
N:M Mapping in XDG �The Case for

Upgrading Groups

Jorge Marques Pelizzoni and Maria das Graças Volpe Nunes

Universidade de São Paulo, Instituto de Ciências Matemáticas e de Computação

Av. do Trabalhador São-Carlense, 400. CEP 13560-970. São Carlos � SP � Brasil
{jorgemp, gracan}@icmc.usp.br
http://www.nilc.icmc.usp.br

Abstract. The eXtensible Dependency Grammar (XDG) is a very promising

CP-natural framework with which to tackle varied NLP problems and their

combinatorial complexity. XDG draws heavily on its non-transformational

character for efficiency, which opens the issue of N:M mapping e.g. between

syntactic and semantic structures. We resume discussion on this issue and

attempt to demonstrate that improvement of the available solutions is at once

desirable and crucial. To this end, we assess their suitability in several scenarios

assuming a syntax-semantics interface: parsing vs. generation; treating

Multiword Expressions; treating connectives introducing optional components

such as adverbials; etc. Finally, we propose some guidelines to overcome the

identified limitations.

1 Introduction

The intuition has been widespread for some time so far that language processing �

whether natural or artificial � emerges from the interplay of various concurrent

constraints operating at or between different levels of analysis. At times it seems

almost possible to feel determinacy ebbing and flowing through such constraint

systems e.g. as the potential ambiguity of the words in a sentence gradually reduces

until satisfactory interpretations become available. This is especially true of natural

processors, i.e. humans, when tackling a second language. As the paradigms of

Constraint Satisfaction (CS) and particularly Constraint Programming (CP) have

arisen in Computer Science exactly to mimic this ebb-and-flow intuition suitable to

tame complexity in a whole range of problems, no wonder language processing is also

in focus.

However, CP faces therein a twofold challenge: not only does the (in)exact nature

of linguistic constraints and objects still elude us all, CP practitioners or not, but also

much of the linguistic tradition, drawing heavily upon transformational primitives, is

not usually amenable to straightforward or efficient modelling, to say the least.

Therefore, the latest years have seen much effort to strengthen propagation in

grammar modelling, which often led to alternative constraint-based frameworks. The

move from early (and already not so mainstream) Tree Adjoining Grammar-based

frameworks [10, 11, 12] to more recent Dependency Grammar-based ones [9, 8, 7] is

certainly bound for stronger propagation, regardless and arguably to the detriment of

explanatory adequacy.

The eXtensible Dependency Grammar (XDG) [4, 5, 6] is perhaps the latest stage in

this evolutionary line and represents an important leap from its ancestors. Even

though still leaving much room for further development as we shall presently see,

XDG achieves an unprecedented balance between (i) complexity, which is hopefully

controlled by the strong propagation it inherits from DG-based frameworks, (ii)

generality, i.e. potential coverage of phenomena or application spectrum, which is

significantly broadened by XDG�s underspecification, extensibility and novel

multidimensional metaphor, and (iii) instantiability, i.e. ease of instantiation or

application, which benefits from XDG�s enhanced support for modularity and

reusability. As a generality bonus, XDG is such a CP natural that a CP

implementation can actually achieve bidirectionality, i.e. the property that one same

grammar might be used both for analysis and generation with the same search engine

modulo I/O processing.

In that respect, Debusmann et al. [5] have already sketched a XDG-based relational

(i.e. bidirectional) syntax-semantics interface. However, they bypassed the issue of

N:M mapping � or subgraph handling � then, which is nonetheless unavoidable if

one is ever to tackle most function words, especially connectives and auxiliary verbs,

support verbs (such as �do� in �do the dishes� or �have� in �have an argument with�)

and multiword expressions (MWEs), since these usually involve worthy syntactic

nodes that in spite of influencing interpretation have no semantic counterpart. The

issue has been addressed by Debusmann elsewhere [2] specifically with a focus on

MWEs, which were tackled in XDG by means of a restricted form of grouping and

deletion, herein referred to simply as the group construct. This remains the sole such

account so far and, ingenious as it is to provide a very promising technique, it does

not go beyond MWEs and leaves, even in that matter, several open issues. The

general purpose of this paper is exactly to resume discussion from that point and

address some of these issues. Rather than providing definitive solutions, our highest

goal is to demonstrate that improvement is at once desirable and crucial while

gathering requirements for future developments.

First of all, we provide a little background on XDG (Section 2) and review

Debusmann�s group technique (Section 3). Next we demonstrate some of its

shortcomings (Section 4), as (i) when treating connectives introducing optional

components, like adverbials, (ii) when some particularities of MWEs come into play,

and (iii) when one consider the convenience of an N1:N2:�:Nn mapping

generalization. Having presented this rationale and thus made the main point of the

paper, we very briefly provide some pointers as to future work on the lexicon

component towards overcoming those limitations (Section 5). At all times our main

concerns are those of generality (i.e. broaden the coverage of groups, also ensuring

bidirectionality), instantiability (make groups usable), and complexity/scalability

(make groups feasible in terms of lexicon storage and keep propagation strong).

2 XDG Background

We start by reviewing Debusmann�s treatment of MWEs [2] by means of groups,

which requires acquaintance with XDG�s core concepts. Therefore, an informal

overview of these concepts is also in order. For a formal description of XDG,

however, see Debusmann et al. [4, 5, 6].

