
Evaluation of the Stochastic Extension of a

Constraint-Based Dependency Parser

Renjini Narendranath

Bachelor’s Thesis

Dept. of Computational Linguistics

Universität des Saarlandes, Germany

October, 2004

Statement Under Oath

I hereby declare that the work presented in this thesis was completely done by me and that I have

not used any sources of help other than those explicitly mentioned.

Renjini Narendranath October 2, 2004

Saarbrücken

Abstract

In this thesis we experimentally evaluate the performance of a Stochastic extension of the Ex-

tensible Dependency Grammar (SXDG) solver, a constrained-based dependency parser. We test

the performance of the parser on sentences and grammars automatically acquired from the Penn

Treebank and evaluate how the stochastic guidance helps the parser to prune the search tree. Our

experimental study reveals that the stochastically enhanced parser (SXDG) is able to prune the

search tree considerably, but that the current setup of SXDG still has potential for improvements.

We also give directions for future improvements of the current SXDG parser.

Acknowledgments

I am grateful to Prof. Dr. Manfred Pinkal for giving me an opportunity to do my Bachelor’s

thesis under his supervision. I am heavily indebted to Marco Kuhlmann for guiding me through-

out the past three months of my thesis work. I once again thank him for his many lessons, for

motivating me to take up this exciting project and for carefully going through my thesis and giv-

ing me precious suggestions. I sincerely thank Prof. Dr. Gert Smolka for allowing me to use the

excellent resources of the Programming Systems Lab. Finally, I thank my parents, my sister, all

my friends and relatives, especially my husband Naveen, for all the love and emotional support.

Contents

1. Introduction . 1

2. XDG and SXDG . 5

2.1 Topological Dependency Grammar (TDG) . 5

2.2 Extensible Dependency Grammar (XDG) . 6

2.3 Statistical SXDG Parser . 8

2.4 Architecture of the SXDG Parser . 8

3. Experimental Evaluation of SXDG Parser . 10

3.1 Execution Setup of SXDG Parser . 10

3.2 Experimental Setup . 12

3.3 Experimental Results . 13

4. Discussions . 20

4.1 Interpreting the Results . 20

4.2 Directions for Future Improvements . 24

4.3 Conclusion . 25

Bibliography . 26

Appendix A: Additional Plots . 27

Chapter 1

Introduction

Extensible Dependency Grammar (XDG) [DDK+04a, DDK04b] is a formal framework for de-

pendency grammar which supports the characterization of linguistic information along multiple

dimensions of description. In contrast to traditional dependency grammars, XDG is not restricted

to specifying grammatical functions. It can also explicitly account for word-order (linear prece-

dence), predicate argument structure, scope structure (for quantifier scope) etc. Parsing with

XDG amounts to the selection of a lexicon entry for each word and the configuration of these

lexicon entries into a graph or tree, respecting the valencies specified by the lexicon entries, as

well as global well-formedness conditions. Using this multi-dimensional paradigm of XDG, we

can analyze many complex phenomena like verb extraposition, scrambling etc., in free word-

order languages.

The XDG extends the Topological Dependency Grammar (TDG) [DD01] by formulating a

novel syntax-semantics interface that maps between the syntax and semantics as a relation and

not a function. The current parser implementation for XDG is based on constraint programming

[KN02] and supports concurrent flow of information between two levels of linguistic description.

This parser has two basic drawbacks. The first drawback is that it performs an exhaustive search

in the complete solution space. This is computationally infeasible as the XDG parsing is an NP-

complete problem [DDK+04a]. The second drawback is that currently, the XDG parser is used

for hand-tailored grammars only. However, for a broader coverage of sentences, we need large

grammars acquired from corpora. Handcoding such large grammars is practically infeasible.

To circumvent these drawbacks, a stochastic extension of the XDG parser (the SXDG parser)

with the additional capability to automatically acquire a grammar from a corpus was proposed

in [DKK03] . The basic idea is to use a probability function, based on the word frequency

information learned from a training corpus, and to evaluate choices in search, according to this

function. This information is then used by the constraint solver to guide through the search space.

In this thesis, we experimentally evaluate the performance of this proposed extension of XDG

parser. We run a number of experiments using sentences and grammars acquired from the Penn

Treebank and evaluate different performance parameters of the parser like the parse time, the

number of wrong branchings it took, the number of successful branchings etc. Our experimental

study reveals that the stochastically enhanced parser is able to prune the search tree considerably,

but that the current setup of SXDG still has potential for improvements.

Chapter 1. Introduction 2

Thesis Outline. Further down in this chapter, we explain some of the basic terminologies used

in this thesis. In Chapter 2, we focus on XDG and SXDG and discuss the drawbacks of the current

XDG implementation in more detail. We give the architectural overview and the execution setup

of the SXDG parser implementation in Chapter 3. Here, we also describe the details of the

experiments that we conducted and also provide sample charts of the performance parameters

under consideration. Finally, in Chapter 4, we discuss our experimental findings and also provide

suggestions for future improvements. Appendix A contains some additional charts that are not

presented inside the main chapters.

Basic Terminologies

Dependency Grammar

This thesis is about the evaluation of a processing framework (the SXDG) of dependency gram-

mar. In contrast with phrase structure grammar, where grammatical relations between words

(subject, object etc.) emerge from an intermediate constituent structure, in dependency grammar,

these relations are expressed directly on the words. Dependency grammar describes asymmetri-

cal dependency relation between words. Figure 1.1 illustrates an example dependency tree. Here,

acquired is head of the whole sentence and Simons, Georgia and fast are the dependents

of the verb as Subject, Object, Adverbial Object respectively.

Simons acquired Georgia

Subj Obj

(Dependent) (Dependent)(Head)

 Noun Noun Finite Verb
(Dependent)

 fast

Adv

 Adverb

Fig. 1.1: A dependency analysis

Constraint Programming

The basic constraint programming paradigm is to combine existing search methods like back-

tracking or branch-and-bound with constraint propagation techniques (methods to prune the

search space). As the application areas of constraint programming grew in the course of time,

new types of constraints were identified and new propagation algorithms for them were devel-

oped. For an excellent introduction to the field of constraint programming, we refer to the book

by Apt [Apt03].

To define the constraint satisfaction problem formally, we need the following basic defini-

tions. A variable X is an object that is associated with a set Dom(X), called the domain of X .

The domain consists of all values that can be assigned to X . Suppose we have a finite sequence

Chapter 1. Introduction 3

of variables X = [X1, . . . , Xn] (with k ≥ 1). (The order of the variables is important and we

allow a variable to appear more than once.) A constraint C on X is a tuple (X ,R) such that

R ⊆ Dom(X1) × . . . × Dom(Xk). We call X the variable sequence of C and denote it by

V ars(C), and R is called the relation of C and is denote by Rel(C). We say that the tuple

(d1, . . . , dk) satisfies C if (d1, . . . , dk) ∈ Rel(C).

Constraint Satisfaction Problem (CSP). A constraint satisfaction problem (CSP) P is a tu-

ple (V, C) such that V = {X1, . . . , Xn} is a finite set of variables, C is a finite set of con-

straints and each constraint C in C is a constraint on a sequence of variables in V . We write

P as 〈X1 ∈ Dom(X1), . . . , Xn ∈ Dom(Xn); C〉. A variable assignment for P is a mapping

α : V → ∪n
i=1Dom(Xi) such that α(Xi) ∈ Dom(Xi) for i = 1, . . . , n. For a sequence

X = [Xi1 , . . . , Xik
] of variables of V , we define α[X] := (α(Xi1 , . . . , α(Xik

)). We say that

α satisfies a constraint C in C if α[V ars(C)] ∈ Rel(C). α is a solution of P if it satisfies all

constraints in C. We write α as [X1 = α(X1), . . . , Xn = α(Xn)]. P is called consistent if it has

a solution and inconsistent otherwise. The search space of P is defined as the set of all variable

assignments for P and is denoted by S(P).

