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Abstract is not lexicalizable because its interpretation is de-
) . pendent on the actual discourse context.
This paper presents an unsupervised approach to

learning of symbolic word order rules from tree- We are not the first to discuss an approach to
banks. We use a graph algorithm to compute |egrning word order models. A related effort is
topological field models, and employ decision tree .
learning to allow for robust automatic feature se- (Becker and Frank, 2002), who present a supervised
lection. The approach is applied to the German ~ method for learning topological field models from
NEGRA treebank, and evaluated against the super-
vised approach of (Becker and Frank, 2002). We the NEGRA treel_)ank (Skut et. al., 1997_). Becker
achieve 73.1% bracket recall, and discover phe- & Frank score high on chunking trees into sepa-
nomena as verb secondness and fine grained rules  rate fields £91% LP/LR) but its supervised nature
about middiefield order and scrambling. requires a hand-crafted gold standard annotated for
the topological fields to be learned, and thus makes

1 Introduction it costly to apply across many languages. §f

There is a simple reason for why we need to addre¥¢ €valuate our approach against Becker & Frank’s
the issue of how to learn word order rulasord or-  chunker, obtaining up to 73.1% bracket recall, and
der matters More and more treebanks are create@" average of 0.65 crossing brackets per sentence.
for an ever-increasing number of languages. This Few of the prominent context-free (CF) ap-
gives us access to data with a broad range of woffoaches like (Collins, 1997) have in fact been ap-
order variation in the structures we encounter§2n plied to other languages than English. (Collins et
we discuss an empirical investigation that demor@l., 1999) apply the parsing model of (Collins, 1997)
strates there is significant variation in the amount dp a fragment of the Prague Dependency Treebank
discontinuity and scrambling we can observe in tredHajic, 1998), and report 80% dependency accuracy.
banks for English, German, Dutch and Czech. However, they do not describe the nature of the data,
Hence, an approach for learning word order rulegor the learning behaviour. This is noted by (Dubey
must be able to capture bothstrictionson word and Keller, 2003), who report 79.8% on parsing full
order (e.g. V2-ness in German, Dutch) apos- NEGRA. It is therefore difficult to judge in how far
sible variability in word order (e.g. scrambling in the results of (Collins et al., 1999) can still be im-
German, Czech). For that, we need rules — we cafroved.
not entirely lexicalize restrictions and possible vari- In this paper, we present a unsupervised, sym-
ations: bolic, and robust approach to learning word order
First, restrictions like V2-ness hold for therules, which is designed to be suitable for a wide va-
broader context of a tree, not for individual lexi-riety of typologically different languages. The learn-
cal items. Second, particularly in languages with &g architecture consists ofcdimbing modulevork-
freer word order, like German and Czech, word oring on dependency trees, a graph-bafseld induc-
der helps realizing information structure. The lattetion component, and a decision-tree learning based
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string positionsi...l. The constituent igliscontinu-
ousif there is at least one interval of string positions
j.k, withi < j < k < [, that does not belong
to the yield of the constituent. Figure 1(a) shows a
e i (e@pendency tree with a VP (node “éilant”) that is

27. Oktober 1810 wird erstmals  in

27. October  LBLD police officc  mentioned
discontinuous in two places. We call an edge that is
e E crossing a gap erossing eglge . . '
(o betes bl hmen For each treebank, we investigate the discontinu-
//T*l:“-—-‘,,‘ T RN ity for nodes with an occurrence frequensy 1%
P e T T relative to the total number of nodes observed in the

L

27, Oktober 1810 wird  crstmals  in det  Municipalordnung cin Polizciamt  crwihnt

treebank. Our coverage is at least 96.30% for each

Figure 1: Dependency analysis of a sentence with® the corpora. Table 1 presents an overview of the

discontinous VP (NEGRA sentence 165). (a) TDGesults. »? indicates the percentage of continuous
ID tree (b) induced and exported TDG LP tree nodes, and." the percentage of nodes discontinu-
ous inn place(s)X? = z (9.

