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Abstract

This paper presents an unsupervised approach to
learning of symbolic word order rules from tree-
banks. We use a graph algorithm to compute
topological field models, and employ decision tree
learning to allow for robust automatic feature se-
lection. The approach is applied to the German
NEGRA treebank, and evaluated against the super-
vised approach of (Becker and Frank, 2002). We
achieve 73.1% bracket recall, and discover phe-
nomena as verb secondness and fine grained rules
about middlefield order and scrambling.

1 Introduction

There is a simple reason for why we need to address
the issue of how to learn word order rules:Word or-
der matters. More and more treebanks are created
for an ever-increasing number of languages. This
gives us access to data with a broad range of word
order variation in the structures we encounter. In§2
we discuss an empirical investigation that demon-
strates there is significant variation in the amount of
discontinuity and scrambling we can observe in tree-
banks for English, German, Dutch and Czech.

Hence, an approach for learning word order rules
must be able to capture bothrestrictionson word
order (e.g. V2-ness in German, Dutch) andpos-
sible variability in word order (e.g. scrambling in
German, Czech). For that, we need rules – we can-
not entirely lexicalize restrictions and possible vari-
ations:

First, restrictions like V2-ness hold for the
broader context of a tree, not for individual lexi-
cal items. Second, particularly in languages with a
freer word order, like German and Czech, word or-
der helps realizing information structure. The latter

is not lexicalizable because its interpretation is de-
pendent on the actual discourse context.

We are not the first to discuss an approach to
learning word order models. A related effort is
(Becker and Frank, 2002), who present a supervised
method for learning topological field models from
the NEGRA treebank (Skut et al., 1997). Becker
& Frank score high on chunking trees into sepa-
rate fields (>91% LP/LR) but its supervised nature
requires a hand-crafted gold standard annotated for
the topological fields to be learned, and thus makes
it costly to apply across many languages. In§5
we evaluate our approach against Becker & Frank’s
chunker, obtaining up to 73.1% bracket recall, and
an average of 0.65 crossing brackets per sentence.

Few of the prominent context-free (CF) ap-
proaches like (Collins, 1997) have in fact been ap-
plied to other languages than English. (Collins et
al., 1999) apply the parsing model of (Collins, 1997)
to a fragment of the Prague Dependency Treebank
(Hajič, 1998), and report 80% dependency accuracy.
However, they do not describe the nature of the data,
nor the learning behaviour. This is noted by (Dubey
and Keller, 2003), who report 79.8% on parsing full
NEGRA. It is therefore difficult to judge in how far
the results of (Collins et al., 1999) can still be im-
proved.

In this paper, we present a unsupervised, sym-
bolic, and robust approach to learning word order
rules, which is designed to be suitable for a wide va-
riety of typologically different languages. The learn-
ing architecture consists of aclimbing modulework-
ing on dependency trees, a graph-basedfield induc-
tion component, and a decision-tree learning based



Figure 1: Dependency analysis of a sentence with a
discontinous VP (NEGRA sentence 165). (a) TDG
ID tree (b) induced and exported TDG LP tree

feature selectioncomponent. The task of the climb-
ing component is to predict the behaviour of discon-
tinous realizations. The task of the field induction
component is to learn order rules for each class of
governor found. Finally, the task of the feature se-
lection component is to converge towards an opti-
mal set of linguistic features to select as relevant to
word order. The main advantages of the system are
its minimal assumptions about linguistic structure,
which makes it applicable to a wide range of lan-
guages, and its flexible feature selection component,
which is capable of discovering very fine grained
rules governing word order.

The paper is structured as follows. In§2, we de-
scribe properties of the linguistic data. In§3, we de-
scribe the learning architecture in detail, before we
present its implementation in§4. Finally, we evalu-
ate the system in§5.