In many situations, a constraint is not specified as a tuple ((X),R) but rather in a sym-

bolic way. For example, “X < Y ” denotes the constraint ([X, Y],R) with R = {(x, y) | x ∈

Dom(X) ∧ y ∈ Dom(Y) ∧ x < y}. Thus the interpretation of a symbolic constraint depends

on the domains of its variables and on the semantics associated with the constraint.

An example. Consider the following constraint satisfaction problem. We consider the famous

puzzle

S E N D

+ M O R E

M O N E Y

The task is to replace each letter by a different digit such that the summation above becomes

correct. In fact, the puzzle has a unique solution as shown below

9 5 6 7

+ 1 0 8 5

1 0 6 5 2

This puzzle can be modeled as a CSP as follows. Let S, E, N, D, M, O, R and Y denote

the corresponding variables. The domain of S and M are [1, . . . , 9] and that of the remaining

variables is [0, . . . , 9]. The puzzle is formulated as:

1000 · S + 100 · E + 10 · N + D

+ 1000 · M + 100 · O + 10 · R + E

= 10000 · M + 1000 · O + 100 · N + 10 · E + Y

Chapter 1. Introduction 4

This condition can be modeled by the linear equality constraint CLE where V ars(CLE) =

[S, E, N, D, M, O, R, Y] and Rel(CLE) consists of all tuples (s, e, n, d, m, o, r, y) ∈ Dom(S)×

. . . × Dom(Y) that satisfy

9000 · m + 900 · o + 90 · n + y − 1000 · s − 91 · e − 10 · r − d = 0

We still have to express the requirement that the 8 digits are pair-wise different. We could

do this with an inequality constraint of the form “A 6= B” for each pair of variables, this would

yield total of 28 inequality constraint. But we can also use a single constraint which expresses all

these constraints at once:

CA = Alldiff(S, E, N, D, M, O, R, Y)

We have V ars(CA) = V ars(CLE), and Rel(CA) consists of all the tuples in Dom(S) × . . . ×

Dom(Y) where the components are pairwise different.

Two basic operations performed by a constraint solver are constraint propagation and con-

straint distribution. The constraint propagation is the process of narrowing the value domain of a

variable. When no further propagation is possible then a distribution or branching is used. That

is, a constraint applied to one branch of the search tree is excluded from the set of constraints ap-

plied to the other branch. The constraint chosen for distribution should be such that it facilitates

further constraint propagation.

Statistical Natural Language Processing

Due to the inherent difficulty of hand-crafting large sets of rules for processing sentences, re-

searchers creating practical systems that manipulate human languages are turning more fre-

quently to statistical or corpus-based approaches. In statistical natural language processing, the

probabilistic informations gained from a corpus is used for decision making while solving the

basic disambiguation problems related to word sense, word category, syntactic structure and se-

mantic scope. Increasingly available corpora of natural languages makes such an approach more

feasible. Refer [MS01] for instance for a comprehensive treatment of this subject.

Chapter 2

XDG and SXDG

In this chapter, we describe in more detail the XDG grammar formalism and its forerunner Topo-

logical Dependency Grammar (TDG). We further discuss about the XDG parser, its drawbacks

and the motivation for the SXDG parser. We also present here, the architecture of SXDG parser

and give a short description about its modules.

2.1 Topological Dependency Grammar (TDG)

Dependency grammars help in writing simple and elegant grammars for free word-order lan-

guages. This is particularly interesting where such languages exhibit complex phenomena of

discontinuous constructions, like verb extra position, WH positioning etc. Discontinuity is a phe-

nomenon which causes the constituents of a sentence to scatter in the sentence. This is typical

in free word-order languages. The issue of discontinuity is reflected in crossing edges in the

dependency trees. For an extensive treatment of discontinuity, we refer the reader to [DD01]. In

German (which is a free word-order language) for example, the phenomena of scrambling and

extraposition lead to discontinuous VPs (i.e, verb at the end of sentence and its subject some-

where embedded inside the sentence). Phrase Structure Grammar (PSG) handles the issue of

crossing edges with the help of traces; and separate rules for each word-order configuration. In

Head-Driven Phrase Structure Grammar (HPSG) they are handled with slashed features. Both

remedies obscure the dependency structure inherent in the phrase structure analysis.

Topological Dependency Grammar (TDG), can tackle the problem of discontinuity with the

help of two orthogonal, yet mutually constraining, structures [DD01]. One of these structure

explains the dimension of Immediate Dominance (ID) – this dimension captures the purely syn-

tactic functions of words. The second structure captures the dimension of Linear precedence

(LP) – this dimension captures the topological structure of which word precedes which other in a

sentence. Both dimensions are related by the principle of climbing where, crossing edges in the

ID–tree are allowed to “climb up” and land in a suitable field where in the LP tree they do not

cross any edges. The edge labels of the LP–tree are totally ordered in terms of linear precedence.

In German, in addition to scrambling and partial extraposition, TDG can handle other linguistic

phenomena like the auxiliary flip construction, intermediate placement construction etc. These

can be adequately represented with the LP and ID dimension trees.

Chapter 2. XDG and SXDG 6

Formally, the TDG framework consists of a set of lexicalized constraints and principles which

govern the “climbing” conditions. Each word in a sentence corresponds to a node. Each node in

the ID– and LP–trees has a lexical entry. Nodes are connected with labeled edges. Each lexical

entry specifies which valid edge can enter the node and what edges can leave it. The root for

instance allows no incoming edges but only allows edges to go out of it.

2.2 Extensible Dependency Grammar (XDG)

The Extensible Dependency Grammar (XDG) framework extends TDG by providing (in addi-

tion to the LP– and ID–dimension) multiple dimensions/descriptions like Deep Syntax (DS),

Predicate-Argument Structure (PA) and Scope structure (SC) [DDK+04a]. Figure 2.1 describes

the XDG analysis of the Sentence “ What does John eat” along the ID– and LP–dimension.

The table in the figure depicts the possible incoming (inID, inLP) and outgoing (outID, outLP)

edges given a lexical entry . The edges on the ID–dimension corresponds to the syntactic func-

tions (like subject, object, verb base form (vbse)). Here for example, the lexical entry John is

the subject of the head does. The edges on the LP–dimension stand for the topological fields

namely, the field for a subject (sf), verb complement field (vcf) and an optional topicalised mate-

rial (tf).

!"#$

%#!&

!"#

!"#$ %&'()&"* '#$

!'

%('

!"#$ %&'()&"* '#$

$%

word inID outID inLP outLP

What {obj?} {} {tf?} {}

does {} {subj, vbse} {} {tf?, sf, vcf}
John {subj, obj?} {} {sf?, of?} {}

eat {vbse?} {obj} {vcf?} {}

Fig. 2.1: XDG analysis of “ What does John eat”

An XDG analysis consists of separate graphs for different dimensions, but the same set

of nodes. They are constrained by two kinds of parameters: lexicon and principles. Quoting

[DDK+04a] “The lexicon of an XDG grammar describes properties local to individual nodes,

such as valency. The grammar’s principles express constraints global to the graph as a whole

such as treeness. Well-formed analyses are graphs that satisfy all constraints.” Therefore, the

graphs in figure 2.1 are well formed according to XDG, because they satisfy all the constraints

imposed by the grammar (in the table).

As mentioned before, XDG allows graphs along multiple dimensions. The parsing problem

of XDG can be stated as a constraint satisfaction problem. The constraint-solver for XDG is

Chapter 2. XDG and SXDG 7

implemented using Mozart/Oz programming system. The solver searches for a solution based

on the constraints imposed by the grammar on each node. The parser allows the flow of partial

information from one dimension to another, where it can use additional information from one

dimension to reduce the ambiguity on the other dimension.