=1..n

feature selectiomomponent. The task of the climb- o ) ) 5
ing component is to predict the behaviour of discon- Language | > | 2 vl A
ng component P our : English | 96.38%| 1.02% | 0.01% | 0.00%
tinous realizations. The task of the field induction  German | 86.33%| 9.17% | 1.82% | 0.06%
component is to learn order rules for each class of ~DButch 77.89%| 16.44% ) 1.80% | 0.20%

. Czech 41.75% | 49.46% | 7.55% | 1.06%
governor found. Finally, the task of the feature se-
lection component is to converge towards an opti-
mal set of linguistic features to select as relevant to

word order. The main advantages of the system afigiple 1 shows that the data confirms the expecta-
its minimal assumptions about linguistic structureyion that a freer word order corresponds to a higher
which makes it applicable to a wide range of lanyegree of discontinuity. The difference between

guages, and its flexible feature selection componenterman and Dutch arises from cross-serial depen-

which is capable of discovering very fine grainedjencies in Dutch verbal clusters, which aBd =
rules governing word order. 4.12% .

The paper is structured as follows. 48, we de-  gegjdes discontinuity, we also investigated scram-
scribe properties of the linguistic data. 38, we de- bling. Both are normally associated with “free”

scribe the learning architecture in detail, before Wg,oq4 order. The difference between them is that
present its implementation ##. Finally, we evalu- giscontinuity is a non-local phenomenon, whereas

ate the system ifi5. scrambling is head-local. To quantify scrambling,
2 Data we use the following simple measure calculated
on the basis of (ordered) dependency trees, and
In this section we present an empirical treebank irthe (unordered) dependency mobiles they instan-
vestigation into two aspects of word-order variatiate, all of the same typescrambling factor =
tion: discontinuity and scrambling. Both are dif- o |unique dependency trdes
ficult to deal with in context-free approaches. We 2 \ [unique dependency mobiles -
used the WSJ section of the PennTreebank (MarcusTable 2 shows an overview of the scrambling fac-
and others, 1995) for English, the NEGRA treebantors for different types of phrases, across the four
(Skut et al., 1997) for German, the Corpus Spokelanguages. The closer to 0 a scrambling factor is,
Dutch (Oostdijk, 2000) for Dutch, and Row 5 fromthe less scrambling takes place.
the Prague Dependency Treebank (Elaji998) for The facts about verbal position and extraposition
Czech. are traditionally analysed in terms edpological
We use the following notion of discontinuity. fields (Hohle, 1986). While topological field anal-
Given a constituent (tree) that has a yield coveringses have mainly been applied to Germanic lan-

Table 1: Overview of continuity/discontinuity




Type | English | Dutch | German | Czech Primitive Extraction traverses all climb trees,
S 031| 1.20 1.02| 056 . L
and conceives of them as a set of primitive exam-

VP 0.22 - 1.02 -
ples, from which we can learn word order regular-
Table 2: Overview of scrambling factors ities. Our primitive is aprecedence pair which
we define as a single occurrence of a dependent
[ || cumone | | pmine _{mm o Feamie ‘, Expon ‘, ?tem directly or indirectly before another depeqdent
e —— — /N item under a common governor. We formalise a
precedence pair as a quadruple, es, R, h), where
Figure 2: System Architecture e1,e2, h are feature structures (AVMs) describing

dependency nodes, artlis equal to< if e; pre-

. . . ceedsey, and> otherwise. The order of; and
guages, a generalized version of this theory has 2 > ! 2

oroven to be useful cross-linguistically (Kruiff, In the quadruple is well-defined according to an ar-

. . bitrary order on feature structures, e.g. the lexico-
2001). Topological fields have also been success- y 9

fully used in parsin graphic order.
’ ’ ’ To map from dependency nodes to feature struc-

turesey, eo, h, we define adependent feature se-
lection function f : N — E and ahead feature
rﬁelection function fy : N — H, whereN is the