Most of XDG�s strengths stem from its multidimensional metaphor (see Fig. 1),

whereby an (holistic or multidimensional) XDG analysis consists of a set of

concurrent, synchronized, complementary, mutually constraining one-dimensional

analyses, each of which is itself a graph sharing the same set of vertices as the other

analyses, but having its own type or dimension, i.e., its own edge label and lexical

feature types and its own well-formedness constraints. In other words, each 1D

analysis has a nature and interpretation of its own, associates each vertex with one

respective instance of a data type of its own (lexical features) and establishes its own

relations/edges between vertices using labels and principles of its own. For example,

an XDG grammar/analysis might have four dimensions/1D analyses, two for syntax

(immediate dominance and linear precedence) and two for semantics (predicate

argument structure and scope), as in Debusmann et al. [5].

Fig. 1. Three concurrent one-dimensional analyses. It is the sharing of one same set of vertices

that co-relates and synchronizes them into one holistic XDG analysis.

That might sound rather autistic at first, but the 1D components of an XDG

analysis interact in fact. It is exactly their sharing one same set of vertices, whose sole

intrinsic property is identity, that provides the substratum for interdimensional

communication, or rather, mutual constraining. That is chiefly achieved by means of

two devices, namely: interdimensional principles and lexical synchronization.

Interdimensional Principles. Principles are reusable, usually parametric constraint

predicates used to define grammars and their dimensions. Those posing constraints

between two or more 1D analyses are said interdimensional. For example, one XDG

grammar defining one dimension to capture predicate argument (PA, modelling

semantic roles) structure and another one for immediate dominance (ID, modelling

syntactic relations) may prescribe a principle between them ensuring that, for every

vertex v fulfilling some lexical precondition, whenever there is an edge pat(ient) from

a

b

c

d

e

S
*

v to some other vertex w on dimension PA, then there is an edge subj(ect) to w on

dimension ID. This constraint is more formally expressed thus:

()
pat subj

PA ID
v V unaccusative v w V v w u V u w

§ ·§ ·§ ·� � ��� o��� o¨ ¸¨ ¸¨ ¸
© ¹© ¹© ¹

, (1)

where V is the set of vertices of the current analysis.

This example principle is subsumed by the parametric principle linkingEnd

available in the XDG Development Kit1 (XDK). Each application of linkingEnd takes

three parameters, namely two dimensions D1 and D2 and one function

2
1

()
: () 2

label D
linkf V V label Du u o , (2)

where label(D) denotes de set of all possible edge labels on dimension D and whose

function is thus map edges (v,w,l) on D1 into sets of edge labels on D2. The meaning

of linkingEnd(D1,D2,linkg) can be more formally expressed thus:

1 2

, , (, ,) , (, ,)
l l

D D
v w l v w linkf v w l u l l linkf v w l u w

c§ ·§ ·c c� o� �����o ¨ ¸¨ ¸© ¹© ¹
. (3)

Parameter linkg may well be set by an application of

() (, ,). ()(' ')()Ddefaultf D v w l lex v end lO , (4)

where ()Dlex v maps vertex v into a function giving access to its lexical features

according to dimension D. Feature end, in turn, should denote a function mapping D1

edge labels into subsets of label(D2). Therefore, the constraint in Equation (1) can

easily be implemented by linkingEnd(PA,ID,defaultg(PA)), provided that

unaccusative verbs have lexicon entries whose end features for dimension PA map

label pat into the singleton ^ `subj .

Some remarks are worth making as regards the above example, namely (i) that

shared vertices constitute the real and only meeting points between 1D analyses, (ii)

that interdimensional principles strongly rely on (i) to do their job, and (iii) that most

of them are lexicalized, i.e. impose constraints that depend on the lexical features of

vertices according to the dimensions involved. Further details on lexicalization are

provided below.

Lexical Synchronization. As pointed out above, principles, whether intra- or

interdimensional, usually resort to the lexical features of vertices. This implies that

any XDG instance has a lexicon as a component, which is specified in two steps: first,

each dimension declares its own lexicon entry type, i.e. an Attribute-Value Matrix

(AVM) type; next, once all dimensions have been declared, lexicon entries are

provided, each specifying the values for features on all dimensions. Finally, at

runtime it is required of well-formed analyses that there is at least one valid

assignment of lexicon entries to vertices such that all principles are satisfied. In other

words, every vertex must be assigned a lexicon entry that simultaneously satisfies all

1 http://www.ps.uni-sb.de/~rade/xdg.html.

principles on all dimensions, for which reason the lexicon is said to synchronize all

1D components of an XDG analysis.

Lexical synchronization is a major source of propagation. Resuming our

unaccusative verb example and assuming a text generation scenario, if it happens to

be known at some point that there are no more sources of subject edges available on

the ID dimension, then lexicon entries corresponding to unaccusative realizations of

an as yet unrealized verb shall be discarded. That might further narrow the domains of

variables on various dimensions and trigger further propagation.