Fig. 2.2: The different dimension graphs

Figure 2.2 illustrates the different dimension graphs produced by the XDG parser while pars-

ing a German sentence:

“ Einen Roman verspricht Maria zu schreiben”

(A novel promised Maria to write.)

Maria promised to write a novel.

In Figure 2.2, the apart from the ID and LP-dimension, we can see the Deep Structure (DS)

Chapter 2. XDG and SXDG 8

dimension graph. This graph shows the deep syntactic structure, which is a reminiscent of Chom-

skian deep-structure (D–structure) as in Government and Binding theory (G & B). In G & B, the

body of grammar is divided into two blocks: D–structure (the underlying syntactic structure of

the lexical entries) and S-Structure (Surface level representation of the sentence). Here, for ex-

ample, Maria is the deep Subject (subjd) of the head verspricht (meaning “promised”).

Figure 2.2 further depicts the Predicate Argument (PA) Dimension, which specifies the linguistic

phenomenon of predicates and its arguments. Here, schreiben (meaning “write”) has two

arguments. The argument-1 is Maria and the argument-2 is einen roman (meaning “a

novel”). The final graph is that of Scope (SC) dimension, which specifies the scope and restric-

tion of lexical entries imposed by Lambda bindings when the sentence is represented in Lambda

structures [Deb03].

2.3 Statistical SXDG Parser

Up to now, was only used to parse sentences with handwritten grammars of different sizes, the

biggest one being that for German. Handcoding the grammar is a tedious and expensive task.

There are corpora, for example the Penn Treebank (PTB), which contains sentences from news-

paper texts which are already annotated by hand. The PTB contains the phrase structure trees of

sentences along with their Parts-of-Speech (PoS) tags. Treebanks are valuable instruments for

linguistic studies. This is a motivation for using the informations from such corpora and extract-

ing grammars for the XDG parser automatically, so that it can handle large-scale grammar and

parse sentences, possibly also sentences with words unseen by the grammar. Once the grammar

is richer with more words from the corpus, this would help the parser in handling a wider variety

of sentences. Because of the largeness of such a grammar, the need for a statistical guidance

arises, which can guide the parser without having to search the whole solution space. Because of

the heavily lexicalized nature of the XDG parser, it cannot handle the sentences whose words are

not specified in the lexicon. In the event of the parser not having seen a particular combination

of words, it would make the parser robust if there was some kind of “Oracle” which could guide

the parser with stochastic informations about solutions in order to perform search. The statistical

Extensible Dependency Grammar (SXDG) parser is an extension of the XDG parser that can use

a probability function to calculate costs and set choices in search for guiding the constraint solver

into the branches with the lowest cost. In Chapter 2.4, we describe the architecture of the SXDG

parser, whose performance evaluation is the central theme of this thesis.

2.4 Architecture of the SXDG Parser

In this section, we give an overview of the architecture of the SXDG parser and its modules.

Figure 2.4 depicts the current architecture of the SXDG parser. The SXDG parser is an

extension of the XDG parser using a probability model for the ID– and LP–Dimension and a

Chapter 2. XDG and SXDG 9

IoZeF

Grammar
 Server

Parser
Module

Oracle

Input
Sentences

Solutions,
Statistics

Sentence

Grammar

Next node in
the search tree

Query

Fig. 2.3: The architecture of SXDG parser

cost estimation function for the partial trees in the search tree. The cost function computes the

probabilities of the best next node to continue search, until the best (most probable) complete

parse tree of a sentence is reached. The SXDG parser comprises of the following modules; (for

more details, refer [DKK03, DDK+04a].

Parser Module. This is the main XDG parser module which parses the input sentence based on

the XDG grammar and searches for solutions (complete parses).

The Oracle. This module is responsible for guiding the search using a probability model for

dependency trees. That is, it follows an A* search control regime for the parsing algorithm

which uses an evaluation function to estimate the costs based on the probability informations for

the best next node to continue search in. It maintains an agenda (priority queue) from which it

pops the search node with the lowest cost. Such usage of stochastic information is an admissible

heuristic for A* search and it helps to infer and cut–short large branches of the search trees, thus

reducing the size of the search space.

Grammar Server. For each sentence, the grammar server, from its input data, provides a gram-

mar that contains possible lexical entries for the words in that sentence. This module is also

responsible for converting the phrase structures from the Penn Treebank format to XDG format.

IOzSeF Search Module. This module provides a generic interface to search in the constraint

programming systems. IOzSeF provides an explorer which gives a visualization of the search

tree where we can see how the search has proceed. The IOzSeF queries the Oracle and gives

back the solutions to the parser.

Chapter 3

Experimental Evaluation of SXDG Parser

In this chapter, we discuss the execution setup of SXDG parser, employed in our experiments,

where we show how the different modules are distributed across machines. We give a short

description of the input and output format followed by the parser and the currently inbuilt search

strategies. Further in this chapter, we describe the results of the experiments conducted in order to

evaluate the performance of the SXDG parser. By these experiments, we test the hypothesis : A

statistical guidance would enable the constraint solver of the XDG parser to output the best parse

result with improved performance. More precisely, we evaluate the following four performance

parameters of SXDG parser.

1. Time taken for parsing.

2. Maximum size of the agenda.

3. Total number of solutions encountered while traversing the search space.

4. Total number of failures, which is the number of times the traversal met with an inconsis-

tency with the grammar.

3.1 Execution Setup of SXDG Parser

In order to increase the efficiency of parsing process and to make it less vulnerable to differences

in a single machine’s workload, the different components involved in the parsing were distributed

among multiple machines as shown in Figure 3.1. The SXDG parser was run on one machine

and, the Oracle and the Grammar server were run on another machine. The processes residing

in different machines communicated with each other via sockets. Both Oracle and the Grammar

server ran in a listening mode, i.e., they listen for incoming requests on predefined sockets. Upon

receiving a request from SXDG parser, they serve the request and communicate back the results.

Input to SXDG parser

The input data to SXDG parser is a set of sentences extracted from different sections of the Penn

Treebank. The input sentences should follow a predefined format, which is different from the

Chapter 3. Experimental Evaluation of SXDG Parser 11

��������������������
��
��
��

��
��
��
��

���������
���������
���������
���������

���������
���������
���������
���������

Oracle

Grammar
 Server

Penn
Treebank

Machine 2

Machine 1

communication
Parser

Module
socket−based

Probability
Model

Fig. 3.1: The different components of SXDG parser. The SXDG main parser module in one machine and,
the Oracle and the Grammar server run on another machine.

sentence format followed in Penn Treebank. For example, consider the sentence: Scientists

felt differently. In the Penn Treebank, this sentence is annotated in the following way.

((S

(NP-SBJ (NNS Scientists))

(VP (VBD felt)

(ADVP-MNR (RB differently))) (. .)))

The same sentence is input to SXDG parser is as follows.

Scientists NNS felt VBD differently RB .

Since the phrasal constituents are not needed for the dependency analysis, only the words along

with their POS-tags (Parts Of Speech tags) were fed to SXDG parser.

The SXDG Output

For each sentence, the SXDG parser can output its dependency analysis either as an XML record

or as a graphical tree representation with separate graph for each dimension (see Figure 2.2 for

a sample output). The XML output contains only the dependency analysis for the ID-dimension.

For example, Figure 3.2 shows the XML output and the corresponding graphical representation

(of the ID-dimension) for the sentence “Scientists felt differently”.

In addition to the dependency analysis, SXDG parser also outputs for each sentence, various

statistics about the parsing process like the time taken for parsing, maximum size of the agenda,

the total number of solutions encountered while traversing the search space and the number of

times the traversal met with an inconsistency with the grammar.