3 Theory

We analyse sentences with a notion we borrow fro t of nodes in th ’ P
Topological Dependency Grammar (TDG, (DuchiepSt ©' NOCES In the corpus, angley € E,h €

and Debusmann, 2001)): For a complete syntactQ,Ne will refer to I as the set oélementsand toH

analysis we stipulate two tree structures, an ID strué> the set ohead classgs Here, we assumfy as

ture describing syntactic functor-argument structurdVen- We speak amanual feature selectiowhen

and an LP structure describing linear precedence Esof is known a priori, as opposed Butomatic

terms of a generalized topological fields theory. Re- z[a:ture_”selfzc'f[l_onNhen Itis tothbe learned. des t
consider Figure 1 for illustration. ID trees are la- or illustration, assume thay; maps nodes to

belled with syntactic functions, and may have Crosg_eature structures containing the POS-tag of the

ing edges. LP trees are labelled with topologicarlmoIe only, whilef maps nodes to feature structures

fields, and arerojective i.e. may not have crossing containing the syntactic relation of the node only.

edges. Nodes maglimbto parent nodes when map-Theh nT\?I\/;‘WIrd"'\I/gllzzlllg\llur? OlkWIlljl tt:en.”bg red(Lched
ping from ID to LP trees. More formally, ifv is the to the [pos: . tober” will be a de-

direct governor ofs on the ID level ando .. . w,, pendent of “wird” in the climb tree, since the edge

arev’s indirect governors, the governor ofon the Eas tg cllrgbt n |9|\r/|d(§rt;[o t?]e gon-crgss;nfg, f‘nd will
LP level needs to be one af w1, . .. w,. e reduced tgrel:MO] by the dependent feature se-

. . ._lection function, while “enihnt” will be reduced to
Given the above, the task of a machine learning _,. . )
. el:0d. One of the precedence pairs of this local
system is to learn rules how to map from ID tree

. ree configuration is therefokgrel:MQJ, [rel:0(C], <
to maximally compact LP trees. The search space ITpos:VAFIN]>. Note that also the occurrence of the

clearly infinite. The learning task is modularized a%ead itself among its dependents produces a prece-
depicted in Figure 2. In the remainder of this sec-

. . dence pair, e.g. the paifrel:HEAD], [rel:MOJ, >
tion, we outline each of the components. . [POS:VAFIN]).

We learn field descriptions from the set of prece-
dence pairs observed in the corpus, with one field
The Climbing Component converts the input cor- description for each head clalss& H observed. Let
pus into a dependency representation, and identifiés, C F be the set of elements occurring in all those
crossing edges. It then produces projective versiompsecedence pairs that share the heae can then
of the input trees (“climb trees”) by raising nodesdefine thefield description of head clas# as a par-
until projectivity is reached. These trees are the irtial order on the dependent elemefits.
put to the field induction component. To compute such a partial order, imagine a graph

3.1 Mathematical Model



mo —= pd

learning has the advantage of being fast, applicable

N N mo —= pd to many linguistic features, and producing symbolic
di e b - rules as output, augmented with probabilities.
(@) “\“:li:__\:‘i—_—_;;.’:/ ) & - Before we outline an algorithm converging to-

wards a near-optimal feature selection function, we

Figure 3: () Possible order graph for head class  introduce the frequency of a precedence pajr) as

“finite verbs”. (b) Corresponding solution graph. & measure of reliability of the observed precedence
relation. We also introduce recedence tableas

a convenient way to depict all precedence pairs ob-
G, whose set of nodes correspondsip. Iff there  gerved under a common head. See Figure 4 for
is a precedence paiei, ez, <, h), let there be an g example of a precedence table. The upper half
edge from the node it- corresponding te; t0 the  f the symmetric matrix is mirrored to the bottom.
one corresponding te,. Let there be an edge in cel counts indicate the count of the precedence pair
the opposite direction iff there is a precedence pakrmw’coh <, h) and(row, col, >, h).