3 The State of the Art � Groups

It must be clear from the previous section that the sharing of one same set of vertices

by the 1D components of an XDG analysis is key to the framework and that, formally

speaking, deletion or insertion operations would be out of the question. On the face of

it, that might seem lethal to any higher aspirations on the part of an XDG-based

syntax-semantics interface. Indeed, for starters, it is reasonable to expect that MWEs

such as �(to) have an argument with� and �argue with� should correspond to one

same single semantic literal, say argue, in spite of comprising multiple vertices on

syntactic dimensions (one per word). On the other hand, it is sometimes the case that

a semantic subgraph should correspond to fewer syntactic nodes, as in instrument

incorporation. For example, �cut with a knife� is likely to have a semantic

representation comprising at least two semantic vertices, whose realization in some

languages, however, would take one single word (for one, the Brazilian Sign

Language). Finally, in general, one would not expect vertices corresponding to

connectives (prepositions and conjunctions) to have direct counterparts on a semantic

dimension, much though they should be taken into account during interpretation or

somehow produced during generation.

Emulating Deletion. Debusmann [2] introduces a simple though clever technique to

circumvent this limitation, or rather, to carry out N:M mapping on top of XDG. The

basic idea behind his technique is emulating deletion thus: whenever a vertex has but

one incoming edge with a reserved label, say del, it is considered as virtually deleted.

In addition, one artificial �root� node is postulated from which emerge as many del

edges as required on all dimensions. Given that lexicon entries usually rule the

valency of vertices on each dimension separately, i.e. state which labels they accept

on incoming and outgoing edges, it is straightforward to state that a vertex should be

deleted on certain dimensions, it sufficing to provide lexicon entries accepting only

and necessarily one incoming del edge on the referred dimensions.

Crucial though it is, the possibility of deletion by itself is not enough. There must

also be a way to treat certain subgraphs as units, or rather groups, whose rationale

must be given from two complementary points of view.

The Group Coherence Problem. From the point of view of parsing, the fact must be

captured that the group meanings of �have a word with� or �take out� compete with

other readings of their component words that are applicable in other contexts (�out�

can even be an adjective!). In other words, treating �have a word with� as a block in

XDG implies that each word will have, among its lexicon entries, one have-a-word-

with entry, i.e. one exclusively reserved to the group reading. Now, when parsing

�write down a word�, the have-a-word-with entry of �word� will compete with the

applicable entry and should be guaranteed to lose. What is worse, any have-a-word-

with entry should be guaranteed to lose unless enough have-a-word-with entries (one

for each of the component words) are available at the same time for the sentence at

hand.

That problem will herein be referred to as the Group Coherence Problem (GCP).

Further generalizing and introducing some useful terminology: (i) every group

reading is built by selecting a set of grouped lexicon entries; (ii) any such set is said

to be a group instance; (iii) in order for a grouped lexicon entry to be selected it is

necessary that enough cogrouping entries, or rather, enough of its cogroupers are

available; (iv) given two group instances G1 and G2, they are said to be (group)

alternates iff there exist two entries e1 � G1 and e2 � G2 such that e1 and e2 cogroup

(e.g. �take out� and �takes out� may well be parsed by group alternates); (iv) the

paradigm of a group instance G is the union of all its alternates according to a

lexicon (e.g. the set of all lexicon entries necessary to parse

�take/takes/took/taking/etc. out�).

The GCP can thus be rephrased as the problem of identifying well-formed group

instances and ensuring that all cogroupers are simultaneously in the same state, either

selected or discarded. The solution proposed by Debusmann is based again on a

simple though ingenious idea. It consists of (i) capturing the inner structure of group

instances and (ii) requiring it to be wholly reconstituted by cogrouping entries only. If

(ii) cannot be satisfied, it means that there is at least one necessary cogrouper missing,

no group instance can be built, and all involved cogroupers are discarded.

The trick is not so easily implemented now. First of all, every group paradigm P is

assigned one unique identifier gid(P). Next, every lexicon entry must bear its group

id, even non-grouped entries (which might all take one same reserved null id). To this

end, one dimension must specify a special lexical feature, say group, to hold this bit

of information. Finally, all dimensions bearing structure (some may axiomatically

hold unconnected vertices only) must specify a lexical feature, say outgroups, of the

type

()()(' ') : () 2D

dom gidlex v outgroups label D o , (5)

where dom(g) denotes the domain of function g. For every dimension D having this

feature, outgroups maps edge labels into sets of group ids and is intended to shortlist

the otherwise worthy receivers of the edges emerging from any given vertex. More

specifically, given a pair of vertices src and target whose respective valencies

otherwise sanction an edge (src,target,label) on dimension D, any such edge will be

nonetheless inhibited unless the group of (the selected lexicon entry for) target

belongs to ()(' ')()Dlex src outgroups label . This new constraint is the group coherence

principle and must hold for every structure-bearing dimension.

Fig. 2: analisys of an occurrence of the MWE �have a word with� showing dimensions ID

(syntactic) and PA (semantic, in which there is deletion). Shaded vertices are external to the

group at issue

For example, supposing that �have a word with� should have the structure depicted

in Fig. 2 and correspond to one single semantic literal talk, the rows in Table 1 show

what the respective lexicon entries would look like for a selection of relevant features.