Chapter 3. Experimental Evaluation of SXDG Parser 12

<solution>

<node id=”1”>
<mother label=”pred” id=”2”/>
<entry id=”Scientists NNS 7”/>

</node>
<node id=”2”>

<entry id=”felt VBD 136”/>
</node>
<node id=”3”>

<mother label=”mod” id=”2”/>
<entry id=”differently RB 13”/>

</node>
</solution>

Scientists felt differently
1 2 3

ModPred

Fig. 3.2: The XML output by SXDG parser and its corresponding graphical representation.

Different Search Strategies of SXDG Parser

The SXDG parser can be configured to run in any one of the following three search modes.

1. Oracle Based. In this mode, SXDG parser consults the Oracle to guide its traversal in the

search space. The traversal stops when the best solution is encountered.

2. Depth First. In this mode, SXDG parser explores the search tree using depth-first in-order

traversal. Here the traversal stops when the first solution is reached (this may not be the

best solution).

3. All Solutions. SXDG parser enumerates all solutions by traversing the complete search

space.

3.2 Experimental Setup

An experiment comprise of inputting two sets of sentences to SXDG parser, which are a) the

“training data” and b) the “test data”. The “training data” is used by the parser to extract gram-

mar and also to prepare the probability counts. Using the grammar and probability counts thus

obtained, the parser parses the “test data” and output its dependency analysis. Refer Section 3.1

for details on the input and output specifications of SXDG parser.

For all our experiments, we used sentences extracted from the Wall Street Journal (WSJ)

sections of the Penn Treebank as “test data” and “training data”. More specifically, we used

sentences of length 3–7 from sections 2–22 of the WSJ. We classified the sections 2-10 of WSJ

as the the “training data” and always used it to prepare the Oracle and the Grammar server before

running the experiments. Hence in such a setup, sections 2–10 of WSJ are “known” and sections

11–22 are “unknown” (unknown to the probability model and grammar) to the parser. Thus we

Chapter 3. Experimental Evaluation of SXDG Parser 13

distinguish the performance of the parser on the sections 11-22 of WSJ from that on sections

2-10 of WSJ.

The machine where SXDG parser was run, had the following configuration: Linux O.S with

2.4.22-1.2140 kernel, 700 MHz Athelon processor and 384 MB RAM. The machine where the

Oracle and Grammar server were run, had the following configuration: Linux O.S with 2.4.20-

27.9smp kernel, 1 GB RAM, Pentium III dual processor, 1 GHz each.

The amount of memory that the Oracle can use could be controlled externally. In all our

experiments, the maximum memory allowed for the Oracle was 256 MB. We also specified a

timeout of 6 minutes for SXDG parser to parse a sentence. This is to ensure that we are able to

run our experiments on a large number of sentences in a reasonable amount of time. If it takes

more than 6 minutes, the sentence parsing will be aborted and SXDG parser moves on to the next

sentence.

3.3 Experimental Results

Our experimental results speak about the four performance parameters that we discussed in the

beginning of this chapter. We tabulate the performance statistics in the form of following two

kinds of graphs.

a) Plot of the average performance averaged over the candidate sentences.

b) Plot of the percentage of candidate sentences where the parser timed out (SXDG parser took

more than 6 minutes to prase them).

We generated the above statistics for different candidate collections chosen carefully, whose

details are discussed next.

Based on the candidate sentences and also based on the settings of SXDG parser that we

specified, namely the search strategy and the LP-dimension enable/disable status, the experiments

that we conducted can be classified into seven different categories. We denote them as categories

A to G and we discuss them below.

We recall that in all the experiments, the input sentences were drawn from the Wall Street

Journal(WSJ), sections 2–22, of the Penn Treebank. Moreover, in all the experiments where

SXDG parser was configured to use the Oracle strategy, the Oracle was running on the probability

information retrieved from the WSJ sections 2–10 of the Penn Treebank.

Category A) Input sections 2–10, lengths 3–7, with Oracle, and LP-dimension ON.

In this round of experiments, SXDG parser was configured to parse the sentences with the

LP-dimension switched on. Sentences of lengths 3–7 from section 2–10 of WSJ were issued to

SXDG. The search strategy was Oracle based. The figure 3.3 shows the plot of the performance

parameters, time taken and the total no. of failures. We refer the reader to the Appendix for the

Chapter 3. Experimental Evaluation of SXDG Parser 14

plots on the remaining parameters. The figure shows the average values, averaged over all sen-

tences of a fixed length. The upper and the lower envelops shown in the plots are the boundaries

with respect to the standard deviation values.

 0

 20

 40

 60

 80

 100

 120

 140

 3 4 5 6 7

tim
e

(s
ec

)

Length

Average Time performance of oracle on lengths 3 - 7

"av__2-10__oracle.time_dat"
"av_upper__2-10__oracle.time_dat"
"av_lower__2-10__oracle.time_dat"

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 3 4 5 6 7

no
. o

f f
ai

lu
re

s
length

Performance in terms of average no. of failures of oracle on lengths 3 - 7

"av__2-10__oracle.failures_dat"
"av_upper__2-10__oracle.failures_dat"
"av_lower__2-10__oracle.failures_dat"

Fig. 3.3: Category A, plot of the time taken and no. of failures.

The sentences for which SXDG parser timed out were omitted from the average value calcu-

lation. For such sentences, we generate a separate plot, refer Figure 3.4, showing the percentage

of such sentences for each length.

 0

 20

 40

 60

 80

 100

 3 4 5 6 7

P
er

ce
nt

ag
e

length

Percentage of Timeouts on lengths 3 - 7

"timeout_dat"

Fig. 3.4: The percentage of sentences timed out.

Remarks about the plots. In all the experiments, the average plots (plot of average values) are

generated after omitting those sentences for which the Oracle timed out. The timed out sentences

are separately captured in a separate time out plot. In the average plots, the values are obtained

by averaging over all sentences of fixed length. In addition to the average values, we plot the

Chapter 3. Experimental Evaluation of SXDG Parser 15

upper and the lower envelops which denotes the boundaries with respect to the standard deviation

values. For all the plots that are not shown in this chapter, we refer the reader to the Appendix.

Note that in category A, the input sentences are already known to the Oracle and the Grammar

server. To study the performance of SXDG parser on sentences unseen by the grammar, we issued

sentences from sections 11-22 of the WSJ, which is the next category.

Category B) Input sections 11–22, with Oracle and LP-dimension ON.

Here also the LP-dimension was switched on. Sentences of lengths 3–7 from section 11–22

of WSJ were issued to SXDG parser. The search strategy was Oracle based. The figure 3.5 shows

the plot of the performance parameters, time taken and the total no. of failures.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 3 4 5 6 7

tim
e

(s
ec

)

Length

Average Time performance of oracle on lengths 3 - 7

"av__11-22__oracle.time_dat"
"av_upper__11-22__oracle.time_dat"
"av_lower__11-22__oracle.time_dat"

 0

 50

 100

 150

 200

 3 4 5 6 7

no
. o

f f
ai

lu
re

s

length

Performance in terms of average no. of failures of oracle on lengths 3 - 7

"av__11-22__oracle.failures_dat"
"av_upper__11-22__oracle.failures_dat"
"av_lower__11-22__oracle.failures_dat"

Fig. 3.5: Category B, Plot of the time taken and no. of failures.

Our next objective was to investigate the effect of LP-dimension on/off status on the per-

formance of SXDG parser. To this end, we repeated the above two sets of experiments with

LP-dimension switched off; they are categories C and D.