{e1, €2, >, h). We call such a graph arder graph. The feature adaption algorithm can be outlined as
Figure 3(a) shows a possible order graph. follows:

Wh”e a dlreCt_ed’ acyclic graph (DAG) defines a 1. Start with a trivial feature selection function, e.g. one that
partial order on its nodes, the order graph can obvi-  distingushes head and dependent item only.
ously contain cycles. However, it is possible to iden- 2. Pick a suitable precedence péif, ez, R, k) from the
tify the strongly connected componentsgs.c.c.} of precedence table
a graph, and reduce all nodes in the same s.c.c. to3: Invoke a decision tree learner on all precedence pairs,
inal d Mehlh 1999 ¢ l where input parameters are all featurespfe; andh,
single nodes. (Me inorn, ) presents a linear-  4ngpis the output variable. Interpret decision tree leaves
time algorithm for this task. We call the output of as rules, and subclassify with all features ot referred
this algorithm a solution graph. A mapping from o inalirules found. Same far,.
nodes of the solution graph to positive, consecu- 4. While not converged, go to 2.
tive integers can be interpreted adield descrip- Some comments on this algorithm are necessary.
tion. A field is then the set of nodes in the ordetwWhen we pick a precedence pair in step 2, we choose
graph mapped to the same integer. The solutiahe one with maximatonflict ratio g({e1,ez2)) =
graph in Figure 3(b) can be written as an assignmentin(ci.c2) c1 = c({e1,e2,<,h)), ca = c({ey, e2, >

. maz(cy,c2)’
{mo,da} +— 0, {sb, hd, oa,pd} — 1, and consti- 1yy “At step 3, it should be pointed out that the
tutes a field description with two fields. classes found by the decision tree learner need not

be disjoint, but that there is an order on them. The

convergence criterion in step 4, finally, can be cho-
Up to now we have assumed the dependent featuggn, a5 a system parameter.

selection function as fixed. We now add a cOmpo- The model as defined up to now is not able to

nent that is able to adapt the feature selection fungjscover head-secondness in the data, a criterion we
tion in a feedback loop with the field induction com-characterized as essential in the data section of this
ponent, making the approach robust Figure 2. naper. The reason is that elements that can occur ei-

Cycles in the order graph between elemenaid  ther pefore or after the head will always be on the
b can be subclassified as follows. (a) there is no worghme strongly connected component as the head in
order rule between andb, their occurrence varies tpe order graph. It is, in fact, nothing more than the
freely; (b) there is a word order rule between a suljinguistic intuition of head-dependent assymetry that
class ofa and a subclass df, but it cannot be ob- jystifies the head as a central element in a field de-
served due to a wrong feature selection function. scription. We therefore introduce tisglitting rule,

We employ decision tree learning to adapt the deyhich states: If decision tree learning fails on a
pendent feature selection function. Decision trégrecedence pair, one of whose elements is the head
" 1A strongly connected component is a maximal subgraph iglement, sub-classify the non-head element into two
which any node can be reached from any other node classes, “pre-head”, and “post-head”.

3.2 Robustness and Feature Selection
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Fields

[pos:NN] - [ 118 ] 64 [ 58 ] 54 | 43 | 43 I 24 I 22

[0S VAFIN, rel: - root] [0S VAFIN, rel:root] [head:ves] |[rel:SB,split:post-hd] |[rel:0C] |[rel:SE, split:pre-hd] |[rel:PD, split:post-hd] |[dist: 1,rel:MO, split:pre-hd] |[[rel:MO, split:post-hd] |[dist: 1, re

[pos:KON] [head yes] /

[pos:NE] [rel:5B, split: post-hdl] 0/18 /

[pos:VMFIN,rek-rooy)|Lrel OC] 0/20 0/10 /

[pos:other] [rel:SE, split:pre-hd] 2340 / 1040 /

[DOSVVINF] [rel:PD, split:post-hd] [sFRE:] 1/4 / 0j13 !

. [dist.L,rel MO, split pre-hd]  |12/0 10/0 11/0 |0f2 1/0 i

[pos:ADY] [rel MO, split: post—hd] 017 22 I 0/2 5/0 I i

[POS:VVPP] Tdist: 1,rel MO, split post-hal 0,5 /1 4j0 ; / 0/4 i 11

[POSVYFINTEE- 100U |04 < it pra-hal] 5/0 50 / i 4/0 ] /0 /

[POS:VMFIN,rekraot] |irep.c)) 0/4 0/2 o/1 0/2 0/2 /1 0/1 /

[pos:V¥IZL] [dlist: 1, relRC) 041 0/1 /1 / / /1 ! 0/1

[poSVAFINrelroot] ([gist:1,rel Q4] 0/1 1/0 1/0 ! / af1 ! !