2 Data

In this section we present an empirical treebank in-
vestigation into two aspects of word-order varia-
tion: discontinuity and scrambling. Both are dif-
ficult to deal with in context-free approaches. We
used the WSJ section of the PennTreebank (Marcus
and others, 1995) for English, the NEGRA treebank
(Skut et al., 1997) for German, the Corpus Spoken
Dutch (Oostdijk, 2000) for Dutch, and Row 5 from
the Prague Dependency Treebank (Hajič, 1998) for
Czech.

We use the following notion of discontinuity.
Given a constituent (tree) that has a yield covering

string positionsi...l. The constituent isdiscontinu-
ousif there is at least one interval of string positions
j...k, with i < j ≤ k < l, that does not belong
to the yield of the constituent. Figure 1(a) shows a
dependency tree with a VP (node “erwähnt”) that is
discontinuous in two places. We call an edge that is
crossing a gap acrossing edge.

For each treebank, we investigate the discontinu-
ity for nodes with an occurrence frequency> 1%
relative to the total number of nodes observed in the
treebank. Our coverage is at least 96.30% for each
of the corpora. Table 1 presents an overview of the
results. Σ0 indicates the percentage of continuous
nodes, andΣn the percentage of nodes discontinu-
ous inn place(s);Σd = Σ

i=1..n
(Σi).

Language Σ0 Σ1 Σ2 Σ3

English 96.38% 1.02% 0.01% 0.00%
German 86.33% 9.17% 1.82% 0.06%
Dutch 77.89% 16.44% 1.80% 0.20%
Czech 41.75% 49.46% 7.55% 1.06%

Table 1: Overview of continuity/discontinuity

Table 1 shows that the data confirms the expecta-
tion that a freer word order corresponds to a higher
degree of discontinuity. The difference between
German and Dutch arises from cross-serial depen-
dencies in Dutch verbal clusters, which addΣd =
4.12% .

Besides discontinuity, we also investigated scram-
bling. Both are normally associated with “free”
word order. The difference between them is that
discontinuity is a non-local phenomenon, whereas
scrambling is head-local. To quantify scrambling,
we use the following simple measure calculated
on the basis of (ordered) dependency trees, and
the (unordered) dependency mobiles they instan-
tiate, all of the same type:scrambling factor =

log2

(
|unique dependency trees|

|unique dependency mobiles|

)
.

Table 2 shows an overview of the scrambling fac-
tors for different types of phrases, across the four
languages. The closer to 0 a scrambling factor is,
the less scrambling takes place.

The facts about verbal position and extraposition
are traditionally analysed in terms oftopological
fields (Höhle, 1986). While topological field anal-
yses have mainly been applied to Germanic lan-



Type English Dutch German Czech
S 0.31 1.20 1.02 0.56
VP 0.22 – 1.02 –

Table 2: Overview of scrambling factors

Figure 2: System Architecture

guages, a generalized version of this theory has
proven to be useful cross-linguistically (Kruijff,
2001). Topological fields have also been success-
fully used in parsing.

3 Theory

We analyse sentences with a notion we borrow from
Topological Dependency Grammar (TDG, (Duchier
and Debusmann, 2001)): For a complete syntactic
analysis we stipulate two tree structures, an ID struc-
ture describing syntactic functor-argument structure,
and an LP structure describing linear precedence in
terms of a generalized topological fields theory. Re-
consider Figure 1 for illustration. ID trees are la-
belled with syntactic functions, and may have cross-
ing edges. LP trees are labelled with topological
fields, and areprojective, i.e. may not have crossing
edges. Nodes mayclimb to parent nodes when map-
ping from ID to LP trees. More formally, ifw is the
direct governor ofv on the ID level andw1 . . . wn,
arev’s indirect governors, the governor ofv on the
LP level needs to be one ofw,w1, . . . wn.

Given the above, the task of a machine learning
system is to learn rules how to map from ID trees
to maximally compact LP trees. The search space is
clearly infinite. The learning task is modularized as
depicted in Figure 2. In the remainder of this sec-
tion, we outline each of the components.