In this table, wherever relevant, features are subscripted with their respective

dimensions. For example, the forth column regards feature outgroups on dimension

ID. Apart from the already introduced features or otherwise self-explanatory ones, in

resp. out compose the valency of a vertex, i.e. hold information regarding (i) which

labels are accepted for incoming resp. outgoing edges and, for each listed label l, (ii) a

cardinality constraint, stating e.g. whether at least one l edge is required (l or l+) or

not (l? or l*) and whether the vertex may accept at most one l edge (l or l?) or more

(l* or l+). On the second column, (del) is but a special literal reserved for deleted

vertices.

Table 1. Lexical entries encoding the grouping of �talk to� and �have a word with�

word literal group outgroupsID inID outID inPA outPA linkPA

talk talk g1 ^ `^ `1iobj g6
 ^ `root ^ `,subj obj ^ `root ^ `,agt obj ^ `

^ `
agt subj

obj obj

 ½° °
® ¾
° °¯ ¿

6

6

to (del) g1 � ^ `iobj
 ^ `pcomp

 ^ `del
 � �

have (del) g2 ^ `^ `2obj g6
 ^ `root

 ^ `,subj obj
 ^ `del

 � �

a (del) g2 ^ `^ `2det g6
 ^ `obj

 ^ `det
 ^ `del

 � �

word talk g2 ^ `^ `2mod g6
 ^ `det

 ^ `mod
 ^ `root

 ^ `,agt obj
 ^ `

^ `
agt subj

obj obj

 ½° °
® ¾
° °¯ ¿

6

6

with (del) g2 � ^ `mod
 ^ `pcomp

 ^ `del
 � �

Vertex Expansion. By reconsidering the same �have a word with� example now

from the point of view of generation (i.e. given input on dimension PA, try to

reconstruct valid analyses on dimension ID), an additional issue emerges closely

related to that of model creation in CP and named herein the Vertex Expansion

Problem (VEP). As far as regards actual input to a generation system, one might well

expect to generate e.g. �They have a word with Mary� from a simple three-vertex PA

subj have a word with pcomp

graph as seen in Fig. 3, which obviously falls short of vertices. It should be clear by

now that, under grouping, there is more to setting up the XDG scene � or rather,

model creation � than simply transferring the input graph onto the PA dimension and

naïvely looking literals up on the lexicon. A group-oriented lookup procedure is

strictly needed, even though missing in XDG�s current implementation.

Fig. 3: an instance of the Expansion Problem in generation. Although PA is the input

dimension, the actual input lacks vertices

Debusmann has already pointed out the need for such a procedure and proposed

one. First, he states that, for generation, a function

(): 2dom gidgroups Sem o (6)

(where Sem is the set of all semantic literals) is needed mapping any given literal lit to

a set containing the ids of all groups realizing lit. During model creation, for each

literal lit: (i) the set Ps is retrieved of the paradigms2 of all groups in groups(lit); (ii)

then the set V is created of new vertices such that ^ `max :V P P Ps � ; (iii) for each

paradigm P Ps� , its entries are arbitrarily assigned to nodes in V, i.e., an arbitrary

injection :Passign P Vo is constructed; then (iv) the base set of alternative lexicon

entries for each vertex v V� is constructed thus:

� �1 1(),
()

,

P P

P Ps

assign v v dom assign
entries v

otherwise

� �

�

 �°
 ®

�°̄
* ;

(7)

(v) finally, the actual set of alternative lexicon entries for each vertex is defined thus:

(), ()
()

() ,

entries v entries v V
entries v

entries v Del otherwise

c ®

�¯
,

(8)

where Del is a constant lexical entry allowing simultaneous deletion on all

dimensions and thus accounting for paradigms requiring fewer nodes than available.

For an example application of this method, one might consider the realization of

literal talk according to the lexicon in Table 1. The number of vertices created for this

2 Specializing the general definition for Debusmann�s solution, a set of lexicon entries sharing

one same group id is a group paradigm iff it contains all lexicon entries sharing that id.

they have a word with Mary

sole literal would be four, say { , , , }u w v x , so as to hold the paradigm with the greatest

number of entries (�have a word with�). One valid actual assignment of alternative

lexical entries is given in Table 2, which states, for example, that vertex u will be

selecting either the first or the fifth row/entry. Notice that vertices v and x will select

the special Del entry in the event of �talk to� being generated (third and forth rows).

Table 2. During generation, actual lexical entries allowing selection between two alternative

realizations (�talk to� and �have a word with�) of one same semantic literal talk. The first

column coindexes entries competing for one same vertex

assigned

to vertex
word lit. group outgroupsID inID outID inPA outPA linkPA

u talk talk g1 ^ `^ `1iobj g6
 ^ `root

 ^ `,subj obj

^ `root
 ^ `,agt obj

 ^ `
^ `

agt subj

obj obj

 ½° °
® ¾
° °¯ ¿

6

6

w to (del) g1 � ^ `iobj
 ^ `pcomp

 ^ `del
 � �

v (del) (del) null � ^ `del
 � ^ `del

 � �

x (del) (del) null � ^ `del
 � ^ `del

 � �

u have (del) g2 ^ `^ `2obj g6
 ^ `root

 ^ `,subj obj

^ `del
 � �

w a (del) g2 ^ `^ `2det g6
 ^ `obj

 ^ `det
 ^ `del

 � �

v word talk g2 ^ `^ `2mod g6

^ `det
 ^ `mod

 ^ `root
 ^ `,agt obj

 ^ `
^ `

agt subj

obj obj

 ½° °
® ¾
° °¯ ¿

6

6

x with (del) g2 � ^ `mod
 ^ `pcomp

 ^ `del
 � �

4 Shortcomings and Requirements Gathering

Now we are in a position to sense the limits of the solutions presented in the previous