[pos:AD]D] [dist:1,rel APP] 0/1 / / 0/1 of1 ! ! !

[pos:VWFIN,rekroot] [[dist:2,relMO) 140 1/0 150 ! ! ! ! !

[pos:ADJA] [rel:0A] 1/0 1/0 i i ! I 10 /
[rel:PD, split: pre-hd] 1/0 170 / ! / / ! 1/0
e D

Display

Figure 4: Precedence Table for finite auxiliary verbs at the root node, calculated from 180 sentences of
Negra, with options +climb, +split, and a manual feature selection strategy for syntactic relation

4 Implementation The example resembles a topological field rep-
resentation very closely, which is partly due to the
The architecture outlined above is fully imple-gpjit rule. Fields 0 and 1 constitute the verhat-
mented in Java. The system accepts any corpus{éld, and contain elements like (climbed) modifiers
the widely-spread Negra export format, and feature{?rel:MO,spIit:pre-h@, like “Am 27. Oktober” in
some 20 Options to influence System behaviour. T%ntence 165 above (Figure 1) The feature struc-
C4.5 decision tree learner (Quinlan, 1998) was usegre rel:0C in field 5 subsumes clausal objects, and
as an external tool for decision tree learning, and igus constitutes the right sentence bracket. While
automatically invoked from within the system. Athe order of subjects and modifiers is predicted to
run over 1000 sentences takes between 20 minutgs free (hence their occurrence in fields 0, 1 and 3),
and 2 hours, while a run on the entire corpus takege order of non-local relative clauses is correctly re-
about a day. The system has an interactive modgricted to a position to the right of the right sentence
with graphical data browsing facilities, and a batchyracket (field 5). Field number 1 deviates from a
mode. standard topological model, but is justified by post-
The most important system options includenominal focus-particlesThe originality of the mu-
climbing, splitting andfeature adaption by deci- sic, though, got lost ,.Negra sentence 75).
sion tree learning can be switched on or off, differ- )
ent manual feature selection strategies can be us&; Evaluation

threshold values can be set that determine in whafhe quality of the learned word order rules cannot
case an edge should be included into the order gragkb girectly evaluated, apart from human judgement
a conflicting precedence pair should be transmittegk |inguistic adequateness. We therefore evaluate the
to the decision tree learner, and what rule reliabilitgystem in two ways. First, we describe convergence
is necessary to add the decision rule to the featufhaviour and system parameters. Second, we eval-

adaption function; and differenbnvergencestrate- jate against the results of (Becker and Frank, 2002).
gies can be used.

Figure 4 presents a screenshot of a precedence fal ~ System Behaviour
ble, calculated from a small corpus to increase legdn this section we describe a set of experiments on
bility. Figure 5 presents the corresponding field de900 sentences, investigating the size of precedence
scription learned from this precedence table. Noddables and field descriptions. We controlled corpus
of the order graph are aligned such that columns caize and system options to observe the convergence
be read as fieldssplit and dist (distance) features behaviour. We tested the following models, with
indicate split and climbed elements respectively. these options:



head:yep 735 rel:MQ] 76

pos:NN,rel:MO,split:pre-hd 258 split:pre-hd 74
Offdist:2,rel:MO][rel Mozspm:prefhd][re\ QAJlrel:PD, split:pre-hd]rel: 5B, split:pre-hdl} rel:SB,spIit:pre-h@i 245 reI:SVH 68
;:{?:;ul-'vreesllro'mm pre-held pos:ADV,rel:MO,split:pre-hfi 202 pos:ADV,rel:MO,split:post-hH 67
3{[dist L,rel: MO, split: post-hd][dist: 1,rel:OAl[rel:M O, split: post-hd]} pos:PREL$ 195 pos:ADJD,rel:MO,split:pre-hid 64
4{[rel.PD,split: post-hd][rel: 5B, split: post-hd]} . . e _
Si[dist; 1, rel. APP][rel: OC]} rel:CH _ 185 rel:SB,split:post ht 60
si[dist 1,rel: RCI[rel:CJT pos:NN,rel:OA,split:pre-hd 153 rel:OC,split:post-hfl 52

