [rel:MO,split:post-hd]
[pos:PROAV ,rel:MO,split:post-hd] [pos:VVFIN] [rel:OC,split:post-hd]

[rel:CC]

[pos:NN,split:post-hd]

APPENDIX C. DATA 126

[pos:VVFIN,rel:root]

~N O U w

oo

10

11
12

13
14

15

[pos:ADJD,rel:PD,split:pre-hd] [pos:CARD,split:pre-hd]
[pos:PPER,rel:DA split:pre-hd| [pos:CARD,rel:MO,split:pre-
hd] [dist:0,pos:NE,split:pre-hd| [pos:VVPP,split:pre-hd] [rel:JU]
[rel:RS,split:pre-hd] [rel:OC,split:pre-hd] [dist:0,pos:PDS,rel:OA split:pre-
hd] [dist:1,rel:OC,split:pre-hd| [dist:0,rel:CJ,split:pre-hd]
[pos:VVIZU,split:pre-hd| [pos:ADV,rel:OC] [pos:PWAV ,split:pre-hd|
[rel:PG] [pos:VVINF,rel:OC,split:pre-hd] [split:pre-hd] [pos:NN,rel:OC]
[pos:PWS| [dist:0,pos:KON,rel:OA split:pre-hd] [pos:VVINF split:pre-hd]
[dist:0,rel:OA,split:pre-hd] [pos:KON,rel:MO,split:pre-hd]
[pos:ADJD,rel:MO,split:pre-hd] [pos:PDS,split:pre-hd|
[dist:1,pos:NN,split:pre-hd] [dist:0,pos:NE,rel:SB,split:pre-hd] [rel:CP|
[pos:ADJA rel:SB,split:pre-hd] [rel:DA,split:pre-hd] [pos:VVFIN,split:pre-
hd] [pos:KON,split:pre-hd]

[pos:PPER,split:pre-hd] [rel:SB,split:pre-hd|

[dist:0,pos:NN,rel:OA split:pre-hd| [pos:VVIMP|
[dist:0,pos:NN,rel:MO,split:pre-hd|

[rel:MO,split:pre-hd|

[pos:ADV,rel:MO,split:pre-hd] [pos:FM]

[head:yes]| [pos:PIAT]

[pos:ADV rel:SB| [rel:CD] [pos:PPER,split:post-hd] [pos:PWAV,split:post-
hd] [pos:PTKNEG,rel:MO] [pos:VVINF,split:post-hd] [pos:PDS,split:post-hd|
[dist:0,pos:PDS,rel:OA split:post-hd] [pos:PPER,rel:DA split:post-hd]
[dist:0,pos:PPER,rel:OA] [dist:0,pos:NE,rel:SB,split:post-hd| [pos:PRF]

[pos:ADV,rel:MO,split:post-hd] [dist:0,pos:NN,rel:MO,split:post-
hd] [rel:DA ,split:post-hd] [rel:OG] [pos:VVFIN,split:post-hd]
[pos:CARD,rel:MO,split:post-hd| [dist:0,pos:NE,split:post-hd]

[rel:SB,split:post-hd]

[pos:ADJA rel:SB,split:post-hd] [pos:VVPP,split:post-hd] [dist:1,pos:KON]
[pos:CARD,split:post-hd] [dist:0,rel:OA,split:post-hd] [rel:SVP] [rel:NG]|
[pos:VVPP,rel:OC] [pos:KON,split:post-hd] [dist:0,pos:KON,rel:OA,split:post-
hd]

[pos:ADJD,rel:MO,split:post-hd| [dist:0,pos:NN,rel:OA split:post-hd|
[pos:VVIZU split:post-hd| [pos:ADJD,rel:PD,split:post-hd]
[dist:0,pos:ADV,rel: CJ] [dist:0,pos:NN,rel:CJ] [pos:KON,rel:MO,split:post-hd]
[pos:PTKVZ] [re:MO,split:post-hd] [rel:RE]

[pos:VAINF] [rel:RC] [dist:1,rel:OC,split:post-hd] [rel:APP] [rel:CC,split:post-
hd] [split:post-hd] [rel:DH] [pos:VVINF,rel:OC,split:post-hd]
[dist:1,pos:NN,split:post-hd] [rel:OC,split:post-hd]