section and thus gather requirements for future enhancements to XDG and its

implementation. Our main goal in this section is provide evidence pointing towards a

new balance between maybe the most abstract requirements on frameworks, namely

the trinity (i) generality, i.e. coverage/expressibility of phenomena, (ii) instantiability,

i.e. ease of instantiation, and (iii) complexity. Instantiability is the design-time

analogue of complexity, a runtime concept. In fact, even if some methodology is

theoretically applicable with satisfactory accuracy (i.e. it is general enough), it is

likely to be discarded if its application happens to be too costly. In other words, it is

practicality, feasibility, ease, reasonable demand in resources, in summary,

instantiability during development and complexity during execution that will

eventually drive developers� preference for this or that framework. As regards XDG,

instantiability concerns features and primitives of the grammar specification

language, while complexity is related to model creation, propagation and stored

lexicon size.

4.1 Generality vs. Expansion � Bidirectionality and Null Categories

Debusmann [2] has focused on MWEs only and implied that group-oriented lexicon

lookup would be a generation trait; however, vertex expansion is not restricted to

generation, which is already suggestive that such an enhanced lookup/model creation

procedure is actually the general � rather than the exceptional � case. Take for

instance instrument incorporation in the whole set of �cut-with-a-X� words in

Brazilian Sign Language [1], not to mention manner and intensity incorporation.

Although work is lacking on this specific matter, if ellipsis is ever to be handled in

XDG, that will probably resort to some kind of vertex expansion during parsing.

Consider, for example, the following Portuguese sentence3:

Eu comprei sapatos brancos e ele pretos.

I have bought shoes white and he (has bought) black (shoes).

 (= white shoes)

However such a hard phenomenon is to be tackled, one can count on the fact that

�Eu� and �ele� cannot share the same vertices for �(has/have) bought� or �shoes�, at

least not directly. Generally speaking, all evidence suggests that, if syntactic null

categories are ever to be �parsed�, that will require vertex expansion as they cannot

rely on the presence of words of their own to trigger the generation of their respective

vertices during model creation.

4.2 Complexity vs. Expansion

Inflecting MWEs. One issue that Debusmann has left open in his XDG account of

MWEs is related to inflection, i.e. how such alternations as �have/has/had an/�

argument/s4 with� are to be encoded. As we shall presently see, the current solution

might have undesired side-effects on complexity, either on lexicon storage or

propagation. In the discussion below, one should always take into account that there

are languages considerably more inflected than English. Romance languages, for

example, deliver tenths of distinct inflected forms for every single verb, counting out

the so-called compound forms, i.e. those involving auxiliary verbs.

The obvious first impulse would be rather flawed to encode a whole grammatical

paradigm into one sole group paradigm, i.e. to make all inflections of a given base

MWE share the same group id, which might even work for parsing (strictly without

vertex expansion) but not generation5. Take for instance the grammatical paradigm

�have/has/had a word with�. In addition to the relevant entries in Table 1, its encoding

would also require two further entries � for �has� and �had� respectively � quite

similar to that of �have�. Supposing they all share the same group id and assuming a

generation scenario, on application of the vertex expansion procedure described in the

previous section six vertices would be created instead of the correct four, and either

failure or malformed output would follow. Apropos, in generating a Romance

language over forty vertices would usually sprout. This so to speak vertex prodigality

stems from the fact that, in this misencoding, there is no clue whatsoever that some

entries should compete for one same vertex.

3 Thanks to Denys Duchier, originally in German.
4 The alternation �had an argument with� vs. �has arguments with� can arguably be regarded

as involving aspect inflection.
5 One corollary worth deriving from the following facts is that XDG is only potentially

bidirectional, i.e. there are grammars that might work in one direction but not in the other.

Restricting ourselves to valid inflection schemes, we were able to devise two such

designs, both of which cannot help creating one exclusive group paradigm for each

inflection. They differ, however, in the possibility of paradigms sharing some entries.

Unfortunately, both of them entail complexity side-effects as explained below.

No Sharing: Storage Complexity and Overactivation. Let us first assume the

simplest solution, namely create as many group paradigms as there are inflections

ensuring that they do not share one entry whatsoever. In this design, if �have a word

with� takes four lexicon entries, then so does �has a word with�, and altogether this

makes eight distinct entries. The sole difference between the whole lot of

�a/word/with� entries lies in their group ids.

The design works but has two major disadvantages, namely: (i) storage

requirements are subject to a significant multiplying factor, which will get much

worse by the end of this section; (ii) this factor also affects model creation inasmuch

as overactivation is likely to occur, i.e. having vertices select from loads of virtually

equivalent lexicon entries. For example, in Portuguese, either when generating or

parsing something like �ter uma discussão com� (�have an argument with�), there

would be three vertices trying to select from over forty different entries for

�discussão�, �uma� and �com� respectively, which, ironically, are invariable in this

MWE.