Category C) Input sections 2–10, with Oracle and LP-dimension OFF.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 3 4 5 6 7

tim
e

(s
ec

)

length

Average Time performance of oracle on lengths 3 - 7

"av__2-10__oracle.time_dat"
"av_upper__2-10__oracle.time_dat"
"av_lower__2-10__oracle.time_dat"

 0

 10

 20

 30

 40

 50

 60

 3 4 5 6 7

no
. o

f f
ai

lu
re

s

length

Performance in terms of average no. of failures of oracle on lengths 3 - 7

"av__2-10__oracle.failures_dat"
"av_upper__2-10__oracle.failures_dat"
"av_lower__2-10__oracle.failures_dat"

Fig. 3.6: Category C, Plot of the time taken and no. of failures.

Chapter 3. Experimental Evaluation of SXDG Parser 16

The SXDG parser was configured to parse the sentences with The LP-dimension switched

off. By this, we wanted to investigate whether this change has any influence on the any of the

performance parameters. Sentences of lengths 3–7 from section 2-10 of WSJ were issued. The

search strategy was Oracle based. The figure 3.6 shows the plot of the performance parameters,

time taken and the total no. of failures.

Category D) Input sections 11–22, with Oracle and LP-dimension OFF.

Sentences of lengths 3–7 from section 11-22 of WSJ were issued to the parser. The search

strategy was Oracle based. The figure 3.7 shows the plot of the performance parameters, time

taken and the total no. of failures.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 3 4 5 6 7

tim
e

(s
ec

)

Length

Average Time performance of oracle on lengths 3 - 7

"av__11-22__oracle.time_dat"
"av_upper__11-22__oracle.time_dat"
"av_lower__11-22__oracle.time_dat"

 0

 50

 100

 150

 200

 3 4 5 6 7

no
. o

f f
ai

lu
re

s

length

Performance in terms of average no. of failures of oracle on lengths 3 - 7

"av__11-22__oracle.failures_dat"
"av_upper__11-22__oracle.failures_dat"
"av_lower__11-22__oracle.failures_dat"

Fig. 3.7: Category D, Plot of the time taken and no. of failures.

As a next step, for a comparison against the depth-first search strategy we performed the

following set of experiments.

Category E) Input sections 2–10, with Depth-first and LP-dimension OFF.

Here also SXDG parser was configured to parse the sentences with the LP-dimension switched

off. Sentences of lengths 3–7 from section 11-22 of WSJ were issued. The main difference from

those above is that the search strategy was depth-first based. The depth-first based search gives

the first solution as it traverses the search space in the depth-first fashion. The depth-first strat-

egy never uses the informations from Oracle during search. The figure 3.8 shows the plot of the

performance parameters, time taken and the total no. of failures.

One of the questions that we were interested in is, “how much portion of the search tree

is cut out by the Oracle based search?”. To answer this question, it makes sense to compare

the performance of Oracle based search to the all solutions based search strategy. For this we

conducted the following two sets of experiments.

Category F) Input sections 2–10, with All solutions mode and LP-dimension ON.

Sentences of lengths 3–7 from section 2–10 of WSJ were issued to the parser with LP-

dimension switched on. The search strategy was all solutions based. In this mode, SXDG parser

Chapter 3. Experimental Evaluation of SXDG Parser 17

 0

 2

 4

 6

 8

 10

 3 4 5 6 7

tim
e

(s
ec

)

length

Average Time performance of depth on lengths 3 - 7

"av__2-10__depth.time_dat"
"av_upper__2-10__depth.time_dat"
"av_lower__2-10__depth.time_dat"

 0

 2

 4

 6

 8

 10

 12

 3 4 5 6 7

no
. o

f f
ai

lu
re

s

length

Performance in terms of average no. of failures of depth on lengths 3 - 7

"av__2-10__depth.failures_dat"
"av_upper__2-10__depth.failures_dat"
"av_lower__2-10__depth.failures_dat"

Fig. 3.8: Category E, plot of the time taken and no. of failures.

enumerates all solutions by traversing the complete search space. The figure 3.9 shows the plot

of the performance parameters, time taken and the total no. of failures. All input sentences of

length 6 and 7 were timed out. Hence they are not shown in the plots below.

 0

 50

 100

 150

 200

 250

 300

 3 4 5

tim
e

(s
ec

)

Length

Average Time performance of all on lengths 3 - 5

"av__2-10__all.time_dat"
"av_upper__2-10__all.time_dat"
"av_lower__2-10__all.time_dat"

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 3 4 5

no
. o

f f
ai

lu
re

s

length

Performance in terms of average no. of failures of all on lengths 3 - 5

"av__2-10__all.failures_dat"
"av_upper__2-10__all.failures_dat"
"av_lower__2-10__all.failures_dat"

Fig. 3.9: Category F, plot of the time taken and no. of failures.

Category G) Input sections 11–22, with All solutions mode and LP-dimension ON.

Sentences of lengths 3–7 from section 11–22 of WSJ were issued to the parser. Here also

the search strategy was all solutions based. The figure 3.10 shows the plot of the performance

parameters, time taken and the total no. of failures. Here also, all input sentences of length 6 and

7 were timed out. Hence they are not shown in the plots below.

An Enhanced Probability Model

In case of unseen word configurations (which is found by the constraint solver during constraint

distribution), the Oracle assigns a very high cost to it. Instead, it was proposed that these costs

for unseen entries can be calculated as a function of the number of lexical entries known to the

Oracle, so that when the number of known lexical entries are less, the unseen word-configuration

Chapter 3. Experimental Evaluation of SXDG Parser 18

 0

 50

 100

 150

 200

 250

 300

 3 4 5

tim
e

(s
ec

)

Length

Average Time performance of all on lengths 3 - 5

"av__11-22__all.time_dat"
"av_upper__11-22__all.time_dat"
"av_lower__11-22__all.time_dat"

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 3 4 5

no
. o

f f
ai

lu
re

s

length

Performance in terms of average no. of failures of all on lengths 3 - 5

"av__11-22__all.failures_dat"
"av_upper__11-22__all.failures_dat"
"av_lower__11-22__all.failures_dat"

Fig. 3.10: Category G, plot of the time taken and no. of failures.

is not penalized heavily. We denote this enhancement by Oracle+. We performed the below two

sets of experiments to test this enhancement.

Category H) Input sections 2–10, with Oracle+ and LP-dimension ON.

The SXDG parser was configured to parse the sentences with the LP-dimension switched

on. By this, we wanted to investigate whether this change has any influence on the any of the

performance parameters. Sentences of lengths 3–7 from section 2-10 of WSJ were issued. The

search strategy was Oracle based. The figure 3.11 shows the plot of the performance parameters,

time taken and the total no. of failures.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 3 4 5 6

tim
e

(s
ec

)

Length

Average Time performance of oracle on lengths 3 - 6

"av__2-10__oracle.time_dat"
"av_upper__2-10__oracle.time_dat"
"av_lower__2-10__oracle.time_dat"

 0

 50

 100

 150

 200

 250

 300

 350

 3 4 5 6

no
. o

f f
ai

lu
re

s

length

Performance in terms of average no. of failures of oracle on lengths 3 - 6

"av__2-10__oracle.failures_dat"
"av_upper__2-10__oracle.failures_dat"
"av_lower__2-10__oracle.failures_dat"

Fig. 3.11: Category H, Plot of the time taken and no. of failures.

Category I) Input sections 11–22, with Oracle+ and LP-dimension ON.

Here SXDG parser was configured to parse the sentences with the LP-dimension switched

on. Sentences of lengths 3–7 from section 11-22 of WSJ were issued. The search strategy was

Oracle based. The figure 3.12 shows the plot of the performance parameters, time taken and the

total no. of failures.