pos:PPER,rel:SB,split:pre-hd 141 pos:ADJD,rel:MO,split:post-id 33
pos:NN,rel:MO,split:post-hid 131 pos:PRF,rel:OA,split:post-fd 32
pos:NN,rel:OA,split:post-hid 95 rel:OC,split:pre-hyl 31
pos:PRF,rel:OA,split:pre-Hd 85 pos:ADJA rel:MO,split:pre-hd 30

[rel.5B, split:post-hd]

e -WJJ/-“‘W’\V
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Table 3: most frequent of classes under
[pos:VVFIN,rel:-root by automatic feature adaption

_ threshold values for introducing edges into the order
e graph. The field size for the model with automatic

w@ara || feature selection converges slower. While overall
field size increases slowly, the curves are volatile for

[dist: 1,rel:0A)

4
[dlist 1,rel:APP]

&Lt both models, a behaviour which is due to classes be-

ing collapsed into equivalence classes or established

wete sei precedl as fields, as soon as thresholds are exceeded.
I — To give a closer insight into the classes the de-

) ) o cision tree learner picks as order relevant, Table 3
Figure 5: Field Description in graph format correyigiq the most frequent elements in the precedence
sponding to the data in Figure 4 table of finite full verbs, computed by modlll-

adtlQ The table includes linguistically fine-grained

[ _model  [climb | adapt [ split | tendencies (Kurz, 2000) like subject pronominaliza-
full-adt10 y | auto | y tion ([pos:PPER,rel:SB. While most classes are
manual y manual | vy . . .
noClimbManual| n | manual| y split, there are also cleargut cases in the data,_ forin-
noAdapt y | manual| n stance separable verb affixes, which are consistently

In the diagrams in Figure 6, we plot the numbe@t the end [pos:SVR).
of elements in the head'’s precedence table (left) and i i i
the number of fields in the learned field descriptior"f_"2 Comparison with Topological Corpus
of the head at the y-axis (right) for different modelsFor this experiment, we divided the input corpus into
A snapshot of the system is plotted after each corp®10 training data and 1/10 test data, and used the
subsection of 100 sentences, indicated at the x-axigarned word order rules to annotate the test data
Precedence table size convergence depends géntences with the fields learned during training. We
marily on the model used. While it is trivial for the exported the resulting trees (TDG LP trees), and
noAdaptmodel, we achieve fast convergence withircompared the tree structures to the output of (Becker
900 sentences for the modehnual although non- and Frank, 2002)’s parser, using the standard PAR-
local elements are a possible source of explosio®EVAL measure, and the same tool (EVALB) as
and the feature selection function for climbed eleBecker and Frank to calculate unlabelled recall and
ments matters. Precedence table size convergeribe number of crossing brackets.
for models with automatic feature adaption is more We focus on recall rather than precision or f-
critical, and depends on the treshold values usadlue, because a peculiarity of Becker and Frank’s
(The model displayed stopped calling the decisiodata is their virtually non-existent annotation of
tree learner as soon as precedence pair count was heun-phrase topology. Our system, however pro-
low 10). Figure 6 also shows that some tables comuces fine-grained NP-word order rules — a fea-
verge slower than others, particularly the ones witture we do not want to be penalized for. We use
a high amount of non-local elements (verbs). unlabelled bracket recall rather than labelled, be-
The number of fields computed depends on theause Becker and Frank use linguistically meaning-
size of the underlying precedence tables, and dul topological field labels likevf, mf for vorfeld,
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Figure 6: Precedence Table and Field Description growth on 900 sentences for (a) manual (b) full-adt10

middle field, etc., while the output of our system ison threshold values for automatic feature adaption.
numerical. We ignored brackets of span 1 as well &Since decision tree learning is a greedy strategy that
brackets that spanned the entire sentences. produces only near-optimal results, further experi-
Figure 7(a) shows that the system produces stabients with threshold values and significance testing
results on little data already. We get values of up tof the discovered classes may improve the results.
73.1% unlabelled recall, and 95.0% sentences with T4 results showed that the splitting rule is a nec-