Sharing: All the Same or Spurious Symmetries. An alternate encoding method

would be keep one group paradigm per inflection sharing equivalent entries (modulo

group ids) with all the others. Enabling sharing would require a minor adaptation to

Debusmann�s original solution, namely (i) replace feature group (the id of the group

to which an lexical entry belongs) with say groups (a set thereof), (ii) restate the

Group Coherence Principle to hold for every candidate edge (src,target,label) on

every structure-bearing dimension D thus:

()(' ') ()(' ')()GD Dlex target groups lex src outgroups label� z� , (9)

where GD (a constant) is the dimension holding feature groups.

For example, in this design, �a/word/with� would take one single entry in the

encoding of the whole �have a word with� grammatical paradigm. However, this

solution comes in two radically different flavours depending on whether group

paradigms originating from different grammatical paradigms may be sharers. In

ground terms, depending on whether the entries for �a� and �with� might be shared by

all inflections not only of �have a word with� but also of �have a

fight/quarrel/argument/etc. with� or, more relevantly still, whether entries for the

inflections of �have� might also be shared by all groups paradigms in which �have�

acts as a support verb. Let us call restrained resp. unrestrained sharing the solution

obtained by refusing resp. accepting those conditions.

Unrestrained sharing certainly answers both the storage complexity and

overactivation problems posed by no sharing at all. However, it incurs propagation

loss, especially in generation, when the order of vertices is not predetermined, which

might otherwise help disambiguation. In either direction, odds are that propagation

only will not be able to reconstitute the internal structure of groups, as various

vertices may potentially belong to one given group, though not simultaneously, only

alternately, which is known to kill propagation. In other words, symmetries are likely

to be introduced by the encoding scheme � and spurious at that, inasmuch as not

natural of the problem at hand, but rather brought in by the adopted solution. For

example, consider the generation of the following sentence:

I had a word with the director after having a quarrel with one of my students.
 MWE1 MWE2

Under unrestrained sharing, vertex expansion would yield two �a/with� vertices,

respectively for MWE1 and MWE2. However and precisely due to sharing, both

vertices would accept edges from either group, which would block propagation at

some point and create a spurious choice point.

On the other hand, restrained sharing reduces spurious symmetries if only for the

fact that the co-occurrence of two inflections of one same MWE is less likely. Even if

that were satisfactory, it definitely does improve much on storage complexity as

compared to no sharing at all, especially in the light of the following new facts.

Connectives in Optional Constituents and the TNT Effect. It is worth reminding

that Debusmann�s solutions are originally targeted at MWEs, and one might argue

that their shortcomings are even acceptable taking into account that MWEs occur

much less often than self-contained single words. We reply that the magnifying factor

of whatever shortcomings a grouping solution may ever have might well be the sheer

size of a whole lexicon. In other words, just imagine what if, after all, there were as

many group paradigms as there are words or even word senses in a lexicon, or rather,

what if virtually every occurrence of any word involved grouping no matter whether it

belongs to a MWE. Minor flaws in the grouping scheme might have a disastrous

(TNT) effect then.

In order to clearly see how come, it suffices to leave MWEs, assume a generation

scenario and consider where connectives (prepositions and conjunctions) in optional

constituents (prepositional phrases and subordinate clauses acting as adverbials or

noun modifiers) are ever to come from. Even as simple a sentence as �John died for

Mary/love� becomes suddenly surrounded with mystery, and it seems rather unlikely

that any definitive MWE solution can be formulated before this issue has been

suitably tackled. Notice that our focus is not on how the correct connectives are

selected (for example, consider the alternations �at ten o�clock/on Monday/in

January�, which are all time adverbials and only the tip of the iceberg), although that

is a very current subject of debate and research. What we are considering is a much

more basic issue: the very mechanism allowing their surfacing once they are expected

to have no direct semantic counterpart.

Given the current state of the art in XDG, which includes the interesting group

technique by Debusmann, we advocate that the hypothesis must be tested that

connectives in optional constituents can be generated by some enhanced form of

grouping and vertex expansion. Although this surely is in our agenda, we have not yet

carried out any such comprehensive test. Instead, we find it essential first to make

sure that groups will scale � both in terms of instantiability and complexity � or else

that simply cannot be the solution.

Preliminary Evidence. We proceed to give preliminary evidence that, assuming such

a scalable grouping scheme exists, our hypothesis stands a chance. To this end, let us

analyze how the underlined connectives in �Mary knitted it for John while they lived

in Paris� could be generated.

Hypothesizing that �for/while� belongs to a group implies asking what its

cogrouper(s) must be after all. There seems to be two options only: either

�knitted/knitted� or �John/lived�. Generalizing, it is in order to decide whether a

connective introducing an optional constituent must group with its governor or its

governee, respectively. The second option is the only acceptable, as the resulting

groups consist of two components each, namely a connective and (the root of) its

governee, while the first option would involve grouping the governor with as many

optional (i.e. deletable) components as there can be connectives simultaneously

governed by the entity at hand (verb, noun, etc.). Not only is that somewhat difficult

to determine, but also most of the created components would usually be inactive in

most sentences.