3.1 Mathematical Model

The Climbing Component converts the input cor-
pus into a dependency representation, and identifies
crossing edges. It then produces projective versions
of the input trees (“climb trees”) by raising nodes
until projectivity is reached. These trees are the in-
put to the field induction component.

Primitive Extraction traverses all climb trees,
and conceives of them as a set of primitive exam-
ples, from which we can learn word order regular-
ities. Our primitive is aprecedence pair, which
we define as a single occurrence of a dependent
item directly or indirectly before another dependent
item under a common governor. We formalise a
precedence pair as a quadruple〈e1, e2, R, h〉, where
e1, e2, h are feature structures (AVMs) describing
dependency nodes, andR is equal to< if e1 pre-
ceedse2, and> otherwise. The order ofe1 ande2

in the quadruple is well-defined according to an ar-
bitrary order on feature structures, e.g. the lexico-
graphic order.

To map from dependency nodes to feature struc-
turese1, e2, h, we define adependent feature se-
lection function f : N → E and ahead feature
selection functionfH : N → H, whereN is the
set of nodes in the corpus, ande1, e2 ∈ E, h ∈ H
(We will refer toE as the set ofelements, and toH
as the set ofhead classes). Here, we assumefH as
given. We speak ofmanual feature selectionwhen
alsof is known a priori, as opposed toautomatic
feature selection, when it is to be learned.

For illustration, assume thatfH maps nodes to
feature structures containing the POS-tag of the
node only, whilef maps nodes to feature structures
containing the syntactic relation of the node only.
The node “wird” in Figure 1 will then be reduced
to the AVM [pos:VAFIN]. “Oktober” will be a de-
pendent of “wird” in the climb tree, since the edge
has to climb in order to be non-crossing, and will
be reduced to[rel:MO] by the dependent feature se-
lection function, while “erẅahnt” will be reduced to
[rel:OC]. One of the precedence pairs of this local
tree configuration is therefore〈[rel:MO], [rel:OC], <
, [pos:VAFIN]〉. Note that also the occurrence of the
head itself among its dependents produces a prece-
dence pair, e.g. the pair〈[rel:HEAD], [rel:MO], >
, [pos:VAFIN]〉.

We learn field descriptions from the set of prece-
dence pairs observed in the corpus, with one field
description for each head classh ∈ H observed. Let
Eh ⊂ E be the set of elements occurring in all those
precedence pairs that share the headh. We can then
define thefield description of head classh as a par-
tial order on the dependent elementsEh.

To compute such a partial order, imagine a graph



(a) (b)

Figure 3: (a) Possible order graph for head classh =
“finite verbs”. (b) Corresponding solution graph.

G, whose set of nodes corresponds toEh. Iff there
is a precedence pair〈e1, e2, <, h〉, let there be an
edge from the node inG corresponding toe1 to the
one corresponding toe2. Let there be an edge in
the opposite direction iff there is a precedence pair
〈e1, e2, >, h〉. We call such a graph anorder graph.
Figure 3(a) shows a possible order graph.

While a directed, acyclic graph (DAG) defines a
partial order on its nodes, the order graph can obvi-
ously contain cycles. However, it is possible to iden-
tify the strongly connected components(s.c.c.)1 of
a graph, and reduce all nodes in the same s.c.c. to
single nodes. (Mehlhorn, 1999) presents a linear-
time algorithm for this task. We call the output of
this algorithm a solution graph. A mapping from
nodes of the solution graph to positive, consecu-
tive integers can be interpreted as afield descrip-
tion. A field is then the set of nodes in the order
graph mapped to the same integer. The solution
graph in Figure 3(b) can be written as an assignment
{mo, da} 7→ 0, {sb, hd, oa, pd} 7→ 1, and consti-
tutes a field description with two fields.

3.2 Robustness and Feature Selection

Up to now we have assumed the dependent feature
selection function as fixed. We now add a compo-
nent that is able to adapt the feature selection func-
tion in a feedback loop with the field induction com-
ponent, making the approach robust Figure 2.