[dist:0,rel:CJ,split:post-hd]

APPENDIX C. DATA 127

[pos:ADJA]

[rel:GL] [pos:PIAT] [rel:NG] [pos:PIS]| [rel: CM]

[rel:AC]

[pos:PDAT] [pos:CARD,split:pre-hd] [pos:ART] [pos:PPOSAT]
[pos:CARD,rel:MO] [rel:DA,split:pre-hd] [pos:NE,rel:MO] [pos:ADJD,split:pre-
hd] [pos:ADJA,split:pre-hd] [pos:PIDAT]

[split:pre-hd] [rel:OA split:pre-hd] [rel:SBP] [pos:NN,rel:MO]
[rel:MO] [pos:ADJD,rel:MO] [pos:ADJD,split:post-hd]
[rel:PM] [rel: AMS]

[head:yes]

[rel:CJ] [rel:CD] [pos:TRUNC]

[pos:ADJA split:post-hd] [pos:CARD,split:post-hd]
[pos:NE,rel:NK] [pos:NN,rel:NK]

[rel:PG] [split:post-hd] [rel:GR] [rel:OC]

[rel:MNR]

[rel:RC] [rel:APP]

Bibliography

Anne Abeille, Silvia Hansen-Schirra, and Hans Uszkoreit, editors. Proceedings
of the Workshop on Lingusitically Interpreted Corpora (LINC-03). x, 2003.

Jason Baldridge. Lezically Specified Derivational Control in Combinatory Cat-
egorial Grammar. PhD thesis, Edinburgh University, 2002.

Gunnar Bech. Studien tber das deutsche Verbum Finitum. Munksgaard, no
year.

Markus Becker and Anette Frank. A stochastic topological parser for German.
In Proceedings of 19th COLING, 2002.

Robert C. Berwick. The acquisition of syntactic knowledge. MIT Press, 1985.

Sabine Brants, Stefanie Dipper, Silvia Hansen, Wolfgang Lezius, and George
Smith. The TIGER treebank. In Proceedings of the Workshop on Treebanks
and Linguistic Theories, Sozopol, 2002.

Joan Bresnan. Lexical Functional Syntaz. Blackwell, 2001.

Garry Briscoe and Terry Caelli. A Compendium of Machine Learning, volume
1: Symbolic Machine Learning. Ablex, 1996.

Norbert Broeker. A projection architecture for dependency grammar and how
it compares to LFG, 1998.

Eugene Charniak. Treebank grammars. In Proceedings of 18th AAAI 1996.
Chomsky. Lectures on Government and Binding. Dordrecht, 1981.

Michael Collins. Three generative, lexicalised models for statistical parsing. In
Proceedings ACL’97, 1997.

Michael Collins. Head-Driven Statistical Models for Natural Language Parsing.
PhD thesis, University of Pennsylvania, 1999a.

Michael Collins. A statistical parser for czech. ACL, 1999b.

Walter Daelemans and Véronique Hoste. Evaluation of machine learning meth-
ods for natural language processing tasks. In Proceedings of LREC 2002
Workshop on Language Resources and FEvaluation, 2002.

B. A. Davey and H. A. Priestley. Introduction to Lattices and Order. Cambridge
UP, 1994.

128

BIBLIOGRAPHY 129

Ralph Debusmann. A declarative grammar formalism for dependency grammar.
Master’s thesis, University of the Saarland, Saarbriicken, 2001.

Thomas G. Dietterich. Approximate statistical tests for comparing supervised
claaification learning algorithms. Neural Computation, 10(7):1895-1923, 1998.

Erich Drach. Grundgedanken der deutschen Satzlehre. Wiss. Buchgesellschaft
Darmstadt, 1963.

Giinther Drodowski and Peter Eisenberg, editors. Duden Grammatik der
deutschen Gegenwartssprache. Duden, 5. vollig neu bearbeitete und erweiterte
auflage edition, 1995.

Denys Duchier and Ralph Debusmann. Topological dependency trees: A
constraint-based account of linear precedence. In Proceedings of 89th ACL,
Toulouse, France, 2001.

Peter Eisenberg. Grundrif$ der deutschen Grammatik, volume 2. Der Satz. Met-
zler, 1999. Kapitel 13. Wortstellung.