Let us hypothetically trace the generation of �for� according to the analysis shown

in Fig. 4. Looking up the semantic literal underlying �John� yields two groups,

namely G1, a singleton corresponding to a nominative or accusative occurrence of

�John�, and G2, corresponding to a prepositioned occurrence. Assuming for clarity

that only one-word prepositions are possible, two vertices are created, say prep and

john. Two lexicon entries compete for john, one (belonging to G1) accepting either a

subj(ect) or a (direct) obj(ect) edge on the ID dimension and the other (G2) accepting

only pcomp (preposition complement). As for vertex prep, several entries compete for

it, one allowing deletion (because G1 does not have two components) plus one G2

entry per possible preposition, accepting, among others, adv and donating pcomp only

to G2 members by means of feature outgroups.

Fig. 4. Fragment of an analysis of �Mary knitted it for John�

All that remains to be explained is how �for� (or an equivalent) is to be selected

among all other prepositions, or rather, how to state (i) that the specific word �for� is

a possible realization of the ben(eficiary) relation on dimension PA and (ii) that its ID

mother (�knitted�) should be the PA mother of its ID daughter (�John�). For those

acquainted with XDG, that immediately suggests some interdimensional principle

involving a lexical feature, more precisely some kind of linking principle. In fact, the

XDK already provides library principle LinkingDaughterEnd, which is almost what

we need. Given two dimensions D1 and D2 and some function linkg of the type given

in Eq. (2), it ensures that, for every edge (src,target,label) on D1, either there is an

edge (src,target,label') on D2 such that either (, ,)label linkf src target labelc� or

(, ,)linkf src target label is empty.

 knitted � for John

For our purposes, a similar principle would suffice operating, though, on groups

instead of directly on vertices. Given two dimensions D1 and D2 and some function

linkg, hypothetical principle LinkingDaughterGroupEnd would ensure that, for every

edge (src,t,l) on D1, either (i) there is an edge (src,t',l') on D2 such that

(, ,)l linkf src t lc� and () ()groups t groups tc� z� or (ii) (, ,)linkf src t l is empty. Letting

D1 = ID, D2 = PA and linkg access feature PAEndID of edge targets thus:

(_, ,). ()(' ')()IDlinkf target label lex target PAEnd labelO , (10)

the application of LinkingDaughterGroupEnd ensures the selection of �for�, provided

that its lexical entry has a value g for PAEndID such that ' ' (' ')ben f adv� .

The generation of �while� is perfectly analogous except for the fact that governed

finite verbs group with governing conjunctions instead of prepositions. Finally, it is

worth mentioning that this grouping solution (governing connectives with governed

entities) should only be applied to optional constituents. In contrast, prepositions

introducing indirect objects (such as �of� in �approve of�) should group with their

governing verbs, much like MWEs.

Consequences. In the event that the hypothesis introduced above is accepted,

grouping will come to play a leading role in XDG praxis. Its status might well be

upgraded to that of a primitive. For a start, we have already provided evidence that

group-oriented versions of library principles will be needed, and it would be no

wonder if the whole original library suddenly became obsolete. In addition, lexicon

language will have to be revised to make groups really instantiable, i.e. more friendly

to grammar developers. And, as we shall briefly argue in Section 5, so will probably

part of its operational semantics, in order to reduce storage complexity.

4.3 Instantiability vs. Expansion � Verbs, Nesting, Crossing, and

Generalized N1:}:Nn Mapping

Much of what has been discussed for connectives and their generation also applies to

auxiliary verbs, even if only to such perfectly grammatical auxiliaries as English �do�

in questions and negative sentences. Under our hypothesis for connective generation,

it seems reasonable that at least �do� is to be generated by grouping with its main

verbs. As all English verbs but a few exceptional cases (auxiliaries and �be�) may

take this auxiliary, the issues discussed previously are still relevant.

Nevertheless, whether auxiliary or not, verbs are somewhat more complex objects

than connectives. A significant portion of their complexity lies in pure syntax and

morphology irrespective of semantics. For instance, although verbs such as �take�,

�make�, �get�, and non-auxiliary �have� may be employed in a variety of senses,

most of their syntactic and morphological behaviour remains the same all across. In

XDG terms, �have� may group with �do/does/did� and is inflected �has/had/having/to

have/etc.� no matter whether it should be part of �have a word with� or other MWEs

or even work on its own in several alternate senses. Instantiability (i.e. modularity and

separation of concerns) here demands that such obvious and productive

�irrespectiveness� can be captured, i.e., that partial behaviour can be defined once and

for all for later reuse. And as much as possible: it is highly desirable that such very

productive paradigms as grouping with �do� and the �to� infinitive particle could be

defined for a whole class of verbs at once. It is worth noticing that the abstract

concept of partial and thus reusable specifications already underlies the XDK�s

design, although the requirements we have been gathering are not currently met,

probably as a result of the underrated status groups have enjoyed thus far.