Cycles in the order graph between elementsa and
b can be subclassified as follows. (a) there is no word
order rule betweena andb, their occurrence varies
freely; (b) there is a word order rule between a sub-
class ofa and a subclass ofb, but it cannot be ob-
served due to a wrong feature selection function.

We employ decision tree learning to adapt the de-
pendent feature selection function. Decision tree

1A strongly connected component is a maximal subgraph in
which any node can be reached from any other node

learning has the advantage of being fast, applicable
to many linguistic features, and producing symbolic
rules as output, augmented with probabilities.

Before we outline an algorithm converging to-
wards a near-optimal feature selection function, we
introduce the frequency of a precedence pair,c(p) as
a measure of reliability of the observed precedence
relation. We also introduce aprecedence tableas
a convenient way to depict all precedence pairs ob-
served under a common head. See Figure 4 for
an example of a precedence table. The upper half
of the symmetric matrix is mirrored to the bottom.
Cell counts indicate the count of the precedence pair
〈row, col, <, h〉 and〈row, col, >, h〉.

The feature adaption algorithm can be outlined as
follows:

1. Start with a trivial feature selection function, e.g. one that
distingushes head and dependent item only.

2. Pick a suitable precedence pair〈e1, e2, R, h〉 from the
precedence table

3. Invoke a decision tree learner on all precedence pairs,
where input parameters are all features ofe1, e2 andh,
andR is the output variable. Interpret decision tree leaves
as rules, and subclassifye1 with all features ofe1 referred
to in all rules found. Same fore2.

4. While not converged, go to 2.

Some comments on this algorithm are necessary.
When we pick a precedence pair in step 2, we choose
the one with maximalconflict ratio q(〈e1, e2〉) =
min(c1,c2)
max(c1,c2) , c1 = c(〈e1, e2, <, h〉), c2 = c(〈e1, e2, >

, h〉). At step 3, it should be pointed out that the
classes found by the decision tree learner need not
be disjoint, but that there is an order on them. The
convergence criterion in step 4, finally, can be cho-
sen as a system parameter.

The model as defined up to now is not able to
discover head-secondness in the data, a criterion we
characterized as essential in the data section of this
paper. The reason is that elements that can occur ei-
ther before or after the head will always be on the
same strongly connected component as the head in
the order graph. It is, in fact, nothing more than the
linguistic intuition of head-dependent assymetry that
justifies the head as a central element in a field de-
scription. We therefore introduce thesplitting rule ,
which states: If decision tree learning fails on a
precedence pair, one of whose elements is the head
element, sub-classify the non-head element into two
classes, “pre-head”, and “post-head”.



Figure 4: Precedence Table for finite auxiliary verbs at the root node, calculated from 180 sentences of
Negra, with options +climb, +split, and a manual feature selection strategy for syntactic relation

4 Implementation

The architecture outlined above is fully imple-
mented in Java. The system accepts any corpus in
the widely-spread Negra export format, and features
some 20 options to influence system behaviour. The
C4.5 decision tree learner (Quinlan, 1998) was used
as an external tool for decision tree learning, and is
automatically invoked from within the system. A
run over 1000 sentences takes between 20 minutes
and 2 hours, while a run on the entire corpus takes
about a day. The system has an interactive mode
with graphical data browsing facilities, and a batch
mode.

The most important system options include:
climbing, splitting and feature adaption by deci-
sion tree learning can be switched on or off, differ-
ent manual feature selection strategies can be used;
threshold values can be set that determine in what
case an edge should be included into the order graph,
a conflicting precedence pair should be transmitted
to the decision tree learner, and what rule reliability
is necessary to add the decision rule to the feature
adaption function; and differentconvergencestrate-
gies can be used.

Figure 4 presents a screenshot of a precedence ta-
ble, calculated from a small corpus to increase lega-
bility. Figure 5 presents the corresponding field de-
scription learned from this precedence table. Nodes
of the order graph are aligned such that columns can
be read as fields.split anddist (distance) features
indicate split and climbed elements respectively.