Chapter 3. Experimental Evaluation of SXDG Parser 19

 0

 50

 100

 150

 200

 250

 300

 3 4 5 6 7

tim
e

(s
ec

)

Length

Average Time performance of oracle on lengths 3 - 7

"av__11-22__oracle.time_dat"
"av_upper__11-22__oracle.time_dat"
"av_lower__11-22__oracle.time_dat"

 0

 50

 100

 150

 200

 250

 300

 350

 3 4 5 6 7

no
. o

f f
ai

lu
re

s

length

Performance in terms of average no. of failures of oracle on lengths 3 - 7

"av__11-22__oracle.failures_dat"
"av_upper__11-22__oracle.failures_dat"
"av_lower__11-22__oracle.failures_dat"

Fig. 3.12: Category I, Plot of the time taken and no. of failures.

In a nutshell, our experiments can be classified as shown in the table below.

Category Input Sentence Training Grammar Search LP-dimension

Sections Lengths Data Server Mode ON/OFF

A 2–10 3–7 2–10 2–10 Oracle ON

B 11–22 3–7 2–10 2–10 Oracle ON

C 2–10 3–7 2–10 2–10 Oracle OFF

D 11–22 3–7 2–10 2–10 Oracle OFF

E 2–10 3–7 2–10 2–10 Depth-first OFF

F 2–10 3–7 2–10 2–10 All Solutions ON

G 11–22 3–7 2–10 2–10 All Solutions ON

H 2–10 3–7 2–10 2–10 Oracle+ ON

I 11–22 3–7 2–10 2–10 Oracle+ ON

Chapter 4

Discussions

The main intuition behind extending the XDG parser was that, an Oracle based on stochastic

information could guide the parser while traversing the search space, and cut short the subtrees

so as to reduce parsing time and memory consumption. Earlier, the XDG used to be input with

hand-crafted grammar in the XDG format. Using the SXDG parser, we could make use of large

grammars induced from the Penn Treebank’s Wall Street Journal Corpus. In the following, we

interpret the experimental results that we obtained.

4.1 Interpreting the Results

General Remark about the Graphs. In some of the plots that have been generated, one can

observe that the curve goes down after some point as the sentence length increases. This is

contrary to what is expected. We remark that this does not convey the true behavior of the

performance parameter. In such situations, a very large percentage of sentences of large lengths

were timed out. Only those which are not timed out take part in the calculation of the relevant

parameters. We direct the reader to take into account the timeout charts (in the Appendix A) also

while reading such graphs.

Categories A and B (Input sections 2–10 and 11–22, LP-dim ON). Our objective for running

categories A and B was to see how the parser performs on unseen words/word-configurations

when compared to its performance on known words/word-configurations. In category A, the

training data (sections 2–10) itself was used as the input sentences, whereas in category B the

input sentences (sections 11–22) were different from the training data.

As is expected, when the sentence length increase, the time taken for the parsing and the other

performance parameters increase as well. The plots (Figure 3.3 and 3.5) suggests that the parse

time is super linear in the sentence lengths. That is, the rate of growth in the parse time does

not seem to be a constant. The same behavior also holds for the plots on percentage of timeouts

(Figures 3.4 and 4.13). There is no time out for sentences of length three, whereas already for

sentences of length seven, 50% of the sentences timed out.

The parser takes more time on unseen sentences (Category B), than in the case where the

input is same as the training data (Category A). The reason for this could be the following. The

Chapter 4. Discussions 21

Oracle assigns very high cost for unseen word configurations introduced by the constraint solver.

Because of this, the parser might be highly biased against unseen words, which forces the parser

to abandon good subtrees and traverse more in the search space to find the best parse, resulting

in an increase in parse time. The plots (Figures 3.4 and 4.13) show that for sentences of length

seven, in category A, the percentage time out is around 50%. But in category B, the percentage

timeout on length seven sentences is close to 90%. The same order of difference also holds for

sentences of lengths 3–6.

The number of failures seems to be almost linear in Categories A and B (Figures 3.3 and

3.5). But in Category B, (i.e., on unseen sentences), the number of failures increase by a factor

close to three compared to category A. Figure 4.1 compares the time as well as the no. of failures

performance for Categories A and B.

 0

 20

 40

 60

 80

 100

 3 4 5 6 7

tim
e

(s
ec

)

Length

Comparison of Time performance of oracle on lengths 3 - 7

"known-input"
"unknown-input"

 0

 20

 40

 60

 80

 100

 3 4 5 6 7

no
. o

f f
ai

lu
re

s

Length

Comparison of no. of failures performance of oracle on lengths 3 - 7

"known-input"
"unknown-input"

Fig. 4.1: Comparison of the parse time and the no. of failures performance between Categories A (known-
input curve) and B (unknown-input curve) with the LP-dimension on.

The parameters, maximum agenda size and the no. of solutions also show a linear growth in

terms of the sentence length in both Categories A and B (Figures 4.4 and 4.5). But in category

B, it is only slightly worse than Category A.

To summarize, the experiments suggests that difference in performance of the SXDG parser

on unseen sentences and seen sentences (training data) is mainly reflected on the parse time and

the number of failures.

Our next goal was to investigate the effect of LP-dimension on the parser performance. For

this, we performed experiments similar to categories A and B, except that the LP-dimension was

switched off. The parser ran on the ID-dimension only. We summarize our findings in categories

C and D.

Categories C and D (Input sections 2–10 and 11–22, LP-dim OFF). The main difference from

the above discussed categories is that in these two categories is that, in categories C and D, the

LP-dimension was switched off. That means, only the ID-dimension was enabled. Comparing

the time performance of Category C to Category A (Figures 3.6 and 3.3) and Category D to

Category B (Figures 3.7 and 3.5), and also taking into account the time outs (Figures 3.4, 4.13,

Chapter 4. Discussions 22

4.14 and 4.15), it can be deducted that, when the LP-dimension is switch off, the parse time

improves slightly.

The curve for the number of failures (Figures 3.3 and 3.6, and Figures 3.5 and 3.7) is almost

similar to the situation where LP-dimension was switched on. The values are slightly smaller in

the case of LP-dimension switch off.

For maxsize and solutions, the effect seems to be in the opposite direction. That is, when the

LP-dimension is switched off, the maximum agenda size and the number of solutions are more

than the case when LP-dimension is switched ON. This is true for case where the input is the

training data as well as the case where the input is unseen data (Figures 4.4 and 4.6, and Figures

4.5 and 4.7). A possible reason is that the flow of information from one dimension, i.e., LP-

dimension, is unavailable to the other dimension, i.e., ID-dimension. This makes the constraint

solver to work with smaller number of propagators. This could result in an increase agenda size.

To evaluate the influence of switching off the LP-dimension, Figure 4.2 shows the comparison

of time performance between categories A and C as well as categories B and D. The commonality

in A and C is that in both cases the input is known. Similarly for both categories B and D, the

input is unseen by the grammar.

 0

 20

 40

 60

 80

 100

 3 4 5 6 7

tim
e

(s
ec

)

Length

Comparison of Time performance of oracle on sections 2-10

"lp-on"
"lp-off"

 0

 20

 40

 60

 80

 100

 3 4 5 6 7

tim
e

(s
ec

)

Length

Comparison of Time performance of oracle on sections 11-22

"lp-on"
"lp-off"

Fig. 4.2: Comparison of the parse time between categories A (lp-on) and C (lp-off) (left figure) and
between categories B (lp-on) and D (lp-off) (right figure).

To summarize, switching off the LP-dimension has positive influence on the parse time and

no. of failures, where as it has negative influence on the maximum agenda size and the no. of

solutions.

Category E (Input sections 2–10, Depth-first strategy, LP OFF). As expected, the time taken

to find any solution is much shorter than the time taken to find the best solution. The Figure

3.8 suggest that it needs much more traversal to find the best solution in comparison to the first

solution.

Chapter 4. Discussions 23

Categories F and G (Sections 2–10 and 11–22, All solutions strategy, LP-dim ON). Here, our

objective was to study the performance of SXDG parser with Oracle against an exhaustive search

strategy (all solutions strategy).