Ulrich Engel. Regeln zur wortstellung. In Forschungsberichte des Instituts fiir
deutsche Sprache, volume 3, pages 75-148. 1970.

Martin Fowler and Kendall Scott. UML distilled. Adison Wesley, second edition
edition, 2000.

Michael Gamon, Eric Ringger, Zhu Hang, Robert Moore, and Simon Corston-
Oliver. Extraposition: A case strudy in German sentence realization. In
Proceedings of 19th COLING, pages 301-307, 2002.

E. M. Gold. Language identification in the limit. Information and Control, 10:
447-474, 1967.

John H. Greenberg. Some universals of grammar with particular reference to
the order of meaningful elements. In John H. Greenberg, editor, Universals
of Language. MIT Press, 1966.

XTAG Research Group. A lexicalized tree adjoining grammar for english. Tech-
nical Report IRCS-01-03, IRCS, University of Pennsylvania, 2001.

Jan Haji¢. Building a syntactically annotated corpus: The Prague Dependency
Treebank. In Eva Hajicova, editor, Issues of Valency and Meaning, pages
106-132. Karolinum, Prague, Czech Republic, 1998.

Hawkins. A Performance Theory of order and constitutents. Cambridge UP,
1984.

John A. Hawkins. Word Order Universals. Academic Press, 1983.

Erhard W. Hinrichs and Tsuneko Nakazawa. Linearizing AUXs in German
verbal complexes. In Erhard Hinrichs and Tsuneko Nakazawa, editors, Aspects
of German VP Structure: An HPSG Account, number 01-93, pages 25-52.
Seminar fiir Sprachwissenschaft, Universitdt Tiibingen, 1993.

Ursula Hoberg. Die Wortstellung in der geschriebenen deutschen Gegen-
wartssprache. Hueber, 1981.

BIBLIOGRAPHY 130

Tilman Hohle. Der Begriff Mittelfeld: Anmerkungen iiber die Theorie der topol-
ogischen Felder. In Albrecht Schohne, editor, Akten des VII. Internationalen
Germanisten-Kongresses Géttingen 1985., volume 3, pages 329-340. Tiibin-
gen: Niemeyer, 1986.

Alan Hutchinson. Machine Learning. Clarendon, 1994.

Java. Java 2 platform standard edition version 1.4.1 API specification.
http://java.sun.com/j2se/1.4.1/docs/api/index.html, 2003.

Andreas Kathol. Linear Syntax. Oxford UP, 2000.

Alexandra Kinyon and Carlos A. Prolo. A classification of grammar develop-
ment strategies. In Proceedings of Grammar Development and Engineering
Workshop at COLING’02, 2002.

Dan Klein and Christopher D. Manning. A generative constituent-context model
for improved grammar induction. Computer Science Department Stanford
University, no year.

Ron Kohavi and George A. John. Wrappers for feature subset selection. Artifi-
cial Intelligence, 1-2(97):273-323, 1997.

Christian Korthals and Geert-Jan Kruijff. Unsupervised learning of topological
fields. submitted to ACL’03, 2003.

Alexander Krotov, Mark Hepple, Robert J. Gaizauskas, and Yorick Wilks. Com-
pacting the penn treebank grammar. In COLING-ACL, pages 699-703, 1998.
URL citeseer.nj.nec.com/article/krotov97compacting.html.

Geert-Jan Kruijff. A categorial-modal logical architecture of informativity. PhD
thesis, Charles University, Prague, 2001.

Daniela Kurz. Wortstellungspraferenzen im Deutschen. Master’s thesis, Uni-
versitdt des Saarlandes, Computerlinguistik, 2000.

K. De Kuthy and W. Meurers. On partial constituent fronting in german, 1999.
URL citeseer.nj.nec.com/dekuthy99partial.html.

Mitchell Marcus et al. The Ultimate Penn Treebank Bible. Technical Re-
port CD, Linguistic Data Consortium (UPenn), 1995. Technical Report.

Kurt Mehlhorn. Graph Algorithms and NP-Completeness. Number 2 in Data
Structures and Algorithms. Springer, 1984.