The example resembles a topological field rep-
resentation very closely, which is partly due to the
split rule. Fields 0 and 1 constitute the verbalvor-
feld, and contain elements like (climbed) modifiers
([rel:MO,split:pre-hd]), like “Am 27. Oktober” in
sentence 165 above (Figure 1). The feature struc-
ture[rel:OC] in field 5 subsumes clausal objects, and
thus constitutes the right sentence bracket. While
the order of subjects and modifiers is predicted to
be free (hence their occurrence in fields 0, 1 and 3),
the order of non-local relative clauses is correctly re-
stricted to a position to the right of the right sentence
bracket (field 5). Field number 1 deviates from a
standard topological model, but is justified by post-
nominal focus-particles (The originality of the mu-
sic, though, got lost ..., Negra sentence 75).

5 Evaluation

The quality of the learned word order rules cannot
be directly evaluated, apart from human judgement
of linguistic adequateness. We therefore evaluate the
system in two ways. First, we describe convergence
behaviour and system parameters. Second, we eval-
uate against the results of (Becker and Frank, 2002).

5.1 System Behaviour

In this section we describe a set of experiments on
900 sentences, investigating the size of precedence
tables and field descriptions. We controlled corpus
size and system options to observe the convergence
behaviour. We tested the following models, with
these options:



Figure 5: Field Description in graph format corre-
sponding to the data in Figure 4

model climb adapt split
full-adt10 y auto y
manual y manual y

noClimbManual n manual y
noAdapt y manual n

In the diagrams in Figure 6, we plot the number
of elements in the head’s precedence table (left) and
the number of fields in the learned field description
of the head at the y-axis (right) for different models.
A snapshot of the system is plotted after each corpus
subsection of 100 sentences, indicated at the x-axis.

Precedence table size convergence depends pri-
marily on the model used. While it is trivial for the
noAdaptmodel, we achieve fast convergence within
900 sentences for the modelmanual, although non-
local elements are a possible source of explosion,
and the feature selection function for climbed ele-
ments matters. Precedence table size convergence
for models with automatic feature adaption is more
critical, and depends on the treshold values used
(The model displayed stopped calling the decision
tree learner as soon as precedence pair count was be-
low 10). Figure 6 also shows that some tables con-
verge slower than others, particularly the ones with
a high amount of non-local elements (verbs).

The number of fields computed depends on the
size of the underlying precedence tables, and on

[head:yes] 735 [rel:MO] 76
[pos:NN,rel:MO,split:pre-hd] 258 [split:pre-hd] 74
[rel:SB,split:pre-hd] 245 [rel:SVP] 68
[pos:ADV,rel:MO,split:pre-hd] 202 [pos:ADV,rel:MO,split:post-hd] 67
[pos:PRELS] 195 [pos:ADJD,rel:MO,split:pre-hd] 64
[rel:CP] 185 [rel:SB,split:post-hd] 60
[pos:NN,rel:OA,split:pre-hd] 153 [rel:OC,split:post-hd] 52
[pos:PPER,rel:SB,split:pre-hd] 141 [pos:ADJD,rel:MO,split:post-hd] 33
[pos:NN,rel:MO,split:post-hd] 131 [pos:PRF,rel:OA,split:post-hd] 32
[pos:NN,rel:OA,split:post-hd] 95 [rel:OC,split:pre-hd] 31
[pos:PRF,rel:OA,split:pre-hd] 85 [pos:ADJA,rel:MO,split:pre-hd] 30

Table 3: most frequent of classes under
[pos:VVFIN,rel:-root] by automatic feature adaption

threshold values for introducing edges into the order
graph. The field size for the model with automatic
feature selection converges slower. While overall
field size increases slowly, the curves are volatile for
both models, a behaviour which is due to classes be-
ing collapsed into equivalence classes or established
as fields, as soon as thresholds are exceeded.