It is obvious that if we have to search for all solutions, all the performance parameters will be

affected in a negative way. But our goal was to evaluate how bad can the performance parameters

become for such a strategy. Such a study reveals the significance of using informed search in the

search space in comparison to exhaustive search.

Comparing Category F to Oracle based search on the same input sections, the time taken by

the all solutions strategy increases by a factor of around 15 (refer Figures 3.9, 4.17, 3.3, 3.6), the

no. of failures increases approximately by factor 100 (Figures 3.9, 3.3 and 3.6) and the no. of

solutions increases by factor 1000 (Figures 4.9, 4.4, 4.6). In the similar fashion, if we compare

Category G to Oracle based search on the same input sections, the time taken by the all solutions

strategy increases by a factor of around 5 (refer Figures 3.10, 4.18, 3.5, 3.7), the no. of failures

increases approximately by factor 50 (Figures 3.10, 3.5 and 3.7) and the no. of solutions increases

by factor 1000 (Figures 4.10, 4.5, 4.7).

Figure 4.3 shows the comparison of time performance between categories A and F and be-

tween categories B and G. In categories A and B, the search strategy is Oracle based. Categories

A and F uses the same input sentences. Similarly categories B and G uses the same input sen-

tences.

 0

 50

 100

 150

 200

 3 4 5 6 7

tim
e

(s
ec

)

Length

Comparison of Time performance on sections 2-10 with LP-ON

"oracle"
"all-solutions"

 0

 50

 100

 150

 200

 3 4 5 6 7

tim
e

(s
ec

)

Length

Comparison of Time performance on sections 11-22 with LP-ON

"oracle"
"all-solutions"

Fig. 4.3: Comparison of the parse time between categories A and F (left figure) and between categories B
and G (right figure).

To summarize, our experimental findings show that our A* search is able to prune the search

tree considerably in comparison to exhaustive search where the additional statistical information

is not used. This contrast is much more significant when the input data is already known to

SXDG parser (that is, input data and training data for Oracle are the same). Thus it supports

the argument that the parser enhanced with an Oracle performs much better than parser based on

exhaustive search and, training the Oracle with more sentences further improves its performance

significantly.

Chapter 4. Discussions 24

Categories H and I (Input sections 2–10 and 11–22, Oracle+, LP-dim ON). In these two cat-

egories, we used the enhanced Oracle, i.e., Oracle+ where the unseen words are assigned costs

depending on the set of seen words, in order to compare its performance with the earlier Oracle.

We compare the charts in Category H to the corresponding ones in Category C, as the only differ-

ence between these two setup is that the Oracle is the enhanced one in the Category H. Similarly

we compare Category I against Category D.

Upon comparing Categories H and C (in both cases, the input sections are same as the training

data), we observe that the Oracle+ performs worse than usual Oracle with respect to all the

performance parameters, i.e., parse time, no. of failure, no. of solutions and maxsize. Refer

Figures 3.6, 4.6, 4.14, 3.11, 4.11 and 4.19.

Similarly, when we compare Category I to Category D (in both cases, the input sentences are

unseen by the Oracle), Oracle+ performed worse than usual Oracle except on the no. of solutions

parameter. The number of solutions encountered by Oracle+ is always slightly lesser than the

number of solutions encountered by the usual Oracle.

To summarize, enhancing the Oracle to assign the cost to unseen words depending on already

seen words seems to have a slight positive impact on the number of solutions seen, but it affects

all other parameters negatively. The negative effect is more strong on the parse time.

4.2 Directions for Future Improvements

As of now the SXDG parser cannot handle word-configurations unseen by the grammar. One

reason for this could be that, the current constraint solver of the parser controls the distribution.

This happens when the constraint solver imposes a constrain ϕ in the left branch of the search

tree during distribution and ¬ϕ in the right branch. This causes the solver to possibly come up

with unseen word configurations, which cause the oracle to assign very high cost for it. Because

of this, the parser is forced to take bad branchings. That is why we argue that, the oracle should

control the distribution. That is, when it encounters an unseen word-configuration, it can assign

better values to unseen word-configurations, and thereby avoid bad branchings. Another way to

get around this problem is to use smoothing techniques, also known as discounting, where in

case of unseen events, we give little bit of probability of seeing it by decreasing the probability of

previously seen events. One way of smoothing in our context is, instead of considering the unseen

word as such, considering the PoS tag of the word. The chances of PoS tags to have occurred will

be considerably much more than the word itself. Another problem is that of Sparseness of data,

due to the heavily lexicalized nature of the grammar. Smoothing techniques like considering the

PoS tags of the words can be employed to deal with this problem in a better way.

Chapter 4. Discussions 25

4.3 Conclusion

In this thesis, we evaluated the performance of the statistically enhanced XDG parser using a

number of experiments involving sentences from the Penn Treebank. We used a number of per-

formance parameters for this evaluation. As the performance parameters for this evaluation, we

used: time taken, the maximum size of the agenda, the number of failed nodes and number of

solutions encountered. Our findings suggest that the statistically enhanced parser, which uses

an Oracle, is able to prune large portions of the search tree and thus is significantly superior to

the exhaustive search approach, which enumerates all the solution. This improvement is more

significant when the input words and word configurations are already known to the Parser. We be-

lieve that techniques like smoothing (or statistical discounting) and also modifying the constraint

solver by involving Oracle also in constraint distribution could further improve the performance

of the parser while handling unseen words and word configurations.

Bibliography

[Apt03] K. R. Apt. Principles of Constraint Programming. Cambridge University Press,

2003.

[DD01] Denys Duchier and Ralph Debusmann. Topological dependency trees: A

constraint-based account of linear precedence. In Proceedings of ACL 2001,

Toulouse, France, 9–11July 2001.

[DDK+04a] Ralph Debusmann, Denys Duchier, Alexander Koller, Marco Kuhlmann, Gert

Smolka, and Stefan Thater. A relational syntax-semantics interface based on de-

pendency grammar. In Proceedings of the 20th International Conference on Com-

putational Linguistics (COLING 2004), Geneva, Switzerland, 2004. to appear.

[DDK04b] Ralph Debusmann, Denys Duchier, and Geert-Jan M. Kruijff. Extensible depen-

dency grammar: A new methodology. In Proceedings of the COLING 2004 Work-

shop on Recent Advances in Dependency Grammar, 2004.

[Deb03] Ralph Debusmann. Dependency grammar as graph description. In Denys Duchier,

editor, Prospects and Advances of the Syntax/Semantics Interface, pages 79–84,

Nancy, 2003.

[DKK03] Peter Dienes, Alexander Koller, and Marco Kuhlmann. Statistical a-star depen-

dency parsing. In Denys Duchier, editor, Prospects and Advances of the Syn-

tax/Semantics Interface, pages 85–89, Nancy, 2003.

[KN02] Alexander Koller and Joachim Niehren. Constraint programming in computational

linguistics. In Dave Barker-Plummer, David I. Beaver, Johan van Benthem, and

Patrick Scotto di Luzio, editors, Words, Proofs, and Dialog, volume 141 of CSLI

Lecture Notes, pages 95–122. CSLI Press, 2002.

[MS01] Christopher D. Manning and Hinrich Schütze. Foundations of Statistical Natural

Language Processing. MIT Press, 2001.

Appendix A: Additional Plots

Summary of all the experiment categories.