Kurt Mehlhorn. Graph Algorithms and NP-Completeness. Revised online ver-
sion at www.mpi-sb.mpg.de/“mehlhorn/DatAlgbooks.html, Version 19.10.99,
Chapter 4, 1999.

Igor Mel¢uk. Dependency syntazx: Theory and practice. Albany: State Univ of
NY, 1988.

Tom M. Mitchel. The need for biases in learning generalizations. Technical
Report CBM-TR-117, Computer Science, Rutgers University, New Jersey,
1980.

BIBLIOGRAPHY 131

Tom M. Mitchell. Machine Learning. WCB/McGraw-Hill, 1997.
Stefan Miiller. Deutsche Syntax deklarativ. Niemeyer, 1999.
Balas K. Natarajan. Machine learning. A theoretical approach. Kaufmann, 1991.

Partha Niyogi and Robert C. Berwick. A language learning model for finite
parameter spaces. Cognition, (61):161-193, 1996.

John Ross Quinlan. C4.5: Programs for Machine Learning. Kaufmann, 1998.

M. Reape. Domain union and word order variation in german. In J. Nerbone,
K. Netter, and C. Pollard, editors, German in Head-Driven Phrase Structure
Grammar, pages 309—-331. CSLI Stanford, 1994.

Russel and Norvig. Artificial Intelligence. A modern approach. Clarendon, 1995.

Anoop Sarkar and Daniel Zeman. Automatic extraction of subcategorization
frames for czech. In Proceedings of 18th COLING, 2000.

Scheepers. Linking syntactic functions with thematic roles: Psych-verbs and
the resolution of subject-object ambiguity. In B. Hemford and L. Konieczny,
editors, German Sentence Processing, pages 95-135. Kluwer, 2000.

Anne Schiller, Simone Teufel, and Chritine Stockert. Guidelines fiir
das tagging deutscher textcorpora mit stts. http://www.ims.uni-
stuttgart.de/projekte/corplex/TagSets/stts-1999.pdf.

Petr Sgall, Eva Hajicova, and Jarmila Panenova. The Meaning of the Sentence
in its Semantic and Pragmatic Aspects. Reidel, 1986.

Wojciech Skut, Thorsten Brants, Brigitte Krenn, and Hans Uszkoreit. A lin-
guistically interpreted corpus of German newspaper text. In Proceedings of
the ESSLLI Workshop on Recent Advances in Corpus Annotation, 1998.

Susan Steele. Word order variation. A typological study. In Joseph H. Green-
berg, editor, Universals of Human Language, volume 2. Syntax, pages 585—
623. Stanford UP, 1978.

M. Stone. Asymptotics for and against cross-validation. Biometrika, 1977.
Lucien Tesniére. Eléments de syntaze structurale. Klincksieck, 1965.
Hans Uszkoreit. Word Order and Constituent Structure in German. CSLI, 1987.

Hans Uszkoreit, Th Brants, Denys Duchier, Brigitte Krenn, Lars Konieczny, Ste-
fan Oepen, and Wojciech Skut. Studien zur performanzorientierten linguistik:
Aspekte der relativsatzextraposition im deutschen. Kognitionswissenschaft, 7
(3):129-133.

L.G. Valiant. A theory of the learnable. Communications of the A.C.M., 1984.

Aline Villavicencio. The acquisition of word order by a computational learning
system. In Proceedings of the Fourth Conference on Computational Natural
Language Learning and of the Second Learning Language in Logic Workshop,
pages 209-218. Lisbon, Portugal, 2000.

BIBLIOGRAPHY 132

Fei Xija. Extracting tree adjoining grammars from bracketed corpora. In Proc
of NLPRS-99, 1999.

Fei Xia, Chung hye Han, Martha Palmer, and Aravind Joshi. Automatically
extracting and comparing lexicalized grammars for different languages. In
Proc. of the Seventeenth International Joint Conference on Artificial Intelli-
gence (IJCAI-2001), 2001.

Naoki Yoshinaga and Y. Miyao. Grammar conversion from LTAG to HPSG.

In European Student Journal on Language and Speech, Special Issue of 6th
ESSLLI Student Session, 2002.

Zdenek Zabokrtsky. Automatic functor assignment in the Prague Dependency
Treebank. Master’s thesis, Charles University Prague, 2001.