2 or less crossing brackets. This behaviour is similafgg 4y adaption to the system in order to get sensible
for all models with splitting. The more fine grained g its. \While 73.1% bracket recall leaves room for
analysis which automatic feature adaption pro"idei%provements, the majority of mismatching cases
does not improve the recall on the data with whichyotveen the learned rules and the data by Becker
we compare. and Frank we were using is due to linguistically dif-

While we showed that bracket measures are ifigrent, but both plausible analysis. Our system con-
dependent of corpus size already for some hundreghiently assumes an own field for verbal infinitive
sentences, the measures depend strongly on the Rasrkers, and attaches relative clauses and arguments
rameters of the model. Figure 7 shows that the splisf non-finite verb forms low rather than high, con-
ting rule is the most important parameter that de'[ef‘rary to the analysis of Becker and Frank. Also the
mines recall figures. analyses of conjunctions differ, but are both con-
sistent. On the other side, our rules are more fine-
grained, which is an advantage of our system that is
The results show that the system produces fingot reflected in the bracket measures. It should also
grained results on little data already. Precedend®e stressed that our approach is unsupervised, and
table and field size converge quickly for manuathat supervised approaches tend to outperform the
feature adaption, while convergence is dependefdrmer.

5.3 Discussion
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Figure 7: Influence of (a) Corpus Size (6000 training, 600 test) and (b) model on bracket measures

6 Conclusion Michael Gamon, Eric Ringger, Zhu Hang, Robert Moore, and
o _ Simon Corston-Oliver. 2002. Extraposition: A case study in

We gave empirical evidence that word order rules German sentence realization. Pnoc. COLING'02

are a necessary component on the way towards alan Hajt. 1998. Building a syntactically annotated corpus:

tomatic acquisition of syntactic knowledge. We The Prague Dependency Treebank. In Evadta, editor,
. . . __Issues of Valency and Meanimgages 106—132. Karolinum,
then presented an unsupervised machine learningprague, czech Republic.

approach that robustly learns symbolic word Ordeﬁlman Hohle. 1986. Der Begriff Mittelfeld: Anmerkun-
rules from treebanks, showing that topological fields gen iiber die Theorie der topologischen Felder. In Al-
are a useful means to describe word order regulari- recht Scbhne, ‘editor, Germanisten-Kongress g&ingen

. . . 1985 pages 329-340.ubingen: Niemeyer.
ties. The approach makes little assumptions about 3 pag 9 Y

l istic struct trasti to (Villavi Geert-Jan Kruijff. 2001. A categorial-modal logical archi-
inguistic structures, contrasting e.g. to (Villavicen- tecture of informativity Ph.D. thesis, Charles University,

cio, 2000)'s system, and is therefore more easily ap- Prague.

plicable to a wide range of typologically different paniela Kurz. 2000. Wortstellungsiferenzen im Deutschen.
languages. The approach is also able to learn a set ofMaster's thesis, Saarland University.
word-order relevant linguistic features. This show#fitchell Marcus et al. 1995. The Ultimate Penn Treebank

. o ; Bible. Technical Report CD, Linguistic Data Consortium
that decision tree learning is not only applicable to (UPenn). Technical Report,

a restricted word _order phe_nomenon (Gamo_n et al{urt Mehlhorn. 1999, Graph  Algo-
2002), but can guide an entire machine learning sys-rithms  and  NP-Completeness. WWW.mpi-
tem. We hope to improve evaluation figures in future sb.mpg.de/"mehlhorn/DatAlgbooks.html.

research by including different climbing strategiesielleke Oostdijk. 2000. The Spoken Dutch Corpus. Overview

and adapting the convergence behaviour of the deci- 2"d first evaluation. I®roceedings LREC 2000

sion tree learner. John Ross Quinlan. 19984.5: Programs for Machine Learn-
ing. Kaufmann.
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