Category Input Sentence Training Grammar Search LP-dimension

Sections Lengths Data Server Mode ON/OFF

A 2–10 3–7 2–10 2–10 Oracle ON

B 11–22 3–7 2–10 2–10 Oracle ON

C 2–10 3–7 2–10 2–10 Oracle OFF

D 11–22 3–7 2–10 2–10 Oracle OFF

E 2–10 3–7 2–10 2–10 Depth-first OFF

F 2–10 3–7 2–10 2–10 All Solutions ON

G 11–22 3–7 2–10 2–10 All Solutions ON

H 2–10 3–7 2–10 2–10 Oracle+ ON

I 11–22 3–7 2–10 2–10 Oracle+ ON

 0

 50

 100

 150

 200

 250

 300

 350

 3 4 5 6 7

m
ax

si
ze

length

Performance in terms of average size of agenda of oracle on lengths 3 - 7

"av__2-10__oracle.maxsize_dat"
"av_upper__2-10__oracle.maxsize_dat"
"av_lower__2-10__oracle.maxsize_dat"

 0

 5

 10

 15

 20

 3 4 5 6 7

no
. o

f s
ol

ut
io

ns

length

Performance in terms of average no. of solutions of oracle on lengths 3 - 7

"av__2-10__oracle.solutions_dat"
"av_upper__2-10__oracle.solutions_dat"
"av_lower__2-10__oracle.solutions_dat"

Fig. 4.4: Category A, plot of maxsize and no. of solutions.

Appendix A: Additional Plots 28

 0

 100

 200

 300

 400

 500

 3 4 5 6 7

m
ax

si
ze

length

Performance in terms of average size of agenda of oracle on lengths 3 - 7

"av__11-22__oracle.maxsize_dat"
"av_upper__11-22__oracle.maxsize_dat"
"av_lower__11-22__oracle.maxsize_dat"

 0

 5

 10

 15

 20

 3 4 5 6 7

no
. o

f s
ol

ut
io

ns

length

Performance in terms of average no. of solutions of oracle on lengths 3 - 7

"av__11-22__oracle.solutions_dat"
"av_upper__11-22__oracle.solutions_dat"
"av_lower__11-22__oracle.solutions_dat"

Fig. 4.5: Category B, plot of maxsize and no. of solutions.

 0

 100

 200

 300

 400

 500

 600

 700

 3 4 5 6 7

m
ax

si
ze

length

Performance in terms of average size of agenda of oracle on lengths 3 - 7

"av__2-10__oracle.maxsize_dat"
"av_upper__2-10__oracle.maxsize_dat"
"av_lower__2-10__oracle.maxsize_dat"

 0

 10

 20

 30

 40

 50

 3 4 5 6 7

no
. o

f s
ol

ut
io

ns

length

Performance in terms of average no. of solutions of oracle on lengths 3 - 7

"av__2-10__oracle.solutions_dat"
"av_upper__2-10__oracle.solutions_dat"
"av_lower__2-10__oracle.solutions_dat"

Fig. 4.6: Category C, plot of maxsize and no. of solutions.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 3 4 5 6 7

m
ax

si
ze

length

Performance in terms of average size of agenda of oracle on lengths 3 - 7

"av__11-22__oracle.maxsize_dat"
"av_upper__11-22__oracle.maxsize_dat"
"av_lower__11-22__oracle.maxsize_dat"

 0

 20

 40

 60

 80

 100

 120

 3 4 5 6 7

no
. o

f s
ol

ut
io

ns

length

Performance in terms of average no. of solutions of oracle on lengths 3 - 7

"av__11-22__oracle.solutions_dat"
"av_upper__11-22__oracle.solutions_dat"
"av_lower__11-22__oracle.solutions_dat"

Fig. 4.7: Category D, plot of maxsize and no. of solutions.

Appendix A: Additional Plots 29

 0

 5

 10

 15

 20

 3 4 5 6 7

m
ax

si
ze

length

Performance in terms of average size of agenda of depth on lengths 3 - 7

"av__2-10__depth.maxsize_dat"
"av_upper__2-10__depth.maxsize_dat"
"av_lower__2-10__depth.maxsize_dat"

Fig. 4.8: Category E, plot of maxsize.

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 3 4 5

no
. o

f s
ol

ut
io

ns

length

Performance in terms of average no. of solutions of all on lengths 3 - 5

"av__2-10__all.solutions_dat"
"av_upper__2-10__all.solutions_dat"
"av_lower__2-10__all.solutions_dat"

Fig. 4.9: Category F, no. of solutions.

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 3 4 5

no
. o

f s
ol

ut
io

ns

length

Performance in terms of average no. of solutions of all on lengths 3 - 5

"av__11-22__all.solutions_dat"
"av_upper__11-22__all.solutions_dat"
"av_lower__11-22__all.solutions_dat"

Fig. 4.10: Category G, no. of solutions.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 3 4 5 6

m
ax

si
ze

length

Performance in terms of average size of agenda of oracle on lengths 3 - 6

"av__2-10__oracle.maxsize_dat"
"av_upper__2-10__oracle.maxsize_dat"
"av_lower__2-10__oracle.maxsize_dat"

 0

 5

 10

 15

 20

 3 4 5 6

no
. o

f s
ol

ut
io

ns

length

Performance in terms of average no. of solutions of oracle on lengths 3 - 6

"av__2-10__oracle.solutions_dat"
"av_upper__2-10__oracle.solutions_dat"
"av_lower__2-10__oracle.solutions_dat"

Fig. 4.11: Category H, plot of maxsize and no. of solutions.

Appendix A: Additional Plots 30

 0

 100

 200

 300

 400

 500

 600

 700

 800

 3 4 5 6 7

m
ax

si
ze

length

Performance in terms of average size of agenda of oracle on lengths 3 - 7

"av__11-22__oracle.maxsize_dat"
"av_upper__11-22__oracle.maxsize_dat"
"av_lower__11-22__oracle.maxsize_dat"

 0

 5

 10

 15

 20

 25

 3 4 5 6 7

no
. o

f s
ol

ut
io

ns

length

Performance in terms of average no. of solutions of oracle on lengths 3 - 7

"av__11-22__oracle.solutions_dat"
"av_upper__11-22__oracle.solutions_dat"
"av_lower__11-22__oracle.solutions_dat"

Fig. 4.12: Category I, plot of maxsize and no. of solutions.

 0

 20

 40

 60

 80

 100

 3 4 5 6 7

P
er

ce
nt

ag
e

length

Percentage of Timeouts on lengths 3 - 7

"timeout_dat"

Fig. 4.13: Category B, Timeouts.

 0

 20

 40

 60

 80

 100

 3 4 5 6 7

P
er

ce
nt

ag
e

length

Percentage of Timeouts of oracle on lengths 3 - 7

"timeout2-10_dat"

Fig. 4.14: Category C, Timeouts.

 0

 20

 40

 60

 80

 100

 3 4 5 6 7

P
er

ce
nt

ag
e

length

Percentage of Timeouts on lengths 3 - 7

"timeout_dat"

Fig. 4.15: Category D, Timeouts.

 0

 20

 40

 60

 80

 100

 3 4 5 6 7

P
er

ce
nt

ag
e

length

Percentage of Timeouts on lengths 3 - 7

"timeout_dat"

Fig. 4.16: Category E, Timeouts.

Appendix A: Additional Plots 31

 0

 20

 40

 60

 80

 100

 3 4 5 6 7

P
er

ce
nt

ag
e

length

Percentage of Timeouts on lengths 3 - 7

"timeout_dat"

Fig. 4.17: Category F, Timeouts.

 0

 20

 40

 60

 80

 100

 3 4 5 6 7
P

er
ce

nt
ag

e

length

Percentage of Timeouts on lengths 3 - 7

"timeout_dat"

Fig. 4.18: Category G, Timeouts.

 0

 20

 40

 60

 80

 100

 3 4 5 6 7

P
er

ce
nt

ag
e

length

Percentage of Timeouts on lengths 3 - 7

"timeout_dat"

Fig. 4.19: Category H, Timeouts.

 0

 20

 40

 60

 80

 100

 3 4 5 6 7

P
er

ce
nt

ag
e

length

Percentage of Timeouts on lengths 3 - 7

"timeout_dat"

Fig. 4.20: Category I, Timeouts.