To give a closer insight into the classes the de-
cision tree learner picks as order relevant, Table 3
lists the most frequent elements in the precedence
table of finite full verbs, computed by modelfull-
adt10. The table includes linguistically fine-grained
tendencies (Kurz, 2000) like subject pronominaliza-
tion ([pos:PPER,rel:SB]). While most classes are
split, there are also clearcut cases in the data, for in-
stance separable verb affixes, which are consistently
at the end ([pos:SVP]).

5.2 Comparison with Topological Corpus

For this experiment, we divided the input corpus into
9/10 training data and 1/10 test data, and used the
learned word order rules to annotate the test data
sentences with the fields learned during training. We
exported the resulting trees (TDG LP trees), and
compared the tree structures to the output of (Becker
and Frank, 2002)’s parser, using the standard PAR-
SEVAL measure, and the same tool (EVALB) as
Becker and Frank to calculate unlabelled recall and
the number of crossing brackets.

We focus on recall rather than precision or f-
value, because a peculiarity of Becker and Frank’s
data is their virtually non-existent annotation of
noun-phrase topology. Our system, however pro-
duces fine-grained NP-word order rules – a fea-
ture we do not want to be penalized for. We use
unlabelled bracket recall rather than labelled, be-
cause Becker and Frank use linguistically meaning-
ful topological field labels likevf, mf for vorfeld,
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Figure 6: Precedence Table and Field Description growth on 900 sentences for (a) manual (b) full-adt10

middle field, etc., while the output of our system is
numerical. We ignored brackets of span 1 as well as
brackets that spanned the entire sentences.

Figure 7(a) shows that the system produces stable
results on little data already. We get values of up to
73.1% unlabelled recall, and 95.0% sentences with
2 or less crossing brackets. This behaviour is similar
for all models with splitting. The more fine grained
analysis which automatic feature adaption provides
does not improve the recall on the data with which
we compare.

While we showed that bracket measures are in-
dependent of corpus size already for some hundred
sentences, the measures depend strongly on the pa-
rameters of the model. Figure 7 shows that the split-
ting rule is the most important parameter that deter-
mines recall figures.

5.3 Discussion

The results show that the system produces fine
grained results on little data already. Precedence
table and field size converge quickly for manual
feature adaption, while convergence is dependent

on threshold values for automatic feature adaption.
Since decision tree learning is a greedy strategy that
produces only near-optimal results, further experi-
ments with threshold values and significance testing
of the discovered classes may improve the results.

The results showed that the splitting rule is a nec-
essary adaption to the system in order to get sensible
results. While 73.1% bracket recall leaves room for
improvements, the majority of mismatching cases
between the learned rules and the data by Becker
and Frank we were using is due to linguistically dif-
ferent, but both plausible analysis. Our system con-
sistently assumes an own field for verbal infinitive
markers, and attaches relative clauses and arguments
of non-finite verb forms low rather than high, con-
trary to the analysis of Becker and Frank. Also the
analyses of conjunctions differ, but are both con-
sistent. On the other side, our rules are more fine-
grained, which is an advantage of our system that is
not reflected in the bracket measures. It should also
be stressed that our approach is unsupervised, and
that supervised approaches tend to outperform the
former.
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Figure 7: Influence of (a) Corpus Size (6000 training, 600 test) and (b) model on bracket measures

6 Conclusion

We gave empirical evidence that word order rules
are a necessary component on the way towards au-
tomatic acquisition of syntactic knowledge. We
then presented an unsupervised machine learning
approach that robustly learns symbolic word order
rules from treebanks, showing that topological fields
are a useful means to describe word order regulari-
ties. The approach makes little assumptions about
linguistic structures, contrasting e.g. to (Villavicen-
cio, 2000)’s system, and is therefore more easily ap-
plicable to a wide range of typologically different
languages. The approach is also able to learn a set of
word-order relevant linguistic features. This shows
that decision tree learning is not only applicable to
a restricted word order phenomenon (Gamon et al.,
2002), but can guide an entire machine learning sys-
tem. We hope to improve evaluation figures in future
research by including different climbing strategies,
and adapting the convergence behaviour of the deci-
sion tree learner.
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