The described requirements hint at some sort of group nesting (e.g. �do have�

might be a subgroup inside �[[do have] an argument with]�, as might �on behalf of�

in �[[on behalf of] Mary]�), partial groups (i.e. underspecified groups, or rather,

groups setting a strict subset of all the required features) and the cross product of

complementary partial group paradigms. The latter refers to the concept that

complementary partial groups (i.e. setting disjoint subsets of features) might be

combined to generate a new group. For example, English phrasal verb �cut off� might

have all its morphosyntactic behaviour captured in a partial paradigm Syn involving

nesting (�[[do cut] off]� and such like). Next, various complementary paradigms

^ `1, , nSem Sem! should specify the possible meanings of �cut off� (�stop�, �separate�,

etc.), which might also comprise complex subgraphs. Finally, a hypothetical special

cross product ^ `1, , nSyn Sem Semu !* would conveniently yield all the expected group

paradigms, which might, in turn, still be partial and thus reusable for further crossing.

Such a scheme, which we have not yet formalized but rather sketch as a teaser, would

provide a convenient form of generalized N1:}:Nn mapping.

5 Future Work � Upgrading Groups and On-Demand Lexicon

The main point of this article has been to resume the discussion on grouping in

XDG, give evidence as to how central the issue is to XDG development and gather

requirements for enhancing the framework. We believe the way from here is to

upgrade groups to the status of a primitive, if not of XDG�s core, at least of the

XDK�s lexicon language.

Whether the upgrade makes it to the core or not, one possibility that seems rather

promising and unavoidable is modifying the operational semantics of the lexicon

component to circumvent storage complexity, among others. In other words, we

intend further to exploit the fact that the lexicon component of an implementation

does not have directly to reflect its formal counterpart. Specifically, it may well

become an on-demand producer of actual lexicon entries on an input-by-input basis.

This means that all nesting and crossing of primitive group paradigms can be

performed on the fly according to the input at hand, which can be relatively easily

implemented by means of higher-order programming and is likely to decrease the

number of active lexicon entries dramatically even in face of massive grouping.

Such a scheme appears all the more feasible if one takes into account automatic on-

the-fly generation and assignment of group ids, every new group occurrence receiving

a fresh group id in the scope of the current input, which is rather straightforwardly

implemented by means of functional programming and logic variables. This would

spare grammar developers from dealing directly with awkward, error-prone group id

features and is only possible because groups are very well-behaved: given a group, its

edges are either constrained to be internal to itself or free to link to any other group.

Nesting is likely to complicate things a little, but not too much, probably it sufficing

to introduce one third option, namely �or constrained to be internal to the innermost

enclosing group�.

We hope that a lexicon component may thereby reconcile (i) unrestrained sharing

(Section 4.2) in grammar development and storage with (ii) neither sharing nor

overactivation at all in model generation. All the referred constructs and a vertex

expansion algorithm are currently being designed and shall be presented in due time.

Acknowledgements

This research project has been partially funded by Conselho Nacional de

Desenvolvimento Científico e Tecnológico � CNPq, a Brazilian government agency

fostering technological and scientific development.

References

1. Brito, L. F. Por uma Gramática de Línguas de Sinais. Tempo Brasileiro Ed., Departamento

de Lingüística e Filologia, Universidade Federal do Rio de Janeiro (1995)

2. Debusmann, R.: Multiword Expressions as Dependency Subgraphs. In: Proceedings of the

42nd Annual Meeting of the Association for Computational Linguistics (ACL 2004,

�Multiword Expressions: Integrating Processing� Workshop)

3. Debusmann, R., Postolache, O., Traat, M.: A Modular Account of Information Structure in

Extensible Dependency Grammar. In: Sixth International Conference on Intelligent Text

Processing and Computational Linguistics (CICLING 2005)

4. Debusmann, R., Duchier, D., Kruijff, G. J.: Extensible Dependency Grammar: A New

Methodology. In: Proceedings of the 20th International Conference on Computational

Linguistics (COLING 2004, Workshop on Recent Advances in Dependency Grammar)

5. Debusmann, R., Duchier, D., Koller, A., Kuhlmann, M., Smolka, G., Thater, S.: A

Relational Syntax-Semantics Interface Based on Dependency Grammar. In: Proceedings of

the 20th International Conference on Computational Linguistics (COLING 2004)

6. Debusmann, R., Duchier, D., Kuhlmann, M.: Multidimensional Graph Configuration for

Natural Language Processing. In: Proceedings of the International Workshop on

Constraint Solving and Language Processing (2004) 59�73

7. Duchier, D.: Configuration of labeled trees under lexicalized constraints and principles. In:

Journal of Language and Computation (2002)

8. Duchier, D.: Axiomatizing dependency parsing using set constraints. In: Proceedings of the

6th Meeting on the Mathematics of Language (1999)

9. Duchier, D., Debusmann, R.: Topological dependency trees: A constraint-based account of

linear precedence. In: Proceedings of the 39th ACL (2001)

10. Duchier, D., Thater, S.: Parsing with Tree Descriptions: a Constraint-Based Approach. In:

Sixth International Workshop on Natural Language Understanding and Logic Programming

(NLULP 1999) 17�32

11. Gardent, C., Thater, S.: Generating with a Grammar Based on Tree Descriptions: a

Constraint-Based Approach. In: Bird, S. (ed.): Proceedings of the 39th Annual Meeting of

the Association for Computational Linguistics (ACL 2001)

12. Koller, A., Striegnitz, K.: Generation as Dependency Parsing. In: Proceedings of the 40th

Annual Meeting of the Association for Computational Linguistics (ACL 2002) 17-24

